ETC HA16158

HA16158 EVB1.0
Application Note
Evaluation Board for the HA16158 AC-DC Converter Controller IC
with PFC and PWM Functions
Rev.1.00
2003.7.28
Cautions
Keep safety first in your circuit designs!
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or
an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.
8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.
Contents
Section 1 Introduction....................................................................................... 1
Section 2 Features ............................................................................................. 2
Section 3 Electrical Characteristics .................................................................. 3
Section 4 Detailed Description ......................................................................... 4
4.1
4.2
Overview .......................................................................................................................... 4
4.1.1 PFC Circuit Module............................................................................................. 6
4.1.2 DC-DC Circuit (48 V) ......................................................................................... 7
Functions .......................................................................................................................... 7
4.2.1 UVL Circuit......................................................................................................... 7
4.2.2 Soft-Start Circuit.................................................................................................. 8
4.2.3 PFC Switching Function...................................................................................... 9
4.2.4 Power Saving during Periods on Standby............................................................ 11
4.2.5 Overvoltage Latch Protection (for PWM Control) .............................................. 12
4.2.6 Operating Frequency ........................................................................................... 13
4.2.7 FAN and PWM Remote On/Off Circuits............................................................. 13
Section 5 Sequences of Operation .................................................................... 14
Section 6 Method of Measurement and Measured Data ................................... 19
6.1
6.2
6.3
Measured Data: Static-Characteristic Curves ................................................................... 19
Waveforms........................................................................................................................ 23
Method of Measurement................................................................................................... 28
Section 7 Circuit Diagram ................................................................................ 29
Section 8 Pattern Diagrams............................................................................... 30
Section 9 List of Parts ....................................................................................... 33
Rev.1.00, Jul.28.2003, page iii of 39
Section 1 Introduction
The HA16158EVB1.0 is an evaluation board for the HA16158 AC-DC converter controller IC. It
incorporates controllers for power-factor correction (PFC) and pulse-width modulation (PWM), and is
optimal for use with network servers, workstations, routers, RAID (redundant array of inexpensive disks)
mechanisms, etc.
The evaluation board converts the mains AC supply (hereafter called the AC voltage) from 85 to 270 VAC
to 48 VDC. Firstly, the AC voltage is converted to 380 VDC with power-factor correction. Since powerfactor correction eliminates the unnecessary loss of power, the unit is able to accept high input voltages.
Accordingly, the board is able to accept any AC voltage in the range from 85 to 270 V, covering mains
specifications worldwide. The voltage is then converted downward, and 48 V (2.1 A, efficiency of 80%) is
output.
Safety was considered in the board’s design, with the inclusion of many on-board protective circuits.
Operation of these circuits is linked with the timer.
This application note gives examples of the procedures, wiring connections, and ways to determine
component values that you will require in evaluating the HA16158 AC-DC converter-control IC.
Rev.1.00, Jul.28.2003, page 1 of 39
Section 2 Features
All of the necessary features for evaluating the AC-DC converter power supply have been included on a
compact board, which is roughly the size of a sheet of A4 paper (210 mm × 270 mm).
1. Primary Side
a. The range of AC input voltage (85 VAC to 270 VAC) covers all levels of mains voltage in use
worldwide
b. PFC module: Outputs 380 V at up to 0.8 A, i.e., 300 W, with conversion efficiency of 93% (when
200 VAC is being supplied)
2. Secondary Side
a. DC-DC converter module: Outputs 48 VDC at up to 2.1 A, i.e., 100 W, with conversion efficiency
of 80%
3. Protection Circuits
Safety design has been taken into consideration with the inclusion of the following protection circuits.
a. Inrush-current limitation circuit
b. Circuit to protect the primary side from overheating
c. Instantaneous-power-shutdown retention circuit
d. PWM remote on/off circuit
e. FAN remote on/off circuit
Rev.1.00, Jul.28.2003, page 2 of 39
Section 3 Electrical Characteristics
1. Input/output specifications:
Input voltage: 85 VAC to 270 VAC
Output voltage: 48 V
Output current: 2.1 A
Output power: 100 W
2. PFC module
Output voltage: 380 V
Output current: 0.8 A
Output power: 300 W
Efficiency: 93% when 200 VAC is being supplied
Operating frequency: 65 kHz
3. DC-DC Converter Module
Output voltage: 48 V
Output current: 2.1 A
Output power: 100 W
Efficiency: 80%
Operating frequency: 130 kHz
Rev.1.00, Jul.28.2003, page 3 of 39
Section 4 Detailed Description
4.1
Overview
The operation of the evaluation board is now described with the aid of the overall block diagram given as
figure 4.1.
After being passed through the filter circuit, the AC voltage is full-wave rectified by the diode bridge. The
PFC circuit then applies power factor correction and boosts the output to 380 VDC. This voltage is then
converted down to 48 VDC, the final output, by the DC-DC converter block.
The power-supply circuit is a self-excited DC-DC converter which receives the 380 V output of the PFC
circuit and supplies the necessary power to the HA16158 controller IC. When the evaluation board is
initiated, power is supplied to the HA16158 controller IC from the output of the full-wave rectifier via the
resistor R103. After the PFC circuit has started up, the power supply is initiated. From then on, power is
supplied from the power supply to the HA16158.
The many protection circuits operate in conjunction with the soft-start circuit and the timer circuit, ensuring
the safety of the evaluation board.
A′
PFC output DC
Inrush-current
limitation circuit
AC
in
Input
85 VAC to
270 VAC
PFC: 380 V
PFC
circuit
Filter
circuit
Output
DC 48 V
48 V DC-DC
converter
Input voltage
surveillance
Power-supply: 15 V
Vcc
PFC
OUT
PFC
ON
Switch for
FAN ON/OFF
PFC PWM PWM
FB OUT COMP
Control IC
HA16158
12 V
FAN
for
Inrushcurrent
Power-supply
circuit
Timer
circuit
A
PFC masking
(Instantaneouspower-shutdown
Switch for
detection)
Remote ON/OFF
PWM-Off
circuit
PWM soft-start pin → Low
Figure 4.1 Block Diagram
Rev.1.00, Jul.28.2003, page 4 of 39
PWM
SS
PWM: Low
DC
out
Figure 4.2 Circuit Diagram
Rev.1.00, Jul.28.2003, page 5 of 39
J1-3
R114
C116A
0.01µF
50V
R115
100kΩ
1/4W
C120
3
2SC1213
Q119
DZ117
HZ12HC2
470pF
250V
R124
100kΩ
1/4W
R123A
390Ω
2W
R123
390Ω
2W
DZ122
HZ3HA2
D101
DSM1D6
C7
R121
R107
200kΩ
2W
470pF
250V
0.47µF
250V
C6
0.047µF 200Ω
50V
2W
R111
100kΩ
2W
C5
R106
200kΩ
2W
3
1
0.47µF
250V
4
2
C127
0.047µF
50V
C128
0.1µF
50V
PC126-2
TLP421F
(D4-LF2)
D125
11EQS10
1
2
1
5
4
3
A
1
R350
R27
+C147
2700µF
25V
R141
820Ω
1/4W
R136
510Ω
1/4W
R143
10Ω
1/4W
R135
3.6kΩ
