设计范例报告 - Power.com

设计范例报告
标题
使用HiperPFSTM-2 PFS7328H和HiperLCSTM
LCS703HG设计的255 W 80 PLUS白金级
PC电源
规格
90 VAC – 265 VAC输入;
12 V、19.71 A和12 V、1.5 A输出
应用
PC电源
作者
应用工程部
文档编号
DER-385
日期
2014年1月22日
修订版本
2.1
特色概述
• 使用HiperPFS-2系列IC PFS7328H设计的集成PFC级
• 使用HiperLCS系列IC LCS703HG设计的LLC级
• 使用TinySwitchTM-III系列IC TNY279PG设计的待机电源
• CAPZeroTM (CAP004DG) IC用于对X电容放电,能实现比电阻式方案更高的效率
• 次级同步整流
• 满足80 PLUS 白金级效率要求
• 在115 VAC输入下,系统效率在20/50/100%下分别达到92.1% / 93.4% / 91.1%
• 在230 VAC输入下,系统效率在20/50/100%下分别达到91.9% / 94.6% / 93.3%
专利信息
此处介绍的产品和应用(包括产品之外的变压器结构和电路)可能包含一项或多项美国及国外专利,或正在申请的
美国或国外专利。有关Power Integrations专利的完整列表,请参见www.powerint.com。Power Integrations按照在
<http://www.powerint.com/ip.htm>中所述规定,向客户授予特定专利权利的许可。
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
目录
1
2
3
4
简介 ............................................................................................................................ 4
电源规格 ..................................................................................................................... 6
电路原理图 ................................................................................................................. 7
电路描述 ................................................................................................................... 10
4.1
输入滤波器/升压式转换器/偏置供电 ................................................................... 10
4.1.1
EMI滤波...................................................................................................... 10
4.1.2
浪涌限制 ..................................................................................................... 10
4.1.3
主PFC级 ..................................................................................................... 10
4.1.4
待机电源 ..................................................................................................... 11
4.2
LLC转换器 ......................................................................................................... 12
4.3
初级 ................................................................................................................... 12
4.4
输出同步整流 ..................................................................................................... 14
5 PCB布局 ................................................................................................................... 15
6 物料清单(BOM)......................................................................................................... 17
7 散热片组件 ............................................................................................................... 21
7.1
LLC散热片 ......................................................................................................... 21
7.1.1
LLC散热片工程图和装配 ............................................................................ 21
7.1.2
PFS散热片工程图和装配 ............................................................................ 22
7.1.3
桥式整流管散热片工程图和装配 ................................................................. 23
8 磁芯元件 ................................................................................................................... 24
8.1
PFC扼流圈(L3)规格 ........................................................................................... 24
8.1.1
电气原理图 ................................................................................................. 24
8.1.2
电气规格 ..................................................................................................... 24
8.1.3
材料 ............................................................................................................ 24
8.1.4
PFC电感总装 .............................................................................................. 24
8.2
LLC变压器(T1)规格 ........................................................................................... 25
8.2.1
电气原理图 ................................................................................................. 25
8.2.2
电气规格 ..................................................................................................... 25
8.2.3
材料 ............................................................................................................ 25
8.2.4
结构图 ........................................................................................................ 26
8.2.5
绕制说明 ..................................................................................................... 26
8.3
待机变压器(T2)规格 ........................................................................................... 27
8.3.1
电气原理图 ................................................................................................. 27
8.3.2
电气规格 ..................................................................................................... 27
8.3.3
材料 ............................................................................................................ 27
8.3.4
变压器结构图 .............................................................................................. 28
8.3.5
变压器构建说明 .......................................................................................... 28
8.4
输出电感(L4)规格 .............................................................................................. 29
8.4.1
电气原理图 ................................................................................................. 29
8.4.2
电气规格 ..................................................................................................... 29
8.4.3
材料 ............................................................................................................ 29
9 LLC转换器设计表格 .................................................................................................. 30
10
待机转换器设计表格 .............................................................................................. 37
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第2页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
11
功率因数控制器设计表格 .......................................................................................40
12
性能数据 ................................................................................................................45
12.1 系统效率 ............................................................................................................45
12.2 功率因数 ............................................................................................................46
12.3 THD ...................................................................................................................47
12.4 输出调整 ............................................................................................................48
12.4.1 线电压调整 .................................................................................................48
12.4.2 负载调整 .....................................................................................................49
13
输入电流谐波限值与EN 61000-3-2 Class D限值 ...................................................50
14
波形 .......................................................................................................................52
14.1 输入电压及电流 .................................................................................................52
14.2 LLC初级电压及电流 ...........................................................................................52
14.3 PFC开关电压和电流 - 正常工作 .........................................................................53
14.4 启动时的AC输入电流和PFC输出电压 ................................................................54
14.5 LLC启动(CR模式) .........................................................................................54
14.6 LLC电压跌落 ......................................................................................................55
14.7 LLC输出短路 ......................................................................................................56
14.8 主启动和待机启动(CR模式) ..........................................................................56
14.9 同步FET漏极和栅极电压....................................................................................57
14.10
输出纹波测量 .................................................................................................58
14.10.1
纹波测量方法 ..........................................................................................58
14.10.2
满载输出纹波结果 ...................................................................................59
14.10.3
空载纹波结果 ..........................................................................................59
14.11
主输出负载阶跃响应 .......................................................................................60
14.12
待机输出负载阶跃响应 ...................................................................................61
15
传导EMI.................................................................................................................62
15.1 EMI设置 .............................................................................................................62
15.1.1 EMI测试的电源准备 ....................................................................................62
15.1.2 EMI测试设置 ...............................................................................................63
15.2 EMI扫描 .............................................................................................................64
16
增益相位测量 .........................................................................................................66
17
附录 .......................................................................................................................67
17.1 中继电缆准备 .....................................................................................................67
17.2 PFC电感装配 .....................................................................................................68
18
版本历史 ................................................................................................................69
重要说明:
虽然本电路板的设计满足安全隔离要求,但工程原型尚未获得机构认证。因此,必须使用
隔离变压器向原型板提供AC输入,以执行所有测试。
第3页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
1
22-Jan-14
简介
本工程报告介绍的是一款在90 VAC至265 VAC输入电压范围内工作的12 V、19.71 A主转
换 器 和 12 V 、 1.5 A 待 机 转 换 器 的 PC 电 源 设 计 范 例 , 该 电 源 还 可 用 作 使 用 Power
Integrations的HiperPFS-2和HiperLCS系列器件设计的PFS功率因数级与LCS输出级的通
用评估板。
本 设 计 采 用 PFS7328H 用 于 PFC 前 端 , 采 用 TNY279PG 用 于 隔 离 反 激 式 待 机 电 源 。
LCS703HG IC用于LLC输出级。
Figure 1 – DER-385 Photograph, Top View.
Figure 2 – DER-385 Photograph, Bottom View.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第4页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
Figure 3 – DER-385 Input Connector.
注:C1、C2和C3置于输入连接器上。
本报告中的电路在90 VAC至230 VAC的输入电压范围内以及在100%负载、50%负载和
20%负载下均可实现>0.9的功率因数。
第5页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
2 电源规格
下表所列为设计的最低可接受性能。实际性能可参考测量结果部分。
说明
输入
电压
频率
符号
VIN
fLINE
最小值 典型值 最大值
90
47
50/60
THD
PF
0.97
输出电压
VM
11.4
输出纹波
VRIPPLE(M)
功率因数
265
63
<15
<15
单位
备注
VAC
Hz
%
%
三线输入
满载,115 VAC
满载,230 VAC
满载,230 VAC
主转换器输出
12
12.6
V
12VDC ±5%
120
mV P-P
20 MHz带宽
IM
0.00
19.71
N/A
A
电源在空载条件下受到保护
输出电压
VSB
11.4
12
12.6
V
12 VDC ±5%
输出纹波
VRIPPLE(SB)
120
mV P-P
20 MHz带宽
输出电流
ISB
N/A
A
电源在空载条件下受到保护
输出电流
待机转换器输出
0.00
1.5
总输出功率
连续输出功率
效率
POUT
满载下的整体系统效率
ηsys
255
W
91
93
%
在115 VAC、满载条件下测得
在230 VAC、满载条件下测得
环境
传导EMI
满足CISPR22 / EN55022 Class B要求
谐波电流
环境温度
EN 61000-3-2 Class D
TAMB
0
50
o
C
参见热结果部分的具体条件
注:本电源要求为50%以上的负载提供强制风冷。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第6页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
3 电路原理图
Figure 4 – Schematic DER-385 PC Platinum Power Supply Application Circuit - Input Filter, Bridge
Rectifier Section and PFS Section.
第7页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
Figure 5 – Schematic DER-385 PC Platinum Power Supply Application Circuit – Main Converter Section.
Figure 6 – Schematic DER-385 PC Platinum Power Supply Application Circuit – Standby Section.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第8页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
Figure 7 – Schematic DER-385 PC Platinum Power Supply Application Circuit – Sync. Rectifier Section.
Note: * marked components are optional.
