HA16158 EVB1.0 Application Note Evaluation Board for the HA16158 AC-DC Converter Controller IC with PFC and PWM Functions Rev.1.00 2003.7.28 Cautions Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. Contents Section 1 Introduction....................................................................................... 1 Section 2 Features ............................................................................................. 2 Section 3 Electrical Characteristics .................................................................. 3 Section 4 Detailed Description ......................................................................... 4 4.1 4.2 Overview .......................................................................................................................... 4 4.1.1 PFC Circuit Module............................................................................................. 6 4.1.2 DC-DC Circuit (48 V) ......................................................................................... 7 Functions .......................................................................................................................... 7 4.2.1 UVL Circuit......................................................................................................... 7 4.2.2 Soft-Start Circuit.................................................................................................. 8 4.2.3 PFC Switching Function...................................................................................... 9 4.2.4 Power Saving during Periods on Standby............................................................ 11 4.2.5 Overvoltage Latch Protection (for PWM Control) .............................................. 12 4.2.6 Operating Frequency ........................................................................................... 13 4.2.7 FAN and PWM Remote On/Off Circuits............................................................. 13 Section 5 Sequences of Operation .................................................................... 14 Section 6 Method of Measurement and Measured Data ................................... 19 6.1 6.2 6.3 Measured Data: Static-Characteristic Curves ................................................................... 19 Waveforms........................................................................................................................ 23 Method of Measurement................................................................................................... 28 Section 7 Circuit Diagram ................................................................................ 29 Section 8 Pattern Diagrams............................................................................... 30 Section 9 List of Parts ....................................................................................... 33 Rev.1.00, Jul.28.2003, page iii of 39 Section 1 Introduction The HA16158EVB1.0 is an evaluation board for the HA16158 AC-DC converter controller IC. It incorporates controllers for power-factor correction (PFC) and pulse-width modulation (PWM), and is optimal for use with network servers, workstations, routers, RAID (redundant array of inexpensive disks) mechanisms, etc. The evaluation board converts the mains AC supply (hereafter called the AC voltage) from 85 to 270 VAC to 48 VDC. Firstly, the AC voltage is converted to 380 VDC with power-factor correction. Since powerfactor correction eliminates the unnecessary loss of power, the unit is able to accept high input voltages. Accordingly, the board is able to accept any AC voltage in the range from 85 to 270 V, covering mains specifications worldwide. The voltage is then converted downward, and 48 V (2.1 A, efficiency of 80%) is output. Safety was considered in the board’s design, with the inclusion of many on-board protective circuits. Operation of these circuits is linked with the timer. This application note gives examples of the procedures, wiring connections, and ways to determine component values that you will require in evaluating the HA16158 AC-DC converter-control IC. Rev.1.00, Jul.28.2003, page 1 of 39 Section 2 Features All of the necessary features for evaluating the AC-DC converter power supply have been included on a compact board, which is roughly the size of a sheet of A4 paper (210 mm × 270 mm). 1. Primary Side a. The range of AC input voltage (85 VAC to 270 VAC) covers all levels of mains voltage in use worldwide b. PFC module: Outputs 380 V at up to 0.8 A, i.e., 300 W, with conversion efficiency of 93% (when 200 VAC is being supplied) 2. Secondary Side a. DC-DC converter module: Outputs 48 VDC at up to 2.1 A, i.e., 100 W, with conversion efficiency of 80% 3. Protection Circuits Safety design has been taken into consideration with the inclusion of the following protection circuits. a. Inrush-current limitation circuit b. Circuit to protect the primary side from overheating c. Instantaneous-power-shutdown retention circuit d. PWM remote on/off circuit e. FAN remote on/off circuit Rev.1.00, Jul.28.2003, page 2 of 39 Section 3 Electrical Characteristics 1. Input/output specifications: Input voltage: 85 VAC to 270 VAC Output voltage: 48 V Output current: 2.1 A Output power: 100 W 2. PFC module Output voltage: 380 V Output current: 0.8 A Output power: 300 W Efficiency: 93% when 200 VAC is being supplied Operating frequency: 65 kHz 3. DC-DC Converter Module Output voltage: 48 V Output current: 2.1 A Output power: 100 W Efficiency: 80% Operating frequency: 130 kHz Rev.1.00, Jul.28.2003, page 3 of 39 Section 4 Detailed Description 4.1 Overview The operation of the evaluation board is now described with the aid of the overall block diagram given as figure 4.1. After being passed through the filter circuit, the AC voltage is full-wave rectified by the diode bridge. The PFC circuit then applies power factor correction and boosts the output to 380 VDC. This voltage is then converted down to 48 VDC, the final output, by the DC-DC converter block. The power-supply circuit is a self-excited DC-DC converter which receives the 380 V output of the PFC circuit and supplies the necessary power to the HA16158 controller IC. When the evaluation board is initiated, power is supplied to the HA16158 controller IC from the output of the full-wave rectifier via the resistor R103. After the PFC circuit has started up, the power supply is initiated. From then on, power is supplied from the power supply to the HA16158. The many protection circuits operate in conjunction with the soft-start circuit and the timer circuit, ensuring the safety of the evaluation board. A′ PFC output DC Inrush-current limitation circuit AC in Input 85 VAC to 270 VAC PFC: 380 V PFC circuit Filter circuit Output DC 48 V 48 V DC-DC converter Input voltage surveillance Power-supply: 15 V Vcc PFC OUT PFC ON Switch for FAN ON/OFF PFC PWM PWM FB OUT COMP Control IC HA16158 12 V FAN for Inrushcurrent Power-supply circuit Timer circuit A PFC masking (Instantaneouspower-shutdown Switch for detection) Remote