1/4W
2
1
C11
+
R149
6.2kΩ
1/4W
1
OUT
2
SW153
R152
1kΩ
1/4W
1
SW154
3
PC151-1
TLP421F
(D4-LF2)
R150
910Ω
1/4W
Timer circuit
IN
R25A
R24A
51kΩ
5W
J28-2
+ 330µF
450V
R103
0.47µF C19
800V
60D-18
R17
J28-1
Inrush-current
limitation circuit
D18
SF10JZ47
2
DZ104A
HZ20H-2
470pF
250V
+C148
2700µF
25V
C104
56µF
35V
C145
0.1µF
50V
C142
0.47µF
50V
S3L20U
D144
C15
Q13
2SK2730
SF20L60
1
82pF
1kV
82pF C23
1kV
D14
3
200Ω
2W
200Ω R22
2W
PFC circuit
FAN circuit, Remote ON/OFF circuit
2
1
IC134
HA17431PA
1
R140
100kΩ
1/4W
0.01µF
50V
C139
0.01µF 2kΩ
50V 1/4W
C137 R138
R133
1kΩ
1/4W
PC126-1
TLP421F
(D4-LF2)
D146
S3L20U
+
R21
C20
10kΩ
1/4W
1
R132
2.4kΩ
1/4W
0.015µF
50V
1kΩ
1/4W
C457
R131
2.4kΩ
1/4W
100Ω
1/4W
9
C130
2700µF
25V
S3L20U
1
1
0.082Ω
5W
R455
R456
47Ω
1/4W
10
13
14
D16
22Ω 11EQS10
1/4W
R348
2
1
2
L12 2
5A_1.5mH
R347 D349
D129
2
0.47µF
800V
T105-2
C10
D102
DSM1D6
4
Auxiliary power-supply circuit
R118
0.15Ω
2W
R113
0.27Ω
2W
3
Q116
2SC1213
2SK1807
100Ω
1/4W
C3
R110
100kΩ
2W
Q112
1
D108
1NU41
C109
4700pF
1kV
10A
250V
J1-2 F2
510kΩ
1/2W
D9
D15XB60
2
3
L4
5A_5.7mH
1
1
2
2
3
S3V60
R24
2
1
D353
PWM-Off circuit
Inrush-current
limitation circuit
30Ω
1/4W
R355
10kΩ
1/4W
20Ω 11EQS10
1/4W
R354
R352
Unmoun
C201
ting
1000pF
1kV
D351
1
2
Un11EQS10
moun
ting
J156-2
J155-2
J156-1
J155-1
7
8
Q202
2SK1299
4
Primary side
protection circuit
1
5
2
3
6
1
T203-1
Protection circuit block
Unmoun
ting
R25
Unmoun
ting
2
3
R368
R359
1
2
1
2
2
1
2
D357
2
D365
2
D366
1
TP GND
1
11EQS10
1
Instantaneouspower-shutdown
retention circuit
1kΩ
1/4W
D367
11EQS10
11EQS10
1
1kΩ
1/4W
D358
11EQS10
11EQS10 11EQS10
1
D356
1
D362
2
1
D371
2
R364
C449
2.2µF
R442 50V
5.6kΩ C450
1/4W 2.2µF
50V
R443
13kΩ
1/4W
R445
390kΩ
1/2W
R452
1MΩ
1/4W
C451
0.68µF
50V
C451A
0.47µF
50V
R463
20kΩ 1/4W
R305
100kΩ
1/4W
R304
100kΩ
1/4W
R303
100kΩ
1/4W
R302
100kΩ
1/4W
R393
1kΩ
1/4W
C463A
1200pF
50V
12
10
R400
R397
C395
0.1µF
50V
10Ω
1/4W
5A_515µH
0.068µF
63V
510kΩ
1/2W
C401A
R454
100kΩ
1/4W
C103A
1.5µF
25V
R454A
100kΩ
1/4W
TP PFC-EO
TP PFC-ON
TP PFC-OUT
PWM-OUT 2
IC300
2.2kΩ
1/4W
VREF 6
TP PFC-FB
C409
1000pF
50V
R223
Unmoun
ting
R224
2.2kΩ
1/4W
C386
2
C374
PC151-2
TLP421F
(D4-LF2)
C405
0.1µF
C406 50V
0.033µF
50V
PC378-2
TLP421F
(D4-LF2)
1000pF
50V
R375
Unmoun
ting
2.4kΩ
2W
J230-2
J230-1
R306
3.3kΩ
1/4W
R403
620Ω
1/4W
C404
2200pF
50V
R402
200Ω
1/4W
DZ376
HZ12HA2
C306A
3000pF
50V
8.2kΩ
1/4W
Unmoun
ting
R225
TH221
PTH9M04
BE471
1000pF
50V
R387
47kΩ Q385
1/4W 2SC458B
C410
3000pF R407
50V 240Ω
1/4W C408
R411
1000pF
30kΩ
50V
1/4W
PC392-2
TLP421F
(D4-LF2)
R412A
510kΩ
1/2W
R384
1000pF
50V
PFC, PWM control circuit
TP GND
1 GND PWM-COMP 15
10 IAC
C382
R381
1kΩ
1/4W
R379
1kΩ
1/4W
R383
IC380
HA17431PA
1
C228
0.01µF
100V
C229
0.01µF
C227
0.01µF 100V
100V
PC378-1
TLP421F
(D4-LF2)
820Ω
1/4W
TP PWM-OUT
DZ390
HZ12HA2
R377
2.4kΩ
2W
C226
0.01µF
100V
+C219
56µF
63V +C220
56µF
63V
TP VREF
C413
C412
270pF
0.47µF
5 PFC-ON PFC-SS 13
50V TP CAO 50V
12 PFC-EO
CAO 7
R412B
510kΩ
9 RT
14
PWM-SS
TP PWM-COMP 1/2W
3 PFC-OUT PFC-FB 11
8 PFC-CS PWM-CS 16
4 Vcc
IC394
HA17431PA R398
C388
1000pF
50V
1.5kΩ
1/4W
R396
39kΩ
1/4W
R389
200Ω 470pF 470pF
2W 1kV 1kV
L218 2
1
R215 C216 C217
PC392-1
TLP421F
(D4-LF2)
C399
2
SF10LC40
3
1
10Ω
0.047µF
50V R401 1/4W
1
C213
D214
C212
470pF 470pF
1kV
1kV
R211
200Ω
2W
R395A
820Ω
1/4W
T210
R391
R453
1MΩ
1/4W
D230
V03C
D208
V03C
5
3
S3L60
S3L60
D207
R301
100kΩ
1/4W
0.33Ω
1W
Q205
2SK1403
R209A
R440
270kΩ
1/2W
R441
180kΩ
1/2W
D206
Q204
2SK1403
0.33Ω
1W
10kΩ
1/4W
1
10kΩ
1/4W
1
R209
R444
360kΩ
1/2W
R373
R439
270kΩ
1/2W
Q369
2SA1761
15Ω
1/4W
10Ω 11EQS10
1/4W
R372
R370
Q360
2SA1761
15Ω
1/4W
10Ω 11EQS10
1/4W
R363
R361
380 V to 48 V DC-DC circuit
2
3
2
3
3
2
3
2
1
2
1
2
1
2
1
2
10A
250V R8
2
1
2
3
1
2
3
2
1
2
3
2
J1-1 F1
2
2
1
1
2
1
3
1
Filter circuit
2
1
2
1
2
4
3
1
2
2
1
1
2
3
2
4
3
3
1
2
3
1
2
4
3
4
3
2
1
A
The test pins listed below are included. They will help you to verify the board’s operation.
Table 4.1
Test Pins
Test Pin
IC Pin
Name
Description
No.
Name
PWM-OUT
PWM-switching drive signal for the 48 V DC-DC circuit.
2
PWM-OUT
Vref
Reference supply of 5 V. When power is shut down by UVLO, 0V.
6
Vref
CAO
Error amp used in control of the average current.
7
CAO
PFC-FB
Output of the PFC after division by resistors R301 to R305 and R306.
Input for the PFC’s voltage amp.
11
PFC-FB
PFC-EO
Output of the PFC’s voltage amp.
12
PFC-EO
PWM-COMP The signal that indicates the output voltage from the secondary, and is
feed-back to the primary side by a photocoupler PC392.
15
PWM-COMP
GND
GND
1
GND
GND
GND
—
GND
PFC-OUT
Driving output for the PFC’s MOSFETs.
3
PFC-OUT
PFC-ON
PFC on/off function and gain switching
5
PFC-ON
Next, the operation of the individual blocks is described in detail.
4.1.1
PFC Circuit Module
The phase lag between the current and voltage waveforms which arises because of reactances within the
regulator is corrected to improve the power factor. The current waveform and the voltage waveform are
multiplied inside the HA16158 controller IC, the phase difference is thus obtained, and correction is
applied.
The current waveform is detected in the current-mirror circuit in the HA16158. The output of the detection
filter circuit is input to the IAC pin (pin 10) of the HA16158 via resistors R444 and R445. Current
proportional to the input voltage is thus acquired. On the other hand, the output from the PFC circuit is
divided by resistors (R301 to R305, and R306), and input to PFC-FB (TP PFC-FB). The current and
voltage signals are multiplied together and the result is amplified, and then output to PFC-OUT (TP PFCOUT), and input to the gate of Q13. The loop which is formed here, in conjunction with the PFC, serves as
a voltage-feedback loop. This feedback is applied to ensure that the reference voltage multiplied by the
resistor-division ratio remains at the target voltage. The target voltage is determined by the AC voltage
which is input to the evaluation board. AC inputs can be classified into 100 and 200 V types. The
maximum value for a supply of the 200 V type, i.e., 264 Vrms, is used to determine the target value, which
is 373 V, for the PFC circuit to operate in the booster mode regardless of the AC input voltage. Note that
the target value is fixed, and remains at this value regardless of the input voltage.
Min.
Rated
Max.
Unit
100 V type
90
100 to 120
132
Vrms
200 V type
180
200 to 240
264
Vrms
Frequency
47
63
Hz
Rev.1.00, Jul.28.2003, page 6 of 39
4.1.2
DC-DC Circuit (48 V)
This circuit converts the 380 V output of the PFC circuit to 48 V. The PWM waveform from PWM-OUT
(TP PWM-OUT) drives the gate of Q202. The 48 VDC output can be obtained from transformers T203,
T210, then through the filter circuit. Drivability on the secondary side of the T203 is secured through the
use of two divided circuits.
To retain the voltage at a certain level, the output voltage must be fed back to the HA16158 controller IC.
Since this module is electrically isolated from the controller-IC side (primary side), this information is
transferred by photocouplers. The information is input to the PWM-COMP pin (pin 15) (TP PWM-COMP)
of the secondary side of the output-voltage controller IC (HA16158).
4.2
Functions
4.2.1
UVL Circuit
The UVL circuit monitors the VCC voltage and terminates the IC’s operation in cases of low voltage. The
characteristic of this control includes hysterisis; operation starts when VCC reaches 16 V and stops when
Vcc falls to 10 V. While the UVL circuit stops the IC, the PWM-OUT (TP PWM-OUT) and PFC-OUT
(TP PFC-OUT) signals are fixed to low level, and the output of Vref and operation of the oscillator are
terminated.
Vcc
16.0V
10.0V
4.5V
4.5V
VREF
V_CT
(internal signal)
PWM-RESET
(internal signal)
PFC-DT
(internal signal)
PFC-RAMP
(internal signal)
PWM-OUT
PFC-OUT
Figure 4.3
Rev.1.00, Jul.28.2003, page 7 of 39
4.2.2
Soft-Start Circuit
There are two soft-start circuits: one is for PWM control and the other is for PFC control.