第9页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
4 电路描述
图4、5和6中的电路采用了Power Integrations的PFS7328H、LCS703HG、TNY279PG和
CAP004DG(可选)器件,这些电路都属于为PC电源供电的12 V、255 W带功率因数校正
的LLC电源。
4.1
输入滤波器/升压式转换器/偏置供电
图4和图5中的电路原理图显示的是输入EMI滤波器和PFC级。功率因数矫正器采用集成了
功率MOSFET和二极管的PFS7328H PFC控制器。图6中电路原理图显示的是偏置供电,
待机电源是使用TNY279PG的隔离反激式电源。CAP004DG仅在AC输入电压不存在时对
X电容C3和C6放电,从而消除电阻R1和R2的静态功耗。
4.1.1 EMI滤波
保险丝F1对电路提供过流保护,在故障发生时将电路与AC电源隔离。二极管桥堆BR1对
AC输入进行整流。电容C1、C2、C3、C4、C5、C6和C7与电感L1和L2共同形成EMI滤波
器,用于衰减共模和差模传导噪声。薄膜电容C9提供输入去耦电荷存储,以减小开关频率
及其谐波下的输入纹波电流。
电阻R1、R2和CAPZero IC U1用来在电路断开输入电压后对EMI滤波电容进行放电,同时
使工作期间的功耗为零。
金属氧化物压敏电阻(MOV) RV1通过有效箝位电源的输入电压来实现对电路的输入浪涌
保护。
U2和U4的初级散热片连接到初级回路,以消除散热片作为辐射/电容耦合噪声的来源。
4.1.2 浪涌限制
热敏电阻RT1用于限制浪涌。该电阻在正常工作期间被继电器RL1短路,并由主输出电压
激活提供栅极控制,这样效率会提高约1% - 1.5%。
继电器RL1在主输出供电达到稳压时导通,从而使热敏电阻RT1短路。
4.1.3 主PFC级
升压转换器级由升压电感L3和PFS7328H IC U2构成。该转换器级作为PFC升压转换器进
行工作,因此可维持电源的正弦输入电流,同时稳定输出DC电压。
启动时,二极管D2为输出电容C12提供一个浪涌电流通路,这样可旁路开关电感L3和PFS
器件U2,从而防止在开关电感和输出电容之间出现共振干扰。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第10页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
电容C10为RTN提供一个较短的高频率返回回路,以提高EMI性能,并且能在关断后降低
U2 MOSFET漏极电压过冲。电容C15为U2 VCC引脚提供去耦和旁路。
IC U2利用电阻R3、R4和R5对电源的输入电压进行检测。电容C13为IC U2的V引脚提供
旁路。
输出电压电阻性分压器网络由R7、R8、R9和R13组成,它可提供与输出电压成比例的缩
放电压,用作对控制器IC U2的反馈。电容C11向U2 FB引脚提供快速的dv/dt反馈,以便
PFC电阻作出快速的下冲和过冲响应。
电阻R12和电容C17提供控制环路主极点。C18、C16和R14用来衰减高频率噪声。
电阻R11与C17串联,提供低频率补偿零点,而二极管D3可防止C17意外短路造成的误
操作。
4.1.4 待机电源
元件U7、T2、D11、C45、D8和VR1形成一个简单的隔离反激式电源,提供待机功率。
变压器T2采用EF20磁芯设计而成。
通 过 开 / 关 控 制 , U7 可 跳 过 开 关 周 期 , 并 可 根 据 馈 入 到 其 ENABLE/UNDERVOLTAGE
(EN/UV)引脚的电流对输出电压进行调节。就在每个开关周期之前对EN/UV引脚电流进行
采样,以确定是否应使能或禁止该开关周期。如果EN/UV引脚电流<115 μA,则开始下一
开关周期,并在流经MOSFET的电流达到内部流限阈值时终止。为了平均分配开关周期,
从而防止群脉冲,EN/UV引脚阈值电流会根据上一周期的状态被调制在115 μA和60 μA之
间。控制器内的状态机将调节功率MOSFET流限阈值调节到四个水平值中的一个,具体取
决于电源所要求的负载。随着电源负载的下降,流限阈值也将减小。这可以确保有效开关
频率始终保持在音频范围之上,直至变压器磁通量变低。如果变压器采用标准的生产浸漆
工艺,就可以基本消除音频噪声。
二极管D11对T2的输出进行整流。C45使用较低的ESR电容可以降低输出电压纹波。后级
滤波器由L5和C46组成,用来衰减高频开关噪声。
主输出和待机输出使用D12和D13进行逻辑或组合,以便提高整体系统效率。
电源的输出电压稳压设定点由电阻R53和R54以及U8参考电压设定。电阻R50限制负载瞬
态期间的最大电流。当输出电压高于设定点时,U6中的LED将开始正向偏置。在初级侧,
U6的光敏晶体管导通并将电流从U7的EN/UV引脚拉出。就在每个周期开始前,控制器会
检测EN/UV引脚电流。如果从EN/UV引脚流出的电流大于115 μA,将禁止该开关周期。
随着开关周期的使能和禁止,输出电压维持在非常接近稳压设定点的水平。
第11页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
4.2
22-Jan-14
LLC转换器
图5所示为一款使用LCS703HG设计的12 V、237 W LLC DC-DC转换器的电路原理图。
4.3
初级
集成电路U4集成了LLC谐振半桥(HB)转换器所需的控制电路、驱动器和输出MOSFET。
U4的HB输出经由隔直电容/谐振电容(C24)驱动输出变压器T1。该电容的额定值应根据工
作纹波电流来确定,并能够耐受故障条件下的高电压。
变压器T1的设计漏感为115 μH。T1与谐振电容C24根据以下公式共同将初级串联谐振频率
设定为约90 kHz:
fR =
1
6.28 LL × C R
ƒR是串联谐振频率(单位Hz),LL是变压器漏感(单位H),CR是谐振电容(C24)的值
(单位F)。
变压器匝数比已通过调整初级绕组圈数进行设定,以使额定输入电压和满载下的工作频率
接近但略小于前面所介绍的谐振频率。
测试发现,90 kHz的工作频率是在变压器尺寸、输出滤波器电容(可使用陶瓷电容)和效
率之间折中后的最佳频率点。
所选取的次级绕组圈数在磁芯和铜损耗之间达到了良好的平衡。AWG #40利兹线用于初级
绕组,AWG #38利兹线用于次级绕组,这一组合可在工作频率(~90 kHz)下提供高效率。
每种线规利兹线的股数的选择是在绕组适配性与铜损耗之间进行折中的结果。
所选用的磁芯材料是PC95(TDK产品)。这种材料能提供更好(低损耗)的性能。
元件D4、R19和C23形成自举电路,为U4的内部上管驱动器供电。
元件C20和R20对+12 V输入提供滤波和旁路,该输入是U4的VCC电源。注:VCC电压>15 V
时可损坏U4。
分压器R15、R16、R17和R18用于设定U4的高压导通、关断和过压阈值。当输入过压关
断点为473 VDC时,所选取的分压器值可将LLC导通点设定在360 VDC,将关断点设定在
285 VDC。
电容C22是+380 V的高频率旁路电容,在U4的D与S1/S2引脚之间以短走线连接。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第12页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
电容C30与C24一起形成分流器,用于对一部分初级电流进行采样。电阻R29可检测此电
流,所产生的信号由R28和C29进行滤波。电容C30的额定值应根据故障条件下出现的峰值
电压来确定,应采用金属膜、SL陶瓷或NPO/COG陶瓷等稳定的低损耗介质。RD-385所使
用的电容为具有“SL”温度特性的圆盘状陶瓷电容,它常用于CCFL管的驱动器。根据以下公
式,所选取的值可将1周期(快速)流限值设定在6.52 A,将7周期(慢速)流限值设定在
3.62 A:
I CL =
0 .5
C 30



 × R 29
 C 24 + C 30 
ICL 是7个周期流限值(单位A),R29是限流电阻(单位Ohms),C24和C30分别是谐振
电容和电流采样电容的值(单位nF)。对于1个周期流限值,可在上面公式中用0.9 V替代
0.5 V。
电阻R28设定为最小建议值220 Ω。C29的设定值为1 nF,以避免因噪声导致的误触发,
并该值并不足以影响上面计算出的流限设定值。这些元件应靠近IS引脚放置,以便发挥最
大效用。IS引脚可承受负向电流,因此电流检测不需要采用复杂的整流方案。
R23和R27形成戴维宁等效电路,将死区时间设定为625 ns,并将U4的最大工作频率设定
为434 kHz。U4的FMAX输入由C27进行滤波。R23和R27相结合还可为U4选择脉冲串模式
“2”。这样可将脉冲串阈值频率的下限和上限分别设定为160 kHz和187 kHz。
反馈引脚具有每μA流入反馈引脚的电流的频率为2.6 kHz的近似特性。随着注入反馈引脚
的电流的增大,U4的工作频率就越高,从而降低输出电压。R21与R22相串联可将U9的最
小工作频率设定为62 kHz左右。该设定值通常低于在满载和最低大容量电容电压下实现稳
压所需的频率。电阻R21被C19旁路以在启动时提供输出软启动,工作方式是:在反馈环
路开环时,最初允许更高的电流流入反馈引脚。这可使开关频率在开始时较高,随后在输
出电压达到稳压后降低。电阻R21的设定值通常与R23相同,以便软启动时的初始频率等
于R23所设定的最大开关频率。如果R22的值小于该值,它将会在施加输入电压后开关开
始之前造成延迟。
光耦器U3经由R24来驱动U4的反馈引脚,R24可限制流入反馈引脚的最大光耦器电流。
电容C28用于对反馈引脚进行滤波。电阻R25可加载光耦器输出,以强制它以相对较高的
静态电流进行工作,从而提高其增益。电阻R24和R25还可改善强信号阶跃响应和脉冲串
模式输出纹波。二极管D5可将R25从FMAX/软启动网络隔离。
第13页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
4.4
22-Jan-14
输出同步整流
变压器T1的输出通过使用同步整流控制器U9、MOSFET Q2和Q3、二极管D6和D7以及电
容C31和C32进行整流和滤波。这些电容都是有机聚合物电容,根据输出纹波电流额定值
仔细选出。选用同步整流是为了满足80 PLUS白金级效率要求。本设计优选了MOSFET
Q2和Q3,可实现更大的MOSFET导通期间和更高的效率。在布置同步整流器控制器及其
相关元件时必须极其谨慎。本设计选取了-12 mV(而非-25 mV)的漏极电压检测关断阈
值,可在给定负载下实现更大的MOSFET导通期间。二极管D6和D7用来进一步提高效
率,实现方法是在MOSFET关断时避免MOSFET体二极管导通。L4和C33提供额外的输出
滤波。
电阻R37、R38与U5参考电压相配合,可设定电源的输出电压。误差放大器U5经由R33对
反馈光耦器U3提供驱动。元件C34、C26和C37、R33、R32、R36和R26可决定电源的增
益相位特性。这些选取的值可在额定和极端负载/不同输入电压下提供稳定的工作。当光耦
器U3的LED中无电流经过时,电阻R34允许最小要求工作电流流入U3。元件C35与R35形
成软结束网络,用来消除导通时的输出过冲。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第14页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
5 PCB布局
Figure 8 – Printed Circuit Layout – Main Board, Top Side.
Figure 9 – Printed Circuit Layout – Main Board, Bottom Side.
第15页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
Figure 10 – Printed Circuit Layout – Daughter Board, Top Side.
Figure 11 – Printed Circuit Layout – Daughter Board, Bottom Side.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第16页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
6 物料清单(BOM)
Item
Qty
Ref Des
Description
Mfg Part Number
Mfg
GBU8K-BP
Micro Commercial
CD90-B2GA331KYNS
TDK
Main Board BOM
1
1
BR1
2
2
C1 C2
3
1
C3
4
2
C4 C5
800 V, 8 A, Bridge Rectifier, GBU Case
330 pF, 250 VAC, Film, X1Y1
220 nF, 275VAC, Film, X2
2.2 nF, Ceramic, Y1
5
1
C6
150 nF, 275 VAC, Film, X2
6
1
C7
1.5 nF, Ceramic, Y1
7
2
C8 C41
8
1
C9
100 nF 50 V, Ceramic, X7R, 0603
R46KI322050M2K
Kemet
440LD22-R
Vishay
LE154-M
OKAYA
440LD15-R
Vishay
C1608X7R1H104K
TDK
680 nF, 450 VDC, Disc Ceramic
ECQ-E2W684KH
Panasonic
VJ1812Y103KXGAT
Vishay
9
1
C10
10 nF, 1 kV, Ceramic, X7R, 1812
10
1
C11
47 nF, 200 V, Ceramic, X7R, 1206
11
1
C12
220 μF, 450 V, Electrolytic, (22 x 45)
12
3
C13 C16 C28
13
1
C14
14
2
15
12062C473KAT2A
AVX
ESMQ451VSN221MP45S
United Chemi-con
22 nF 50 V, Ceramic, X7R, 0603
C1608X7R1H223K
TDK
1000 pF, 100 V, Ceramic, COG, 0603
C1608C0G2A102J
TDK
C15 C35
3.3 μF, 25 V, Ceramic, X7R, 0805
C2012X7R1E335K
TDK
1
C17
2.2 μF, 25 V, Ceramic, X7R, 0805
C2012X7R1E225M
TDK
16
2
C18 C48
CC0603KRX7R8BB473
Yago
17
1
C19
C1608X7R1C334K080AC
TDK
18
2
C20 C21
19
1
C22
20
1
21
1
22
2
C25 C27
23
1
C26
24
1
25
47 nF 25 V, Ceramic, X7R, 0603
330 nF, 16 V, Ceramic, X7R, 0603
1 μF, 25 V, Ceramic, X5R, 0805
C2012X5R1E105K
TDK
22 nF, 630 V, Ceramic, X7R, 1210
GRM32QR72J223KW01L
Murata
C23
220 nF 50 V, Ceramic, X7R, 0603
CGA3E3X7R1H224K
TDK
C24
27 nF, 1600 V, Film
BFC238350273
Vishay
4.7 nF 50 V, Ceramic, X7R, 0603
GRM188R71H472KA01D
Murata
100 nF, 25 V, Ceramic, X7R, 0805
08053C104KAT2A
AVX
C29
1 nF, 50 V, Ceramic, X7R, 0805
08055C102KAT2A
AVX
1
C30
102R18N101JV4E
Johanson Dielectrics
26
2
C31 C32
RL81C271MDN1KX
Nichicon
27
1
C33
ELXZ160ELL152MJ30S
Nippon Chemi-Con
28
1
C34
100 pF, 1000 V, Ceramic, NPO, 1206
270 μF, 16 V, Al Organic Polymer, Gen.
Purpose, 20%
1500 μF, 16 V, Electrolytic, Low ESR, 37 mΩ,
(10 x 30)
6.8 nF, 50 V, Ceramic, X7R, 0805
CC0805KRX7R9BB682
Yageo
29
1
C37
30
1
C39
31
1
32
1
33
1
C0603C103K5RACTU
Kemet
ELXZ250ELL331MH15D
Nippon Chemi-Con
C40
10 nF 50 V, Ceramic, X7R, 0603
330 μF, 25 V, Electrolytic, Low ESR, 90 mΩ,
(8 x 15)
100 nF, 50 V, Ceramic, X7R, 0805
CC0805KRX7R9BB104
Yageo
C42
220 pF, 50 V, Ceramic, X7R, 0805
CC0805KRX7R9BB221
Yageo
C43
33 nF, 400 V, Film
ECQ-E4333KF
Panasonic
34
1
C44
470 pF, 250 V, Ceramic,GCM, 0805
GCM21A7U2E471JX01D
Murata
35
1
C45
KMG16WV1000UF10X16
Sam Young
36
1
C46
ELXZ160ELL331MH12D
Nippon Chemi-Con
37
2
D1 D3
1000 μF, 16 V, Electrolytic, (10 x 16)
330 μF, 16 V, Electrolytic, Low ESR, 120 mΩ,
(8 x 12)
130 V, 5%, 250 mW, SOD-123
BAV116W-7-F
Diodes, Inc.
