PD - 97194A IRF7902PbF HEXFET® Power MOSFET Applications l Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Improved Body Diode Reverse Recovery l Lead-Free VDSS 30V ID RDS(on) max Q1 22.6m:@VGS = 10V Q2 14.4m:@VGS = 10V * ' 6 6' 6 6' * 6' 6.4A 9.7A SO-8 Absolute Maximum Ratings Parameter VDS VGS I D @ TA = 25°C I D @ TA = 70°C I DM PD @TA = 25°C PD @TA = 70°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current c Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Q1 Max. Q2 Max. Units V 30 ± 20 6.4 5.1 51 1.4 0.9 9.7 7.8 78 2.0 1.3 0.011 A W 0.016 W/°C °C Q1 Max. Q2 Max. 20 90 20 62.5 Units °C/W -55 to + 150 Thermal Resistance RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead g Junction-to-Ambient fg 1 07/10/06 IRF7902PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ∆ΒVDSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance Q1&Q2 Q1 Q2 Q1 Q2 VGS(th) ∆VGS(th)/∆TJ Gate Threshold Voltage Gate Threshold Voltage Coefficient IDSS Drain-to-Source Leakage Current IGSS gfs Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Qg Total Gate Charge Qgs1 Pre-Vth Gate-to-Source Charge Qgs2 Post-Vth Gate-to-Source Charge Qgd Gate-to-Drain Charge Qgodr Gate Charge Overdrive Qsw Switch Charge (Qgs2 + Qgd) Qoss Output Charge RG Gate Resistance td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time tf Fall Time Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 30 ––– ––– ––– ––– ––– ––– 1.35 ––– ––– ––– ––– ––– ––– 13 19 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.023 0.025 18.1 23.8 11.5 14.9 1.8 -4.7 -5.9 ––– ––– ––– ––– ––– ––– 4.6 6.5 0.9 1.4 0.5 0.8 1.8 2.3 1.4 2.0 2.3 3.1 3.0 4.4 3.1 3.1 7.4 6.1 8.2 8.6 8.4 8.2 3.4 3.3 580 900 130 190 74 86 Max. ––– ––– ––– 22.6 29.7 14.4 18.7 2.25 ––– ––– 1.0 150 100 -100 ––– ––– 6.9 9.8 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 4.9 4.9 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Conditions Units VGS = 0V, ID = 250µA V V/°C Reference to 25°C, ID = 1mA mΩ V mV/°C µA nA S nC e e e e VGS = 10V, ID = 6.4A VGS = 4.5V, ID = 5.1A VGS = 10V, ID = 9.7A VGS = 4.5V, ID = 7.8A VDS = VGS, ID = 25µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 5.1A VDS = 15V, ID = 7.8A Q1 VDS = 15V VGS = 4.5V, ID = 5.1A Q2 VDS = 15V VGS = 4.5V, ID = 7.8A nC VDS = 16V, VGS = 0V Ω Q1 VDD = 15V, VGS = 4.5V ID = 5.1A ns Q2 VDD = 15V, VGS = 4.5V ID = 7.8A Clamped Inductive Load pF VGS = 0V VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Q1 Max. 3.4 5.1 Q2 Max. 7.3 7.8 Units mJ A Diode Characteristics VSD Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge IS ISM c 2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– 7.8 12 1.5 3.1 Max. 1.7 2.5 51 78 1.0 1.0 12 18 2.3 4.7 Units Conditions A MOSFET symbol showing the A integral reverse p-n junction diode. TJ = 25°C, IS = 5.1A, VGS = 0V V TJ = 25°C, IS = 7.8A, VGS = 0V ns Q1 TJ = 25°C, IF = 5.1A, VDD = 15V, di/dt = 100A/µs nC Q2 TJ = 25°C, IF = 7.8A, VDD = 15V, di/dt = 100A/µs e e e e www.irf.com IRF7902PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 100 100 10 BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 2.5V 0.1 ≤60µs PULSE WIDTH 10 BOTTOM 1 2.5V ≤60µs