1. Soft-Start Circuit for PWM Control
This function gradually increases the duty ratio over a certain period of time. This prevents excess
stress on external components and overshooting of the secondary-side output voltage due to a rapid
increase in the duty cycle of the PWM waveform on the PWM-OUT pin. The soft-start time tss-pwm is
easily selected by a combination of the external capacitance (C406) which is connected to the PWM-SS
pin (pin 14) and internal constants. The formula for its calculation is given below.
3.2V
V_PWM-SS
V_CT
(internal signal)
1.6V
PWM-SS
comp. out
(internal signal)
tss-pwm
PWM-OUT
Figure 4.4
The soft-start time tss-pwm is defined as the time from UVLO cancellation and the initiation of Vref
supply until the voltage on the PWM-SS pin voltage reaches the 3.2 V upper limit on the IC’s internal T
voltage waveform. The figure shows the PWM waveform settling into the prescribed pulse width after
the soft start and tss-pwm periods have elapsed. In this evaluation board, the soft-start time is set as
follows:
tss-pwm =
33 [nF] × 3.2 [V]
Css-pwm × Vct-H
=
= 4.2 [ms]
25 [µA]
Iss-pwm
2. Soft-Start Circuit for PFC Control
This function increases the duty ratio gradually, in a certain period, to prevent excess stress on the
external components due to a rapid increase of the duty ratio of the PWM waveform on the PFC-OUT
pin or an overshoot of the PFC output voltage (B+ voltage). The soft-start time tss-pfc can easily be set
by the external capacitance (C413).
The soft-start time tss-pfc is defined as the time from UVLO cancellation and Vref initiation until the
PFC-SS pin (pin 13) voltage reaches the lower limit, 0.65 V, of the RAMP voltage waveform inside the
IC. The figure shows how the PWM has reached the prescribed pulse width after the soft start and tsspfc periods have lapsed.
5V
3.4 V
V_ramp
(internal signal)
V_PFC-SS
0.65 V
PFC-SS
comp. out
(internal signal)
PFC-OUT
Figure 4.5
Rev.1.00, Jul.28.2003, page 8 of 39
In this evaluation board, the soft-start time is set as follows:
tss-pfc =
470 [nF] × (5 – 0.65) [V]
Css-pfc × (Vref – Vramp-L)
=
= 82 [ms]
25 [µA]
Iss-pwm
Note: When this function is not in use, the PFC-SS pin must be grounded.
4.2.3
PFC Switching Function
The following two functions of the PFC-ON pin (TP PFC-ON) make the controller able to support the
mains power supplies anywhere in the world. They are described below with the aid of figure 4.6.
Rec+
Em
720 kΩ
1.5V
1.2V
R439
R440
R441 PFC-ON
PFC on/off control
5
PFC-ON(dc)
C1
4.4 µF
+
18.6 kΩ
R442
R443
Gain switchover of multiplier
3.8V
3.4V
PFC-CS comparison
voltage switchover
PFC-ON(dc) = 2 ∗ Em / π ∗ R2 / (R1 + R2)
= 2 ∗ √2 ∗ Vac / π ∗ R2 / (R1 + R2)
Note: R1 = R439 + R440 + R441
R2 = R442 + R443
168 Vac
AC voltage
Vac
150 Vac
66 Vac
53 Vac
0 Vac
3.8 V
3.4 V
PFC-ON
1.5 V
1.2 V
0V
ON
PFC status
PFC on period
(Internal state)
OFF
0.25
Multiplier gain
(Internal state)
0.05
–0.25
PFC-SS
comparison
voltage
(Internal state) –0.50
Figure 4.6 PFC Switching Function
Rev.1.00, Jul.28.2003, page 9 of 39
1. PFC On/Off Switching
The PFC function is switched on and off by pin 5 (TP PFC-ON) of the HA16158. The pulsating
voltage to which primary rectification has been applied, is divided by two sets of resistors (R439 to
R441 and R442 and R443), multiplied by capacitances (C449 and C450), and then applied as the input
to pin 5 (TP PFC-ON). The PFC function is switched on and off as this input increases and decreases.
The PFC function has a hysteresis of 13 V, switching on when the AC-input voltage rises to 66 V and
switching off when the voltage falls to 53 V.
2. Switching between operation with 100 and 200 V supplies
The level of the AC voltage being input to the evaluation board is automatically detected (100 or 200
V), and the gain selectors for the multiplier and PFC-CS comparison voltage are switched accordingly.
This enables the design of power supplies for worldwide application.
a. Switching the gain selector of the multiplier
As was described earlier, the voltage and current are multiplied by each other to obtain the
difference between their phases. The value obtained is proportional to the square of the voltage. If
the multiplication is performed without switching of the gain selector, the values obtained with 200
V supplies will be four times those obtained with 100 V supplies. This is adjusted for by switching
the coefficient of multiplication to 0.25 for 100 V supplies and to 0.05 for 200 V supplies.
b. Switching of the comparison voltage
The over-power limiters are generally used to protect the circuit from abnormal conditions. The
following equation expresses the value to which the power is limited:
Plm = Vac ⋅ |Vth| / (√2 ⋅ Rcs)
where,
Rcs is the value of the current-detection resistor, and Vth is the value of the PFC-CS comparison
voltage.
Accordingly, when Vth is fixed, the limiting value on the power level will change with the input
voltage. Therefore, the value of Vth is also switched according to whether a 100 V or 200 V supply
is detected.
Rev.1.00, Jul.28.2003, page 10 of 39
4.2.4
Power Saving during Periods on Standby
When the output load of PWM output (48 VDC) is light, e.g. when the evaluation board is in the standby
mode, the operating frequency in the PWM control module is automatically decreased. The PWM-COMP
voltage is monitored at the reference frequency (130 kHz). When the PWM-COMP voltage falls below the
reference voltage of 1.7 V, a reset is applied and PWM is suspended for one cycle. The suspension PWM
may continue up to a maximum of 63 cycles, which is equivalent to 1/64 frequency division. The PWM
frequency gradually falls over that period, but the speed of this is dependent on the overall response
frequency for the given system.
RT
9
Oscillator
R454
200 kΩ
Driver
2
PWM-OUT
PWM
Logic
R
Driver
circuit
Q205
VREF
Q
R407
240 Ω
S
−
15
+
16
C408
1000 pF
PWM-COMP
PWM-CS
−
f/64
Divider
Reset
R402
200 Ω
+
1.7 V
Power-saving
C404
2200 pF
R403
620 Ω
R209
0.66 Ω
Power-saving peripheral circuit
PWM-COMP
1.7V
PWM-OUT
f
f/64
Figure 4.7
Rev.1.00, Jul.28.2003, page 11 of 39
4.2.5
Overvoltage Latch Protection (for PWM Control)
When the PWM output voltage on the secondary side is abnormally high, protection is obtained by
stopping output of the PWM-OUT (TP PWM-OUT) and PFC-OUT (TP PFC-OUT) signals. An
overvoltage is judged to have occurred when the signal on the PWM-SS pin (pin 14) is greater than 4 V.
This detection is detected by the photocoupler (PC378). Once the supply of voltage is off, the latch is
released when the VCC voltage falls to 7.1 V.
+
PFC-OUT
Q S
Vcc
−
4.0 V
R
PWM-OUT
−
VREF
Vcc
+
7.1 V
Vref
2.4 V
1.5 V
PFC-FB
PC378-2
14
3.5 V
PWM-SS
2.5 kΩ
C406
0.033 F
B+Low
Overvoltage protection latch peripheral circuit
VREF
4.0 V
PWM-SS
3.5 V
PWM-OUT
PFC-OUT
Figure 4.8
Rev.1.00, Jul.28.2003, page 12 of 39
4.2.6
Operating Frequency
The 200 kΩ timing resistor (pin 9) is used to adjust the PWM modules internal frequency of operation,
fpwm, as is shown in the example in the figure below. fpwm is double the frequency fpfc of the PFC
module. The equation below provides an approximate value for fpwm:
fpwm =
fpfc =
2.6 × 1010
= 130 [kHz]
RT
fpwm
= 65 [kHz]
2
Note that the above equation is approximate; the error in the value produced will increase with frequency
because of delays in the internal circuits, etc. Please check the results of adjusting the operating frequency
on the actual system.
fpwm, fpfc (kHz)
1000
100
fpwm
fpfc
10
10
100
1000
RT (kΩ)
Figure 4.9
4.2.7
FAN and PWM Remote On/Off Circuits
Switch SW153 on the board can be used to switch the FAN on and off as desired. When measurements of
power require high precision, switch the FAN off. Take care with regard to increases in the temperature of
the board, etc., while the FAN is switched off.
In conjunction with switch SW154, the photocoupler (PC392) is operated and the PWM-COMP-pin voltage
is forcibly driven low, which turns off the PWM-OUT pin.
Rev.1.00, Jul.28.2003, page 13 of 39
Section 5 Sequences of Operation
Power-On Sequence
AC input (85 VAC to 270 VAC)
380 V
PFC output
module
(C19)
380 V
(270 VAC)
100 V
Soft start
120 V
(85 VAC)
15 V
16 V
Power-supply
output
5V
HA16158
VREF pin
Thyristor at the inrush current limit circuit goes on.
Timer circuir
module
typ: 750 ms
6.1 V (The voltage is divided by resistors and
applied to the 200 V system.)