38
1
D2
DIODE GEN PURPOSE, 800 V, 8 A ,SMC
39
1
D4
40
1
D5
41
2
D6 D7
42
1
D8
1000 V,1 A, Fast Recovery Diode, GP DO-41
FR107G-B
Rectron
43
1
D9
200 V, 1 A, Fast Recovery, 150 ns, SMA
RS1D-13-F
Diodes, Inc.
44
1
D10
600 V, 1 A, Standard Recovery, SMA
S1J-13-F
Diodes, Inc.
第17页(共70页)
S8KC-13
Diodes, Inc
600 V, 1 A, Ultrafast Recovery, 75 ns, SOD-123
UFM15PL-TP
Micro Commercial
75 V, 0.15 A, Switching, SOD-323
BAV16WS-7-F
Diodes, Inc.
Diode SBR 40 V, 30 A, TO220AB
SBR30A40CT
Diodes, Inc.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
Diode SBR 100 V, 5 A, ITO, 220AB
22-Jan-14
45
1
D11
46
2
D12 D13
47
1
48
3
49
1
50
1
F1
GREASE1GREASE3
HEATSHRIN
K1
HS1
Heat Sink, Custom, Al, 3003, 0.090" Thk
Custom
51
1
HS2
Heat Sink, Custom, Al, 3003, 0.090" Thk
Custom
52
1
HS3
Heat Sink, Custom, Al, 3003, 0.078" Thk
53
6
J1 J2 J9-J12
54
2
J3 J4
55
1
J5
56
1
J8
57
3
58
3
59
1
JP1 JP7 JP9
JP2 JP10
JP12
JP3
60
1
JP4
61
2
JP5 JP8
20 V, 5 A, Schottky, DO-201AD
SBR10U100CTFP
Diodes, Inc.
SB520-E3/54
Vishay
5 A, 250 V, Slow, Long Time Lag, RST
RST 5
Belfuse
Thermal Grease, Silicone, 5 oz Tube
CT40-5
ITW Chemtronics
FIT221B-3/16 BK100
Alpha Wire
Heat Shrink 3/16 IN X 4 FT BLACK
PCB Terminal Hole, #18 AWG
Custom
N/A
N/A
2 Position (1 x 2) header, 0.1 pitch, Vertical
22-23-2021
Molex
4 Position (1 x 4) header, 0.156 pitch, Vertical
26-48-1045
Molex
Wire Jumper, Insulated, #24 AWG, 0.4 in
C2003A-12-02
Gen Cable
Wire Jumper, Insulated, #24 AWG, 0.5 in
C2003A-12-02
Gen Cable
Wire Jumper, Insulated, #24 AWG, 1.0 in
C2003A-12-02
Gen Cable
Wire Jumper, Insulated, #24 AWG, 1.2 in
C2003A-12-02
Gen Cable
Wire Jumper, Insulated, #24 AWG, 0.3 in
C2003A-12-02
Gen Cable
2 Position (1 x 2) header, 0.1 pitch, Vertical
Molex
62
1
JP6
Wire Jumper, Insulated, #24 AWG, 0.9 in
C2003A-12-02
Gen Cable
63
2
JP11 JP13
Wire Jumper, Insulated, #24 AWG, 0.6 in
C2003A-12-02
Gen Cable
64
3
JP14-JP16
Wire Jumper, Insulated, TFE, #22 AWG, 0.3 in
65
1
L1
9 mH, 5 A, Common Mode Choke
66
1
L2
220 μH, 3.6 A, Vertical Toroidal
2216-V-RC
Bourns
67
1
L3
YC-PQ3220
Ying Chin
68
1
L4
69
1
RFB0807-2R2L
Coilcraft
70
4
71
4
L5
MTG_HOLE1MTG_HOLE4
P3-P6
Bobbin, PQ32/20, Vertical, 12 pins
Custom, DER-385 Main Post Filter Inductor,
500 nH
2.2 μH, 6.0 A
08-50-0113
Molex
72
1
Q1
MMBT4401LT1G
Diodes, Inc.
73
2
R1 R2
74
3
75
76
C2004-12-02
Alpha
T22148-902S P.I. Custom
Fontaine Technologies
Mounting Hole No 4
CONN TERM FEMALE #22-30 AWG TIN
NPN, Small Signal BJT, GP SS, 40 V, 0.6 A,
SOT-23
390 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ394V
Panasonic
R3 R4 R7
1.50 MΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF1504V
Panasonic
3
R5 R45 R46
1.00 MΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF1004V
Panasonic
1
R6
4.7 Ω, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ4R7V
Panasonic
77
1
R8
732 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF7323V
Panasonic
78
1
R9
1.60 MΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF1604V
Panasonic
79
1
R10
49.9 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF4992V
Panasonic
80
1
R11
7.5 kΩ, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ752V
Panasonic
81
1
R12
487 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF4873V
Panasonic
82
1
R13
60.4 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF6042V
Panasonic
83
1
R14
3 kΩ, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ302V
Panasonic
84
2
R15 R16
976 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF9763V
Panasonic
85
1
R17
976 kΩ, 1%, 1/4 W, Metal Film
MFR-25FBF-976K
Yageo
86
1
R18
20 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF2002V
Panasonic
87
1
R19
2.2 Ω, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ2R2V
Panasonic
88
1
R20
10 Ω, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ100V
Panasonic
89
1
R21
5.76 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF5761V
Panasonic
90
1
R22
140 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF1403V
Panasonic
91
1
R23
15 kΩ, 1%, 1/4 W, Metal Film
MFR-25FBF-15K0
Yageo
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第18页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
1 kΩ, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ102V
Panasonic
1
R24 R34 R36
R51
R25
2.4 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ242V
Panasonic
1
R26
330 Ω, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ331V
Panasonic
95
1
R27
130 kΩ, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ134V
Panasonic
96
1
R28
220 Ω, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ221V
Panasonic
97
1
R29
37.4 Ω, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF37R4V
Panasonic
98
2
R30 R31
0.002 Ω, 1%, 2 W, Thick Film, 2512
PMR100HZPFV2L00
Rohm Semi
99
1
R32
220 Ω, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ221V
Panasonic
100
1
R33
2.15 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF2151V
Panasonic
101
1
R35
10 Ω, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ100V
Panasonic
102
1
R37
38.3 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF3832V
Panasonic
103
2
R38 R54
10 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF1002V
Panasonic
104
1
R39
1 Ω, 5%, 1/4 W, Carbon Film
CFR-25JB-1R0
Yageo
105
1
R41
3.01 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF3011V
Panasonic
106
1
R42
23.7 kΩ, 1%, 1/4 W, Metal Film
MFR-25FBF-23K7
Yageo
107
1
R43
1.2 MΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ125V
Panasonic
108
2
R44 R47
MFR-25FBF-1M00
Yageo
109
1
R48
100 Ω, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ101V
Panasonic
110
1
R49
10 Ω, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF10R0V
Panasonic
111
1
R50
200 Ω, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF2000V
Panasonic
112
1
R52
16.9 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF1692V
Panasonic
113
1
R53
36.5 kΩ, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF3652V
Panasonic
114
1
RL1
RELAY GEN PURPOSE SPST 8 A 12 V
G6RL-1A-ASI-DC12
OMRON
115
1
RT1
NTC Thermistor, 2.5 Ω, 5 A
SL10 2R505
Ametherm
116
1
RTV1
RTV 670810.10ZCLR Silico
RTV670810.10ZCLR
GE
117
1
320 V, 23 J, 10 mm, RADIAL
V320LA10P
Littlefuse
118
2
SCREW MACHINE PHIL 4-40 X 5/16 SS
PMSSS 440 0031 PH
Building Fasteners
119
5
SCREW MACHINE PHIL 4-40 X 1/4 SS
PMSSS 440 0025 PH
Building Fasteners
120
4
1892
Keystone
121
1
RV1
SCREW1
SCREW2
SCREW3SCREW7
STDOFF1STDOFF4
T1
BQ32/30-1112CPFR
TDK
122
1
T2
92
4
93
94
1 MΩ, 1%, 1/4 W, Metal Film
Standoff Hex, 4-40, 0.375" L, Al, F/F
Bobbin, PQ32/30, Vertical, 12 pins
Bobbin, EF20, Vertical, 10 pins
123
1
U1
CAPZero, SO-8C
CAP004DG
Power Integrations
124
1
U2
HiperPFS-2, ESIP16/13
PFS7328H
Power Integrations
125
2
U3 U6
HCPL-817-56AE
Avago Technologies
126
1
U4
LCS703HG
Power Integrations
127
2
U5 U8
128
1
U7
129
1
VR1
150 V, 5 W, 5%, TVS, DO204AC (DO-15)
130
1
VR2
9.1 V, 5%, 150 mW, SSMINI-2
131
1
132
3
133
3
134
3
VR3
WASHER1WASHER3
WIRE14AWG
_INS_J1
WIRE14AWG
_INS_J11
WIRE14AWG
_INS_J12
WIRE14AWG
_INS_J2
WIRE14AWG
第19页(共70页)
Optocoupler, TRAN OUT 4-SMD
HiperLCS, ESIP16/13
IC, REG ZENER SHUNT ADJ SOT-23
TinySwitch-III, DIP-8C
LM431AIM3/NOPB
National Semi
TNY279PG
Power Integrations
P6KE150A
Littlefuse
DZ2S091M0L
Panasonic
BZX84C13LT1G
On Semi
FWSS 004
Building Fasteners
Wire, UL1015, #14 AWG, Blk, PVC, Length To
be specified by designer
1015-14/41-00
Anixter
Wire, UL1015, #14 AWG, Red, PVC, Length To
be specified by designer
1015-14/41-02
Anixter
13 V, 5%, 225 mW, SOT23
WASHER FLAT #4 SS
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
_INS_J9
WIRE14AWG
_INS_J10
WIRE22AWG
135
1
_INS1
WIRE22AWG
136
1
_INS2
Daughter Board BOM
Wire, UL1007, #22 AWG, Blk, PVC, Length To
be specified by designer
Wire, UL1007, #22 AWG, Red, PVC, Length To
be specified by designer
22-Jan-14
1007-22/7-00
Anixter
1007-22/7-02
Anixter
1
1
C49
100 nF, 25 V, Ceramic, X7R, 0603
2
1
C50
3
1
J13
4
2
J14 J115
100 nF, 25 V, Ceramic, X7R, 1206
2 Position (1 x 2) header, 0.1 pitch, RT angle,
gold
4.00 mm Header, 4 Circuits, 3.81 mm Tail Length
5
2
Q2 Q3
6
1
R56
270 kΩ, 5%, 1/10 W, Thick Film, 0603
7
1
R57
1 Ω, 5%, 1/4 W, Carbon Film
CFR-25JB-1R0
Yageo
8
2
R58 R59
1.5 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ152V
Panasonic
9
2
R60 R61
10 kΩ, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ103V
Panasonic
10
1
U9
IC SMART DVR SYNC RECT 8-SOIC
SRK2000DTR
ST Micro
40 V, 85 A N-Channel, DFN5X6
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
VJ0603Y104KNXAO
Vishay
C1206F104K3RACTU
Kemet
TSW-102-08-L-S-RA
Samtec Inc
75730-0204
Molex
AON6232
Alpha & Omega Semi
ERJ-3GEYJ274V
Panasonic
第20页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
7 散热片组件
7.1
LLC散热片
7.1.1 LLC散热片工程图和装配
第21页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
7.1.2 PFS散热片工程图和装配
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第22页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
7.1.3 桥式整流管散热片工程图和装配
第23页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
8 磁芯元件
8.1
PFC扼流圈(L3)规格
8.1.1 电气原理图
Figure 12 – PFC Choke Electrical Diagram.