PULSE WIDTH Tj = 25°C 0.01 Tj = 25°C 0.1 0.1 1 10 100 0.1 1000 Fig 1. Typical Output Characteristics 10 100 1000 Fig 2. Typical Output Characteristics 100 100 10 BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V TOP ID, Drain-to-Source Current (A) TOP ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 2.5V 1 ≤60µs PULSE WIDTH BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 10 2.5V ≤60µs PULSE WIDTH Tj = 150°C Tj = 150°C 1 0.1 0.1 1 10 100 0.1 1000 1 10 100 1000 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 3. Typical Output Characteristics 100 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 10 TJ = 150°C 1 T J = 25°C VDS = 15V ≤60µs PULSE WIDTH 0.1 10 T J = 150°C T J = 25°C 1 VDS = 15V ≤60µs PULSE WIDTH 0.1 1 2 3 4 5 6 VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 1 2 3 4 5 6 VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 3 IRF7902PbF Typical Characteristics Q1 - Control FET 10000 Q2 - Synchronous FET 10000 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd Coss = C ds + Cgd C, Capacitance (pF) C, Capacitance (pF) Coss = C ds + Cgd 1000 Ciss Coss 100 Crss 1000 Ciss Coss 100 10 Crss 10 1 10 100 1 VDS, Drain-to-Source Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 6.0 6.0 ID= 7.8A VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) ID= 5.1A 5.0 VDS= 24V VDS= 15V VDS= 6.0V 4.0 3.0 2.0 1.0 5.0 VDS= 24V VDS= 15V 4.0 VDS= 6.0V 3.0 2.0 1.0 0.0 0.0 0 1 2 3 4 5 0 6 Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage 3 4 5 6 7 8 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 1 100µsec 0.1 1msec T A = 25°C Tj = 150°C Single Pulse 0.01 10msec ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 2 Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 1 100µsec 0.1 1msec T A = 25°C Tj = 150°C Single Pulse 0.01 100msec 0.001 10msec 100msec 0.001 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 11. Maximum Safe Operating Area 4 1 QG, Total Gate Charge (nC) QG, Total Gate Charge (nC) 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com IRF7902PbF Typical Characteristics Q2 - Synchronous FET 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) RDS(on) , Drain-to-Source On Resistance (Normalized) Q1 - Control FET ID = 6.4A VGS = 10V 1.5 1.0 ID = 9.7A VGS = 10V 1.5 1.0 0.5 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) T J , Junction Temperature (°C) Fig 13. Normalized On-Resistance vs. Temperature Fig 14. Normalized On-Resistance vs. Temperature 100 100 ISD, Reverse Drain Current (A) ISD, Reverse Drain Current (A) 2.0 T J = 150°C 10 T J = 25°C 1 T J = 150°C 10 T J = 25°C 1 VGS = 0V VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 VSD, Source-to-Drain Voltage (V) ID = 6.4A 50 40 T J = 125°C 20 T J = 25°C 10 4 6 8 10 12 14 16 VGS, Gate -to -Source Voltage (V) Fig 17. Typical On-Resistance vs.Gate Voltage www.irf.com 0.8 1.0 1.2 1.4 1.6 Fig 16. Typical Source-Drain Diode Forward Voltage RDS(on), Drain-to -Source On Resistance (m Ω) RDS(on), Drain-to -Source On Resistance (m Ω) 60 2 0.6 VSD, Source-to-Drain Voltage (V) Fig 15. Typical Source-Drain Diode Forward Voltage 30 0.4 40 ID = 9.7A 30 20 T J = 125°C 10 T J = 