HA16158
PFC-ON pin
3.4 V (The voltage at the instantenous power shutdown
retention circuit module is applied to the 100 V system.)
HA16158
PFC-OUT pin
HA16158
PFC-FB pin
2.5 V
270 VAC
2.4 V
85 VAC
HA16158
PWM-OUT pin
270 VAC
85 VAC
Soft start
48 VDC output
Figure 5.1
Rev.1.00, Jul.28.2003, page 14 of 39
Shutdown Sequence (Small Load/85 VAC)
at 85 VAC
230 V
PFC output
module
(C19)
100 V
15 V
Power-supply
output
(C104)
10 V
5V
HA16158
VREF pin
Thyristor at the inrush current limit circuit goes off.
HA16158-5 pin
Timer circuir
module
typ: 160 ms
3.4 V (The voltage at the instantenous power
shutdown retention circuit module is applied.)
HA16158
PFC-ON pin
HA16158
PFC-OUT pin
HA16158
PFC-FB pin
HA16158
PWM-OUT pin
48 VDC output
Figure 5.2
Rev.1.00, Jul.28.2003, page 15 of 39
Shutdown Sequence (Large Load/85 VAC)
at 85 VAC
PFC output
module
(C19)
230 V
100 V
15 V
Power-supply
output
(C104)
10 V
5V
HA16158
VREF pin
HA16158-5 pin
Timer circuir
module
3.4 V (The voltage at the
instantenous power shutdown
retention circuit module is
applied.)
HA16158
PFC-ON pin
HA16158
PFC-OUT pin
HA16158
PFC-FB pin
1.5 V
HA16158
PWM-OUT pin
48 VDC output
Figure 5.3
Rev.1.00, Jul.28.2003, page 16 of 39
Shutdown Sequence (Small Load/270 VAC)
at 270 VAC
230 V
PFC output
module
(C19)
100 V
15 V
Power-supply
output
(C104)
10 V
5V
HA16158
VREF pin
Thyristor at the inrush current limit circuit goes off.
HA16158-5 pin
Timer circuir
module
typ: 160 ms
6.1 V (The voltage at the instantenous power
shutdown retention circuit module is not applied.)
HA16158
PFC-ON pin
HA16158
PFC-OUT pin
HA16158
PFC-FB pin
HA16158
PWM-OUT pin
48 VDC output
Figure 5.4
Rev.1.00, Jul.28.2003, page 17 of 39
Shutdown Sequence (Large Load/270 VAC)
at 270 VAC
PFC output
module
(C19)
230 V
100 V
15 V
Power-supply
output
(C104)
10 V
5V
HA16158
VREF pin
HA16158-5 pin
Timer circuir
module
3.4 V (The voltage at the
instantenous power shutdown
retention circuit module is
applied.)
HA16158
PFC-ON pin
HA16158
PFC-OUT pin
HA16158
PFC-FB pin
1.5 V
HA16158
PWM-OUT pin
48 VDC output
Figure 5.5
Rev.1.00, Jul.28.2003, page 18 of 39
Section 6 Method of Measurement and Measured Data
6.1
Measured Data: Static-Characteristic Curves
Vout-pfc vs. Iout-pfc
380
Vin = 85 V
Vin = 100 V
Vin = 270 V
Vout-pfc (V)
378
376
374
372
370
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Iout-pfc (A)
Figure 6.1 Vout-pfc vs. Iout-pfc
Power Factor vs. Iout-pfc
1.00
0.98
Power Factor
0.96
0.94
0.92
0.90
0.88
Vin = 85 V
Vin = 100 V
Vin = 200 V
Vin = 270 V
0.86
0.84
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Iout-pfc (A)
Figure 6.2 Power Factor vs. Iout-pfc
Rev.1.00, Jul.28.2003, page 19 of 39
η vs. Iout-pfc
100.0
90.0
Vin = 85 V
Vin = 100 V
Vin = 200 V
Vin = 270 V
η (%)
80.0
70.0
60.0
50.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Iout-pfc (A)
Figure 6.3 η vs. Iout-pfc
Power Factor vs. Vin
1.00
Power Factor
0.98
0.96
0.94
0.92
0.90
80
Pout = 100 W
Pout = 150 W
Pout = 200 W
Pout = 250 W
Pout = 300 W
120
160
200
Vin (Vrms)
Figure 6.4 Power Factor vs. Vin
Rev.1.00, Jul.28.2003, page 20 of 39
240
280
Vout-pwm vs. Iout-pwm
*FAN : ON
48.0
Vin = 100 V
Vin = 240 V
47.5
Vout-pwm (V)
47.0
46.5
46.0
45.5
45.0
44.5
44.0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.0
2.4
Iout-pwm (A)
Figure 6.5 Vout-pwm vs. Iout-pwm (*FAN: ON)
η vs. Iout-pwm
*FAN : ON
80.0
70.0
Vin = 100 V
Vin = 240 V
60.0
η (%)
50.0
40.0
30.0
20.0
10.0
0.0
0.0
0.4
0.8
1.2
1.6
Iout-pwm (A)
Figure 6.6 η vs. Iout-pwm (*FAN: ON)
Rev.1.00, Jul.28.2003, page 21 of 39
Vout-pwm vs. Iout-pwm
*FAN : OFF
48.0
Vin = 100 V
Vin = 240 V
47.5
Vout-pwm (V)
47.0
46.5
46.0
45.5
45.0
44.5
44.0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.0
2.4
Iout-pwm (A)
Figure 6.7 Vout-pwm vs. Iout-pwm (*FAN: OFF)
η vs. Iout-pwm
*FAN : OFF
90.0
80.0
Vin = 100 V
Vin = 240 V
70.0
η (%)
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0.0
0.4
0.8
1.2
1.6
Iout-pwm (A)
Figure 6.8 η vs. Iout-pwm (*FAN: OFF)
Rev.1.00, Jul.28.2003, page 22 of 39
6.2
Waveforms
1. Vin, Iin waveforms @Vin = 240 Vrms
Status
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 300 W
Pout(PWM) = open load
Vin = 240 Vrms, Pout(PFC) = 300 W, Pout(PWM) = open load
27.0
240.0
Vin
Measurement
200 V/div
1.0 A/div
CH1 Vin
CH2 Iin
CH3
CH4
Time
Iin
4 ms/div
PF = 0.984
Status
Vin = 240 Vrms, Pout(PFC) = 200 W, Pout(PWM) = open load
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 200 W
Pout(PWM) = open load
27.0
240.0
Vin
Measurement
200 V/div
1.0 A/div
CH1 Vin
CH2 Iin
CH3
CH4
Time
Iin
4 ms/div
PF = 0.970
Vin = 240 Vrms, Pout(PFC) = 100 W, Pout(PWM) = open load
Status
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 100 W
Pout(PWM) = open load
27.0
240.0
Vin
Measurement
CH1 Vin
CH2 Iin
CH3
CH4
Time
200 V/div
1.0 A/div
Iin
4 ms/div
PF = 0.925
Rev.1.00, Jul.28.2003, page 23 of 39
2. Vin, Iin waveforms @Vin = 100 Vrms
Status
Vin = 100 Vrms, Pout(PFC) = 300 W, Pout(PWM) = open load
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 300 W
Pout(PWM) = open load
27.0
100.0
Vin
Measurement
200 V/div
2.0 A/div
CH1 Vin
CH2 Iin
CH3
CH4
Time
Iin
4 ms/div
PF = 0.999
Vin = 100 Vrms, Pout(PFC) = 200 W, Pout(PWM) = open load
Status
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 200 W
Pout(PWM) = open load
27.0
100.0
Vin
Measurement
200 V/div
2.0 A/div
CH1 Vin
CH2 Iin
CH3
CH4
Time
Iin
4 ms/div
PF = 0.999
Status
Vin = 100 Vrms, Pout(PFC) = 100 W, Pout(PWM) = open load
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 100 W
Pout(PWM) = open load
27.0
100.0
Vin
Measurement
CH1 Vin
CH2 Iin
CH3
CH4
Time
200 V/div
2.0 A/div
4 ms/div
PF = 0.996
Rev.1.00, Jul.28.2003, page 24 of 39
Iin
3. Vin, Iin waveforms @Vin = 240 Vrms, PFC OFF
Status
<PFC OFF> Vin = 240 Vrms, Pout(PFC) = 300 W, Pout(PWM) = open load
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 300 W