8.1.2 电气规格
Inductance
Pins 1-FL1 measured at 100 kHz, 0.4 VRMS
.
500 μH ±5%
8.1.3 材料
Item
[1]
[2]
Description
Core: PQ32/20, PC44 core material.
Served litz wire: #40 / #38 AWG.
8.1.4 PFC电感总装
Figure 13 – PFC Choke Final Assembly.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第24页(共70页)
22-Jan-14
8.2
DER-385:255 W 80 PLUS白金级PC电源
LLC变压器(T1)规格
8.2.1 电气原理图
Figure 14 – LLC Transformer Electrical Diagram.
8.2.2 电气规格
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage
Inductance
1 second, 60 Hz, from pins 4-6 and pins 7-12.
Pins 4-6, all other windings open, measured at 100 kHz,
0.4 VRMS.
Pins 4-6, all other windings open
Pins 4-6, with pins 7,9,10 and 12 shorted, measured at
100 kHz, 0.4 VRMS.
3000 VAC
650 μH ±5%.
1400 kHz (Min.)
115 μH ±10%.
8.2.3 材料
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
Description
2
Core: PQ32/30-TDK PC95 and gapped ALG 560 nH/T .
Bobbin: PQ32/30-Vertical, 12 pins (6/6).
Magnet wire: 75 / #40 AWG Served Litz.
Magnet wire: 300 / 0.1 mm Unserved Litz; or 300/#38 AWG Unserved Litz.
Margin tape: 3M 44, margin tape, cream, 6.0 mm wide; or equivalent.
Tape: 3M 1298 Polyester Film, 8.0 mm wide, 2.0 mils thick; or equivalent.
Tape: 3M 1298 Polyester Film, 18.0 mm wide, 2.0 mils thick or equivalent.
Teflon tube: #16, Alpha Wire TFT-200016.
第25页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
8.2.4 结构图
Figure 15 – LLC Transformer Build Diagram.
8.2.5 绕制说明
Winding Preparation
WD1 & WD2
Secondary
Insulation
WD3
Primary
Insulation
Final Assembly
Place the bobbin on the mandrel with the pin side is on the left side.
Winding direction is clockwise direction.
Place margin tape item [5] on the bobbin with to create 2 chambers with location
shown as in fig. 2 above.
Prepare 2 strands of wire item [4] ~ 8” length, tin ends. Label one strand to
distinguish from other and designate it as FL1, FL2. Other strand will be
designated as FL3 and FL4. Twist these 2 strands together ~8 twists evenly
along length leaving 1” free at each end. Tin other ends.
Use wires assembly prepared above, start with FL1 on pin 7 and FL3 on pin 9,
tightly wind 2 turns in left chamber. Finish with FL2 on pin 10 and FL4 in pin 12.
Secure winding with tape item [6].
Place 1 layer of tape item [5].
Start at pin 4, wind 34 turns of wire item [3] in the right chamber with tight tension
and finish at pin 6. Insert Teflon tubes ~ 20 mm long item [8] for both ends of this
winding.
Place 2 layers of tape item [7].
Grind, assemble, and secure core halves with tape.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第26页(共70页)
22-Jan-14
8.3
DER-385:255 W 80 PLUS白金级PC电源
待机变压器(T2)规格
8.3.1 电气原理图
Figure 16 – Transformer Electrical Diagram.
8.3.2 电气规格
Electrical Strength
Primary Inductance
Resonant Frequency
Leakage Inductance
1 second, 60 Hz, from pins 1-5 to pins 6-10.
Pins 1-3, all other windings open, measured at 100 kHz,
0.4 VRMS.
Pins 1-3, all other windings open.
Pins 1-3, with secondary pins shorted, measured at 100
kHz, 0.4 V RMS.
3000 VAC
1157 μH ±10%
1.2 MHz (Min.)
15 μH (Max.)
8.3.3 材料
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Description
Core: EF20. part #: PC44EF20-Z.
Bobbin: EF20, Vertical, 10 pins, (5/5).
Magnet wire: #29 AWG.
Magnet wire: #31 AWG.
Magnet wire: #25 AWG Triple Insulated Wire.
Tape: 3M 1298 Polyester Film, 2 mils thick, 20 mm wide.
Varnish.
第27页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
8.3.4 变压器结构图
Figure 17 – Bias Transformer Build Diagram.
8.3.5 变压器构建说明
Winding
Preparation
WD1
st
1 Primary
Insulation
WD2
Auxiliary
Insulation
WD3
Secondary
Insulation
WD4
nd
2 Primary
Insulation
Finish
Position the bobbin on the mandrel such that the pin side is on the left side of
bobbin mandrel. Winding direction is clock-wise direction
Start at pin 3, wind 54 turns of wire item [3] from left to right with tight tension in
two layers, and terminate at pin 2
2 layers of tape item [6]
Start at pin 5, wind 11 bi-filar turns of wire item [4] from left to right also with tight
tension in one layer, at the last turn bring the wire back to the left and terminate at
pin 4
2 layers of tape item [6]
Start at pin 8 wind 9 bi-filar turns of wire item [5] from left to right also with tight
tension in one layer, at the last turn bring the wire back to the left and terminate at
pin 10
2 layers of tape item [6]
Start at pin 2, wind 35 turns of wire item [3] from right to left with tight tension in
one layer, at the last turn bring the wire back to the right and terminate at pin 1
3 layers of tape item [6]
Assemble, grind the cores to get 1.157 mH, and secure the cores with tape.
Varnish [7]
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第28页(共70页)
22-Jan-14
8.4
DER-385:255 W 80 PLUS白金级PC电源
输出电感(L4)规格
8.4.1 电气原理图
Figure 18 – Inductor Electrical Diagram.
8.4.2 电气规格
Pins FL1-FL2, all other windings open, measured at 100 kHz,
0.4 VRMS.
Inductance
500 nH, ±15%
8.4.3 材料
Item
[1]
[2]
Description
Powdered Iron Toroidal Core: Micrometals T60-52.
Magnet wire: #17 AWG Solderable Double Coated.
第29页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
9 LLC转换器设计表格
HiperLCS_042413;
Rev.1.3; Copyright
INPUTS
Power Integrations
2013
Enter Input Parameters
Vbulk_nom
380
OUTPUTS
UNITS
380
V
Vbrownout
280
V
Vbrownin
VOV_shut
VOV_restart
353
465
448
V
V
V
220
uF
29.5
ms
CBULK
220.00
tHOLDUP
INFO
Enter LLC (secondary) outputs
VO1
12.00
12.0
V
IO1
VD1
PO1
VO2
IO2
VD2
PO2
P_LLC
LCS Device Selection
Device
RDS-ON (MAX)
Coss
Cpri
Pcond_loss
Tmax-hs
19.71
0.10
19.7
0.10
237
0.0
0.0
0.70
0.00
237
A
V
W
V
A
V
W
W
LCS703
1.12
312
40
2.8
90
ohms
pF
pF
W
deg C
8.7
deg C/W
Theta J-HS
HiperLCS_042413_Rev1-3.xls; HiperLCS HalfBridge, Continuous mode LLC Resonant Converter
Design Spreadsheet
Nominal LLC input voltage
Brownout threshold voltage. HiperLCS will shut down if
voltage drops below this value. Allowable value is
between 65% and 76% of Vbulk_nom. Set to 65% for
max holdup time
Startup threshold on bulk capacitor
OV protection on bulk voltage
Restart voltage after OV protection.
Minimum value of bulk cap to meet holdup time
requirement; Adjust holdup time and Vbrownout to
change bulk cap value
Bulk capacitor hold up time
The spreadsheet assumes AC stacking of the
secondaries
Main Output Voltage. Spreadsheet assumes that this is
the regulated output
Main output maximum current
Forward voltage of diode in Main output
Output Power from first LLC output
Second Output Voltage
Second output current
Forward voltage of diode used in second output
Output Power from second LLC output
Specified LLC output power
LCS Device
RDS-ON (max) of selected device
Equivalent Coss of selected device
Stray Capacitance at transformer primary
Conduction loss at nominal line and full load
Maximum heatsink temperature
Thermal resistance junction to heatsink (with grease
and no insulator)
Expected Junction
115
deg C
Expectd Junction temperature
temperature
Ta max
50
deg C
Expected max ambient temperature
Theta HS-A
14
deg C/W
Required thermal resistance heatsink to ambient
LLC Resonant Parameter and Transformer Calculations (generates red curve)
Desired Input voltage at which power train operates at
Vres_target
380.00
380
V
resonance. If greater than Vbulk_nom, LLC operates
below resonance at VBULK.
Po
238
W
LLC output power including diode loss
Main Output voltage (includes diode drop) for
Vo
12.10
V
calculating Nsec and turns ratio
Desired switching frequency at Vbulk_nom. 66 kHz to
f_target
90.00
90
kHz
300 kHz, recommended 180-250 kHz
Parallel inductance. (Lpar = Lopen - Lres for integrated
Lpar
535
uH
transformer; Lpar = Lmag for non-integrated lowleakage transformer)
Primary open circuit inductance for integrated
Lpri
650.00
650
uH
transformer; for low-leakage transformer it is sum of
primary inductance and series inductor. If left blank,
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第30页(共70页)
22-Jan-14
Lres
DER-385:255 W 80 PLUS白金级PC电源
115.00
Kratio
Cres
115.0
uH
4.7
27.00
Lsec
m
n_eq
27.0
nF
2.249
uH
50
%
15.42
Npri
34.0
34.0
Nsec
2.0
2.0
auto-calculation shows value necessary for slight loss of
ZVS at ~80% of Vnom
Series inductance or primary leakage inductance of
integrated transformer; if left blank auto-calculation is
for K=4
Ratio of Lpar to Lres. Maintain value of K such that 2.1
< K < 11. Preferred Lres is such that K<7.
Series resonant capacitor. Red background cells
produce red graph. If Lpar, Lres, Cres, and
n_RATIO_red_graph are left blank, they will be autocalculated
Secondary side inductance of one phase of main
output; measure and enter value, or adjust value until
f_predicted matches what is measured ;
Leakage distribution factor (primary to
secondary). >50% signifies most of the leakage is in
primary side. Gap physically under secondary
yields >50%, requiring fewer primary turns.
Turns ratio of LLC equivalent circuit ideal transformer
Primary number of turns; if input is blank, default value
is auto-calculation so that f_predicted = f_target and
m=50%
Secondary number of turns (each phase of Main
output). Default value is estimate to maintain
BAC<=200 mT, using selected core (below)
Expected frequency at nominal input voltage and full
load; Heavily influenced by n_eq and primary turns
Series resonant frequency (defined by series
inductance Lres and C)
Expected switching frequency at Vbrownout, full load.
Set HiperLCS minimum frequency to this value.
Parallel resonant frequency (defined by Lpar + Lres and
C)
LLC full load gain inversion frequency. Operation below
this frequency results in operation in gain inversion
region.
LLC full load gain inversion point input voltage
Expected value of input voltage at which LLC operates
at resonance.
f_predicted
92
kHz
f_res
90
kHz
f_brownout
62
kHz
f_par
38
kHz
f_inversion
56
kHz
Vinversion
252
V
Vres_expected
373
V
1.59
A
Primary winding RMS current at full load, Vbulk_nom
and f_predicted
15.6
A
Winding 1 (Lower secondary Voltage) RMS current
9.8
A
Lower Secondary Voltage Capacitor RMS current
0.0
A
Winding 2 (Higher secondary Voltage) RMS current
0.0
A
Higher Secondary Voltage Capacitor RMS current
102
V
Resonant capacitor AC RMS Voltage at full load and
nominal input voltage
RMS Currents and Voltages
IRMS_LLC_Primary
Winding 1 (Lower
secondary Voltage)
RMS current
Lower Secondary
Voltage Capacitor
RMS current
Winding 2 (Higher
secondary Voltage)
RMS current
Higher Secondary
Voltage Capacitor
RMS current
Cres_Vrms
Virtual Transformer Trial - (generates blue curve)
New primary turns
34.0
New secondary turns
2.0
New Lpri
650
uH
New Cres
27.0
nF
第31页(共70页)
Trial transformer primary turns; default value is from
resonant section
Trial transformer secondary turns; default value is from
resonant section
Trial transformer open circuit inductance; default value
is from resonant section
Trial value of series capacitor (if left blank calculated
value chosen so f_res same as in main resonant
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
section above
New estimated Lres
New estimated Lpar
New estimated Lsec
New Kratio
New equivalent
circuit transformer
turns ratio
V powertrain
inversion new
f_res_trial
f_predicted_trial
115.0
535
2.249
4.7
IRMS_LLC_Primary
Winding 1 (Lower
secondary Voltage)
RMS current
Lower Secondary
Voltage Capacitor
RMS current
Winding 2 (Higher
secondary Voltage)
RMS current
Higher Secondary
Voltage Capacitor
RMS current
uH
uH
uH
15.42
Trial transformer estimated Lres
Estimated value of Lpar for trial transformer
Estimated value of secondary leakage inductance
Ratio of Lpar to Lres for trial transformer
Estimated effective transformer turns ratio
252
V
Input voltage at LLC full load gain inversion point
90
92
kHz
kHz
1.59
A
15.7
A
RMS current through Output 1 winding, assuming half
sinusoidal waveshape
10.2
A
Lower Secondary Voltage Capacitor RMS current
15.7
A
RMS current through Output 2 winding; Output 1
winding is AC stacked on top of Output 2 winding
0.0
A
Higher Secondary Voltage Capacitor RMS current
New Series resonant frequency
New nominal operating frequency
Primary winding RMS current at full load and nominal
input voltage (Vbulk) and f_predicted_trial
Expected value of input voltage at which LLC operates
at resonance.