ON/OFF PWM-Off circuit PWM soft-start pin → Low Figure 4.1 Block Diagram Rev.1.00, Jul.28.2003, page 4 of 39 PWM SS PWM: Low DC out Figure 4.2 Circuit Diagram Rev.1.00, Jul.28.2003, page 5 of 39 J1-3 R114 C116A 0.01µF 50V R115 100kΩ 1/4W C120 3 2SC1213 Q119 DZ117 HZ12HC2 470pF 250V R124 100kΩ 1/4W R123A 390Ω 2W R123 390Ω 2W DZ122 HZ3HA2 D101 DSM1D6 C7 R121 R107 200kΩ 2W 470pF 250V 0.47µF 250V C6 0.047µF 200Ω 50V 2W R111 100kΩ 2W C5 R106 200kΩ 2W 3 1 0.47µF 250V 4 2 C127 0.047µF 50V C128 0.1µF 50V PC126-2 TLP421F (D4-LF2) D125 11EQS10 1 2 1 5 4 3 A 1 R350 R27 +C147 2700µF 25V R141 820Ω 1/4W R136 510Ω 1/4W R143 10Ω 1/4W R135 3.6kΩ 1/4W 2 1 C11 + R149 6.2kΩ 1/4W 1 OUT 2 SW153 R152 1kΩ 1/4W 1 SW154 3 PC151-1 TLP421F (D4-LF2) R150 910Ω 1/4W Timer circuit IN R25A R24A 51kΩ 5W J28-2 + 330µF 450V R103 0.47µF C19 800V 60D-18 R17 J28-1 Inrush-current limitation circuit D18 SF10JZ47 2 DZ104A HZ20H-2 470pF 250V +C148 2700µF 25V C104 56µF 35V C145 0.1µF 50V C142 0.47µF 50V S3L20U D144 C15 Q13 2SK2730 SF20L60 1 82pF 1kV 82pF C23 1kV D14 3 200Ω 2W 200Ω R22 2W PFC circuit FAN circuit, Remote ON/OFF circuit 2 1 IC134 HA17431PA 1 R140 100kΩ 1/4W 0.01µF 50V C139 0.01µF 2kΩ 50V 1/4W C137 R138 R133 1kΩ 1/4W PC126-1 TLP421F (D4-LF2) D146 S3L20U + R21 C20 10kΩ 1/4W 1 R132 2.4kΩ 1/4W 0.015µF 50V 1kΩ 1/4W C457 R131 2.4kΩ 1/4W 100Ω 1/4W 9 C130 2700µF 25V S3L20U 1 1 0.082Ω 5W R455 R456 47Ω 1/4W 10 13 14 D16 22Ω 11EQS10 1/4W R348 2 1 2 L12 2 5A_1.5mH R347 D349 D129 2 0.47µF 800V T105-2 C10 D102 DSM1D6 4 Auxiliary power-supply circuit R118 0.15Ω 2W R113 0.27Ω 2W 3 Q116 2SC1213 2SK1807 100Ω 1/4W C3 R110 100kΩ 2W Q112 1 D108 1NU41 C109 4700pF 1kV 10A 250V J1-2 F2 510kΩ 1/2W D9 D15XB60 2 3 L4 5A_5.7mH 1 1 2 2 3 S3V60 R24 2 1 D353 PWM-Off circuit Inrush-current limitation circuit 30Ω 1/4W R355 10kΩ 1/4W 20Ω 11EQS10 1/4W R354 R352 Unmoun C201 ting 1000pF 1kV D351 1 2 Un11EQS10 moun ting J156-2 J155-2 J156-1 J155-1 7 8 Q202 2SK1299 4 Primary side protection circuit 1 5 2 3 6 1 T203-1 Protection circuit block Unmoun ting R25 Unmoun ting 2 3 R368 R359 1 2 1 2 2 1 2 D357 2 D365 2 D366 1 TP GND 1 11EQS10 1 Instantaneouspower-shutdown retention circuit 1kΩ 1/4W D367 11EQS10 11EQS10 1 1kΩ 1/4W D358 11EQS10 11EQS10 11EQS10 1 D356 1 D362 2 1 D371 2 R364 C449 2.2µF R442 50V 5.6kΩ C450 1/4W 2.2µF 50V R443 13kΩ 1/4W R445 390kΩ 1/2W R452 1MΩ 1/4W C451 0.68µF 50V C451A 0.47µF 50V R463 20kΩ 1/4W R305 100kΩ 1/4W R304 100kΩ 1/4W R303 100kΩ 1/4W R302 100kΩ 1/4W R393 1kΩ 1/4W C463A 1200pF 50V 12 10 R400 R397 C395 0.1µF 50V 10Ω 1/4W 5A_515µH 0.068µF 63V 510kΩ 1/2W C401A R454 100kΩ 1/4W C103A 1.5µF 25V R454A 100kΩ 1/4W TP PFC-EO TP PFC-ON TP PFC-OUT PWM-OUT 2 IC300 2.2kΩ 1/4W VREF 6 TP PFC-FB C409 1000pF 50V R223 Unmoun ting R224 2.2kΩ 1/4W C386 2 C374 PC151-2 TLP421F (D4-LF2) C405 0.1µF C406 50V 0.033µF 50V PC378-2 TLP421F (D4-LF2) 1000pF 50V R375 Unmoun ting 2.4kΩ 2W J230-2 J230-1 R306 3.3kΩ 1/4W R403 620Ω 1/4W C404 2200pF 50V R402 200Ω 1/4W DZ376 HZ12HA2 C306A 3000pF 50V 8.2kΩ 1/4W Unmoun ting R225 TH221 PTH9M04 BE471 1000pF 50V R387 47kΩ Q385 1/4W 2SC458B C410 3000pF R407 50V 240Ω 1/4W C408 R411 1000pF 30kΩ 50V 1/4W PC392-2 TLP421F (D4-LF2) R412A 510kΩ 1/2W R384 1000pF 50V PFC, PWM control circuit TP GND 1 GND PWM-COMP 15 10 IAC C382 R381 1kΩ 1/4W R379 1kΩ 1/4W R383 IC380 HA17431PA 1 C228 0.01µF 100V C229 0.01µF C227 0.01µF 100V 100V PC378-1 TLP421F (D4-LF2) 820Ω 1/4W TP PWM-OUT DZ390 HZ12HA2 R377 2.4kΩ 2W C226 0.01µF 100V +C219 56µF 63V +C220 56µF 63V TP VREF C413 C412 270pF 0.47µF 5 PFC-ON PFC-SS 13 50V TP CAO 50V 12 PFC-EO CAO 7 R412B 510kΩ 9 RT 14 PWM-SS TP PWM-COMP 1/2W 3 PFC-OUT PFC-FB 11 8 PFC-CS PWM-CS 16 4 Vcc IC394 HA17431PA R398 C388 1000pF 50V 1.5kΩ 1/4W R396 39kΩ 1/4W R389 200Ω 470pF 470pF 2W 1kV 1kV L218 2 1 R215 C216 C217 PC392-1 TLP421F (D4-LF2) C399 2 SF10LC40 3 1 10Ω 0.047µF 50V R401 1/4W 1 C213 D214 C212 470pF 470pF 1kV 1kV R211 200Ω 2W R395A 820Ω 1/4W T210 R391 R453 1MΩ 1/4W D230 V03C D208 V03C 5 3 S3L60 S3L60 D207 R301 100kΩ 1/4W 0.33Ω 1W Q205 2SK1403 R209A R440 270kΩ 1/2W R441 180kΩ 1/2W D206 Q204 2SK1403 0.33Ω 1W 10kΩ 1/4W 1 10kΩ 1/4W 1 R209 R444 360kΩ 1/2W R373 R439 270kΩ 1/2W Q369 2SA1761 15Ω 1/4W 10Ω 11EQS10 1/4W R372 R370 Q360 2SA1761 15Ω 1/4W 10Ω 11EQS10 1/4W R363 R361 380 V to 48 V DC-DC circuit 2 3 2 3 3 2 3 2 1 2 1 2 1 2 1 2 10A 250V R8 2 1 2 3 1 2 3 2 1 2 3 2 J1-1 F1 2 2 1 1 2 1 3 1 Filter circuit 2 1 2 1 2 4 3 1 2 2 1 1 2 3 2 4 3 3 1 2 3 1 2 4 3 4 3 2 1 A The test pins listed below are included. They will help you to verify the board’s operation. Table 4.1 Test Pins Test Pin IC Pin Name Description No. Name PWM-OUT PWM-switching drive signal for the 48 V DC-DC circuit. 2 PWM-OUT Vref Reference supply of 5 V. When power is shut down by UVLO, 0V. 6 Vref CAO Error amp used in control of the average current. 7 CAO PFC-FB Output of the PFC after division by resistors R301 to R305 and R306. Input for the PFC’s voltage amp. 11 PFC-FB PFC-EO Output of the PFC’s voltage amp. 12 PFC-EO PWM-COMP The signal that indicates the output voltage from the secondary, and is feed-back to the primary side by a photocoupler PC392. 15 PWM-COMP GND GND 1 GND GND GND — GND PFC-OUT Driving output for the PFC’s MOSFETs. 3 PFC-OUT PFC-ON PFC on/off function and gain switching 5 PFC-ON Next, the operation of the individual blocks is described in detail. 4.1.1 PFC Circuit Module The phase lag between the current and voltage waveforms which arises because of reactances within the regulator is corrected to improve the power factor. The current waveform and the voltage waveform are multiplied inside the HA16158 controller IC, the phase difference is thus obtained, and correction is applied. The current waveform is detected in the current-mirror circuit in the HA16158. The output of the detection filter circuit is input to the IAC pin (pin 10) of the HA16158 via resistors R444 and R445. Current proportional to the input voltage is thus acquired. On the other hand, the output from the PFC circuit is divided by resistors (R301 to R305, and R306), and input to PFC-FB (TP PFC-FB). The current and voltage signals are multiplied together and the result is amplified, and then output to PFC-OUT (TP PFCOUT), and input to the gate of Q13. The loop which is formed here, in conjunction with the PFC, serves as a voltage-feedback loop. This feedback is applied to ensure that the reference voltage multiplied by the resistor-division ratio remains at the target voltage. The target voltage is determined by the AC voltage which is input to the evaluation board. AC inputs can be classified into 100 and 200 V types. The maximum value for a supply of the 200 V type, i.e., 264 Vrms, is used to determine the target value, which is 373 V, for the PFC circuit to operate in the booster mode regardless of the AC input voltage. Note that the target value is fixed, and remains at this value regardless of the input voltage. Min. Rated Max. Unit 100 V type 90 100 to 120 132 Vrms 200 V type 180 200 to 240 264 Vrms Frequency 47 63 Hz Rev.1.00, Jul.28.2003, page 6 of 39 4.1.2 DC-DC Circuit (48 V) This circuit converts the 380 V output of the PFC circuit to 48 V. The PWM waveform from PWM-OUT (TP PWM-OUT) drives the gate of Q202. The 48 VDC output can be obtained from transformers T203, T210, then through the filter circuit. Drivability on the secondary side of the T203 is secured through the use of two divided circuits. To retain the voltage at a certain level, the output voltage must be fed back to the HA16158 controller IC. Since this module is electrically isolated from the controller-IC side (primary side), this information is transferred by photocouplers. The information is input to the PWM-COMP pin (pin 15) (TP PWM-COMP) of the secondary side of the output-voltage controller IC (HA16158). 