ETC EM65H134

PAGE
1
ELAN MICROELECTRONICS CORP.
240 Channel Segment Driver for Dot matrix STN Liquid
Crystal Display with Low Voltage Drive
EM65H134
Contents
1. General description
2
2. Feature
2
3. Applications
2
4. Pin configurations (package)
3
5. Functional block diagram
4
6. Pin descriptions
5
7. Function description
7
8. Absolute maximum rating
16
9. DC electrical characteristics
18
10. AC electrical characteristics
20
11. Timing diagrams
21
12. Application circuit
22
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
2
ELAN MICROELECTRONICS CORP.
GeneralDescription
The EM65H134 is a 240-channel segment LCD driver LSI, Which drives a dot matrix STN liquid
crystal display at low power. The EM65H134 operates with a low 5V LCD drive voltage and a low 3V
logic voltage. The EM65H134 includes shadowing correction circuit in order to improve image quality.
The EM65H134 is packaged in a fine pitch slim TCP( slim type carrier package) technology, it is deal
for substantially decreasing the size of LCD module frame.
Feature
-
Duty cycle: Up to 1/300
LCD drive voltage: 3.5 to 5.5 V
240 LCD drive circuits
Operating voltage: 2.7 to 5.5 V
Eight data bits
Shift clock speed
—25 MHz max/3 V
—40 MHz max/5 V
- Shadowing correction circuit
- Display-off function
- Slim-TCP
—Output lead pitch: 70μm
—User area: 5.5mm
- Automatic generation of the chip enable signal
- Standby function
Applications
- PDA
- Dictionary
- Message display product
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
3
ELAN MICROELECTRONICS CORP.
S2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
S 239
S 240
S1
PinConfiguration
1----------------------------------------------------------------------------------------------------------------------240
EM65H134
Top View
V ML
V 0L
V 1L
V DD
DIR
EIO1
/DS P OF
D I0
D I1
D I2
D I3
D I4
D I5
D I6
D I7
X CK
LP
FR
E IO 2
C C1
C C2
C C3
C C4
VSS
V 1R
V 0R
V MR
267--------------------------------------------------------------------------------------------241
Note: The pin configuration is LSI chip, not TCP.
Figure1. Pin configuration
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
4
ELAN MICROELECTRONICS CORP.
Functional Block Diagram
V0R , V M R , V 1R
V 0L , V
S1 , S 2 ,......... .................... ........, S239 , S240
ML
, V 1L
3
V DD
V SS
3
240 bits 3-level driver
(Liquid crystal display driver circuit)
240
CC1~CC4
240
Correction circuit
/DSPOF
240
LP
Line latch circuit
8
FR
DI0~DI7
Data shift and
arithmetic circuit
8
DIR
XCK
EIO1
8
8
data
latch
8
8
8
8
8
....
Shift register
EIO2
Figure 2. Block diagram
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
5
ELAN MICROELECTRONICS CORP.
Pin Descriptions
Table1 pin description
Symbol Pin No.
VDD
264
VSS
V0R , V0L
VMR , VML
V1R , V1L
DI0 – DI7
XCK
244
266,242
267,241
256,243
260 t0
253
252
LP
251
FR
250
DIR
263
/DSPOF
261
EIO1,EIO 2 262,249
I/O Connected to
Functions
I Power Supply Power supply for internal logic connects to
+2.7 to +5.5V
I
GND
Connect to Ground
I Power Supply Power supply for LCD driver level
Ensure that the voltage are set such that
V1<V M<V 0 , VM=0.5(V 0-V1)
I
Controller Input for display data
input data into 8 pins DI0 – DI7
I
Controller Clock signal for taking display data
Data is read on the falling of the clock
pulse
I
Controller Latch signal for display data
Data is latched on the falling edge of the
clock pulse
I
Controller AC signal for LCD driver
Input a frame inversion signal
I
Controller Directional selection for reading display
data
DIR
Data read direction
H
S240 to S1
L
S1 to S240
I
Controller When the signal is low,the output (S 1 –
S240) of LCD drive be set to level VM
I/O
Controller Input/output for chip selection
In output state,the output pin must
connect to input pin of next EM65H134
In input state,the input pin of the fist
EM65H134 must connect to Vss,the other
input pin must connect to the output pin of
previous EM65H134.