Transformer Core Calculations (Calculates From Resonant Parameter Section)
Transformer Core
PQ32/30
PQ32/30
Transformer Core
Ae
1.61
cm^2
Enter transformer core cross-sectional area
Ve
12.00
cm^3
Enter the volume of core
Aw
95.3
mm^2
Area of window
Bw
18.6
mm
Total Width of Bobbin
Enter the loss per unit volume at the switching
Loss density
200.0
mW/cm^3
frequency and BAC (Units same as kW/m^3)
MLT
6.7
cm
Mean length per turn
Nchambers
2
Number of Bobbin chambers
Winding separator distance (will result in loss of winding
Wsep
6.00
6.0
mm
area)
Ploss
2.4
W
Estimated core loss
Bpkfmin
152
mT
First Quadrant peak flux density at minimum frequency.
AC peak to peak flux density (calculated at f_predicted,
BAC
205
mT
Vbulk at full load)
Primary Winding
Number of primary turns; determined in LLC resonant
Npri
34.0
section
Primary gauge
40
40
AWG
Individual wire strand gauge used for primary winding
Equivalent Primary
0.080
mm
Equivalent diameter of wire in metric units
Metric Wire gauge
Number of strands in Litz wire; for non-litz primary
Primary litz strands
75
75
winding, set to 1
Primary Winding
Primary window allocation factor - percentage of
50
%
Allocation Factor
winding space allocated to primary
AW_P
32
mm^2
Winding window area for primary
Fill Factor
66%
%
% Fill factor for primary winding (typical max fill is 60%)
Resistivity_25
49.72
m-ohm/m
Resistivity in milli-ohms per meter
C_Primary
Primary DCR 25 C
113.43
m-ohm
Estimated resistance at 25 C
Estimated resistance at 100 C (approximately 33%
Primary DCR 100 C
152.00
m-ohm
higher than at 25 C)
Vres_expected_trial
373
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
V
第32页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
Primary RMS current
ACR_Trf_Primary
Primary copper loss
Primary Layers
1.59
A
329.24
m-ohm
0.84
4.84
W
Secondary Winding 1 (Lower secondary voltage OR Single output)
Output Voltage
Sec 1 Turns
Sec 1 RMS current
(total, AC+DC)
Winding current (DC
component)
Winding current (AC
RMS component)
Measured RMS current through the primary winding
Measured AC resistance (at 100 kHz, room
temperature), multiply by 1.33 to approximate 100 C
winding temperature
Total primary winding copper loss at 85 C
Number of layers in primary Winding
Note - Power loss calculations are for each winding
half of secondary
Output Voltage (assumes AC stacked windings)
Secondary winding turns (each phase )
RMS current through Output 1 winding, assuming half
sinusoidal waveshape
12.00
2.00
V
15.6
A
9.86
A
DC component of winding current
12.10
A
AC component of winding current
Sec 1 Wire gauge
38
AWG
Equivalent
secondary 1 Metric
Wire gauge
0.100
mm
Sec 1 litz strands
300
Resistivity_25
C_sec1
DCR_25C_Sec1
Individual wire strand gauge used for secondary
winding
Equivalent diameter of wire in metric units
Number of strands used in Litz wire; for non-litz nonintegrated transformer set to 1
300
7.82
m-ohm/m
1.05
m-ohm
DCR_100C_Sec1
1.41
m-ohm
DCR_Ploss_Sec1
1.09
W
ACR_Sec1
1.41
m-ohm
ACR_Ploss_Sec1
Total winding 1
Copper Losses
Capacitor RMS
current
Co1
Capacitor ripple
voltage
0.41
W
1.51
W
9.8
A
Output capacitor RMS current
540.0
uF
0.5
%
15.6
A
Secondary 1 output capacitor
Peak to Peak ripple voltage on secondary 1 output
capacitor
Schottky losses are a stronger function of load DC
current. Sync Rectifier losses are a function of RMS
current
Number of layers in secondary 1 Winding
Note - Power loss calculations are for each winding
half of secondary
Output Voltage (assumes AC stacked windings)
Secondary winding turns (each phase) AC stacked on
top of secondary winding 1
RMS current through Output 2 winding; Output 1
winding is AC stacked on top of Output 2 winding
540.00
Output rectifier RMS
Current
Secondary 1 Layers
2.00
2.00
Secondary Winding 2 (Higher secondary voltage)
Output Voltage
0.00
Sec 2 Turns
0.00
Sec 2 RMS current
(total, AC+DC)
Winding current (DC
component)
Winding current (AC
RMS component)
V
Resistivity in milli-ohms per meter
Estimated resistance per phase at 25 C (for reference)
Estimated resistance per phase at 100 C
(approximately 33% higher than at 25 C)
Estimated Power loss due to DC resistance (both
secondary phases)
Measured AC resistance per phase (at 100 kHz, room
temperature), multiply by 1.33 to approximate 100 C
winding temperature. Default value of ACR is twice the
DCR value at 100 C
Estimated AC copper loss (both secondary phases)
Total (AC + DC) winding copper loss for both secondary
phases
15.6
A
0.0
A
DC component of winding current
0.0
A
AC component of winding current
Sec 2 Wire gauge
38
AWG
Equivalent
secondary 2 Metric
Wire gauge
0.100
mm
Sec 2 litz strands
第33页(共70页)
0
Individual wire strand gauge used for secondary
winding
Equivalent diameter of wire in metric units
Number of strands used in Litz wire; for non-litz nonintegrated transformer set to 1
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
Resistivity_25
C_sec2
Transformer
Secondary MLT
DCR_25C_Sec2
22-Jan-14
23453.09
m-ohm/m
6.71
cm
0.00
m-ohm
DCR_100C_Sec2
0.00
m-ohm
DCR_Ploss_Sec1
0.00
W
ACR_Sec2
0.00
m-ohm
ACR_Ploss_Sec2
Total winding 2
Copper Losses
Capacitor RMS
current
Co2
Capacitor ripple
voltage
0.00
W
0.00
W
0.0
A
Output capacitor RMS current
N/A
uF
N/A
%
0.0
A
Secondary 2 output capacitor
Peak to Peak ripple voltage on secondary 1 output
capacitor
Schottky losses are a stronger function of load DC
current. Sync Rectifier losses are a function of RMS
current
Number of layers in secondary 2 Winding
Does not include fringing flux loss from gap
0.84
W
Total primary winding copper loss at 85 C
1.51
W
Total copper loss in secondary winding
Output rectifier RMS
Current
1.00
Resistivity in milli-ohms per meter
Mean length per turn
Estimated resistance per phase at 25 C (for reference)
Estimated resistance per phase at 100 C
(approximately 33% higher than at 25 C)
Estimated Power loss due to DC resistance (both
secondary halves)
Measured AC resistance per phase (at 100 kHz, room
temperature), multiply by 1.33 to approximate 100 C
winding temperature. Default value of ACR is twice the
DCR value at 100 C
Estimated AC copper loss (both secondary halves)
Total (AC + DC) winding copper loss for both secondary
halves
Secondary 2 Layers
Transformer Loss Calculations
Primary copper loss
(from Primary
section)
Secondary copper
Loss
Transformer total
copper loss
AW_S
2.34
W
Total copper loss in transformer (primary + secondary)
32.28
mm^2
Secondary Fill Factor
49%
%
Area of window for secondary winding
% Fill factor for secondary windings; typical max fill is
60% for served and 75% for unserved Litz
62
kHz
ns
Signal Pins Resistor Values
f_min
Dead Time
625
625
Burst Mode
2
2
Minimum frequency when optocoupler is cut-off. Only
change this variable based on actual bench
measurements
Dead time
Select Burst Mode: 1, 2, and 3 have hysteresis and
have different frequency thresholds
Max internal clock frequency, dependent on dead-time
setting. Is also start-up frequency
Lower threshold frequency of burst mode, provides
hysteresis. This is switching frequency at restart after a
bursting off-period
Upper threshold frequency of burst mode; This is
switching frequency at which a bursting off-period stops
f_max
434
kHz
f_burst_start
160
kHz
f_burst_stop
187
kHz
14.93
k-ohms
Resistor from DT/BF pin to VREF pin
134
k-ohms
Resistor from DT/BF pin to G pin
DT/BF pin upper
divider resistor
DT/BF pin lower
divider resistor
Rstart
Start up delay
Rfmin
5.76
5.76
k-ohms
1.0
ms
133.3
k-ohms
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Start-up resistor - resistor in series with soft-start
capacitor; equivalent resistance from FB to VREF pins
at startup. Use default value unless additional start-up
delay is desired.
Start-up delay; delay before switching begins. Reduce
R_START to increase delay
Resistor from VREF pin to FB pin, to set min operating
frequency; This resistor plus Rstart determine f_MIN.