Pout(PWM) = open load
V(PFC-ON) = 0 V
27.0
240.0
Vin
Measurement
200 V/div
5.0 A/div
CH1 Vin
CH2 Iin
CH3
CH4
Time
Iin
4 ms/div
PF = 0.458
Status
<PFC OFF> Vin = 240 Vrms, Pout(PFC) = 200 W, Pout(PWM) = open load
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 200 W
Pout(PWM) = open load
V(PFC-ON) = 0 V
27.0
240.0
Vin
Measurement
200 V/div
5.0 A/div
CH1 Vin
CH2 Iin
CH3
CH4
Time
Iin
4 ms/div
PF = 0.426
Status
<PFC OFF> Vin = 240 Vrms, Pout(PFC) = 100 W, Pout(PWM) = open load
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 100 W
Pout(PWM) = open load
V(PFC-ON) = 0 V
27.0
240.0
Vin
Measurement
CH1 Vin
CH2 Iin
CH3
CH4
Time
200 V/div
5.0 A/div
Iin
4 ms/div
PF = 0.393
Rev.1.00, Jul.28.2003, page 25 of 39
4. IAC, CAO, PFC-EO, PFC-CS waveforms @Vin = 100 Vrms
Status
Vin = 100 Vrms, Pout(PFC) = 300 W, Pout(PWM) = open load
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 300 W
Pout(PWM) = open load
27.0
100.0
IAC
CAO
CH1
CH2
CH3
CH4
Time
Measurement
IAC
CAO
PFC-EO
PFC-CS
PFC-EO
0.5 V/div
1.0 V/div
2.0 V/div
0.2 V/div
4 ms/div
Status
PFC-CS
Vin = 100 Vrms, Pout(PFC) = 200 W, Pout(PWM) = open load
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 200 W
Pout(PWM) = open load
27.0
100.0
IAC
CAO
CH1
CH2
CH3
CH4
Time
Measurement
IAC
CAO
PFC-EO
PFC-CS
0.5 V/div
1.0 V/div
2.0 V/div
0.2 V/div
4 ms/div
PFC-EO
PFC-CS
Vin = 100 Vrms, Pout(PFC) = 100 W, Pout(PWM) = open load
Status
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = 100 W
Pout(PWM) = open load
27.0
100.0
IAC
CAO
CH1
CH2
CH3
CH4
Time
Measurement
IAC
CAO
PFC-EO
PFC-CS
0.5 V/div
1.0 V/div
2.0 V/div
0.2 V/div
4 ms/div
Rev.1.00, Jul.28.2003, page 26 of 39
PFC-EO
PFC-CS
5. PWM-OUT, PWM-COMP waveforms @Vin = 100 Vrms
Status
Vin = 100 Vrms, Pout(PFC) = open load, Pout(PWM) = 100 W
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = open load
Pout(PWM) = 100 W
27.0
100.0
PWM-OUT
Measurement
10 V/div
CH1 PWM-OUT
1.0 V/div
CH2 PWM-COMP
CH3
CH4
Time
4 µs/div
Status
PWM-COMP
Vin = 100 Vrms, Pout(PFC) = open load, Pout(PWM) = 3 W
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = open load
Pout(PWM) = 3 W
27.0
100.0
PWM-OUT
Measurement
10 V/div
CH1 PWM-OUT
1.0 V/div
CH2 PWM-COMP
CH3
CH4
Time
4 µs/div
PWM-COMP
Vin = 100 Vrms, Pout(PFC) = open load, Pout(PWM) = open load
Status
Condition
Ta (°C)
VIN (Vrms)
Pout(PFC) = open load
Pout(PWM) = open load
27.0
100.0
Measurement
10 V/div
CH1 PWM-OUT
1.0 V/div
CH2 PWM-COMP
CH3
CH4
Time
4 µs/div
PWM-OUT
PWM-COMP
Rev.1.00, Jul.28.2003, page 27 of 39
6.3
Method of Measurement
Electric
Load
V1
(DC-voltmeter)
V
DC 380 V
(FK-600H
Takasago)
Oscilloscope
DC-A1
(DC-currentmeter) A
V
H
CH1 CH2
Ripple
AC
(85 V to 270 V)
AC-A1
(AC-currentmeter)
A
V
(HP6842A
Hewlett Packard)
AC-V1
(AC-voltmeter)
DC 380 V
AC
85 V to 270 V
DC-A2
(DC-currentmeter)
A
DC 48 V
HA16158 EVB1.0
Ripple
V
V2
(DC-voltmeter)
Electric
Load
DC 48 V
(FK-600H
Takasago)
Oscilloscope
V
H
CH1 CH2
FAN
Figure 6.9 Circuit for Use in Measurement
1. To Measure the Efficiency:
a. Use AC-V1 (AC voltmeter) to measure the AC voltage V.
b. Use AC-A1 to measure the input AC current.
c. Use V1 (380 V DC voltmeter) to measure the DC voltage V.
d. Use DC-A1 to measure the input DC current.
e. Use V2 (48 V DC voltmeter) to measure the DC voltage V-out.
f. Use DC-A2 to measure the output DC current.
g. Use the equation: η = output power Pout /input power Pin x 100 to calculate the efficiency.
Rev.1.00, Jul.28.2003, page 28 of 39
R118
0.15Ω
2W
R113
0.27Ω
2W
100Ω
1/4W
R114
C116A
0.01µF
50V
R115
100kΩ
1/4W
2SK1807
3
4
2
3
1
C5
R121
3
2SC1213
Q119
DZ117
HZ12HC2
0.047µF 200Ω
50V
2W
C120
R107
200kΩ
2W
R106
200kΩ
2W
0.47µF
250V
R111
100kΩ
2W
C3
Q116
2SC1213
R110
100kΩ
2W
Q112
1
D108
1NU41
C109
4700pF
1kV
J1-3
10A
250V
510kΩ
1/2W
470pF
250V
470pF
250V
R124
100kΩ
1/4W
R123A
390Ω
2W
R123
390Ω
2W
DZ122
HZ3HA2
D101
DSM1D6
C7
0.47µF
250V
C6
C127
0.047µF
50V
C128
0.1µF
50V
PC126-2
TLP421F
(D4-LF2)
D125
11EQS10
1
C10
2
1
5
4
3
A
2
L12 2
1
R350
R27
R132
2.4kΩ
1/4W
0.015µF
50V
1kΩ
1/4W
C457
1
2
IC134
HA17431PA
1
R140
100kΩ
1/4W
0.01µF
50V
C139
0.01µF 2kΩ
50V 1/4W
C137 R138
R133
1kΩ
1/4W
PC126-1
TLP421F
(D4-LF2)
R131
2.4kΩ
1/4W
100Ω
1/4W
D146
S3L20U
+
1
0.082Ω
5W
R455
R456
47Ω
1/4W
22Ω 11EQS10
1/4W
R348
9
C130
2700µF
25V
S3L20U
1
D16
5A_1.5mH
R347 D349
10
13
1
D129
2
0.47µF
800V
14
T105-2
D102
DSM1D6
4
D9
D15XB60
2
2
SF20L60
+
C11
R149
6.2kΩ
1/4W
DZ104A
HZ20H-2
470pF
250V
+C148
2700µF
25V
C104
56µF
35V
C145
0.1µF
50V
C142
0.47µF
50V
S3L20U
1
C15
D144
2
1
82pF
1kV
82pF C23
1kV
D14
3
200Ω
2W
200Ω R22
2W
Q13
2SK2730
+C147
2700µF
25V
R141
820Ω
1/4W
R136
510Ω
1/4W
R143
10Ω
1/4W
R135
3.6kΩ
1/4W
10kΩ
1/4W
1
R21
C20
2
3
L4
5A_5.7mH
1
2
1
2
J1-2 F2
2
1
2
3
1
OUT
SW153
2
3
PC151-1
TLP421F
(D4-LF2)
R150
910Ω
1/4W
R152
1kΩ
1/4W
1
SW154
Timer circuit
IN
R25A
R24A
51kΩ
5W
J28-2
+ 330µF
450V
J28-1
R103
0.47µF C19
800V
60D-18
R17
D18
SF10JZ47
2
Inrush-current
limitation circuit
R24
J156-2
1
D353
2
PWM-Off circuit
Inrush-current
limitation circuit
30Ω
1/4W
R355
10kΩ
1/4W
20Ω 11EQS10
1/4W
R354
R352
Unmoun
C201
ting
1000pF
1kV
D351
1
2
Un11EQS10
moun
ting
J155-2
J156-1
J155-1
Unmoun
ting
R25
Unmoun
ting
5
2
7
8
Q202
2SK1299
4
3
6
1
T203-1
Primary side
protection circuit
1
2
3
R368
R359
1
2
1
2
2
1
2
D357
2
D365
2
D366
1
TP GND
1
11EQS10
1
Instantaneouspower-shutdown
retention circuit
1kΩ
1/4W
D367
11EQS10
11EQS10
1
1kΩ
1/4W
D358
11EQS10
11EQS10 11EQS10
1
D356
1
D362
2
1
D371
2
R364
C449
2.2µF
R442 50V
5.6kΩ C450
1/4W 2.2µF
50V
R443
13kΩ
1/4W
R445
390kΩ
1/2W
R452
1MΩ
1/4W
C451
0.68µF
50V
C451A
0.47µF
50V
R463
20kΩ 1/4W
R305
100kΩ
1/4W
R304
100kΩ
1/4W
R303
100kΩ
1/4W
R302
100kΩ
1/4W
R393
1kΩ
1/4W
C463A
1200pF
50V
12
10
R400
R397
C395
0.1µF
50V
10Ω
1/4W
5A_515µH
R454
100kΩ
1/4W
C103A
1.5µF
25V
R454A
100kΩ
1/4W
TP PFC-EO
TP PFC-ON
TP PFC-OUT
