IRF IRF8736PBF

PD - 97120
IRF8736PbF
HEXFET® Power MOSFET
Applications
l Synchronous MOSFET for Notebook
Processor Power
l Synchronous Rectifier MOSFET for
Isolated DC-DC Converters in
Networking Systems
Benefits
l Very Low RDS(on) at 4.5V VGS
l Low Gate Charge
l Fully Characterized Avalanche Voltage
and Current
l 100% Tested for RG
l Lead -Free
VDSS
RDS(on) max
Qg Typ.
30V 4.8m @VGS = 10V 17nC
:
A
A
D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
SO-8
Top View
Absolute Maximum Ratings
Max.
Units
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Parameter
30
± 20
V
14.4
IDM
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
2.5
VDS
VGS
ID @ TA = 25°C
ID @ TA = 70°C
f
f
18
c
PD @TA = 25°C
Power Dissipation
PD @TA = 70°C
Power Dissipation
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
A
144
W
1.6
W/°C
°C
0.02
-55 to + 150
Thermal Resistance
Parameter
RθJL
RθJA
g
Junction-to-Ambient fg
Junction-to-Drain Lead
Typ.
Max.
Units
–––
20
°C/W
–––
50
Notes  through … are on page 9
www.irf.com
1
08/1/07
IRF8736PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
Min. Typ. Max. Units
30
–––
–––
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
0.022
3.9
–––
4.8
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 18A
Gate Threshold Voltage
–––
1.35
5.5
1.8
6.8
2.35
VGS = 4.5V, ID = 14.4A
VDS = VGS, ID = 50µA
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-6.1
–––
–––
1.0
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
150
100
nA
VDS = 24V, VGS = 0V, TJ = 125°C
VGS = 20V
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
52
–––
–––
-100
–––
S
VGS = -20V
VDS = 15V, ID = 14.4A
Total Gate Charge
Pre-Vth Gate-to-Source Charge
–––
–––
17
4.4
26
–––
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
1.9
5.8
–––
–––
Qgodr
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
4.9
7.7
–––
–––
Qoss
Output Charge
–––
7.1
–––
nC
RG
td(on)
tr
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
1.3
12
15
2.2
–––
–––
Ω
td(off)
tf
Turn-Off Delay Time
Fall Time
–––
–––
13
7.5
–––
–––
ns
Ciss
Coss
Input Capacitance
Output Capacitance
–––
–––
2315
449
–––
–––
Crss
Reverse Transfer Capacitance
–––
219
–––
VGS(th)
∆VGS(th)
gfs
Qg
Qgs1
Qgs2
Qgd
V
Conditions
Drain-to-Source Breakdown Voltage
VGS = 0V, ID = 250µA
e
V
e
mV/°C
µA VDS = 24V, VGS = 0V
VDS = 15V
nC
VGS = 4.5V
ID = 14.4A
See Fig. 16
VDS = 10V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 14.4A
pF
e
RG = 1.8Ω
See Fig. 14
VGS = 0V
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
–––
Max.
126
Units
mJ
–––
14.4
A
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
3.1
ISM
(Body Diode)
Pulsed Source Current
–––
–––
144
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 14.4A, VGS = 0V
trr
Qrr
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
16
19
24
29
ns
nC
TJ = 25°C, IF = 14.4A, VDD = 10V
di/dt = 300A/µs
ton
Forward Turn-On Time
2
c
MOSFET symbol
A
showing the
integral reverse
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF8736PbF
1000
1000
100
10
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
1
0.1
0.01
2.3V
BOTTOM
10
2.3V
1
≤ 60µs PULSE WIDTH
Tj = 150°C
≤ 60µs PULSE WIDTH
Tj = 25°C
0.001
0.1
0.1
1
10
100
0.1
1
10
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current (A)
100
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
100
10
TJ = 150°C
1
TJ = 25°C
0.1
VDS = 15V
≤ 60µs PULSE WIDTH
0.01
1.0
2.0
3.0
4.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5.0
ID = 18A
VGS = 10V
1.5
1.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF8736PbF
5
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
10000
Coss = Cds + Cgd
Ciss
1000
Coss
Crss
ID= 14.4A
VDS= 24V
VDS= 15V
4
3
2
1
0
100
1
10
0
100
4
16
20
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
12
Qg, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
100
TJ = 150°C
10
TJ = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100µsec
1msec
10
10msec
1
VGS = 0V
TA = 25°C
Tj = 150°C
Single Pulse
0.1
0.1
0.2
0.4
0.6
0.8
1.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
8
1.2
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF8736PbF
20
2.4
2.2
VGS(th) Gate threshold Voltage (V)
ID , Drain Current (A)
16
12
8
4
2.0
ID = 50µA
1.8
1.6
1.4
1.2
1.0
0
0.8
25
50
75
100
125
150
-75
-50
-25
TA, Ambient Temperature (°C)
Fig 9. Maximum Drain Current Vs.
Ambient Temperature
0
25
50
75
100
125
150
TJ , Temperature ( °C )
Fig 10. Threshold Voltage Vs. Temperature
100
Thermal Response ( ZthJA )
D = 0.50
10
0.20
0.10
0.05
R1
R1
0.02
1
τJ
0.01
τJ
τ1
R2
R2
R3
R3
R4
R4
τa
τ1
τ2
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.1
Ri (°C/W) τι (sec)
1.396574 0.000246
7.206851 0.037927
27.1278
1.0882
14.26877
30.3
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF8736PbF
D.U.T
RG
20V
DRIVER
L
VDS
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
EAS, Single Pulse Avalanche Energy (mJ)
600
15V
ID
1.28A
1.75A
BOTTOM 14.4A
500
TOP
400
300
200
100
0
tp
25
50
75
100
125
150
Starting T J, Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
V DS
Fig 12b. Unclamped Inductive Waveforms
V GS
D.U.T.
RG
Current Regulator
Same Type as D.U.T.
RD
+
-V DD
V GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
50KΩ
12V
.2µF
Fig 14a. Switching Time Test Circuit
.3µF
D.U.T.
+
V
- DS
VDS
90%
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 13. Gate Charge Test Circuit
6
10%
VGS
td(on)
tr
t d(off)
tf
Fig 14b. Switching Time Waveforms
www.irf.com
IRF8736PbF
Driver Gate Drive
D.U.T
P.W.
+
ƒ
+
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgodr
Qgd
Qgs2 Qgs1
Fig 16. Gate Charge Waveform
www.irf.com
7
IRF8736PbF
SO-8 Package Outline
Dimensions are shown in milimeters (inches)
'
' ,0
%
$
+
>@
(
;
$
$
E
F
'
(
H
H
+
.
/
\
$
H
H
;E
>@
$
$
,1& +( 6
0 ,1
0 $;
%$6 ,&
%$6 ,&
ƒ
ƒ
0 ,//,0 ( 7(5 6
0 ,1
0 $;
% $6,&
%$6 ,&
ƒ
ƒ
.[ƒ
&
\
>@
;/
;F
& $ %
)22735,17
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
;>@
>@
;>@
;>@
SO-8 Part Marking Information
(;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'(<::
3 ',6*1$7(6/($')5((
352'8&7237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
8
www.irf.com
IRF8736PbF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 1.21mH, RG = 25Ω, IAS = 14.4A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board
… Rθ is measured at TJ approximately 90°C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.8/2007
www.irf.com
9