Includes 7% HiperLCS frequency tolerance to ensure
f_min is below f_brownout
第34页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
C_softstart
Ropto
OV/UV pin lower
20.00
resistor
OV/UV pin upper
resistor
LLC Capacitive Divider Current Sense Circuit
Slow current limit
3.62
Fast current limit
LLC sense capacitor
RLLC sense resistor
IS pin current limit
resistor
IS pin noise filter
capacitor
IS pin noise filter
pole frequency
Loss Budget
LCS device
Conduction loss
Output diode Loss
Transformer
estimated total
copper loss
Transformer
estimated total core
loss
Total transformer
losses
Total estimated
losses
Estimated Efficiency
PIN
100
2.4
k-ohms
Softstart capacitor. Recommended values are between
0.1 uF and 0.47 uF
Resistor in series with opto emitter
20.0
k-ohm
Lower resistor in OV/UV pin divider
2.92
M-ohm
Total upper resistance in OV/UV pin divider
3.62
A
6.52
A
100
pF
37.4
ohms
220
ohms
1.0
nF
724
kHz
2.8
W
Conduction loss at nominal line and full load
2.0
W
Estimated diode losses
2.34
W
Total copper loss in transformer (primary + secondary)
2.4
W
Estimated core loss
4.7
W
Total transformer losses
9.6
W
Total losses in LLC stage
96%
246
%
W
Estimated efficiency
LLC input power
This is to help you choose the secondary turns Outputs not connected to any other part of
spreadsheet
Target regulated output voltage Vo1. Change to see
effect on slave output
Diode drop voltage for Vo1
Total number of turns for Vo1
Expected output
Target output voltage Vo2
Diode drop voltage for Vo2
Total number of turns for Vo2
Expected output voltage
Not applicable if using integrated magnetics - not
connected to any other part of spreadsheet
Desired inductance of separate inductor
Inductor core cross-sectional area
Number of primary turns
AC flux for core loss calculations (at f_predicted and full
load)
0.33
uF
This pole attenuates IS pin signal
Secondary Turns and Voltage Centering Calculator
V1
12.00
V
V1d1
N1
V1_Actaul
V2
V2d2
N2
V2_Actual
0.10
3.00
12.00
0.00
0.70
1.00
3.33
V
V
V
V
V
Separate Series Inductor (For Non-Integrated Transformer Only)
Lsep
Ae_Ind
Inductor turns
115.00
0.53
27
uH
cm^2
BP_fnom
194
mT
Expected peak
primary current
3.6
A
BP_fmin
294
mT
Inductor Litz gauge
40
AWG
第35页(共70页)
8-cycle current limit - check positive half-cycles during
brownout and startup
1-cycle current limit - check positive half-cycles during
startup
HV sense capacitor, forms current divider with main
resonant capacitor
LLC current sense resistor, senses current in sense
capacitor
Limits current from sense resistor into IS pin when
voltage on sense R is < -0.5V
IS pin bypass capacitor; forms a pole with IS pin current
limit capacitor
Expected peak primary current
Peak flux density, calculated at minimum frequency
fmin
Individual wire strand gauge used for primary winding
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
Equivalent Inductor
Metric Wire gauge
Inductor litz strands
Inductor parallel
wires
Resistivity_25
C_Sep_Ind
Inductor MLT
Inductor DCR 25 C
22-Jan-14
0.080
mm
125.00
Number of strands used in Litz wire
1
Number of parallel individual wires to make up Litz wire
29.8
m-ohm/m
7.00
56.4
cm
m-ohm
Inductor DCR 100 C
75.6
m-ohm
ACR_Sep_Inductor
120.9
m-ohm
Inductor copper loss
Feedback section
VMAIN
ITL431_BIAS
0.31
W
12.0
1.0
mA
VF
1.0
V
VCE_SAT
0.3
V
CTR_MIN
0.8
VTL431_SAT
2.5
V
RLED_SHUNT
1.0
k-ohms
2.40
k-ohms
177.70
uA
IOPTO_BJT_MAX
1.42
mA
RLED_SERIES_MA
X
2.76
k-ohms
ROPTO_LOAD
IFMAX
Auto
2.40
Equivalent diameter of wire in metric units
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Resistivity in milli-ohms per meter
Mean length per turn
Estimated resistance at 25 C (for reference)
Estimated resistance at 100 C (approximately 33%
higher than at 25 C)
Measured AC resistance (at 100 kHz, room
temperature), multiply by 1.33 to approximate 100 C
winding temperature
Total primary winding copper loss at 85 C
Output voltage rail that optocoupler LED is connected to
Minimum operating current in TL431 cathode
Typical Optocoupler LED forward voltage at
IOPTO_BJTMAX (max current)
Optocoupler transistor saturation voltage
Optocoupler minimum CTR at VCE_SAT and at
IOPTO_BJT_MAX
TL431 minimum cathode voltage when saturated
Resistor across optocoupler LED to ensure minimum
TL431 bias current is met
Resistor from optocoupler emitter to ground, sets load
current
FB pin current when switching at FMAX (e.g. startup)
Optocoupler transistor maximum current - when
bursting at FMAX (e.g. startup)
Maximum value of gain setting resistor, in series with
optocoupler LED, to ensure optocoupler can deliver
IOPTO_BJT_MAX. Includes -10% tolerance factor.
第36页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
10 待机转换器设计表格
ACDC_TinySwitchIII_042413; Rev.1.27;
INPUT
Copyright Power
Integrations 2008
ENTER APPLICATION VARIABLES
VACMIN
85
VACMAX
265
fL
50
VO
11.50
IO
INFO
1.57
n
0.70
Z
0.50
tC
3.00
CIN
220.00
ENTER TinySwitch-III VARIABLES
TinySwitch-III
TNY279G
Chosen Device
STD
UNIT
Volts
Volts
Hertz
Volts
Amps
Power
Chose Configuration
OUTPUT
18.055
Watts
220
mSeconds
uFarads
Minimum AC Input Voltage
Maximum AC Input Voltage
AC Mains Frequency
Output Voltage (at continuous power)
Power Supply Output Current (corresponding
to peak power)
Continuous Output Power
Efficiency Estimate at output terminals. Under
0.7 if no better data available
Z Factor. Ratio of secondary side losses to the
total losses in the power supply. Use 0.5 if no
better data available
Bridge Rectifier Conduction Time Estimate
Input Capacitance
User defined TinySwitch-III
TNY279G
TNY279G
Standard
Current
Limit
ILIMITMIN
ILIMITTYP
ILIMITMAX
fSmin
0.605
0.650
0.709
124000
Amps
Amps
Amps
Hertz
I^2fmin
50.193
A^2kHz
VOR
120
Volts
VDS
VD
KP
10
0.7
0.60
Volts
Volts
KP_TRANSIENT
0.34
ENTER BIAS WINDING VARIABLES
VB
14
VDB
NB
VZOV
UVLO VARIABLES
14.00
0.70
10.33
20.00
Volts
Volts
V_UV_TARGET
124.49
Volts
V_UV_ACTUAL
119.70
Volts
RUV_IDEAL
4.89
Mohms
RUV_ACTUAL
4.70
Mohms
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EF20
EF20
Core
EF20
Bobbin
EF20_BOB
第37页(共70页)
ACDC_TinySwitch-III_042413_Rev1-27.xls;
TinySwitch-III Continuous/Discontinuous
Flyback Transformer Design Spreadsheet
Volts
P/N:
P/N:
Enter "RED" for reduced current limit (sealed
adapters), "STD" for standard current limit or
"INC" for increased current limit (peak or
higher power applications)
Minimum Current Limit
Typical Current Limit
Maximum Current Limit
Minimum Device Switching Frequency
I^2f (product of current limit squared and
frequency is trimmed for tighter tolerance)
Reflected Output Voltage (VOR < 135 V
Recommended)
TinySwitch-III on-state Drain to Source Voltage
Output Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio (KP < 6)
Transient Ripple to Peak Current Ratio.
Ensure KP_TRANSIENT > 0.25
Bias Winding Voltage
Bias Winding Diode Forward Voltage Drop
Bias Winding Number of Turns
Over Voltage Protection zener diode voltage.
Target DC under-voltage threshold, above
which the power supply with start
Typical DC start-up voltage based on standard
value of RUV_ACTUAL
Calculated value for UV Lockout resistor
Closest standard value of resistor to
RUV_IDEAL
Enter Transformer Core
PC40EF20-Z
EF20_BOBBIN
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
BIN
AE
LE
AL
BW
0.335
4.49
1570
12.2
cm^2
cm
nH/T^2
mm
M
0
mm
L
NS
DC INPUT VOLTAGE PARAMETERS
VMIN
VMAX
CURRENT WAVEFORM SHAPE PARAMETERS
3
9
113
375
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to
Secondary Creepage Distance)
Number of Primary Layers
Number of Secondary Turns
Volts
Volts
Minimum DC Input Voltage
Maximum DC Input Voltage
Duty Ratio at full load, minimum primary
inductance and minimum input voltage
Average Primary Current
Minimum Peak Primary Current
Primary Ripple Current
Primary RMS Current
DMAX
0.54
IAVG
IP
IR
IRMS
TRANSFORMER PRIMARY DESIGN PARAMETERS
0.25
0.61
0.36
0.38
Amps
Amps
Amps
Amps
LP
1157
uHenries
LP_TOLERANCE
NP
ALG
10
89
148
%
nH/T^2
BM
2766
Gauss
BAC
828
Gauss
ur
LG
BWE
1675
0.26
36.6
mm
mm
OD
0.41
mm
INS
0.06
mm
DIA
0.35
mm
AWG
28
AWG
CM
161
Cmils
CMA
430
Cmils/Amp
TRANSFORMER SECONDARY DESIGN PARAMETERS
Lumped parameters
ISP
5.95
ISRMS
3.42
IRIPPLE
3.04
Amps
Amps
Amps
CMS
684
Cmils
AWGS
21
AWG
VDRAIN
647
Volts
PIVS
50
Volts
Typical Primary Inductance. +/- 10% to ensure
a minimum primary inductance of 1041 uH
Primary inductance tolerance
Primary Winding Number of Turns
Gapped Core Effective Inductance
Maximum Operating Flux Density, BM<3000 is
recommended
AC Flux Density for Core Loss Curves (0.5 X
Peak to Peak)
Relative Permeability of Ungapped Core
Gap Length (Lg > 0.1 mm)
Effective Bobbin Width
Maximum Primary Wire Diameter including
insulation
Estimated Total Insulation Thickness (= 2 * film
thickness)
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller
standard AWG value)
Bare conductor effective area in circular mils
Primary Winding Current Capacity (200 < CMA
< 500)
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple Current
Secondary Bare Conductor minimum circular
mils
Secondary Wire Gauge (Rounded up to next
larger standard AWG value)
VOLTAGE STRESS PARAMETERS
Maximum Drain Voltage Estimate (Assumes
20% zener clamp tolerance and an additional
10% temperature tolerance)
Output Rectifier Maximum Peak Inverse
Voltage
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)
1st output
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第38页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
VO1
11.5
Volts
IO1
PO1
VD1
NS1
ISRMS1
IRIPPLE1
1.570
18.06
0.7
9.00
3.422
3.04
Amps
Watts
Volts
50
Volts
PIVS1
Recommended Diodes
Amps
Amps
SB560
CMS1
684
Cmils
AWGS1
21
AWG
DIAS1
0.73
mm
ODS1
1.36
mm
2nd output
VO2
IO2
PO2
VD2
NS2
ISRMS2
IRIPPLE2
0.00
0.7
0.52
0.000
0.00
PIVS2
Volts
Amps
Watts
Volts
Amps
Amps
2
Volts
0
Cmils
AWGS2
N/A
AWG
DIAS2
N/A
mm
ODS2
N/A
mm
Recommended Diode
CMS2
3rd output
VO3
IO3
PO3
VD3
NS3
ISRMS3
IRIPPLE3
0.00
0.7
0.52
0.000
0.00
PIVS3
Volts
Amps
Watts
Volts
Amps
Amps
2
Volts
0
Cmils
AWGS3
N/A
AWG
DIAS3
N/A
mm
ODS3
N/A
mm
18.055
Watts
Recommended Diode
CMS3
Total power
Negative Output
第39页(共70页)
N/A
N/A
Main Output Voltage (if unused, defaults to
single output design)
Output DC Current
Output Power
Output Diode Forward Voltage Drop
Output Winding Number of Turns
Output Winding RMS Current
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse
Voltage
Recommended Diodes for this output
Output Winding Bare Conductor minimum
circular mils
Wire Gauge (Rounded up to next larger
standard AWG value)
Minimum Bare Conductor Diameter
Maximum Outside Diameter for Triple
Insulated Wire
Output Voltage
Output DC Current
Output Power
Output Diode Forward Voltage Drop
Output Winding Number of Turns
Output Winding RMS Current
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse
Voltage
Recommended Diodes for this output
Output Winding Bare Conductor minimum
circular mils
Wire Gauge (Rounded up to next larger
standard AWG value)
Minimum Bare Conductor Diameter
Maximum Outside Diameter for Triple
Insulated Wire
Output Voltage
Output DC Current
Output Power
Output Diode Forward Voltage Drop
Output Winding Number of Turns
Output Winding RMS Current
Output Capacitor RMS Ripple Current
Output Rectifier Maximum Peak Inverse
Voltage
Recommended Diodes for this output
Output Winding Bare Conductor minimum
circular mils
Wire Gauge (Rounded up to next larger
standard AWG value)
Minimum Bare Conductor Diameter
Maximum Outside Diameter for Triple
Insulated Wire
Total Output Power
If negative output exists enter Output number;
eg: If VO2 is negative output, enter 2
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
11 功率因数控制器设计表格
Hiper_PFS-II_Boost_101813;
Rev.1.2; Copyright Power
Integrations 2013
INPUT
INFO
Enter Applications Variables
Input Voltage Range
VACMIN
VACMAX
VBROWNIN
VBROWNOUT
VO
PO
fL
TA Max
385.00
265.00
OUTPUT
UNITS
Universal
90
265
V
V
76.69
V
68.33
385.00
265.00
50
40
V
V
W
Hz
deg C
0.93
n
KP
VO_MIN
VO_RIPPLE_MAX
tHOLDUP
0.450
0.45
18.00
365.75
20
18
V
V
ms
VHOLDUP_MIN
310
V
I_INRUSH
40
A
Forced Air Cooling
Yes
Yes
PFS Parameters
PFS Part Number
Auto
PFS7328H
EFFICIENCY
EFFICIENCY
MODE
R_RPIN
C_RPIN
IOCP min
IOCP typ
IOCP max
RDSON
RV1
RV2
RV3
C_VCC
R_VCC
C_V
49.9
1.00
9.00
9.50
9.90
0.46
1.50
1.50
1.00
3.30
15.00
22.00
k-ohms
nF
A
A
A
ohms
Mohms
Mohms
Mohms
uF
ohms
nF
C_C
22.00
nF
Power_Good_Vo_Threshold_VPG(L)
333.00
V
PGT set resistor
103.79
kohm
FS_PK
65.4
kHz
FS_AVG
53.0
kHz
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Hiper_PFSII_Boost_100413_Rev1-2.xls;
Continuous Mode Boost
Converter Design Spreadsheet
Input voltage range
Minimum AC input voltage
Maximum AC input voltage
Expected Minimum Brown-in
Voltage
Specify brownout voltage.