4.2 Functions 4.2.1 UVL Circuit The UVL circuit monitors the VCC voltage and terminates the IC’s operation in cases of low voltage. The characteristic of this control includes hysterisis; operation starts when VCC reaches 16 V and stops when Vcc falls to 10 V. While the UVL circuit stops the IC, the PWM-OUT (TP PWM-OUT) and PFC-OUT (TP PFC-OUT) signals are fixed to low level, and the output of Vref and operation of the oscillator are terminated. Vcc 16.0V 10.0V 4.5V 4.5V VREF V_CT (internal signal) PWM-RESET (internal signal) PFC-DT (internal signal) PFC-RAMP (internal signal) PWM-OUT PFC-OUT Figure 4.3 Rev.1.00, Jul.28.2003, page 7 of 39 4.2.2 Soft-Start Circuit There are two soft-start circuits: one is for PWM control and the other is for PFC control. 1. Soft-Start Circuit for PWM Control This function gradually increases the duty ratio over a certain period of time. This prevents excess stress on external components and overshooting of the secondary-side output voltage due to a rapid increase in the duty cycle of the PWM waveform on the PWM-OUT pin. The soft-start time tss-pwm is easily selected by a combination of the external capacitance (C406) which is connected to the PWM-SS pin (pin 14) and internal constants. The formula for its calculation is given below. 3.2V V_PWM-SS V_CT (internal signal) 1.6V PWM-SS comp. out (internal signal) tss-pwm PWM-OUT Figure 4.4 The soft-start time tss-pwm is defined as the time from UVLO cancellation and the initiation of Vref supply until the voltage on the PWM-SS pin voltage reaches the 3.2 V upper limit on the IC’s internal T voltage waveform. The figure shows the PWM waveform settling into the prescribed pulse width after the soft start and tss-pwm periods have elapsed. In this evaluation board, the soft-start time is set as follows: tss-pwm = 33 [nF] × 3.2 [V] Css-pwm × Vct-H = = 4.2 [ms] 25 [µA] Iss-pwm 2. Soft-Start Circuit for PFC Control This function increases the duty ratio gradually, in a certain period, to prevent excess stress on the external components due to a rapid increase of the duty ratio of the PWM waveform on the PFC-OUT pin or an overshoot of the PFC output voltage (B+ voltage). The soft-start time tss-pfc can easily be set by the external capacitance (C413). The soft-start time tss-pfc is defined as the time from UVLO cancellation and Vref initiation until the PFC-SS pin (pin 13) voltage reaches the lower limit, 0.65 V, of the RAMP voltage waveform inside the IC. The figure shows how the PWM has reached the prescribed pulse width after the soft start and tsspfc periods have lapsed. 5V 3.4 V V_ramp (internal signal) V_PFC-SS 0.65 V PFC-SS comp. out (internal signal) PFC-OUT Figure 4.5 Rev.1.00, Jul.28.2003, page 8 of 39 In this evaluation board, the soft-start time is set as follows: tss-pfc = 470 [nF] × (5 – 0.65) [V] Css-pfc × (Vref – Vramp-L) = = 82 [ms] 25 [µA] Iss-pwm Note: When this function is not in use, the PFC-SS pin must be grounded. 4.2.3 PFC Switching Function The following two functions of the PFC-ON pin (TP PFC-ON) make the controller able to support the mains power supplies anywhere in the world. They are described below with the aid of figure 4.6. Rec+ Em 720 kΩ 1.5V 1.2V R439 R440 R441 PFC-ON PFC on/off control 5 PFC-ON(dc) C1 4.4 µF + 18.6 kΩ R442 R443 Gain switchover of multiplier 3.8V 3.4V PFC-CS comparison voltage switchover PFC-ON(dc) = 2 ∗ Em / π ∗ R2 / (R1 + R2) = 2 ∗ √2 ∗ Vac / π ∗ R2 / (R1 + R2) Note: R1 = R439 + R440 + R441 R2 = R442 + R443 168 Vac AC voltage Vac 150 Vac 66 Vac 53 Vac 0 Vac 3.8 V 3.4 V PFC-ON 1.5 V 1.2 V 0V ON PFC status PFC on period (Internal state) OFF 0.25 Multiplier gain (Internal state) 0.05 –0.25 PFC-SS comparison voltage (Internal state) –0.50 Figure 4.6 PFC Switching Function Rev.1.00, Jul.28.2003, page 9 of 39 1. PFC On/Off Switching The PFC function is switched on and off by pin 5 (TP PFC-ON) of the HA16158. The pulsating voltage to which primary rectification has been applied, is divided by two sets of resistors (R439 to R441 and R442 and R443), multiplied by capacitances (C449 and C450), and then applied as the input to pin 5 (TP PFC-ON). The PFC function is switched on and off as this input increases and decreases. The PFC function has a hysteresis of 13 V, switching on when the AC-input voltage rises to 66 V and switching off when the voltage falls to 53 V. 2. Switching between operation with 100 and 200 V supplies The level of the AC voltage being input to the evaluation board is automatically detected (100 or 200 V), and the gain selectors for the multiplier and PFC-CS comparison voltage are switched accordingly. This enables the design of power supplies for worldwide application. a. Switching the gain selector of the multiplier As was described earlier, the voltage and current are multiplied by each other to obtain the difference between their phases. The value obtained is proportional to the square of the voltage. If the multiplication is performed without switching of the gain selector, the values obtained with 200 V supplies will be four times those obtained with 100 V supplies. This is adjusted for by switching the coefficient of multiplication to 0.25 for 100 V supplies and to 0.05 for 200 V supplies. b. Switching of the comparison voltage The over-power limiters are generally used to protect the circuit from abnormal conditions. The following equation expresses the value to which the power is limited: Plm = Vac ⋅ |Vth| / (√2 ⋅ Rcs) where, Rcs is the value of the current-detection resistor, and Vth is the value of the PFC-CS comparison voltage. Accordingly, when Vth is fixed, the limiting value on the power level will change with the input voltage. Therefore, the value of Vth is also switched according to whether a 100 V or 200 V supply is detected. Rev.1.00, Jul.28.2003, page 10 of 39 4.2.4 Power Saving during Periods on Standby When the output load of PWM output (48 VDC) is light, e.g. when the evaluation board is in the standby mode, the operating frequency in the PWM control module is automatically decreased. The PWM-COMP voltage is monitored at the reference frequency (130 kHz). When the PWM-COMP voltage falls below the reference voltage of 1.7 V, a reset is applied and PWM is suspended for one cycle. The suspension PWM may continue up to a maximum of 63 cycles, which is equivalent to 1/64 frequency division. The PWM