PWM-OUT 2
IC300
2.2kΩ
1/4W
VREF 6
PFC-SS 13
TP GND
1 GND PWM-COMP 15
5 PFC-ON
10 IAC
TP PFC-FB
C409
1000pF
50V
R384
R223
Unmoun
ting
R224
2.2kΩ
1/4W
C386
2
C374
PC151-2
TLP421F
(D4-LF2)
C405
0.1µF
C406 50V
0.033µF
50V
PC378-2
TLP421F
(D4-LF2)
1000pF
50V
R375
Unmoun
ting
2.4kΩ
2W
J230-2
J230-1
R306
3.3kΩ
1/4W
R403
620Ω
1/4W
C404
2200pF
50V
R402
200Ω
1/4W
DZ376
HZ12HA2
C306A
3000pF
50V
8.2kΩ
1/4W
Unmoun
ting
R225
TH221
PTH9M04
BE471
1000pF
50V
R387
47kΩ Q385
1/4W 2SC458B
C410
3000pF R407
50V 240Ω
1/4W C408
R411
1000pF
30kΩ
50V
1/4W
1000pF
50V
PC392-2
TLP421F
(D4-LF2)
R412A
510kΩ
1/2W
C382
R381
1kΩ
1/4W
R379
1kΩ
1/4W
R383
IC380
HA17431PA
1
C228
0.01µF
100V
C229
0.01µF
C227
0.01µF 100V
100V
PC378-1
TLP421F
(D4-LF2)
820Ω
1/4W
TP PWM-OUT
DZ390
HZ12HA2
R377
2.4kΩ
2W
C226
0.01µF
100V
+C219
56µF
63V +C220
56µF
63V
TP VREF
C413
C412
270pF
0.47µF
50V TP CAO 50V
12 PFC-EO
CAO 7
R412B
510kΩ
9 RT
PWM-SS 14
TP PWM-COMP 1/2W
3 PFC-OUT PFC-FB 11
8 PFC-CS PWM-CS 16
4 Vcc
IC394
HA17431PA R398
R389
C388
1000pF
50V
1.5kΩ
1/4W
R396
39kΩ
1/4W
200Ω 470pF 470pF
2W 1kV 1kV
L218 2
1
510kΩ
1/2W
C401A
0.068µF
63V
2
R215 C216 C217
PC392-1
TLP421F
(D4-LF2)
C399
D214
SF10LC40
3
1
10Ω
0.047µF
50V R401 1/4W
1
C213
C212
470pF 470pF
1kV
1kV
R211
200Ω
2W
R395A
820Ω
1/4W
T210
R391
R453
1MΩ
1/4W
D230
V03C
D208
V03C
5
3
S3L60
S3L60
D207
R301
100kΩ
1/4W
0.33Ω
1W
Q205
2SK1403
R209A
R444
360kΩ
1/2W
R441
180kΩ
1/2W
D206
Q204
2SK1403
0.33Ω
1W
10kΩ
1/4W
1
10kΩ
1/4W
1
R209
R440
270kΩ
1/2W
R373
R439
270kΩ
1/2W
Q369
2SA1761
15Ω
1/4W
10Ω 11EQS10
1/4W
R372
R370
Q360
2SA1761
15Ω
1/4W
10Ω 11EQS10
1/4W
R363
R361
2
3
2
3
3
2
3
2
1
2
1
2
1
2
1
2
10A
250V R8
2
2
1
1
2
1
1
2
3
2
1
2
3
2
J1-1 F1
2
1
4
3
2
1
3
1
3
1
2
2
1
1
2
3
2
4
3
3
1
2
3
1
2
4
3
4
3
2
1
S3V60
A
Section 7 Circuit Diagram
Figure 7.1 Circuit Diagram
Rev.1.00, Jul.28.2003, page 29 of 39
8
14
R387
T210
TH221
7
1
S
D
2
Q205
D206
D207
E
Q360
G
J28
HT3
1
S
D
Q204
C19
G
R24
R25
R24A
K
R25A
C10
C11
S
4
D
−
C212
C216
R211
1
D230
R209A
R364
R363
C
R361
B
R17
A
4
2
Q112
G
3
D9
L4
D14
2
HT1
1
1
3
R21
D366
R121
R22
HT2
S
R123A
L12
D
Q13
C3
G
3
5
F2
2
2
J1
1
IC317
R313
D310
1
C318
2
3
3
4
4
R316
R315
R8
R428
5
R320
R319
TH429
IC321
1
F1
3
2
C149
R150
1
R152
SW153
J156
J155
Figure 8.1 Pattern Diagram 1
C213
2
E
R27
D18
G
R118
R123
Q477
C148
3
IC314
D214
3
R209
R373
R370
C
R372
B
R359
8
C109
D16
R113
DZ122
R307
D208
Q369
R368
T203
TP473
R110
DZ117
Q119
R308
D101
R309
C217
R215
HT4
L218
C220
5
4
Q202
C450
C449
Q116
D125
R444
2
SW154
Rev.1.00, Jul.28.2003, page 30 of 39
C219
1
D G
TP464
R107
D108
D102
R439
1
S
R355
D358
C457
C6
R106
R482
C147
1
3
R440
C312
R352
TP467
C346
R345
C338
R339
D474
R323
C229
D353
D351
C201
D337
C116A
R441
R479
C228
DZ376
TP466
TP472
PC340
1
2
R476
R375
C374
TP465
R343
R445
C475
R389
3
IC300
3
IC134
Q481
R324
C23
R143
C427
C322
R381
2
C413
C412
R135
R136
D349
PC151
D326
R103
D146
R325
DZ390
C388
1
PC378
PC392
R133
R132
R131
R350
D144
R348
R347
D327
2
R311
2
R379
IC380
1
DZ104A
R141
C20
C120
R426
R478
C480
1
3
R393
7
R124
R140
C142
C145
C127
C139
R400
IC394
TP471
Q342
1
2
C7
T105
C130
D129
R138
C5
R114
R115
J230
C399
D371
TP469
D328
14
PC126
C137
R341
8
C128
C103A
D356
TP470
R329
R330
C406
C15
R111
D362
C404
R456
R452
D357
C332
C104
R463
C409
R455
C451
TP468
R453
R411
R454A
R306
D367
R331
C451A
R354
C306A
C410
R301
R334
R304
R335
R407
FAN1
FAN2
1
2
1
2
DZ459
D432
C405
R302
R303
C408
R402
R403
R305
R336
D365
R454
Q333
E C B
Q385
R443
R377
R458
R223
R384
R225
C460
C433
Q434
R224
C382
D462
C436
C226
C227
R391
Q438
R383
R435
C461
C386
R442
R437
R395A
R401
R396
C395
R398
R397
PE121-B00
+
Section 8 Pattern Diagrams
R431
R430
R344
Figure 8.2 Pattern Diagram 2
Rev.1.00, Jul.28.2003, page 31 of 39
Figure 8.3 Pattern Diagram 3
Rev.1.00, Jul.28.2003, page 32 of 39
Section 9 List of Parts
Table 9.1
List of Parts
Module
No.
Symbol
Model
Input
module
1
J1
Terminal block (3-pin)
Filter
module
2
F1
Fuse (BL)
250 V, 10 A
Daito Communication Apparatus Co.,
Ltd.
3
F2
Fuse (BL)
250 V, 10 A
Daito Communication Apparatus Co.,
Ltd.
4
C3
Capacitor (RE)
250 V, 0.47 µF
Okaya Electric Industries Co., Ltd.
5
L4
Common-mode choke
coil
5 A, 5.7 mH
Hitachi Ferrite Electronics, Ltd.
6
C5
Capacitor (RE)
7
C6
Capacitor (ceramic)
Power
factor
correction
module
Power
supply
module
Type No.
Ratings
Remarks
Manufacturer
Fujicon Co., Ltd.
RE474
RE474
250 V, 0.47 µF
Okaya Electric Industries Co., Ltd.
250 V, 470 pF
Murata Manufacturing Co., Ltd.
8
C7
Capacitor (ceramic)
250 V, 470 pF
Murata Manufacturing Co., Ltd.
9
R8
Metal film resistor
510 kΩ, 1/2 W F
KOA Corporation/Tama Electric Co.,
Ltd.
10
D9
Diode (stack)
15 A, 600 V
Shindengen Electric Manufacturing
Co., Ltd.
11
C10
Film capacitor
800 V, 0.47 µF
Nichicon Corporation
12
C11
Film capacitor
800 V, 0.47 µF
Nichicon Corporation
13
L12
Choke coil
5 A, 1.5 mH
Toho Zinc Co., Ltd.
D15XB60
0.082 Ω, 5 W
14
R27
Ceramic resistor
15
Q13
MOS FET
2SK2730
16
D14
Diode (SF20)
SF20L60
20 A, 600 V
KOA Corporation
TO-3P
Renesas Technology Corp.
TO-220
Shindengen Electric Manufacturing
Co., Ltd.
17
C15
Capacitor (Ceramic)
18
D16
Diode (S3V60)
S3V60
250 V, 470 pF
Murata Manufacturing Co., Ltd.
3 A, 600 V
Shindengen Electric Manufacturing
Co., Ltd.
19
D18
Thyristor
SF10JZ47
20
R17
Power thermistor
60D18
21
C19
Capacitor (aluminum)
450 V, 330 µF
22
C20
Ceramic capacitor
1 kV, 82 pF
Murata Manufacturing Co., Ltd.
23
R21
Metal coated resistor
200 Ω±2%, 2 W
Matsushita Electric Industrial Co., Ltd.
24
R22
Metal coated resistor
200 Ω±2%, 2 W
Matsushita Electric Industrial Co., Ltd.
25
C23
Ceramic capacitor
1 kV, 82 pF
Murata Manufacturing Co., Ltd.
26
R24
Not mounted
27
R25
Not mounted
28
R24A
Not mounted
29
R25A
Not mounted
30
J28
PFC module terminal
block (2 pins)
31
Q119
Transistor
32
C120
Capacitor (ceramic)
0.047 µF, 50 V K
Murata Manufacturing Co., Ltd.