Nominal Output voltage
Nominal Output power
Line frequency
Maximum ambient temperature
Enter the efficiency estimate for
the boost converter at VACMIN
Ripple to peak inductor current
ratio at the peak of VACMIN
Minimum Output voltage
Maximum Output voltage ripple
Holdup time
Minimum Voltage Output can drop
to during holdup
Maximum allowable inrush current
Enter "Yes" for Forced air cooling.
Otherwise enter "No"
Selected PFS device
Mode of operation of PFS. For full
mode enter "FULL" otherwise
enter
"EFFICIENCY" to indicate
efficiency mode
R pin resistor value
R pin capacitor value
Minimum Current limit
Typical current limit
Maximum current limit
Typical RDSon at 100 'C
Line sense resistor 1
Line sense resistor 2
Line sense resistor 3
Supply decoupling capacitor
VCC resistor
V pin decoupling capacitor
Feedback C pin decoupling
capacitor
Vo threshold at which VPG is
triggered
Power good threshold setting
resistor
Estimated frequency of operation
at crest of input voltage (at
VACMIN)
Estimated average frequency of
operation over line cycle (at
第40页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
VACMIN)
IP
PFS_IRMS
PCOND_LOSS_PFS
PSW_LOSS_PFS
PFS_TOTAL
5.25
2.59
3.08
1.30
4.39
A
A
W
W
W
TJ Max
100
deg C
Rth-JS
3.00
degC/W
HEATSINK Theta-CA
6.52
degC/W
LPFC
501
uH
LPFC (0 Bias)
501
uH
5
%
3.07
A
MOSFET peak current
PFS MOSFET RMS current
Estimated PFS conduction losses
Estimated PFS switching losses
Total Estimated PFS losses
Maximum steady-state junction
temperature
Maximum thermal resistance
(Junction to heatsink)
Maximum thermal resistance of
heatsink
Basic Inductor Calculation
LP_TOL
5.00
LPFC_RMS
Value of PFC inductor at peak of
VACMIN and Full Load
Value of PFC inductor at No load.
This is the value measured with
LCR meter
Tolerance of PFC Inductor Value
Inductor RMS current (calculated
at VACMIN and Full Load)
Inductor Construction Parameters
Core Type
Ferrite
Ferrite
Core Material
Auto
PC44
Core Geometry
Auto
PQ
PQ32/20
PQ32/20
170
55.5
6530
9.44
5.12
67.1
8.98
56
1.64
3.07
Core
AE
LE
AL
VE
HT
MLT
BW
NL
LG
ILRMS
Wire type
LITZ
LITZ
AWG
38
38
Filar
40
40
OD
0.102
AC Resistance Ratio
1.02
J
mm^2
mm
nH/t^2
cm^3
mm
cm
mm
mm
A
AWG
mm
9.48
A/mm^2
3900
Gauss
BM
2765
Gauss
BP
3871
Gauss
BP_TARGET
第41页(共70页)
Warning
3900
Enter "Sendust", "Pow Iron" or
"Ferrite"
Select from 60u, 75u, 90u or 125 u
for Sendust cores. Fixed at PC44
or equivalent for Ferrite cores.
Fixed at 52 material for Pow Iron
cores.
Select from Toroid or EE for
Sendust cores and from EE, or PQ
for Ferrite cores
Core part number
Core cross sectional area
Core mean path length
Core AL value
Core volume
Core height/Height of window
Mean length per turn
Bobbin width
Inductor turns
Gap length (Ferrite cores only)
Inductor RMS current
Select between "Litz" or "Regular"
for double coated magnet wire
Inductor wire gauge
Inductor wire number of parallel
strands
Outer diameter of single strand of
wire
Ratio of AC resistance to the DC
resistance (using Dowell curves)
!!! Warning Current density is too
high and may cause heating in the
inductor wire. Reduce J
Target flux density at selected
saturation current level (Ferrite
cores only)
Maximum operating flux density
Peak Flux density (Estimated at
selected saturation current level)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
LPFC_CORE_LOSS
LPFC_COPPER_LOSS
LPFC_TOTAL LOSS
FIT
Warning
Layers
22-Jan-14
0.09
3.23
3.33
W
W
W
102.63%
%
5.7
Inductor saturation current
Critical Parameters
IRMS
IO_AVG
Output Diode (DO)
Part Number
7.000
Info
Auto
Type
7.0
A
3.17
0.69
A
A
INTERNAL
SPECIAL
Manufacturer
VRRM
IF
TRR
VF
PI
600
3
31
1.47
V
A
ns
V
PCOND_DIODE
1.01
W
PSW_DIODE
P_DIODE
0.90
1.92
W
W
TJ Max
100
deg C
Rth-JS
3.85
degC/W
HEATSINK Theta-CA
6.52
degC/W
220.00
uF
VO_RIPPLE_EXPECTED
10.7
V
T_HOLDUP_EXPECTED
21.6
ms
ESR_LF
ESR_HF
0.75
0.30
ohms
ohms
IC_RMS_LF
0.49
A
IC_RMS_HF
1.40
A
CO_LF_LOSS
0.18
W
CO_HF_LOSS
0.59
W
Total CO LOSS
0.77
W
Input Bridge (BR1) and Fuse (F1)
I^2t Rating
Fuse Current rating
15.45
4.96
A^2s
A
Estimated Inductor core Loss
Estimated Inductor copper losses
Total estimated Inductor Losses
!!! Warning. Windings may not fit
on this inductor. Use bigger core
or reduce KP or reduce wire gauge
if possible
Estimated layers in winding
Inductor saturation current is lower
than IOCP_max. Verify transient
conditions on the bench.
AC input RMS current
Output average current
PFC Diode Part Number
Diode Type - Special - Diodes
specially catered for PFC
applications, SiC - Silicon Carbide
type, UF - Ultrafast recovery type
Diode Manufacturer
Diode rated reverse voltage
Diode rated forward current
Diode Reverse recovery time
Diode rated forward voltage drop
Estimated Diode conduction
losses
Estimated Diode switching losses
Total estimated Diode losses
Maximum steady-state operating
temperature
Maximum thermal resistance
(Junction to heatsink)
Maximum thermal resistance of
heatsink
Output Capacitor
CO
Auto
VF
0.90
V
IAVG
PIV_INPUT BRIDGE
3.09
375
A
V
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Minimum value of Output
capacitance
Expected ripple voltage on Output
with selected Output capacitor
Expected holdup time with
selected Output capacitor
Low Frequency Capacitor ESR
High Frequency Capacitor ESR
Low Frequency Capacitor RMS
current
High Frequency Capacitor RMS
current
Estimated Low Frequency ESR
loss in Output capacitor
Estimated High frequency ESR
loss in Output capacitor
Total estimated losses in Output
Capacitor
Minimum I^2t rating for fuse
Minimum Current rating of fuse
Input bridge Diode forward Diode
drop
Input average current at 70 VAC.
Peak inverse voltage of input
第42页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
PCOND_LOSS_BRIDGE
5.13
W
CIN
0.82
uF
9.37
1N5407
ohms
R1
1.50
Mohms
R3
1.60
Mohms
R2
787.00
kohms
C1
47.00
nF
R4
60.40
kohms
R6
487.00
kohms
R7
7.68
kohms
C2
47.00
nF
R5
3.00
kohms
C3
2.20
uF
D1
BAV116
RT
D_Precharge
Feedback Components
Loss Budget (Estimated at VACMIN)
PFS Losses
4.39
W
Boost diode Losses
1.92
W
Input Bridge losses
5.13
W
Inductor losses
3.33
W
Output Capacitor Loss
0.77
W
Total losses
15.53
W
Efficiency
0.94
bridge
Estimated Bridge Diode
conduction loss
Input capacitor. Use metallized
polypropylene or film foil type with
high ripple current rating
Input Thermistor value
Recommended precharge Diode
Feedback network, first high
voltage divider resistor
Feedback network, third high
voltage divider resistor
Feedback network, second high
voltage divider resistor
Feedback network, loop speedup
capacitor
Feedback network, lower divider
resistor
Feedback network - pole setting
resistor
Feedback network - zero setting
resistor
Feedback component- noise
suppression capacitor
Damping resistor in serise with C3
Feedback network - compensation
capacitor
Feedback network - capacitor
failure detection Diode
Total estimated losses in PFS
Total estimated losses in Output
Diode
Total estimated losses in input
bridge module
Total estimated losses in PFC
choke
Total estimated losses in Output
capacitor
Overall loss estimate
Estimated efficiency at VACMIN.
Verify efficiency at other line
voltages
CAPZero component selection recommendation
CAPZero Device
CAP002DG
Total Series Resistance (R1+R2)
1.50
k-ohms
(Optional) Recommended
CAPZero device to discharge XCapacitor with time constant of 1
second
Maximum Total Series resistor
value to discharge X-Capacitors
EMI filter components recommendation
CIN
680.00
680.00
nF
CX2
150.00
150.00
nF
305.49
uH
220.00
nF
10.00
mH
LDM_calc
CX1
LCM
第43页(共70页)
220.00
Metallized polyester film capacitor
after bridge, ratio with Po
X capacitor after differencial mode
choke and before bridge, ratio with
Po
estimated minimum differencial
inductance to avoid <10kHz
resonance in input current
X capacitor before common mode
choke, ratio with Po
typical common mode choke value
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
estimated leakage inductance of
CM choke, typical from 30~60uH
Typical Y capacitance for common
CY1 (and CY2)
220.00
pF
mode noise suppression
cal_LDM minus LCM_leakage,
LDM_Actual
245.49
uH
utilizing CM leakage inductance as
DM choke.
Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.
LCM_leakage
60.00
60.00
uH
Note:
There is a warning in the spreadsheet for current density in PFC choke. Whenever such
a warning is issued, thermal performance of the PFC choke should be checked while
operating continuously at the lowest input voltage. In this design, it was found that the
temperature rise of the choke was within acceptable limits with the available airflow.
There is a warning in the spreadsheet for FIT factor, however when wounding the choke
it was found that the winding can be accommodated without any problems.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第44页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
12 性能数据
All measurements were taken at room temperature and 50/60 Hz input frequency unless
otherwise specified, Output voltage measurements were taken at the output connectors.
12.1 系统效率
Figures below show the total supply efficiency (PFC and LLC stages). AC input was
supplied using a sine wave source.
98
100 VAC
115 VAC
230 VAC
96
Efficiency (%)
94
92
90
88
86
84
0
10
20
30
40
50
60
70
80
90
100
110
Load (%)
Figure 19 – System Efficiency vs. Load.
Note: Fan was running with full power and it was turned off for loads ≤50%.
Note: All the efficiency readings were taken by keeping the power supply inside a metal
enclosure.
Note: Cable drop was not included in the efficiency measurements.
Power Supply is meeting 80 plus platinum efficiency requirements.
VIN
(VAC)
100 / 115 / 230
100 / 115 / 230
100 / 115 / 230
第45页(共70页)
Load
(%)
20
50
100
Measured Efficiency (%)
91.81 / 92.17 / 91.96
93.14 / 93.41 / 94.65
90.31 / 91.17 / 93.33
Platinum Efficiency
Specification (%)
90 / 90 / 90
92 / 92 / 94
89 / 89 / 91
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
12.2 功率因数
Power factor measurements were made using a sine wave AC source.