DIR
EIO 1
EIO 2
H
output
input
L
input
output
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
6
ELAN MICROELECTRONICS CORP.
Table1 pin description (continous)
CC1
248
I
CC2
247
I
CC3
246
I
CC4
245
I
S1-S240
1 to 240
O
Rising crosstalk correction signal.The V1
level output is reset to VM level when CC1
is high.
Falling crosstalk correction signal.The V0
level output is reset to VM level when CC2
is high.
Waveform distortion non-selected (black)
data correction signal.The present output
pin (non-selected)and the next output pin
(non-selected) are reset to the VM level
when CC3 is high.
Waveform distortion selected (white) data
correction signal.The present output pin
(selected)and the next output pin (selected)
are reset to the VM level when CC4 is high.
LCD driver output.
One of two levels is output according to
the combination of the FR signal and
display data, when /DSPOF is in VDD
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
7
ELAN MICROELECTRONICS CORP.
FUNCTIONDESCRIPTIONS
- Shift Register
The 30-bit shift register generate latch signal for data latch circuit at the falling edge of XCK
signal. The shift direction is selected by DIR signal.
- Data Latch
It latches the data on the 8 bits data bus(DI0 to DI7) and output the data to line latch. It is
controlled by shift register.
- Line Latch
All 240 bits, which have been read into the data latch are simultaneously latched at the falling
edge of the LP signal then output to the correction circuit and 3-level driver.
- 3-level Driver
Drive LCD panel from driver output pins, selecting one of three levels (V0, VM, V1) based on the
line latch data, correction circuit(CC1 to CC4) and /DSPOF.
-Correction Circuit
This circuit corrects the shadowing volume.
1.The circuit compares the crosstalk correction signals (CC1 and CC2) from the external
circuits and present output, and determines whether the effective value is increased due to crosstalk.
If the effective value is increased, the output level is reset to the VM level.
2.The circuit compares the output data to the next output data. If there are no data changes
due to the waveform distortion correction signal (CC3 and CC4), the output level is reset to VM level.
The reset period can be adjusted by using CC1 to CC4. The correction needed depends on
each output pin.
-Data Shift and Arithmetic Circuit
The data shifter shifts the destinations of data output when necessary. The arithmetic circuit
performs operations for the data and FR signal.
LP
FR
Segment
Common
Figure 3. FR、LP、output timing
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
8
ELAN MICROELECTRONICS CORP.
Relation between FR、latch data、/DSPOF and output level
Table 2 LCD driver output voltage level
FR
Latch data
/DSPOF
H
H
H
H
L
H
L
H
H
L
L
H
X
X
L
VSS≦ V1< V M< V 0
H:VDD
Driver output voltage level
V0
V1
V1
V0
VM
L:V SS
X :Do n ’ t c a r e
Relationship between the display data and driver output and data output destination
Table 3 Relationship between the display data and driver output
DIR EIO1 EIO2 Data
Figure of clock
Input
1st
2nd
3rd
…
28th
L
Input Output DI0
S8
S16
S24
…
S224
DI1
S7
S15
S23
…
S223
DI2
S6
S14
S22
…
S222
DI3
S5
S13
S21
…
S221
DI4
S4
S12
S20
…
S220
DI5
S3
S11
S19
…
S229
DI6
S2
S10
S18
…
S228
DI7
S1
S9
S17
…
S227
H Output Input DI0
S233 S225 S217
…
S17
DI1
S234 S226 S218
…
S18
DI2
S235 S227 S219
…
S19
DI3
S236 S228 S220
…
S20
DI4
S237 S229 S221
…
S21
DI5
S238 S230 S222
…
S22
DI6
S239 S231 S223
…
S23
DI7
S240 S232 S224
…
S24
29th
S232
S231
S230
S229
S228
S227
S226
S225
S9
S10
S11
S12
S13
S14
S15
S16
30th
S240
S239
S238
S237
S236
S235
S234
S233
S1
S2
S3
S4
S5
S6
S7
S8
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
9
ELAN MICROELECTRONICS CORP.