33
R121
Metal coated resistor
200 Ω±2%, 2 W
Matsushita Electric Industrial Co., Ltd.
34
DZ122
500-MW Zener diode
35
R123
Metal coated resistor
390 Ω±2%, 2 W
KOA Corporation
Toshiba Corporation
Ishizuka Electronics Corp.
φ35×35
Nichicon Corporation
Fujicon Co., Ltd.
2SC1213
Renesas Technology Corp.
HZ3HA2
Renesas Technology Corp.
36
R123A
Metal coated resistor
390 Ω±2%, 2 W
KOA Corporation
37
R124
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
38
D125
Diode (S.B.D)
11EQS10
Nihon Inter Electronics Corporation
Rev.1.00, Jul.28.2003, page 33 of 39
Module
No.
Symbol
Model
Type No.
Power
supply
module
39
PC126
Photocoupler (TLP421F)
TLP421F(D4-LF2)
Ratings
Remarks
Manufacturer
40
C127
Capacitor (ceramic)
0.047 µF, 50 V K
Murata Manufacturing Co., Ltd.
41
C128
Capacitor (ceramic)
0.1 µF, 50 V K
Murata Manufacturing Co., Ltd.
42
D101
Diode (FRD)
DSM1D6
43
D102
Diode (FRD)
DSM1D6
44
R118
Metal coated resistor
45
T105
Transformer (RCC)
46
R106
Metal coated resistor
Toshiba Corporation
Renesas Technology Corp.
Renesas Technology Corp.
0.15 Ω±2%, 2 W
Matsushita Electric Industrial Co., Ltd.
200 kΩ, 2 W
Matsushita Electric Industrial Co., Ltd.
200 kΩ, 2 W
Matsushita Electric Industrial Co., Ltd.
Hitachi Ferrite Electronics, Ltd.
47
R107
Metal coated resistor
48
D108
Diode
49
C109
Metal coated resistor
4700 pF, 1 kV K
Murata Manufacturing Co., Ltd.
50
R110
Taping resistor
100 kΩ, 2 W
Matsushita Electric Industrial Co., Ltd.
51
R111
Taping resistor
100 kΩ, 2 W
Matsushita Electric Industrial Co., Ltd.
52
Q112
MOS FET
53
R113
Metal coated resistor
0.27 Ω±2%, 2 W
Matsushita Electric Industrial Co., Ltd.
54
R114
Taping resistor
100 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
55
R115
Taping resistor
100 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
56
R103
Cement resistor
51 kΩ±5%, 5 W,
vertical
Yagishita Electric Co., Ltd.
57
C103A
Taping capacitor
(ceramic)
1.5 µF, 25 V
Murata Manufacturing Co., Ltd./TDK
Corporation
58
Q116
Transistor
59
C116A
Ceramic capacitor
60
DZ117
500 MW Zener diode
61
C104
Capacitor (LXV)
62
DZ104A
500 MW Zener diode
HZ20H-2
Renesas Technology Corp.
63
D129
Diode (LLD)
S3L20U
Shindengen Electric Manufacturing
Co., Ltd.
64
C130
Capacitor (LXV)
2700 µF, 25 V
Nippon Chemi-Con Corporation
65
R131
Taping resistor
2.4 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
66
R132
Taping resistor
2.4 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
67
R133
Taping resistor
1 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
68
IC134
IC regulator
69
R135
Taping resistor
3.6 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
70
R136
Taping resistor
510 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
71
C137
Capacitor (ceramic)
0.01 µF, 50 V K
Murata Manufacturing Co., Ltd.
72
R138
Taping resistor
2 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
73
C139
Capacitor (ceramic)
0.01 µF, 50 V K
Murata Manufacturing Co., Ltd.
74
R140
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
75
R141
Taping resistor
820 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
76
C142
Capacitor (ceramic)
0.47 µF, 50 V K
Murata Manufacturing Co., Ltd.
77
R143
Taping resistor (ceramic)
10 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
Rev.1.00, Jul.28.2003, page 34 of 39
1NU41
Toshiba Corporation
2SK1807
Renesas Technology Corp.
2SC1213
Renesas Technology Corp.
0.01 µF, 50 V K
Murata Manufacturing Co., Ltd.
56 µF, 35 V
Nippon Chemi-Con Corporation
HZ12HC2
Renesas Technology Corp.
HA17431PA
Renesas Technology Corp.
Module
No.
Symbol
Model
Type No.
Power
supply
module
78
D144
Diode (LLD)
S3L20U
79
C145
Taping capacitor
(ceramic)
80
D146
Diode (LLD)
81
C147
Capacitor (LXV)
2700 µF, 25 V
82
C148
Capacitor (LXV)
2700 µF, 25 V
Nippon Chemi-Con Corporation
83
C149
Taping resistor
6.2 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
84
R150
Taping resistor
910 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
85
PC151
Photocoupler (TLP421F)
86
R152
Taping resistor
87
SW153
Toggle switch
For remote
on/off
Nihon Kaihei Ind. Co., Ltd.
88
SW154
Toggle switch
For fan
on/off
Nihon Kaihei Ind. Co., Ltd.
89
J155
Module 2 connector
(2 pins)
Tyco Electronics Corporation
90
J156
Module 2 connector
(2 pins)
Tyco Electronics Corporation
48-V DCDC power
module
Ratings
Remarks
Manufacturer
Shindengen Electric Manufacturing
Co., Ltd.
0.1 µF, 50 V
Murata Manufacturing Co., Ltd./TDK
Corporation
S3L20U
Shindengen Electric Manufacturing
Co., Ltd.
Nippon Chemi-Con Corporation
TLP421F(D4-LF2)
Toshiba Corporation
1 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
91
C201
Ceramic capacitor
1000 pF, 1 kV
92
Q202
MOS FET
2SK1299
Murata Manufacturing Co., Ltd.
93
T203
Drive transformer
94
Q204
MOS FET
2SK1403A
TO-3P
95
Q205
MOS FET
2SK1403A
TO-3P
96
R209A
Metal coated resistor
0.33 Ω, 1 W
Matsushita Electric Industrial Co., Ltd.
97
D206
Low-loss diode
S3L60
Shindengen Electric Manufacturing
Co., Ltd.
98
D207
Low-loss diode
S3L60
Shindengen Electric Manufacturing
Co., Ltd.
99
D208
Diode
V03C
Renesas Technology Corp.
100
D230
Diode
V03C
Renesas Technology Corp.
101
R209
Metal coated resistor
0.33 Ω, 1 W
Matsushita Electric Industrial Co., Ltd.
102
T210
Main transformer
103
R211
Metal coated resistor
200 Ω±2%, 2 W
Matsushita Electric Industrial Co., Ltd.
104
D214
Low-loss diode
SF10LC40
Renesas Technology Corp.
Hitachi Ferrite Electronics, Ltd.
Renesas Technology Corp.
Renesas Technology Corp.
Hitachi Ferrite Electronics, Ltd.
TO-220
(full mold)
Shindengen Electric Manufacturing
Co., Ltd.
105
R215
Metal coated resistor
200 Ω±2%, 2 W
Matsushita Electric Industrial, Ltd.
106
C216
Ceramic capacitor
470 pF, 1 kV
Murata Manufacturing Co., Ltd.
107
C217
Ceramic capacitor
470 pF, 1 kV
Murata Manufacturing Co., Ltd.
108
L218
Choke coil
109
C219
Aluminum electrolytic
capacitor
LXV
56 µF, 63 V
φ10×12.5
Nippon Chemi-Con Corporation
110
C220
Aluminum electrolytic
capacitor
LXV
56 µF, 63 V
φ10×12.5
Nippon Chemi-Con Corporation
111
TH221
Posistor
112
R223
Not mounted
113
R224
Not mounted
114
R225
Not mounted
515 µH, 5 A
PTH9M04BE471
Tamura Seiko Co., Ltd.
Murata Manufacturing Co., Ltd.
Rev.1.00, Jul.28.2003, page 35 of 39
Module
No.
Symbol
Model
48-V DCDC power
module
115
J230
Output section terminal
block (2 pins)
116
C226
Ceramic capacitor
0.01 µF, 100 V
TDK Corporation
117
C227
Ceramic capacitor
0.01 µF, 100 V
TDK Corporation
118
C228
Ceramic capacitor
0.01 µF, 100 V
TDK Corporation
119
C229
Ceramic capacitor
0.01 µF, 100 V
120
IC300
IC socket (16 pins)
121
R439
Metal film resistor
270 kΩ, 1/2 W
KOA Corporation/Tama Electric Co.,
Ltd.
122
R440
Metal film resistor
270 kΩ, 1/2 W
KOA Corporation/Tama Electric Co.,
Ltd.
123
R441
Metal film resistor
180 kΩ, 1/2 W F
KOA Corporation/Tama Electric Co.,
Ltd.
124
R443
Taping resistor
13 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
125
R442
Taping resistor
5.6 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
126
R444
Metal film resistor
360 kΩ, 1/2 W F
KOA Corporation/Tama Electric Co.,
Ltd.
127
R445
Metal film resistor
390 kΩ, 1/2 W F
KOA Corporation/Tama Electric Co.,
Ltd.
128
C449
Capacitor (ceramic)
2.2 µF, 50 V
Nippon Chemi-Con Corporation
129
C450
Capacitor (ceramic)
2.2 µF, 50 V
Nippon Chemi-Con Corporation
130
C451
Capacitor (ceramic)
0.68 µF, 50 V K
Murata Manufacturing Co., Ltd.