25°C 0 2 4 6 8 10 12 14 16 VGS, Gate -to -Source Voltage (V) Fig 18. Typical On-Resistance vs.Gate Voltage 5 IRF7902PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 10 7 6 ID, Drain Current (A) ID, Drain Current (A) 8 5 4 3 2 6 4 2 1 0 0 25 50 75 100 125 25 150 Fig 19. Maximum Drain Current vs. Ambient Temperature VGS(th) , Gate Threshold Voltage (V) 2.0 ID = 250µA 1.5 125 150 2.0 ID = 250µA 1.5 1.0 -75 -50 -25 0 25 50 -75 -50 -25 75 100 125 150 Fig 21. Threshold Voltage vs. Temperature ID TOP 2.0A 2.4A BOTTOM 6.4A 10 25 50 75 100 125 150 Fig 22. Threshold Voltage vs. Temperature EAS , Single Pulse Avalanche Energy (mJ) 14 12 0 T J , Temperature ( °C ) T J , Temperature ( °C ) EAS , Single Pulse Avalanche Energy (mJ) 100 2.5 1.0 8 6 4 2 30 ID 2.4A 2.8A BOTTOM 7.8A TOP 25 20 15 10 5 0 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 23. Maximum Avalanche Energy vs. Drain Current 6 75 Fig 20. Maximum Drain Current vs. Ambient Temperature 2.5 VGS(th) , Gate Threshold Voltage (V) 50 T A , Ambient Temperature (°C) T A , Ambient Temperature (°C) 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 24. Maximum Avalanche Energy vs. Drain Current www.irf.com IRF7902PbF Thermal Response ( Z thJA ) 1000 100 D = 0.50 0.20 0.10 0.05 10 0.02 0.01 1 τJ R1 R1 τJ τ1 SINGLE PULSE ( THERMAL RESPONSE ) 0.1 R2 R2 R3 R3 τA τ2 τ1 τ2 τ3 τ3 Ri (°C/W) τi (sec) 3.031518 0.000064 7.306226 0.005879 51.39689 0.44864 28.2607 12.37 R4 R4 τ4 τ τ4 Ci= τi/Ri Ci= τi/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1) 100 Thermal Response ( Z thJA ) D = 0.50 0.20 0.10 10 0.05 R1 R1 0.02 1 τJ 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.1 τJ τ1 R2 R2 R3 R3 R4 R4 τA τ1 τ2 τ2 τ3 τ3 τ4 τ τ4 Ci= τi/Ri Ci= τi/Ri Ri (°C/W) τi (sec) 2.445866 0.000118 9.382382 0.020778 33.63681 0.70843 17.05217 24.5 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2) Fig 27. Layout Diagram www.irf.com 7 IRF7902PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 29a. Unclamped Inductive Test Circuit Fig 29b. Unclamped Inductive Waveforms LD VDS VDS 90% + VDD D.U.T 10% VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 30a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. tr td(off) Fig 30b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. +VDS Vgs(th) VGS -3mA IG ID Current Sampling Resistors Fig 31a. Gate Charge Test Circuit 8 Qgs1 Qgs2 Qgd Qgodr Fig 31b. Gate Charge Waveform www.irf.com IRF7902PbF SO-8 Package Outline Dimensions are shown in milimeters (inches) ' ,1&+(6 0,1 0$; $ $ E F ' ( H %$6,& H %$6,& + . / \ ',0 % $ + >@ ( $ ; H H ;E >@ $ 0,//,0(7(56 0,1 0$; %$6,& %$6,& .[ & $ \ >@ ;/ ;F & $ % )22735,17 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( ;>@ >@ ;>@ ;>@ SO-8 Part Marking Information (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 www.irf.com ;;;; ) '$7(&2'(<:: 3 ',6*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 9 IRF7902PbF SO-8 Tape and Reel Dimensions are shown in milimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, Q1: L = 0.26mH, RG = 25Ω, IAS = 5.1A; Q2: L = 0.24mH, RG = 25Ω, IAS = 7.8A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2006 10 www.irf.com