1.01
100 VAC
115 VAC
230 VAC
0.99
Power Factor
0.97
0.95
0.93
0.91
0.89
0.87
0.85
0
10
20
30
40
50
60
70
80
90
100
110
Load (%)
Figure 20 – Power Factor vs. Input Voltage, 50% and 100% Load.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第46页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
12.3 THD
THD measurements were taken a 100%, 50% and 20% load using a sine wave source
and a Yokogawa WT310 power analyzer with harmonic measurement option.
20
100 VAC
115 VAC
230 VAC
18
16
THD (%)
14
12
10
8
6
4
2
0
10
20
30
40
50
60
70
80
90
100
Load (%)
Figure 21 – THD vs. Load.
第47页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
110
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
12.4 输出调整
The PFC regulates the LLC and standby supply input voltage under normal conditions so
the outputs will not be affected by the AC input voltage. Variations due to temperature
and component tolerances are not represented. The 12 V (+12 VA and +12 VB voltages
after current sensing resistors) output varies by less than 1% over a line voltage range of
100 VAC to 230 VAC.
12.4.1 线电压调整
16
+12 VA
+12 VB
15
Output Voltage (V)
14
13
12
11
10
9
8
0
10
20
30
40
50
60
70
80
90
100
110
Load (%)
Figure 22 – Output Voltage vs. Input Line Voltage (Line Regulation).
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第48页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
12.4.2 负载调整
The 12 V output varies by less than 1% over a load range of 10% to 100% load.
16
+12VA
+12VB
15
Output Voltage (V)
14
13
12
11
10
9
8
80
100
120
140
160
180
200
220
Input Voltage (VAC)
Figure 23 – Output Voltage vs. Output Load Current (Load Regulation).
第49页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
240
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
13 输入电流谐波限值与EN 61000-3-2 Class D限值
Figure 24 – AC Input Harmonics vs. EN 61000-3-2 Class D Limits, 115 VAC, 60 Hz, 100% Load.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第50页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
Figure 25 – AC Input Harmonics vs. EN 61000-3-2 Class D Limits, 230 VAC, 50 Hz, 100% Load.
第51页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
14 波形
14.1
输入电压及电流
Figure 26 – 115 VAC, 255 W Load.
Upper: IIN, 2 A / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 27 – 230 VAC, 255 W Load.
Upper: IIN, 1 A / div.
Lower: VIN, 200 V, 5 ms / div.
14.2 LLC初级电压及电流
The LLC stage current was measured by adding a current sensing loop between C34 and
B- that measures the LLC transformer (T1) primary current. The primary voltage
waveform was measured at HB node.
Figure 28 – LLC Stage Primary Voltage and Current.
Upper: Current, 2 A / div.
Lower: Voltage, 200 V, 5 μs / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第52页(共70页)
22-Jan-14
14.3
DER-385:255 W 80 PLUS白金级PC电源
PFC开关电压和电流 - 正常工作
Figure 29 – PFC Stage Drain Voltage and Inductor
Current, Full Load, 115 VAC
Upper: IINDUCTOR, 2 A / div.
Lower: VDRAIN, 200 V, 2 ms / div.
Figure 30 – PFC Stage Drain Voltage and Inductor
Current, Full Load, 115 VAC.
Upper: IINDUCTOR, 2 A / div.
Lower: VDRAIN, 200 V, 10 μs / div. (Zoom
in on top of sine wave.)
Figure 31 – PFC Stage Drain Voltage and Inductor
Current, Full Load, 230 VAC.
Upper: IINDUCTOR, 1 A / div.
Lower: VDRAIN, 200 V, 2 ms / div.
Figure 32 – PFC Stage Drain Voltage and Inductor
Current, Full Load, 230 VAC.
Upper: IINDUCTOR, 1 A / div.
Lower: VDRAIN, 200 V, 10 μs / div. (Zoom
in on top of sine wave.)
第53页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
14.4
启动时的AC输入电流和PFC输出电压
Figure 33 – AC Input Current vs. PFC Output Voltage
at Start-up, Full Load, 115 VAC.
Upper: AC IIN, 5 A / div.
Lower: PFC VOUT, 200 V, 50 ms / div
14.5
22-Jan-14
Figure 34 – AC Input Current vs. PFC Output Voltage
at Start-up, Full Load, 230 VAC.
Upper: AC IIN, 2 A / div.
Lower: PFC VOUT, 200 V, 50 ms / div.
LLC启动(CR模式)
Figure 35 – LLC Start-up. 115 VAC, 100% Load.
Upper: LLC Primary Current, 2 A / div.
Lower: LLC VOUT, 5 V, 10 ms / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Figure 36 – LLC Start-up. 115 VAC, 0% Load.
Upper: LLC Primary Current, 2 A / div.
Lower: LLC VOUT, 5 V, 10 ms / div.
第54页(共70页)
22-Jan-14
14.6
DER-385:255 W 80 PLUS白金级PC电源
LLC电压跌落
Figure 37 – LLC Brown-out.
Upper: Primary Current, 2 A / div.
Lower: Main VOUT, 5 V / div.
第55页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
14.7 LLC输出短路
The figure below shows the effect of an output short circuit on the LLC primary current. A
mercury displacement relay was used to short the output to get a fast, bounce-free
connection.
Figure 38 – Output Short Circuit Test.
Upper: LLC Primary Current, 2 A / div.
Lower: Main VOUT, 5 V, 100 μs / div.
14.8
主启动和待机启动(CR模式)
Figure 39 – LLC Start-up. 115 VAC, 100% Load.
Upper: LLC VOUT, 2 V /div,
Lower: LLC IOUT, 5 A / div. 10 ms / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
Figure 40 – LLC Start-up. 115 VAC, 0% Load.
Upper: Standby VOUT, 2 V / div.
Lower: Standby IOUT, 0.5 A / div, 10 ms / div.
第56页(共70页)
22-Jan-14
Figure 41 – LLC Start-up. 115 VAC, 100% Load.
Upper: LLC VOUT, 2 V / div.
Lower: Standby VOUT, 2 V, 20 ms / div.
14.9
DER-385:255 W 80 PLUS白金级PC电源
Figure 42 – LLC Start-up. 115 VAC, 0% Load.
Upper: Standby VOUT, 2 V / div.
Lower: LLC VOUT, 2 V, 20 ms / div.
同步FET漏极和栅极电压
Figure 43 – LLC Sync Rect. Q1, 100% Load.
Upper: SR Gate Drive, 5 V / div.
Lower: SR VDRAIN, 10 V, 10 ms / div.
第57页(共70页)
Figure 44 – LLC Sync Rect. Q2, 100% Load.
Upper: SR Gate Drive, 5 V / div.
Lower: SR VDRAIN, 10 V, 10 ms / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
14.10 输出纹波测量
14.10.1
纹波测量方法
For DC output ripple measurements, use a modified oscilloscope test probe to reduce
spurious signals. Details of the probe modification are provided in figures below.
Tie two capacitors in parallel across the probe tip of the 4987BA probe adapter. Use a
0.1 μF / 50 V ceramic capacitor and 1.0 μF / 100 V aluminum electrolytic capacitor. The
aluminum-electrolytic capacitor is polarized, so always maintain proper polarity across
DC outputs.
Probe Ground
Probe Tip
Figure 45 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).
Figure 46 – Oscilloscope Probe with Probe Master 4987BA BNC Adapter (Modified with Wires for Probe
Ground for Ripple measurement and Two Parallel Decoupling Capacitors Added).
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第58页(共70页)
22-Jan-14
14.10.2
DER-385:255 W 80 PLUS白金级PC电源
满载输出纹波结果
Figure 47 – 12 V Output Ripple, 20 mV, 5 ms / div.
14.10.3
Figure 48 – 12 V Output Ripple, 20 mV, 10 μs / div.
空载纹波结果
Figure 49 – 12 V No-Load Output Ripple, 50 mV, 10 ms / div.
第59页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
14.11 主输出负载阶跃响应
The figures below show transient response with a 10%-100%-10%, 50%-100%-50%,
75%-100%-75% and 0%-100%-0% load steps for the 12 V output. The oscilloscope was
triggered using the rising edge of the load step, and averaging was used to cancel out
ripple components asynchronous to the load step in order to better ascertain the load
step response.
Figure 50 – Output Transient Response 10%100%-10%, 2 ms / div.
Upper: VOUT, 200 mV / div.
Lower: ILOAD, 10 A / div.
Figure 51 – Output Transient Response 50%100%-50%, 2 ms / div.
Upper: VOUT, 200 mV / div.
Lower: ILOAD, 10 A / div.
Figure 52 – Output Transient Response 75%-100%- Figure 53 – Output Transient Response 0%-100%75%, 2 ms / div.
0%, 2 ms / div.
Upper: VOUT, 100 mV / div.
Upper: VOUT, 200 mV / div.
Lower: ILOAD, 10 A / div.
Lower: ILOAD, 10 A / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第60页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
14.12 待机输出负载阶跃响应
The figures below show transient response with a 10%-100%-10%, 50%-100%-50%,
75%-100%-75% and 0%-100%-0% load steps for the 12 V output. The oscilloscope was
triggered using the rising edge of the load step, and averaging was used to cancel out
ripple components asynchronous to the load step in order to better ascertain the load
step response.
Figure 54 – Output Transient Response 10%100%-10%, 5 ms / div.
Upper: VOUT, 100 mV / div.
Lower: ILOAD, 1 A / div.
Figure 56 – Output Transient Response 75%100%-75%, 5 ms / div.
Upper: VOUT, 20 mV / div.
Lower: ILOAD, 1 A / div.
第61页(共70页)
Figure 55 – Output Transient Response 50%100%-50%, 5 ms / div.
Upper: VOUT, 50 mV / div.
Lower: ILOAD, 1 A / div.
Figure 57 – Output Transient Response 0%-100%0%, 5 ms / div.
Upper: VOUT, 200 mV / div.
Lower: ILOAD, 1 A / div.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
15 传导EMI
15.1
EMI设置
15.1.1 EMI测试的电源准备
The picture below shows the power supply set-up for EMI and surge testing. The power
supply is enclosed in a metallic enclosure.
Figure 58 – DER-385 Set-up for EMI and Surge Testing.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第62页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
15.1.2 EMI测试设置
Figure 59 – EMI Room Set-up.
第63页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
15.2 EMI扫描
Conducted EMI tests were performed with a resistive load on the 12 V main and standby
outputs. The secondary ground of the unit was connected to the metallic enclosure with
the help of a screw, which in turn was hard wired to the AC cord ground. The resistive
load was left floating.
Figure 60 – Conducted EMI, 115 VAC.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第64页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
Figure 61 – Conducted EMI, 230 VAC.
第65页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
16 增益相位测量
Gain-phase measurements were carried out on DER-385 at 20%, 50% and 100% loads.
Figure 83 – DER-385 LLC Gain-Phase Measurement, Full Load Gain Crossover Frequency – ~7.5 kHz,
Phase Margin, ~57º.
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第66页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
17 附录
17.1
中继电缆准备
第67页(共70页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
17.2
22-Jan-14
PFC电感装配
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第68页(共70页)
22-Jan-14
DER-385:255 W 80 PLUS白金级PC电源
18 版本历史
Date
22-Jan-14
Author
SS
第69页(共70页)
Revision
2.1
Description and Changes
Initial Release
Reviewed
Apps & Mktg
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-385:255 W 80 PLUS白金级PC电源
22-Jan-14
有关最新产品信息,请访问: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits’ external to the products) may
be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned
to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations
grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS,
HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of
Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2013 Power
Integrations, Inc.
Power Integrations 全球销售支持网络
全球总部
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: [email protected]
德国
Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail:
[email protected]
日本
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
台湾
5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
中国(上海)
Rm 2410, Charity Plaza, No. 88,
North Caoxi Road,
Shanghai, PRC 200030
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: [email protected]
印度
th
#1, 14 Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
韩国
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
欧洲总部
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
中国(深圳)
3rd Floor, Block A,
Zhongtou International Business
Center, No. 1061, Xiang Mei Rd,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: [email protected]
意大利
rd
Via Milanese 20, 3 . Fl.
20099 Sesto San Giovanni
(MI) Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail:
[email protected]
新加坡
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
技术支持热线
World Wide +1-408-4149660
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
技术支持传真
World Wide +1-408-4149760
第70页(共70页)