Data output destination
The direction of data latch and the chip enable input/output pin can be select by DIR signal.
DIR=VSS ,Enable input: EIO1 ,Enable output: EIO2
S1
S2
S3
S4
S5
S6
S7
S8
D7
D6
D5
D4
D3
D2
D1
D0
S233 S234 S235 S236 S237 S238 S239 S240
D7
D6
D5
First data
D4
D3
D2
D1
D0
Last data
DIR=VDD ,Enable input: EIO2 ,Enable output: EIO1
S1
S2
S3
S4
S5
S6
S7
S8
D0
D1
D2
D3
D4
D5
D6
D7
S233 S234 S235 S236 S237 S238 S239 S240
D0
D1
D2
Last data
D3
D4
D5
D6
D7
First data
Figure 4. Data output destination
Operating timing
Figure 4 shows the 8-bit data -latch timing when DIR=GND; that is, when the EIO1 pin is a
chip-enable input and the EIO2 pin is a chip-enable output. When SHL=V cc, the EIO1 pin is a
chip-enable output and the EIO2 pin is a chip-enable input.
When a low chip-enable signal is input via the EIO1 pin, the EM65H134 is first released from
the data-standby state, then, at the falling edge of the following XCK pulse, it is released entirely from
the standby state and starts latching data.
It simultaneously latches eight bits of data at the falling edge of each XCK pulse. When it has
latched 232 bits of data, it sets the EIO2 signal to low. When it has latched 240 bits of data, it
automatically stops and enters the standby state, initiating the next EM65H134, provided its EIO2 pin
is connected to the EIO1 pin of the next EM65H134.
The EM65H134 output one line of data from the S1 to S240 pins at the falling edge of each LP pulse.
Data d1 is output from S1, and d240 from S240 when SHL=GND, and d1 is output from S240, and
d240 from S1 when DIR= Vcc.
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
10
ELAN MICROELECTRONICS CORP.
DIR=VSS
Line
LP
XCK
1
DI0
2 3
29 30 31
d8 d16
d240
d1 d9
d233
299 300 301
DI7
EI
(NO.1)
EO
(NO.1)
EO
(NO.2)
EO
(NO.3)
NO.1 latch data
NO.2 latch data
NO.3 latch data
EO
(NO.10)
NO.10 latch data
S1~S240
Figure 5. Data latch timing
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
11
ELAN MICROELECTRONICS CORP.
Correction circuit
The EM65H134 include shadowing correction circuits. There are two types of shadowing: one
caused by crosstalk, and the other by waveform distortion. In both types, image quality can be
improved by correction circuits CC1, CC2, CC3, and CC4.
(1) CC1 and CC2(Shadowing caused by crosstalk)
(a) (b)
Corresponding sections
FR
waveform at (a)
(Normally black panel)
white white
waveform at (b)
showing section whiteblackblack
white
white
black black
white
SEG
COM
SEG
COM
Figure 6. Shadowing caused by crosstalk
When a ruled line is displayed, noise occurs in the common VM level in the LCD panel due to
the segment change of a solid background in FR reverse. This is because many segments display
the solid background and are simultaneously changed, affecting the common VM level (creating
crosstalk). The effective voltage for section (a) in the solid background becomes low. On the other
hand, the effective voltage for section (b) becomes high. Shadowing occurs in the corresponding
sections due to the different voltages.
The EM65H134s compare the crosstalk correction signals CC1 and CC2 and the present output, and
determine whether the effective value is increased by the crosstalk. If increased, the output level is
reset to the VM, which corrects the effective voltages in (a) and (b) and suppresses the shadowing.
Figure 8 shows an example of the crosstalk-correction-signal external circuit. The basic potentials of
a comparator (VM+△V and VM-△V’) are corrected according to the shadowing level for output
correction while CC1 and CC2 are high. CC1 corrects the rising crosstalk, and CC2 corrects the
falling crosstalk.
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
12
ELAN MICROELECTRONICS CORP.