frequency gradually falls over that period, but the speed of this is dependent on the overall response frequency for the given system. RT 9 Oscillator R454 200 kΩ Driver 2 PWM-OUT PWM Logic R Driver circuit Q205 VREF Q R407 240 Ω S − 15 + 16 C408 1000 pF PWM-COMP PWM-CS − f/64 Divider Reset R402 200 Ω + 1.7 V Power-saving C404 2200 pF R403 620 Ω R209 0.66 Ω Power-saving peripheral circuit PWM-COMP 1.7V PWM-OUT f f/64 Figure 4.7 Rev.1.00, Jul.28.2003, page 11 of 39 4.2.5 Overvoltage Latch Protection (for PWM Control) When the PWM output voltage on the secondary side is abnormally high, protection is obtained by stopping output of the PWM-OUT (TP PWM-OUT) and PFC-OUT (TP PFC-OUT) signals. An overvoltage is judged to have occurred when the signal on the PWM-SS pin (pin 14) is greater than 4 V. This detection is detected by the photocoupler (PC378). Once the supply of voltage is off, the latch is released when the VCC voltage falls to 7.1 V. + PFC-OUT Q S Vcc − 4.0 V R PWM-OUT − VREF Vcc + 7.1 V Vref 2.4 V 1.5 V PFC-FB PC378-2 14 3.5 V PWM-SS 2.5 kΩ C406 0.033 F B+Low Overvoltage protection latch peripheral circuit VREF 4.0 V PWM-SS 3.5 V PWM-OUT PFC-OUT Figure 4.8 Rev.1.00, Jul.28.2003, page 12 of 39 4.2.6 Operating Frequency The 200 kΩ timing resistor (pin 9) is used to adjust the PWM modules internal frequency of operation, fpwm, as is shown in the example in the figure below. fpwm is double the frequency fpfc of the PFC module. The equation below provides an approximate value for fpwm: fpwm = fpfc = 2.6 × 1010 = 130 [kHz] RT fpwm = 65 [kHz] 2 Note that the above equation is approximate; the error in the value produced will increase with frequency because of delays in the internal circuits, etc. Please check the results of adjusting the operating frequency on the actual system. fpwm, fpfc (kHz) 1000 100 fpwm fpfc 10 10 100 1000 RT (kΩ) Figure 4.9 4.2.7 FAN and PWM Remote On/Off Circuits Switch SW153 on the board can be used to switch the FAN on and off as desired. When measurements of power require high precision, switch the FAN off. Take care with regard to increases in the temperature of the board, etc., while the FAN is switched off. In conjunction with switch SW154, the photocoupler (PC392) is operated and the PWM-COMP-pin voltage is forcibly driven low, which turns off the PWM-OUT pin. Rev.1.00, Jul.28.2003, page 13 of 39 Section 5 Sequences of Operation Power-On Sequence AC input (85 VAC to 270 VAC) 380 V PFC output module (C19) 380 V (270 VAC) 100 V Soft start 120 V (85 VAC) 15 V 16 V Power-supply output 5V HA16158 VREF pin Thyristor at the inrush current limit circuit goes on. Timer circuir module typ: 750 ms 6.1 V (The voltage is divided by resistors and applied to the 200 V system.) HA16158 PFC-ON pin 3.4 V (The voltage at the instantenous power shutdown retention circuit module is applied to the 100 V system.) HA16158 PFC-OUT pin HA16158 PFC-FB pin 2.5 V 270 VAC 2.4 V 85 VAC HA16158 PWM-OUT pin 270 VAC 85 VAC Soft start 48 VDC output Figure 5.1 Rev.1.00, Jul.28.2003, page 14 of 39 Shutdown Sequence (Small Load/85 VAC) at 85 VAC 230 V PFC output module (C19) 100 V 15 V Power-supply output (C104) 10 V 5V HA16158 VREF pin Thyristor at the inrush current limit circuit goes off. HA16158-5 pin Timer circuir module typ: 160 ms 3.4 V (The voltage at the instantenous power shutdown retention circuit module is applied.) HA16158 PFC-ON pin HA16158 PFC-OUT pin HA16158 PFC-FB pin HA16158 PWM-OUT pin 48 VDC output Figure 5.2 Rev.1.00, Jul.28.2003, page 15 of 39 Shutdown Sequence (Large Load/85 VAC) at 85 VAC PFC output module (C19) 230 V 100 V 15 V Power-supply output (C104) 10 V 5V HA16158 VREF pin HA16158-5 pin Timer circuir module 3.4 V (The voltage at the instantenous power shutdown retention circuit module is applied.) HA16158 PFC-ON pin HA16158 PFC-OUT pin HA16158 PFC-FB pin 1.5 V HA16158 PWM-OUT pin 48 VDC output Figure 5.3 Rev.1.00, Jul.28.2003, page 16 of 39 Shutdown Sequence (Small Load/270 VAC) at 270 VAC 230 V PFC output module (C19) 100 V 15 V Power-supply output (C104) 10 V 5V HA16158 VREF pin Thyristor at the inrush current limit circuit goes off. HA16158-5 pin Timer circuir module typ: 160 ms 6.1 V (The voltage at the instantenous power shutdown retention circuit module is not applied.) HA16158 PFC-ON pin HA16158 PFC-OUT pin HA16158 PFC-FB pin HA16158 PWM-OUT pin 48 VDC output Figure 5.4 Rev.1.00, Jul.28.2003, page 17 of 39 Shutdown Sequence (Large Load/270 VAC) at 270 VAC PFC output module (C19) 230 V 100 V 15 V Power-supply output (C104) 10 V 5V HA16158 VREF pin HA16158-5 pin Timer circuir module 3.4 V (The voltage at the instantenous power shutdown retention circuit module is applied.) HA16158 PFC-ON pin HA16158 PFC-OUT pin HA16158 PFC-FB pin 1.5 V HA16158 PWM-OUT pin 48 VDC output Figure 5.5 Rev.1.00, Jul.28.2003, page 18 of 39 Section 6 Method of Measurement and Measured Data 6.1 Measured Data: Static-Characteristic Curves Vout-pfc vs. Iout-pfc 380 Vin = 85 V Vin = 100 V Vin = 270 V Vout-pfc (V) 378 376 374 372 370 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Iout-pfc (A) Figure 6.1 Vout-pfc vs. Iout-pfc Power Factor vs. Iout-pfc 1.00 0.98 Power Factor 0.96 0.94 0.92 0.90 0.88 Vin = 85 V Vin = 100 V Vin = 200 V Vin = 270 V 0.86 0.84 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Iout-pfc (A) Figure 6.2 Power Factor vs. Iout-pfc Rev.1.00, Jul.28.2003, page 19 of 39 η vs. Iout-pfc 100.0 90.0 Vin = 85 V Vin = 100 V Vin = 200 V Vin = 270 V η (%) 80.0 70.0 60.0 50.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Iout-pfc (A) Figure 6.3 η vs. Iout-pfc Power Factor vs. Vin 1.00 Power Factor 0.98 0.96 0.94 0.92 0.90 80 Pout = 100 W Pout = 150 W Pout = 200 W Pout = 250 W Pout = 300 W 120 160 200 Vin (Vrms) Figure 6.4 Power Factor vs. Vin Rev.1.00, Jul.28.2003, page 20 of 39 240 280 Vout-pwm vs. Iout-pwm *FAN : ON 48.0 Vin = 100 V Vin = 240 V 47.5 Vout-pwm (V) 47.0 46.5 46.0 45.5 45.0 44.5 44.0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.0 2.4 Iout-pwm (A) Figure 6.5 Vout-pwm vs. Iout-pwm (*FAN: ON) η vs. Iout-pwm *FAN : ON 80.0 70.0 Vin = 100 V Vin = 240 V 60.0 η (%) 50.0 40.0 30.0 20.0 10.0 0.0 0.0 0.4 0.8 1.2 1.6 Iout-pwm (A) Figure 6.6 η vs. Iout-pwm (*FAN: ON) Rev.1.00, Jul.28.2003, page 21 of 39 Vout-pwm vs. Iout-pwm *FAN : OFF 48.0 Vin = 100 V Vin = 240 V 47.5 Vout-pwm (V) 47.0 46.5 46.0 45.5 45.0 44.5 44.0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.0 2.4 Iout-pwm (A) Figure 6.7 Vout-pwm vs. Iout-pwm (*FAN: OFF) η vs. Iout-pwm *FAN : OFF 90.0 80.0 Vin = 100 V Vin = 240 V 70.0 η (%) 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.0 0.4 0.8 1.2 1.6 Iout-pwm (A) Figure 6.8 η vs. Iout-pwm (*FAN: OFF) Rev.1.00, Jul.28.2003, page 22 of 39 6.2 Waveforms 1. Vin, Iin waveforms @Vin = 240 Vrms Status Condition Ta (°C) VIN (Vrms) Pout(PFC) = 300 W Pout(PWM) = open load Vin = 240 Vrms, Pout(PFC) = 300 W, Pout(PWM) = open load 27.0 240.0 Vin Measurement 200 V/div 1.0 A/div CH1 Vin CH2 Iin CH3 CH4 Time Iin 4 ms/div PF = 0.984 Status Vin = 240 Vrms, Pout(PFC) = 200 W, Pout(PWM) = open load Condition