131
R452
Taping resistor
1 MΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
132
R453
Taping resistor
1 MΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
133
R454
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
134
R455
Taping resistor
100 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
135
R456
Taping resistor
1 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
136
C457
Capacitor (ceramic)
0.015 µF, 50 V K
Murata Manufacturing Co., Ltd.
137
R347
Taping resistor
22 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
138
R348
Taping resistor
47 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
139
D349
Diode (S.B.D.)
140
R350
Taping resistor
10 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
141
R454A
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
142
C451A
Capacitor (ceramic)
143
TP464
Test pin
For PWM-OUT
(2-pin)
Mac Eight Co., Ltd.
144
TP465
Test pin
For PFC-OUT
(3-pin)
Mac Eight Co., Ltd.
145
TP466
Test pin
For PFC-ON
(5-pin)
Mac Eight Co., Ltd.
146
TP467
Test pin
For VREF
(6-pin)
Mac Eight Co., Ltd.
147
TP468
Test pin
For CAO
(7-pin)
Mac Eight Co., Ltd.
PFC and
PWM
control
circuit
module
Rev.1.00, Jul.28.2003, page 36 of 39
Type No.
Ratings
Remarks
Manufacturer
Fujicon Co., Ltd.
TDK Corporation
DIP
(For mounting
the HA16158P)
11EQS10
Yamaichi Electronics Co., Ltd.
Nihon Inter Electronics Corporation
0.47 µF, 50 V K
Murata Manufacturing Co., Ltd.
Module
No.
Symbol
Model
Type No.
PFC and
PWM
control
circuit
module
148
TP469
Test pin
For PFC-FB
(11-pin)
Ratings
Remarks
Mac Eight Co., Ltd.
Manufacturer
149
TP470
Test pin
For PFC-EO
(12-pin)
Mac Eight Co., Ltd.
150
TP471
Test pin
For PWMCOMP
(15-pin)
Mac Eight Co., Ltd.
151
TP472
Test pin
For GND
Mac Eight Co., Ltd.
152
TP473
Test pin
For GND
153
C413
Capacitor (ceramic)
0.47 µF, 50 V
Murata Manufacturing Co., Ltd.
154
C412
Capacitor (ceramic)
270 pF, 50 V
Murata Manufacturing Co., Ltd.
155
R412A
Metal film resistor
510 kΩ, 1/2 W
KOA Corporation/Tama Electric Co.,
Ltd.
156
R412B
Metal film resistor
510 kΩ, 1/2 W
KOA Corporation/Tama Electric Co.,
Ltd.
157
C410
Capacitor (ceramic)
3000 pF, 50 V
TDK Corporation
158
R411
Taping resistor
30 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
159
C409
Capacitor (ceramic)
1000 pF, 50 V
Murata Manufacturing Co., Ltd.
160
R407
Taping resistor
240 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
1000 pF, 50 V
Murata Manufacturing Co., Ltd.
Mac Eight Co., Ltd.
161
C408
Capacitor (ceramic)
162
PC392
Photocoupler (TLP421F)
163
R393
Taping resistor
164
PC378
Photocoupler (TLP421F)
165
C405
Taping capacitor
(ceramic)
0.1 µF, 50 V
166
C406
Capacitor (ceramic)
0.033 µF, 50 V
Murata Manufacturing Co., Ltd.
167
R301
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
168
R302
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
169
R303
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
170
R304
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
171
R305
Taping resistor
100 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
172
R306
Taping resistor
3.3 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
173
C306A
Capacitor (ceramic)
3000 pF, 50 V
TDK Corporation
174
C404
Capacitor (ceramic)
2200 pF, 50 V
Murata Manufacturing Co., Ltd.
175
R402
Taping resistor
200 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
176
R403
Taping resistor
620 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
177
D351
Diode (S.B.D.)
178
R352
Taping resistor
20 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
179
D353
Diode (S.B.D.)
180
R354
Taping resistor
30 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
TLP421F(D4-LF2)
Toshiba Corporation
1 kΩ±1%, 1/4 W
TLP421F(D4-LF2)
KOA Corporation/Tama Electric Co.,
Ltd.
Toshiba Corporation
11EQS10
Murata Manufacturing Co., Ltd./TDK
Corporation
Nihon Inter Electronics Corporation
11EQS10
Nihon Inter Electronics Corporation
Rev.1.00, Jul.28.2003, page 37 of 39
Module
No.
Symbol
Model
PFC and
PWM
control
circuit
module
181
R355
Taping resistor
Type No.
Ratings
182
D356
Diode (S.B.D.)
11EQS10
Nihon Inter Electronics Corporation
183
D357
Diode (S.B.D.)
11EQS10
Nihon Inter Electronics Corporation
184
D358
Diode (S.B.D.)
11EQS10
185
R359
Taping resistor
186
Q360
Transistor
187
R361
Taping resistor
188
D362
Diode (S.B.D.)
189
R363
190
10 Ω±1%, 1/4 W
Remarks
Manufacturer
KOA Corporation/Tama Electric Co.,
Ltd.
Nihon Inter Electronics Corporation
1 kΩ±1%, 1/4 W
2SA1761
KOA Corporation/Tama Electric Co.,
Ltd.
Toshiba Corporation
10 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
Taping resistor
15 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
R364
Taping resistor
10 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
191
D365
Diode (S.B.D.)
11EQS10
Nihon Inter Electronics Corporation
192
D366
Diode (S.B.D.)
11EQS10
Nihon Inter Electronics Corporation
193
D367
Diode (S.B.D.)
11EQS10
194
R368
Taping resistor
195
Q369
Transistor
196
R370
Taping resistor
197
D371
Diode (S.B.D)
198
R372
199
11EQS10
Nihon Inter Electronics Corporation
Nihon Inter Electronics Corporation
1 kΩ±1%, 1/4 W
2SA1761
KOA Corporation/Tama Electric Co.,
Ltd.
Toshiba Corporation
10 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
Taping resistor
15 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
R373
Taping resistor
10 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
200
C395
Capacitor (ceramic)
0.1 µF 50 V
Murata Manufacturing Co., Ltd.
201
R396
Taping resistor
39 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
202
R397
Taping resistor
1.5 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
203
R395A
Taping resistor
10 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
204
R398
Taping resistor
2.2 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
205
C399
Capacitor (ceramic)
0.047 µF, 50 V
Murata Manufacturing Co., Ltd.
206
R400
Taping resistor
10 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
207
R401
Metal film resistor
510 kΩ±1%, 1/2 W
F
KOA Corporation/Tama Electric Co.,
Ltd.
208
C401A
Film capacitor
0.068 µF 63 V
Matsuo Electric Co., Ltd.
209
IC394
IC regulator
210
R391
Taping resistor
820 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
211
R377
Taping resistor
820 Ω±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
212
R379
Taping resistor
1 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
213
IC380
IC regulator
214
R381
Taping resistor
1 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
215
C382
Capacitor (ceramic)
1000 pF 50 V
KOA Corporation/Tama Electric Co.,
Ltd.
Rev.1.00, Jul.28.2003, page 38 of 39
11EQS10
Nihon Inter Electronics Corporation
HA17431PA
Renesas Technology Corp.
HA17431PA
Renesas Technology Corp.
Module
No.
Symbol
Model
PFC and
PWM
control
circuit
module
216
R383
Taping resistor
Type No.
Ratings
47 kΩ±1%, 1/4 W
2.2 kΩ±1%, 1/4 W
Remarks
Manufacturer
KOA Corporation/Tama Electric Co.,
Ltd.
217
R384
Taping resistor
218
Q385
NPN transistor
219
C386
Capacitor (ceramic)
1000 pF 50 V
Murata Manufacturing Co., Ltd.
220
R387
Taping resistor
8.2 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
221
C374
Capacitor (ceramic)
1000 pF 50 V
Murata Manufacturing Co., Ltd.
222
R375
Cement resistor
2.4 kΩ, 2 W
Yagishita Electric Co., Ltd.
223
DZ376
500 MW Zener diode
224
C388
Capacitor (ceramic)
1000 pF 50 V
Murata Manufacturing Co., Ltd.
2.4 kΩ, 2 W
Yagishita Electric Co., Ltd.
2SC458B
Renesas Technology Corp.
KOA Corporation/Tama Electric Co.,
Ltd.
HZ12HA2
Renesas Technology Corp.
225
R389
Cement resistor
226
DZ390
500 MW Zener diode
227
R463
Taping resistor
20 kΩ±1%, 1/4 W
KOA Corporation/Tama Electric Co.,
Ltd.
228
C463A
Capacitor (ceramic)
1200 pF, 50 V
Murata Manufacturing Co., Ltd.
HZ12HA2
Renesas Technology Corp.
Rev.1.00, Jul.28.2003, page 39 of 39
Evaluation Board for the HA16158 AC-DC Converter Controller IC
with PFC and PWM Functions (HA16158 EVB1.0) Application Note
Publication Date: 1st Edition, December 2002
Rev.1.00, July 28. 2003
Published by:
Sales Strategic Planning Div.
Renesas Technology Corp.
Edited by:
Technical Documentation & Information Dept.
Renesas Kodaira Semiconductor Co., Ltd.
 2002, 2003. Renesas Technology Corp., All rights reserved. Printed in Japan.
HA16158 EVB1.0 REJ05F0001-0100Z