Waveform in section(b)
Waveform in section(a)
Before correction
After correction
Effective voltage decreased
VM
VM
SEG
waveform
SEG
waveform
SEG
waveform
SEG
waveform
VM+ V
VM
VM
VM- V'
Effective voltage correction
CC1
Effective voltage increased
CC2
Figure 7. Effective voltage correction
Comparator
VM+
V
CC1
VM power
supply
Power supply
circuit
VM-
V'
CC2
Figure8. CC1 and CC2 external circuit
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
13
ELAN MICROELECTRONICS CORP.
(2) CC3 and CC4(shadowing caused by waveform distortion)
(a)
Corresponding sections
(b)
(Normally black panel)
black
waveform at (a)
white
black
FR reversed
white
black
white
waveform at (b)
white
COM
SEG
SEG
COM
black
Figure 9. Shadowing caused by waveform distortion
When the background is displayed in grayscale (for example, in a checker pattern), many
segment levels are changed in section (a) but not in section (b). The effective voltage for section (a)
becomes low because distortion occurs in the segment output waveform due to driver or panel
impedance. On the other hand, the effective voltage for section (b) becomes high because the
waveform is changed only slightly. Shadowing occurs in the corresponding sections due to the
different voltages.
The EM65H134 compare the present output data and the next output data. If the data is not changed,
the output level is reset to the VM, which corrects the effective voltages in (a) and (b). The high width
is corrected according to the shadowing level for output correction while CC3 and CC4 are high. CC3
corrects the non-selected output pin (black background), and CC4 corrects the selected output pin
(white background).
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
14
ELAN MICROELECTRONICS CORP.
Waveform in section(b)
Waveform in section(a)
Before correction
After correction
Effective voltage decreased
VM
VM
SEG
waveform
SEG
waveform
SEG
waveform
SEG
waveform
VM
VM
Effective voltage correction
CC3
VM
SEG
waveform
CC4
Figure 10. Effective voltage correction by waveform distortion
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
15
ELAN MICROELECTRONICS CORP.
FR
M n-1
M n+1
M n
LP
XCK
DI0~DI7
m-1
m
n-4
n-3
n-2
n-1
n
*
*
*
last data
* : invalid
CC1
CC2
CC3
CC4
Data Latch
(m)
Line Latch
( M n - 1) current output data
(m)
( M n - 1) current output data
Compared result for
correctioncircuit
(( m )
( M n - 1))
(n)
( M n ) next output data
(n)
( M n ) next output data
((n)
( M n )) c a l c u l a t e r e s u l t
Segment output:
(a)V1 reset (V1->VM)
(m)
( M n - 1) current output data
(b)V0 reset (V0->VM)
(m)
( M n - 1) current output data
(c)V0 reset (V0->VM)
(m)
( M n - 1) current output data
(d)V1 reset (V1->VM)
(m)
( M n - 1) current output data
VM
VM
VM
VM
(n)
( M n ) next output data
(n)
( M n ) next output data
(n)
( M n ) next output data
(n)
( M n ) next output data
VM reset (correction)
Figure 11. Compared result for correction circuit
The correction circuit compares the present output data (line latch) and the next output data
(data latch). Depending on the compared result, the circuit resets the high width of CC3 to the VM for
the output without a data change if the data is the non-selected output ((c) in figure 12). The circuit
resets the high width of CC4 to the VM if the data is the selected output ((d) in figure 12). CC3 and
CC4 are input after the last valid data is transferred. CC1 forcibly resets the V1 output to for the high
width ((a) in the figure 12). CC2 forcibly resets the V0 output to VM for the high width ((b) in figure 12).
Therefore, shadowing caused by waveform distortion is corrected with CC3 or CC4 (non-selected or
selected), and shadowing caused by crosstalk is corrected with CC1 or CC2 (in the V0 or V1
direction).
Note: The high period from CC1 to CC4 should be matched with the shadowing level.
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
16
ELAN MICROELECTRONICS CORP.