Ta (°C) VIN (Vrms) Pout(PFC) = 200 W Pout(PWM) = open load 27.0 240.0 Vin Measurement 200 V/div 1.0 A/div CH1 Vin CH2 Iin CH3 CH4 Time Iin 4 ms/div PF = 0.970 Vin = 240 Vrms, Pout(PFC) = 100 W, Pout(PWM) = open load Status Condition Ta (°C) VIN (Vrms) Pout(PFC) = 100 W Pout(PWM) = open load 27.0 240.0 Vin Measurement CH1 Vin CH2 Iin CH3 CH4 Time 200 V/div 1.0 A/div Iin 4 ms/div PF = 0.925 Rev.1.00, Jul.28.2003, page 23 of 39 2. Vin, Iin waveforms @Vin = 100 Vrms Status Vin = 100 Vrms, Pout(PFC) = 300 W, Pout(PWM) = open load Condition Ta (°C) VIN (Vrms) Pout(PFC) = 300 W Pout(PWM) = open load 27.0 100.0 Vin Measurement 200 V/div 2.0 A/div CH1 Vin CH2 Iin CH3 CH4 Time Iin 4 ms/div PF = 0.999 Vin = 100 Vrms, Pout(PFC) = 200 W, Pout(PWM) = open load Status Condition Ta (°C) VIN (Vrms) Pout(PFC) = 200 W Pout(PWM) = open load 27.0 100.0 Vin Measurement 200 V/div 2.0 A/div CH1 Vin CH2 Iin CH3 CH4 Time Iin 4 ms/div PF = 0.999 Status Vin = 100 Vrms, Pout(PFC) = 100 W, Pout(PWM) = open load Condition Ta (°C) VIN (Vrms) Pout(PFC) = 100 W Pout(PWM) = open load 27.0 100.0 Vin Measurement CH1 Vin CH2 Iin CH3 CH4 Time 200 V/div 2.0 A/div 4 ms/div PF = 0.996 Rev.1.00, Jul.28.2003, page 24 of 39 Iin 3. Vin, Iin waveforms @Vin = 240 Vrms, PFC OFF Status <PFC OFF> Vin = 240 Vrms, Pout(PFC) = 300 W, Pout(PWM) = open load Condition Ta (°C) VIN (Vrms) Pout(PFC) = 300 W Pout(PWM) = open load V(PFC-ON) = 0 V 27.0 240.0 Vin Measurement 200 V/div 5.0 A/div CH1 Vin CH2 Iin CH3 CH4 Time Iin 4 ms/div PF = 0.458 Status <PFC OFF> Vin = 240 Vrms, Pout(PFC) = 200 W, Pout(PWM) = open load Condition Ta (°C) VIN (Vrms) Pout(PFC) = 200 W Pout(PWM) = open load V(PFC-ON) = 0 V 27.0 240.0 Vin Measurement 200 V/div 5.0 A/div CH1 Vin CH2 Iin CH3 CH4 Time Iin 4 ms/div PF = 0.426 Status <PFC OFF> Vin = 240 Vrms, Pout(PFC) = 100 W, Pout(PWM) = open load Condition Ta (°C) VIN (Vrms) Pout(PFC) = 100 W Pout(PWM) = open load V(PFC-ON) = 0 V 27.0 240.0 Vin Measurement CH1 Vin CH2 Iin CH3 CH4 Time 200 V/div 5.0 A/div Iin 4 ms/div PF = 0.393 Rev.1.00, Jul.28.2003, page 25 of 39 4. IAC, CAO, PFC-EO, PFC-CS waveforms @Vin = 100 Vrms Status Vin = 100 Vrms, Pout(PFC) = 300 W, Pout(PWM) = open load Condition Ta (°C) VIN (Vrms) Pout(PFC) = 300 W Pout(PWM) = open load 27.0 100.0 IAC CAO CH1 CH2 CH3 CH4 Time Measurement IAC CAO PFC-EO PFC-CS PFC-EO 0.5 V/div 1.0 V/div 2.0 V/div 0.2 V/div 4 ms/div Status PFC-CS Vin = 100 Vrms, Pout(PFC) = 200 W, Pout(PWM) = open load Condition Ta (°C) VIN (Vrms) Pout(PFC) = 200 W Pout(PWM) = open load 27.0 100.0 IAC CAO CH1 CH2 CH3 CH4 Time Measurement IAC CAO PFC-EO PFC-CS 0.5 V/div 1.0 V/div 2.0 V/div 0.2 V/div 4 ms/div PFC-EO PFC-CS Vin = 100 Vrms, Pout(PFC) = 100 W, Pout(PWM) = open load Status Condition Ta (°C) VIN (Vrms) Pout(PFC) = 100 W Pout(PWM) = open load 27.0 100.0 IAC CAO CH1 CH2 CH3 CH4 Time Measurement IAC CAO PFC-EO PFC-CS 0.5 V/div 1.0 V/div 2.0 V/div 0.2 V/div 4 ms/div Rev.1.00, Jul.28.2003, page 26 of 39 PFC-EO PFC-CS 5. PWM-OUT, PWM-COMP waveforms @Vin = 100 Vrms Status Vin = 100 Vrms, Pout(PFC) = open load, Pout(PWM) = 100 W Condition Ta (°C) VIN (Vrms) Pout(PFC) = open load Pout(PWM) = 100 W 27.0 100.0 PWM-OUT Measurement 10 V/div CH1 PWM-OUT 1.0 V/div CH2 PWM-COMP CH3 CH4 Time 4 µs/div Status PWM-COMP Vin = 100 Vrms, Pout(PFC) = open load, Pout(PWM) = 3 W Condition Ta (°C) VIN (Vrms) Pout(PFC) = open load Pout(PWM) = 3 W 27.0 100.0 PWM-OUT Measurement 10 V/div CH1 PWM-OUT 1.0 V/div CH2 PWM-COMP CH3 CH4 Time 4 µs/div PWM-COMP Vin = 100 Vrms, Pout(PFC) = open load, Pout(PWM) = open load Status Condition Ta (°C) VIN (Vrms) Pout(PFC) = open load Pout(PWM) = open load 27.0 100.0 Measurement 10 V/div CH1 PWM-OUT 1.0 V/div CH2 PWM-COMP CH3 CH4 Time 4 µs/div PWM-OUT PWM-COMP Rev.1.00, Jul.28.2003, page 27 of 39 6.3 Method of Measurement Electric Load V1 (DC-voltmeter) V DC 380 V (FK-600H Takasago) Oscilloscope DC-A1 (DC-currentmeter) A V H CH1 CH2 Ripple AC (85 V to 270 V) AC-A1 (AC-currentmeter) A V (HP6842A Hewlett Packard) AC-V1 (AC-voltmeter) DC 380 V AC 85 V to 270 V DC-A2 (DC-currentmeter) A DC 48 V HA16158 EVB1.0 Ripple V V2 (DC-voltmeter) Electric Load DC 48 V (FK-600H Takasago) Oscilloscope V H CH1 CH2 FAN Figure 6.9 Circuit for Use in Measurement 1. To Measure the Efficiency: a. Use AC-V1 (AC voltmeter) to measure the AC voltage V. b. Use AC-A1 to measure the input AC current. c. Use V1 (380 V DC voltmeter) to measure the DC voltage V. d. Use DC-A1 to measure the input DC current. e. Use V2 (48 V DC voltmeter) to measure the DC voltage V-out. f. Use DC-A2 to measure the output DC current. g. Use the equation: η = output power Pout /input power Pin x 100 to calculate the efficiency. Rev.1.00, Jul.28.2003, page 28 of 39 R118 0.15Ω 2W R113 0.27Ω 2W 100Ω 1/4W R114 C116A 0.01µF 50V R115 100kΩ 1/4W 2SK1807 3 4 2 3 1 C5 R121 3 2SC1213 Q119 DZ117 HZ12HC2 0.047µF 200Ω 50V 2W C120 R107 200kΩ 2W R106 200kΩ 2W 0.47µF 250V R111 100kΩ 2W C3 Q116 2SC1213 R110 100kΩ 2W Q112 1 D108 1NU41 C109 4700pF 1kV J1-3 10A 250V 510kΩ 1/2W 470pF 250V 470pF 250V R124 100kΩ 1/4W R123A 390Ω 2W R123 390Ω 2W DZ122 HZ3HA2 D101 DSM1D6 C7 0.47µF 250V C6 C127 0.047µF 50V C128 0.1µF 50V PC126-2 TLP421F (D4-LF2) D125 11EQS10 1 C10 2 1 5 4 3 A 2 L12 2 1 R350 R27 R132 2.4kΩ 1/4W 0.015µF 50V 1kΩ 1/4W C457 1 2 IC134 HA17431PA 1 R140 100kΩ 1/4W 0.01µF 50V C139 0.01µF 2kΩ 50V 1/4W C137 R138 R133 1kΩ 1/4W PC126-1 TLP421F (D4-LF2) R131 2.4kΩ 1/4W 100Ω 1/4W D146 S3L20U + 1 0.082Ω 5W R455 R456 47Ω 1/4W 22Ω 11EQS10 1/4W R348 9 C130 2700µF 25V S3L20U 1 D16 5A_1.5mH R347 D349 10 13 1 D129 2 0.47µF 800V 14 T105-2 D102 DSM1D6 4 D9 D15XB60 2 2 SF20L60 + C11 R149 6.2kΩ 1/4W DZ104A HZ20H-2 470pF 250V +C148 2700µF 25V C104 56µF 35V C145 0.1µF 50V C142 0.47µF 50V S3L20U 1 C15 D144 2 1 82pF 1kV 82pF C23 1kV D14 3 200Ω 2W 200Ω R22 2W Q13 2SK2730 +C147 2700µF 25V R141 820Ω 1/4W R136 510Ω 1/4W R143 10Ω 1/4W R135 3.6kΩ 1/4W 10kΩ 1/4W 1 R21 C20 2 3 L4 5A_5.7mH 1 2 1 2 J1-2 F2 2 1 2 3 1 OUT SW153 2 3 PC151-1 TLP421F (D4-LF2) R150 910Ω 1/4W R152 1kΩ 1/4W 1 SW154 Timer circuit IN R25A R24A 51kΩ 5W J28-2 + 330µF 450V J28-1 R103 0.47µF C19 800V 60D-18 R17 D18 SF10JZ47 2 Inrush-current limitation circuit R24 J156-2 1 D353 2 PWM-Off circuit Inrush-current limitation circuit 30Ω 1/4W R355 10kΩ 1/4W 20Ω 11EQS10 1/4W R354 R352 Unmoun C201 ting 1000pF 1kV D351 1 2 Un11EQS10 moun ting J155-2 J156-1 J155-1 Unmoun ting R25 Unmoun ting 5 2 7 8 Q202 2SK1299 4 3 6 1 T203-1 Primary side protection circuit 1 2 3 R368 R359 1 2 1 2 2 1 2 D357 2 D365 2 D366 1 TP GND 1 11EQS10 1 Instantaneouspower-shutdown retention circuit 1kΩ 1/4W D367 11EQS10 11EQS10 1 1kΩ 1/4W D358 11EQS10 11EQS10 11EQS10 1 D356 1 D362 2 1 D371 2 R364 C449 2.2µF R442 50V 5.6kΩ C450 1/4W 2.2µF 50V R443 13kΩ 1/4W R445 390kΩ 1/2W R452 1MΩ 1/4W C451 0.68µF 50V C451A 0.47µF 50V R463 20kΩ 1/4W R305 100kΩ 1/4W R304 100kΩ 1/4W R303 100kΩ 1/4W R302 100kΩ 1/4W R393 1kΩ 1/4W C463A 1200pF 50V 12 10 R400 R397 C395 0.1µF 50V 10Ω 1/4W 5A_515µH R454 100kΩ 1/4W C103A 1.5µF 25V R454A 100kΩ 1/4W TP PFC-EO TP PFC-ON TP PFC-OUT PWM-OUT 2 IC300 2.2kΩ 1/4W VREF 6 PFC-SS 13 TP GND 1 GND PWM-COMP 15 5 PFC-ON 10 IAC TP PFC-FB C409 1000pF 50V R384 R223 Unmoun ting R224 2.2kΩ 1/4W C386 2 C374 PC151-2 TLP421F (D4-LF2) C405 0.1µF C406 50V 0.033µF 50V PC378-2 TLP421F (D4-LF2) 1000pF 50V R375 Unmoun ting 2.4kΩ 2W J230-2 J230-1 R306 3.3kΩ 1/4W R403 620Ω 1/4W C404 2200pF 50V R402 200Ω 1/4W DZ376 HZ12HA2 C306A 3000pF 50V 8.2kΩ 1/4W Unmoun ting R225 TH221 PTH9M04 BE471 1000pF 50V R387 47kΩ Q385 1/4W 2SC458B C410 3000pF R407 50V 240Ω 1/4W C408 R411 1000pF 30kΩ 50V 1/4W 1000pF 50V PC392-2 TLP421F (D4-LF2) R412A 510kΩ 1/2W C382 R381 1kΩ 1/4W R379 1kΩ 1/4W R383 IC380 HA17431PA 1 C228 0.01µF 100V C229 0.01µF C227 0.01µF 100V 100V PC378-1 TLP421F (D4-LF2) 820Ω 1/4W TP PWM-OUT DZ390 HZ12HA2 R377 2.4kΩ 2W C226 0.01µF 100V +C219 56µF 63V +C220 56µF 63V TP VREF C413 C412 270pF 0.47µF 50V TP CAO 50V 12 PFC-EO CAO 7 R412B 510kΩ 9 RT PWM-SS 14 TP PWM-COMP 1/2W 3 PFC-OUT PFC-FB 11 8 PFC-CS PWM-CS 16 4 Vcc IC394 HA17431PA R398 R389 C388 1000pF 50V 1.5kΩ 1/4W R396 39kΩ 1/4W 200Ω 470pF 470pF 2W 1kV 1kV L218 2 1 510kΩ 1/2W C401A 0.068µF 63V 2 R215 C216 C217 PC392-1 TLP421F (D4-LF2) C399 D214 SF10LC40 3 1 10Ω 0.047µF 50V R401 1/4W 1 C213 C212 470pF 470pF 1kV 1kV R211 200Ω 2W R395A 820Ω 1/4W T210 R391 R453 1MΩ 1/4W D230 V03C D208 V03C 5 3 S3L60 S3L60 D207 R301 100kΩ 1/4W 0.33Ω 1W Q205 2SK1403 R209A R444 360kΩ 1/2W R441 180kΩ 1/2W D206 Q204 2SK1403 0.33Ω 1W 10kΩ 1/4W 1 10kΩ 1/4W 1 R209 R440 270kΩ 1/2W R373 R439 270kΩ 1/2W Q369 2SA1761 15Ω 1/4W 10Ω 11EQS10 1/4W R372 R370 Q360 2SA1761 15Ω 1/4W 10Ω 11EQS10 1/4W R363 R361 2 3 2 3 3 2 3 2 1 2 1 2 1 2 1 2 10A 250V R8 2 2 1 1 2 1 1 2 3 2 1 2 3 2 J1-1 F1 2 1 4 3 2 1 3 1 3 1 2 2 1 1 2 3 2 4 3 3 1 2 3 1 2 4 3 4 3 2 1 S3V60 A Section 7 Circuit Diagram Figure 7.1 Circuit Diagram Rev.1.00, Jul.28.2003, page 29 of 39 8 14 R387 T210 TH221 7 1 S D 2 Q205 D206 D207 E Q360 G J28 HT3 1 S D Q204 C19 G R24 R25 R24A K R25A C10 C11 S 4 D − C212 C216 R211 1 D230 R209A R364 R363 C R361 B R17 A 4 2 Q112 G 3 D9 L4 D14 2 HT1 1 1 3 R21 D366 R121 R22 HT2 S R123A L12 D Q13 C3 G 3 5 F2 2 2 J1 1 IC317 R313 D310 1 C318 2 3 3 4 4 R316 R315 R8 R428 5 R320 R319 TH429 IC321 1 F1 3 2 C149 R150 1 R152 SW153 J156 J155 Figure 8.1 Pattern Diagram 1 C213 2 E R27 D18 G R118 R123 Q477 C148 3 IC314 D214 3 R209 R373 R370 C R372 B R359 8 C109 D16 R113 DZ122 R307 D208 Q369 R368 T203 TP473 R110 DZ117 Q119 R308 D101 R309 C217 R215 HT4 L218 C220 5 4 Q202 C450 C449 Q116 D125 R444 2 SW154 Rev.1.00, Jul.28.2003, page 30 of 39 C219 1 D G TP464 R107 D108 D102 R439 1 S R355 D358 C457 C6 R106 R482 C147 1 3 R440 C312 R352 TP467 C346 R345 C338 R339 D474 R323 C229 D353 D351 C201 D337 C116A R441 R479 C228 DZ376 TP466 TP472 PC340 1 2 R476 R375 C374 TP465 R343 R445 C475 R389 3 IC300 3 IC134 Q481 R324 C23 R143 C427 C322 R381 2 C413 C412 R135 R136 D349 PC151 D326 R103 D146 R325 DZ390 C388 1 PC378 PC392 R133 R132 R131 R350 D144 R348 R347 D327 2 R311 2 R379 IC380 1 DZ104A R141 C20 C120 R426 R478 C480 1 3 R393 7 R124 R140 C142 C145 C127 C139 R400 IC394 TP471 Q342 1 2 C7 T105 C130 D129 R138 C5 R114 R115 J230 C399 D371 TP469 D328 14 PC126 C137 R341 8 C128 C103A D356 TP470 R329 R330 C406 C15 R111 D362 C404 R456 R452 D357 C332 C104 R463 C409 R455 C451 TP468 R453 R411 R454A R306 D367 R331 C451A R354 C306A C410 R301 R334 R304 R335 R407 FAN1 FAN2 1 2 1 2 DZ459 D432 C405 R302 R303 C408 R402 R403 R305 R336 D365 R454 Q333 E C B Q385 R443 R377 R458 R223 R384 R225 C460 C433 Q434 R224 C382 D462 C436 C226 C227 R391 Q438 R383 R435 C461 C386 R442 R437 R395A R401 R396 C395 R398 R397 PE121-B00 + Section 8 Pattern Diagrams R431 R430 R344 Figure 8.2 Pattern Diagram 2 Rev.1.00, Jul.28.2003, page 31 of 39 Figure 8.3 Pattern Diagram 3 Rev.1.00, Jul.28.2003, page 32 of 39 Section 9 List of Parts Table 9.1 List of Parts Module No. Symbol Model Input module 1 J1 Terminal block (3-pin) Filter module 2 F1 Fuse (BL) 250 V, 10 A Daito Communication Apparatus Co., Ltd. 3 F2 Fuse (BL) 250 V, 10 A Daito Communication Apparatus Co., Ltd. 4 C3 Capacitor (RE) 250 V, 0.47 µF Okaya Electric Industries Co., Ltd. 5 L4 Common-mode choke coil 5 A, 5.7 mH Hitachi Ferrite Electronics, Ltd. 6 C5 Capacitor (RE) 7 C6 Capacitor (ceramic) Power factor correction module Power supply module Type No. Ratings Remarks Manufacturer Fujicon Co., Ltd. RE474 RE474 250 V, 0.47 µF Okaya Electric Industries Co., Ltd. 250 V, 470 pF Murata Manufacturing Co., Ltd. 8 C7 Capacitor (ceramic) 250 V, 470 pF Murata Manufacturing Co., Ltd. 9 R8 Metal film resistor 510 kΩ, 1/2 W F KOA Corporation/Tama Electric Co., Ltd. 10 D9 Diode (stack) 15 A, 600 V Shindengen Electric Manufacturing Co., Ltd. 11 C10 Film capacitor 800 V, 0.47 µF Nichicon Corporation 12 C11 Film capacitor 800 V, 0.47 µF Nichicon Corporation 13 L12 Choke coil 5 A, 1.5 mH Toho Zinc Co., Ltd. D15XB60 0.082 Ω, 5 W 14 R27 Ceramic resistor 15 Q13 MOS FET 2SK2730 16 D14 Diode (SF20) SF20L60 20 A, 600 V KOA Corporation TO-3P Renesas Technology Corp. TO-220 Shindengen Electric Manufacturing Co., Ltd. 17 C15 Capacitor (Ceramic) 18 D16 Diode (S3V60) S3V60 250 V, 470 pF Murata Manufacturing Co., Ltd. 3 A, 600 V Shindengen Electric Manufacturing Co., Ltd. 19 D18 Thyristor SF10JZ47 20 R17 Power thermistor 60D18 21 C19 Capacitor (aluminum) 450 V, 330 µF 22 C20 Ceramic capacitor 1 kV, 82 pF Murata Manufacturing Co., Ltd. 23 R21 Metal coated resistor 200 Ω±2%, 2 W Matsushita Electric Industrial Co., Ltd. 24 R22 Metal coated resistor 200 Ω±2%, 2 W Matsushita Electric Industrial Co., Ltd. 25 C23 Ceramic capacitor 1 kV, 82 pF Murata Manufacturing Co., Ltd. 26 R24 Not mounted 27 R25 Not mounted 28 R24A Not mounted 29 R25A Not mounted 30 J28 PFC module terminal block (2 pins) 31 Q119 Transistor 32 C120 Capacitor (ceramic) 0.047 µF, 50 V K Murata Manufacturing Co., Ltd. 33 R121 Metal coated resistor 200 Ω±2%, 2 W Matsushita Electric Industrial Co., Ltd. 34 DZ122 500-MW Zener diode 35 R123 Metal coated resistor 390 Ω±2%, 2 W KOA Corporation Toshiba Corporation Ishizuka Electronics Corp. φ35×35 Nichicon Corporation Fujicon Co., Ltd. 2SC1213 Renesas Technology Corp. HZ3HA2 Renesas Technology Corp. 36 R123A Metal coated resistor 390 Ω±2%, 2 W KOA Corporation 37 R124 Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 38 D125 Diode (S.B.D) 11EQS10 Nihon Inter Electronics Corporation Rev.1.00, Jul.28.2003, page 33 of 39 Module No. Symbol Model Type No. Power supply module 39 PC126 Photocoupler (TLP421F) TLP421F(D4-LF2) Ratings Remarks Manufacturer 40 C127 Capacitor (ceramic) 0.047 µF, 50 V K Murata Manufacturing Co., Ltd. 41 C128 Capacitor (ceramic) 0.1 µF, 50 V K Murata Manufacturing Co., Ltd. 42 D101 Diode (FRD) DSM1D6 43 D102 Diode (FRD) DSM1D6 44 R118 Metal coated resistor 45 T105 Transformer (RCC) 46 R106 Metal coated resistor Toshiba Corporation Renesas Technology Corp. Renesas Technology Corp. 0.15 Ω±2%, 2 W Matsushita Electric Industrial Co., Ltd. 200 kΩ, 2 W Matsushita Electric Industrial Co., Ltd. 200 kΩ, 2 W Matsushita Electric Industrial Co., Ltd. Hitachi Ferrite Electronics, Ltd. 47 R107 Metal coated resistor 48 D108 Diode 49 C109 Metal coated resistor 4700 pF, 1 kV K Murata