Absolute Maximum ratings
Table 4 absolute maximum ratings
Parameter
Symbol Condit ions
Applicable pins
Ratings
Unit
Supply voltage (1)
VDD Referenced VDD
*1,*2
-0.3 to +7.0
V
to
Supply voltage (2)
V0
V0L, V0R
*1,*2
-0.3 to +7.0
V
V
(0V)
Input voltage(1)
VI1
XCK, LP,DIR,FR, EIO 1 , -0.3 to VDD+0.3 V
SS
EIO2 , DI0-7,/DSPOF,
CC1 to CC4
*1
Input voltage(2)
VI2
VML,VMR,V1L,V1R *1,*2 -0.3 to V0 +0.3 V
Operating temperature Topr
-30to +75
℃
Storage temperature
Tstg
-55 to +110
℃
Note:1. if the LSI is used beyond the above maximum ratings, it may be permanently damaged.
It should always be used within it’s specified operating range for normal operation to
prevent malfunctions or degraded reliabilility.
2. As show in figure11, user should conform to the following turn on/off sequence for the
power and signal. Otherwise, the LSI will malfunction or will be permanently damaged.
In addition, the LSI reliability will be affected.
VDD
2.7 V
2.7 V
/DSPOF
V0
0 ms
0 ms
0 ms
0 ms
VM
VM
V1
V1
0 ms
0 ms
input-signal
colck data
signal-undefined initialization period
period
(at least one frame)
( 0 ms : minimun specification )
Figure 12. Turn on/off timing
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
17
ELAN MICROELECTRONICS CORP.
3. Turn on the power:
(1)
Turn on the power in the order of GND-VDD, GND-V0, and VM/V1. THEN ground
the /DSPOF pin.
(2)
The LCD forcibly outputs the VM level by the DISPLAYOFF function.
(3) Even an input signal disturbed immediately after VDD is applied, the DISPLAYOFF
function has priority.
(4) Input the specific signal to initialize the registers in the driver. The initialization period
must be at lease one frame.
(5) The preparation for the normal display is completed. Apply the VDD level to the
/DSPOF pin to cancel the DISPLAYOFF function. At this time, the level of pin V0,
VM and V1 must rise to the specific potential.
4. Turn off the power:
The procedure is basically the reverse of that used to turn on the power.
(1)
Ground the /DSPOF pin.
(2)
Turn off the LCD power in the order of VM/V1 and GND-V0.
(3)
Ground VDD and an input signal.
At this time, the level of pin V0, VM and V1 must fall to 0V. Since the DISPLAYOFF
function stops when VDD fall to 0V, the LCD may output a level other than VM. Therefore,
a display failure may occur when the power is turn off or on.
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
18
ELAN MICROELECTRONICS CORP.
DC CHARACTERISTICS
Table 5 DC characteristics 1
(VSS = GND=0V, VDD = +2.7 to +4.5V, V0 -Vss= 3.5 to 5.5V, Ta = -30~+75°C)
Parameter
Input voltage
Output
voltage
Input leakage
current (1)
Symbol
VIH
VIL
Conditions
VOH
IOH=-0.4mA
VOL
IIL1
IOL=+0.4mA
VI =VDD - VSS
IIL2
VI =V0 - VSS
Input leakage
current (2)
Output
resistance
R ON
*1
Stand-by
current
Consumed
current
Consumed
current
ISTB
*2 *3
IDD
*2 *3
I0
*2
Applicable pins
Min
DI0 -DI7, XCK,
0.7VDD
LP,DIR,FR,EIO 1,
0
EIO 2, /DSPOF,
CC1 to CC4
EIO 1, EIO 2
VDD-0.