Manufacturing Co., Ltd. 50 R110 Taping resistor 100 kΩ, 2 W Matsushita Electric Industrial Co., Ltd. 51 R111 Taping resistor 100 kΩ, 2 W Matsushita Electric Industrial Co., Ltd. 52 Q112 MOS FET 53 R113 Metal coated resistor 0.27 Ω±2%, 2 W Matsushita Electric Industrial Co., Ltd. 54 R114 Taping resistor 100 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 55 R115 Taping resistor 100 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 56 R103 Cement resistor 51 kΩ±5%, 5 W, vertical Yagishita Electric Co., Ltd. 57 C103A Taping capacitor (ceramic) 1.5 µF, 25 V Murata Manufacturing Co., Ltd./TDK Corporation 58 Q116 Transistor 59 C116A Ceramic capacitor 60 DZ117 500 MW Zener diode 61 C104 Capacitor (LXV) 62 DZ104A 500 MW Zener diode HZ20H-2 Renesas Technology Corp. 63 D129 Diode (LLD) S3L20U Shindengen Electric Manufacturing Co., Ltd. 64 C130 Capacitor (LXV) 2700 µF, 25 V Nippon Chemi-Con Corporation 65 R131 Taping resistor 2.4 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 66 R132 Taping resistor 2.4 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 67 R133 Taping resistor 1 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 68 IC134 IC regulator 69 R135 Taping resistor 3.6 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 70 R136 Taping resistor 510 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 71 C137 Capacitor (ceramic) 0.01 µF, 50 V K Murata Manufacturing Co., Ltd. 72 R138 Taping resistor 2 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 73 C139 Capacitor (ceramic) 0.01 µF, 50 V K Murata Manufacturing Co., Ltd. 74 R140 Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 75 R141 Taping resistor 820 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 76 C142 Capacitor (ceramic) 0.47 µF, 50 V K Murata Manufacturing Co., Ltd. 77 R143 Taping resistor (ceramic) 10 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. Rev.1.00, Jul.28.2003, page 34 of 39 1NU41 Toshiba Corporation 2SK1807 Renesas Technology Corp. 2SC1213 Renesas Technology Corp. 0.01 µF, 50 V K Murata Manufacturing Co., Ltd. 56 µF, 35 V Nippon Chemi-Con Corporation HZ12HC2 Renesas Technology Corp. HA17431PA Renesas Technology Corp. Module No. Symbol Model Type No. Power supply module 78 D144 Diode (LLD) S3L20U 79 C145 Taping capacitor (ceramic) 80 D146 Diode (LLD) 81 C147 Capacitor (LXV) 2700 µF, 25 V 82 C148 Capacitor (LXV) 2700 µF, 25 V Nippon Chemi-Con Corporation 83 C149 Taping resistor 6.2 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 84 R150 Taping resistor 910 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 85 PC151 Photocoupler (TLP421F) 86 R152 Taping resistor 87 SW153 Toggle switch For remote on/off Nihon Kaihei Ind. Co., Ltd. 88 SW154 Toggle switch For fan on/off Nihon Kaihei Ind. Co., Ltd. 89 J155 Module 2 connector (2 pins) Tyco Electronics Corporation 90 J156 Module 2 connector (2 pins) Tyco Electronics Corporation 48-V DCDC power module Ratings Remarks Manufacturer Shindengen Electric Manufacturing Co., Ltd. 0.1 µF, 50 V Murata Manufacturing Co., Ltd./TDK Corporation S3L20U Shindengen Electric Manufacturing Co., Ltd. Nippon Chemi-Con Corporation TLP421F(D4-LF2) Toshiba Corporation 1 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 91 C201 Ceramic capacitor 1000 pF, 1 kV 92 Q202 MOS FET 2SK1299 Murata Manufacturing Co., Ltd. 93 T203 Drive transformer 94 Q204 MOS FET 2SK1403A TO-3P 95 Q205 MOS FET 2SK1403A TO-3P 96 R209A Metal coated resistor 0.33 Ω, 1 W Matsushita Electric Industrial Co., Ltd. 97 D206 Low-loss diode S3L60 Shindengen Electric Manufacturing Co., Ltd. 98 D207 Low-loss diode S3L60 Shindengen Electric Manufacturing Co., Ltd. 99 D208 Diode V03C Renesas Technology Corp. 100 D230 Diode V03C Renesas Technology Corp. 101 R209 Metal coated resistor 0.33 Ω, 1 W Matsushita Electric Industrial Co., Ltd. 102 T210 Main transformer 103 R211 Metal coated resistor 200 Ω±2%, 2 W Matsushita Electric Industrial Co., Ltd. 104 D214 Low-loss diode SF10LC40 Renesas Technology Corp. Hitachi Ferrite Electronics, Ltd. Renesas Technology Corp. Renesas Technology Corp. Hitachi Ferrite Electronics, Ltd. TO-220 (full mold) Shindengen Electric Manufacturing Co., Ltd. 105 R215 Metal coated resistor 200 Ω±2%, 2 W Matsushita Electric Industrial, Ltd. 106 C216 Ceramic capacitor 470 pF, 1 kV Murata Manufacturing Co., Ltd. 107 C217 Ceramic capacitor 470 pF, 1 kV Murata Manufacturing Co., Ltd. 108 L218 Choke coil 109 C219 Aluminum electrolytic capacitor LXV 56 µF, 63 V φ10×12.5 Nippon Chemi-Con Corporation 110 C220 Aluminum electrolytic capacitor LXV 56 µF, 63 V φ10×12.5 Nippon Chemi-Con Corporation 111 TH221 Posistor 112 R223 Not mounted 113 R224 Not mounted 114 R225 Not mounted 515 µH, 5 A PTH9M04BE471 Tamura Seiko Co., Ltd. Murata Manufacturing Co., Ltd. Rev.1.00, Jul.28.2003, page 35 of 39 Module No. Symbol Model 48-V DCDC power module 115 J230 Output section terminal block (2 pins) 116 C226 Ceramic capacitor 0.01 µF, 100 V TDK Corporation 117 C227 Ceramic capacitor 0.01 µF, 100 V TDK Corporation 118 C228 Ceramic capacitor 0.01 µF, 100 V TDK Corporation 119 C229 Ceramic capacitor 0.01 µF, 100 V 120 IC300 IC socket (16 pins) 121 R439 Metal film resistor 270 kΩ, 1/2 W KOA Corporation/Tama Electric Co., Ltd. 122 R440 Metal film resistor 270 kΩ, 1/2 W KOA Corporation/Tama Electric Co., Ltd. 123 R441 Metal film resistor 180 kΩ, 1/2 W F KOA Corporation/Tama Electric Co., Ltd. 124 R443 Taping resistor 13 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 125 R442 Taping resistor 5.6 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 126 R444 Metal film resistor 360 kΩ, 1/2 W F KOA Corporation/Tama Electric Co., Ltd. 127 R445 Metal film resistor 390 kΩ, 1/2 W F KOA Corporation/Tama Electric Co., Ltd. 128 C449 Capacitor (ceramic) 2.2 µF, 50 V Nippon Chemi-Con Corporation 129 C450 Capacitor (ceramic) 2.2 µF, 50 V Nippon Chemi-Con Corporation 130 C451 Capacitor (ceramic) 0.68 µF, 50 V K Murata Manufacturing Co., Ltd. 131 R452 Taping resistor 1 MΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 132 R453 Taping resistor 1 MΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 133 R454 Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 134 R455 Taping resistor 100 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 135 R456 Taping resistor 1 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 136 C457 Capacitor (ceramic) 0.015 µF, 50 V K Murata Manufacturing Co., Ltd. 137 R347 Taping resistor 22 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 138 R348 Taping resistor 47 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 139 D349 Diode (S.B.D.) 140 R350 Taping resistor 10 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 141 R454A Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 142 C451A Capacitor (ceramic) 143 TP464 Test pin For PWM-OUT (2-pin) Mac Eight Co., Ltd. 144 TP465 Test pin For PFC-OUT (3-pin) Mac Eight Co., Ltd. 145 TP466 Test pin For PFC-ON (5-pin) Mac Eight Co., Ltd. 146 TP467 Test pin For VREF (6-pin) Mac Eight Co., Ltd. 147 TP468 Test pin For CAO (7-pin) Mac Eight Co., Ltd. PFC and PWM control circuit module Rev.1.00, Jul.28.2003, page 36 of 39 Type No. Ratings Remarks Manufacturer Fujicon Co., Ltd. TDK Corporation DIP (For mounting the HA16158P) 11EQS10 Yamaichi Electronics Co., Ltd. Nihon Inter Electronics Corporation 0.47 µF, 50 V K Murata Manufacturing Co., Ltd. Module No. Symbol Model Type No. PFC and PWM control circuit module 148 TP469 Test pin For PFC-FB (11-pin) Ratings Remarks Mac Eight Co., Ltd. Manufacturer 149 TP470 Test pin For PFC-EO (12-pin) Mac Eight Co., Ltd. 150 TP471 Test pin For PWMCOMP (15-pin) Mac Eight Co., Ltd. 151 TP472 Test pin For GND Mac Eight Co., Ltd. 152 TP473 Test pin For GND 153 C413 Capacitor (ceramic) 0.47 µF, 50 V Murata Manufacturing Co., Ltd. 154 C412 Capacitor (ceramic) 270 pF, 50 V Murata Manufacturing Co., Ltd. 155 R412A Metal film resistor 510 kΩ, 1/2 W KOA Corporation/Tama Electric Co., Ltd. 156 R412B Metal film resistor 510 kΩ, 1/2 W KOA Corporation/Tama Electric Co., Ltd. 157 C410 Capacitor (ceramic) 3000 pF, 50 V TDK Corporation 158 R411 Taping resistor 30 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 159 C409 Capacitor (ceramic) 1000 pF, 50 V Murata Manufacturing Co., Ltd. 160 R407 Taping resistor 240 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 1000 pF, 50 V Murata Manufacturing Co., Ltd. Mac Eight Co., Ltd. 161 C408 Capacitor (ceramic) 162 PC392 Photocoupler (TLP421F) 163 R393 Taping resistor 164 PC378 Photocoupler (TLP421F) 165 C405 Taping capacitor (ceramic) 0.1 µF, 50 V 166 C406 Capacitor (ceramic) 0.033 µF, 50 V Murata Manufacturing Co., Ltd. 167 R301 Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 168 R302 Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 169 R303 Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 170 R304 Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 171 R305 Taping resistor 100 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 172 R306 Taping resistor 3.3 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 173 C306A Capacitor (ceramic) 3000 pF, 50 V TDK Corporation 174 C404 Capacitor (ceramic) 2200 pF, 50 V Murata Manufacturing Co., Ltd. 175 R402 Taping resistor 200 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 176 R403 Taping resistor 620 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 177 D351 Diode (S.B.D.) 178 R352 Taping resistor 20 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 179 D353 Diode (S.B.D.) 180 R354 Taping resistor 30 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. TLP421F(D4-LF2) Toshiba Corporation 1 kΩ±1%, 1/4 W TLP421F(D4-LF2) KOA Corporation/Tama Electric Co., Ltd. Toshiba Corporation 11EQS10 Murata Manufacturing Co., Ltd./TDK Corporation Nihon Inter Electronics Corporation 11EQS10 Nihon Inter Electronics Corporation Rev.1.00, Jul.28.2003, page 37 of 39 Module No. Symbol Model PFC and PWM control circuit module 181 R355 Taping resistor Type No. Ratings 182 D356 Diode (S.B.D.) 11EQS10 Nihon Inter Electronics Corporation 183 D357 Diode (S.B.D.) 11EQS10 Nihon Inter Electronics Corporation 184 D358 Diode (S.B.D.) 11EQS10 185 R359 Taping resistor 186 Q360 Transistor 187 R361 Taping resistor 188 D362 Diode (S.B.D.) 189 R363 190 10 Ω±1%, 1/4 W Remarks Manufacturer KOA Corporation/Tama Electric Co., Ltd. Nihon Inter Electronics Corporation 1 kΩ±1%, 1/4 W 2SA1761 KOA Corporation/Tama Electric Co., Ltd. Toshiba Corporation 10 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. Taping resistor 15 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. R364 Taping resistor 10 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 191 D365 Diode (S.B.D.) 11EQS10 Nihon Inter Electronics Corporation 192 D366 Diode (S.B.D.) 11EQS10 Nihon Inter Electronics Corporation 193 D367 Diode (S.B.D.) 11EQS10 194 R368 Taping resistor 195 Q369 Transistor 196 R370 Taping resistor 197 D371 Diode (S.B.D) 198 R372 199 11EQS10 Nihon Inter Electronics Corporation Nihon Inter Electronics Corporation 1 kΩ±1%, 1/4 W 2SA1761 KOA Corporation/Tama Electric Co., Ltd. Toshiba Corporation 10 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. Taping resistor 15 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. R373 Taping resistor 10 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 200 C395 Capacitor (ceramic) 0.1 µF 50 V Murata Manufacturing Co., Ltd. 201 R396 Taping resistor 39 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 202 R397 Taping resistor 1.5 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 203 R395A Taping resistor 10 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 204 R398 Taping resistor 2.2 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 205 C399 Capacitor (ceramic) 0.047 µF, 50 V Murata Manufacturing Co., Ltd. 206 R400 Taping resistor 10 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 207 R401 Metal film resistor 510 kΩ±1%, 1/2 W F KOA Corporation/Tama Electric Co., Ltd. 208 C401A Film capacitor 0.068 µF 63 V Matsuo Electric Co., Ltd. 209 IC394 IC regulator 210 R391 Taping resistor 820 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 211 R377 Taping resistor 820 Ω±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 212 R379 Taping resistor 1 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 213 IC380 IC regulator 214 R381 Taping resistor 1 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 215 C382 Capacitor (ceramic) 1000 pF 50 V KOA Corporation/Tama Electric Co., Ltd. Rev.1.00, Jul.28.2003, page 38 of 39 11EQS10 Nihon Inter Electronics Corporation HA17431PA Renesas Technology Corp. HA17431PA Renesas Technology Corp. Module No. Symbol Model PFC and PWM control circuit module 216 R383 Taping resistor Type No. Ratings 47 kΩ±1%, 1/4 W 2.2 kΩ±1%, 1/4 W Remarks Manufacturer KOA Corporation/Tama Electric Co., Ltd. 217 R384 Taping resistor 218 Q385 NPN transistor 219 C386 Capacitor (ceramic) 1000 pF 50 V Murata Manufacturing Co., Ltd. 220 R387 Taping resistor 8.2 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 221 C374 Capacitor (ceramic) 1000 pF 50 V Murata Manufacturing Co., Ltd. 222 R375 Cement resistor 2.4 kΩ, 2 W Yagishita Electric Co., Ltd. 223 DZ376 500 MW Zener diode 224 C388 Capacitor (ceramic) 1000 pF 50 V Murata Manufacturing Co., Ltd. 2.4 kΩ, 2 W Yagishita Electric Co., Ltd. 2SC458B Renesas Technology Corp. KOA Corporation/Tama Electric Co., Ltd. HZ12HA2 Renesas Technology Corp. 225 R389 Cement resistor 226 DZ390 500 MW Zener diode 227 R463 Taping resistor 20 kΩ±1%, 1/4 W KOA Corporation/Tama Electric Co., Ltd. 228 C463A Capacitor (ceramic) 1200 pF, 50 V Murata Manufacturing Co., Ltd. HZ12HA2 Renesas Technology Corp. Rev.1.00, Jul.28.2003, page 39 of 39 Evaluation Board for the HA16158 AC-DC Converter Controller IC with PFC and PWM Functions (HA16158 EVB1.0) Application Note Publication Date: 1st Edition, December 2002 Rev.1.00, July 28. 2003 Published by: Sales Strategic Planning Div. Renesas Technology Corp. Edited by: Technical Documentation & Information Dept. Renesas Kodaira Semiconductor Co., Ltd. 2002, 2003. Renesas Technology Corp., All rights reserved. Printed in Japan. HA16158 EVB1.0 REJ05F0001-0100Z