4
Type
V0R,VOL
Y1- Y240
VMR,VML
V1R,V1L
VI = V DD VDD=3V
VDD
fXCK=25MHZ
VI = Vss fLP=100KHZ VDD
fFR =4kHZ
V0L, V 0R
Unit
V
V
V
+0.4
+5
V
uA
+100
uA
0.5
1.0
0.5
0.4
1.0
2.0
1.0
1.0
kΩ
1.0
6.0
mA
0.4
1.0
mA
DI0 -DI7, XCK, LP, -5
DIR, FR, MD, EIO1,
EIO 2, /DSPOF
VML,VMR ,V1L,V1R
-100
ION =
150uA
Max
VDD
0.3VDD
mA
Table 6 DC characteristics 2
(VSS =GND= 0V, VDD = 4.5V to 5.5V, V0 -Vss= 3.5 to 5.5V, Ta = -30~+75°C)
Parameter Symbol
Input voltage
VIH
VIL
Output
voltage
Input leakage
current (1)
Input leakage
current (2)
Output
resistance
Stand-by
current
Consumed
current
Consumed
current
Conditions
VOH
IOH=-0.4mA
VOL
IIL1
IOL=+0.4mA
VI=VDD - VSS
IIL2
VI=V0 - VSS
RON
*1
ION =
150uA
ISTB
*2 *3
IDD
*2 *3
I0
*2
Applicable pins
Min
DI0 -DI7, XCK,
0.7VDD
LP,DIR,FR,EIO 1,
0
EIO 2, /DSPOF,
CC1 to CC4
EIO 1, EIO 2
VDD-0.
4
Type
Unit
V
V
V
+0.4
+5
V
uA
+100
uA
0.5
1.0
0.5
1.0
1.0
2.0
1.0
2.0
kΩ
3.0
15
mA
0.4
2.0
mA
DI0 -DI7, XCK, LP, -5
DIR, FR, MD, EIO1,
EIO 2, /DSPOF
VML,VMR ,V1L,V1R
-100
V0R,VOL
Y1- Y240
VMR,VML
V1R,V1L
VI = V DD VDD=5V
VDD
fXCK=40MHZ
VI = Vss fLP=160KHZ VDD
fFR =6kHZ
V0L, V 0R
Max
VDD
0.3VDD
mA
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
19
ELAN MICROELECTRONICS CORP.
Note : 1. Indicate the resistance between one of thwe pins Y1~Y240 and one of the voltage supply pins,when load
current is applied to the Y pins. Defined under the following conditions:
V0-Vss = 5.5V; VM
= (V0=V1)/2; V1 = Vss+1
V1 should be near the ground level, VM should be near the middle voltage between V1 and V0. V1should
be within the range of △V = 2.5V0, which is the range within which RON, the LCD driver circuit’s output
impedance, is stable. See figure 13
2. Input and output are excluded. When a CMOS input is left floating, excess the current flows from the
power supply through the input circuit. To avoid this, VIH and VIL must be used at VDD and Vss,
respectively.
3. VI = enable input,. When DIR = Vss, VI = EIO1. When DIR = VDD , VI = EIO2
4. The voltage of each signal is show in figure 14
V0
VM
V = 0.25
V0
V1
GND
Figure 13.Relationship between driver output waveform and each level voltage
Segment
voltage
Segment waveform
Common
voltage
Common waveform
VH(38.0V)
V 0(5.0V)
V DD ( 3 . 3 V )
VM(3.0V)
V DD ( 3 . 3 V )
VM(3.0V)
V1(1.0V)
GND(0.0V)
GND(0.0V)
VL(-32.0V)
Normal display period
displayoff
period
Normal display period
displayoff
period
Figure 14. Signal voltage
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
20
ELAN MICROELECTRONICS CORP.
AC Electrical characteristic
Table 7 AC electrical characteristics 1
(VSS = GND=0V, VDD = 2.7 to 4.5V, V0 -Vss= 3.5 to 5.5V, Ta = 30~75°C)
Parameter
Symbol
Condition
Min Typ Max Unit
Shift clock period
Shift clock “H” pulse width
Shift clock “L” pulse width
Data setup time
Data hold time
Latch pulse “H” pulse width
Shift and latch clock set up
time
Shift and latch clock hold time
Shift and latch clock rise time
Shift and latch clock fall time
FR set up time
FR hold time
Output delay time
CC setup time
CC hold time
TWCK
TWCKH
TWCKL
TDS
TDH
TWLPH
TS
40
15
15
10
10
30
20
TH
TR
TF
TFS
TFH
TD
TCCS
TCCH
50
ns
ns
ns
ns
ns
ns
ns
30
30
20
20
CL=100pF
500
20
20
ns
ns
ns
ns
ns
ns
ns
ns
Table 8 AC electrical characteristics 2
(VSS =GND= 0V, VDD = 4.5 to 5.5V, V0 -Vss= 3.5 to 5.5V, Ta = 30~75°C)
Parameter
Symbol
Condition
Min Typ Max Unit
Shift clock period
Shift clock “H” pulse width
Shift clock “L” pulse width
Data setup time
Data hold time
Latch pulse “H” pulse width
Shift and latch clock set up
time
Shift and latch clock hold time
Shift and latch clock rise time
Shift and latch clock fall time
FR set up time
FR hold time
Output delay time
CC setup time
CC hold time
TWCK
TWCKH
TWCKL
TDS
TDH
TWLPH
TS
25
10
10
6
6
25
20
TH
TR
TF
TFS
TFH
TD
TCCS
TCCH
50
ns
ns
ns
ns
ns
ns
ns
20
20
20
20
CL=100pF
500
20
20
ns
ns
ns
ns
ns
ns
ns
ns
NOTES: 1. The load must be less than 10 pF between the EIO1 and EIO2 connections of the EM65H134s.
2. connect the load circuit as shown in figure 15.
Test point
100 pF
Figure 15. Load circuit for output delay time
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
21
ELAN MICROELECTRONICS CORP.
Timing diagram
TR
TF
T W CKH
T WCKL
T W CK
0.7 V DD
XCK
0.3 V DD
T DS
T DH
0.7 V DD
DI0~DI7
0.3 V DD
0.7 V DD
FR
0.3 V DD
T FS
T FH
T WLPH
0.7 V DD
LP
0.3 V DD
TS
TH
XCK
0.7 V DD
LP
0.3 V DD
TD
0.8 V 0
S (n)
0.2 V 1
0.7 V DD
LP
0.3 V DD
LAST
FIRST
XCK
T CCH
CC3
CC4
T CCS
0.3 V DD
0.3 V DD
Correct the waveform by CC3 and CC4 after XCK fetches the last data.
Complete correction before data from the next line is output at the falling edge of LP.
Figure 16. AC characteristics
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
PAGE
22
ELAN MICROELECTRONICS CORP.
Applicationcircuit
D IR
EIO1
VLC DL ,R
GN D
VEEL, R
VEO
VD D
320 * 3 *240
S240 ~ S1
DIR
EM65H134
EIO2
EM65H134
DIR
EIO1
(N0. 4)
correction circuit
Figure 17. Application circuit
本資料所有權屬義隆電子股份有限公司, 非經書面准許不可翻印複印或轉變其他任何形式°
ALL RIGHTS STRICTLY RESERVED, ANY PORTION IN THIS PAPER SHALL NOT BE REPRODUCED, COPIED WITHOUT PERMISSION.
文件格式管制版次:1.2 試行版/發行日:2001/ 7/16
Seg 958
Seg 959
Seg 960
EIO1
C C1~ CC4
/DSPOF
D 0~ D7
FR
XC K
LP
~
EM65H134
EIO2
V1L ,R
VML ,R
V0L ,R
VDD
GND
C C1~ CC4
/DSPOF
D 0~ D7
FR
XC K
LP
(N0. 2)
V1L ,R
VML ,R
V0L ,R
VDD
GND
V1L ,R
VML ,R
V0L ,R
VDD
GND
Power supply
circuit
VDD
DIR
EIO1
C C1~ CC4
/DSPOF
D 0~ D7
FR
XC K
LP
(N0. 1)
-----------------------------
S240 ~ S1
VDD
EIO2
Seg 721
Seg 722
Seg 723
~~~~~~~~~~~~~~~~~
S240 ~ S1
VDD
LCD controller
-----------------------------
Seg 478
Seg 479
Seg 480
Seg 241
Seg 242
Seg 243
-----------------------------
Seg 238
Seg 239
Seg 240
1/240 Duty
Seg 1
Seg 2
Seg 3
C2
C1
LCD Panel
C1 ~ C240
EIO2
LP
CLP
/RST
/DSPOF
AMP
M/S
/DOC
FR
FRS0~FRS4
VHL,R
VML,R
VLL,R