PD - 95886A IRLL024Z AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l D Advanced Process Technology Ultra Low On-Resistance 150°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax VDSS = 55V RDS(on) = 60mΩ G ID = 5.0A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. SOT-223 Absolute Maximum Ratings Parameter ID @ TA = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) i ID @ TA = 70°C Continuous Drain Current, VGS @ 10V c IDM Pulsed Drain Current PD @TA = 25°C Power Dissipation PD @TA = 25°C Power Dissipation Linear Derating Factor Gate-to-Source Voltage VGS i j Max. Units 5.0 i 4.0 A 40 2.8 i EAS (Thermally limited) Single Pulse Avalanche Energy d EAS (Tested ) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range c h g 1.0 0.02 ± 16 W W/°C V 21 mJ 38 See Fig.12a, 12b, 15, 16 A mJ -55 to + 150 °C Thermal Resistance Parameter RθJA RθJA www.irf.com i Junction-to-Ambient (PCB mount, steady state) j Junction-to-Ambient (PCB mount, steady state) Typ. Max. Units ––– 45 °C/W ––– 120 1 08/03/04 IRLL024Z Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units 55 ––– ––– ––– ––– 1.0 7.5 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.049 48 ––– ––– ––– ––– ––– ––– ––– ––– 7.0 1.5 4.0 8.6 33 20 15 380 66 36 220 53 93 ––– ––– 60 80 100 3.0 ––– 20 250 200 -200 11 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– V V/°C mΩ V S µA nA nC ns Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 3.0A VGS = 5.0V, ID = 3.0A VGS = 4.5V, ID = 3.0A VDS = VGS, ID = 250µA VDS = 25V, ID = 3.0A VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C VGS = 16V VGS = -16V ID = 3.0A VDS = 44V VGS = 5.0V VDD = 28V ID = 3.0A RG = 56 Ω VGS = 5.0V VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V e e e e e pF f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 5.0 ISM (Body Diode) Pulsed Source Current ––– ––– 40 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ––– ––– ––– ––– 15 9.1 1.3 23 14 c A V ns nC showing the integral reverse D G S p-n junction diode. TJ = 25°C, IS = 3.0A, VGS = 0V TJ = 25°C, IF = 3.0A, VDD = 28V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 4.8mH RG = 25Ω, IAS = 3.0A, VGS =10V. Part not recommended for use above this value. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . 2 Conditions MOSFET symbol Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. When mounted on 1 inch square copper board. When mounted on FR-4 board using minimum recommended footprint. www.irf.com IRLL024Z 100 100 10 BOTTOM 3.0V 1 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V 10 BOTTOM 3.0V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.1 1 0.1 10 0.1 100 1 10 100 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 10 T J = 150°C 10 T J = 25°C 1 VDS = 10V ≤60µs PULSE WIDTH 0.1 0 2 4 6 8 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V TJ = 25°C 8 T J = 150°C 6 4 2 V DS = 10V 300µs PULSE WIDTH 0 0 2 4 6 8 10 12 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRLL024Z 10000 6.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd ID= 3.0A 1000 Ciss Coss 100 5.0 VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) C oss = C ds + C gd Crss VDS= 44V VDS= 28V VDS= 11V 4.0 3.0 2.0 1.0 0.0 10 1 10 0 100 1 2 100 5 6 7 8 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) 100 ISD, Reverse Drain Current (A) 4 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage T J = 150°C 10 TJ = 25°C 1 10 100µsec 1 0.1 0.01 DC 0 1msec 10msec T A = 25°C 0.001 VGS = 0V Tj = 150°C Single Pulse 0.0001 0.0 0.5 1.0 1.5 2.0 2.5 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 3 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 3.0 0.1 1.0 10 100 1000.0 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRLL024Z 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 5 ID, Drain Current (A) 4 3 2 1 ID = 3.0A VGS = 10V 1.5 1.0 0.5 0 25 50 75 100 125 -60 -40 -20 150 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) T A , Ambient Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Ambient Temperature 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 0.1 τJ R1 R1 τJ τ1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci i/Ri Ri (°C/W) τi (sec) 5.3396 0.000805 19.881 0.706300 19.771 20.80000 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRLL024Z DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 100 15V ID 3.0A 0.80A BOTTOM 0.69A TOP 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 2.5 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VCC VGS(th) Gate threshold Voltage (V) 10 V 2.0 ID = 250µA 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRLL024Z Avalanche Current (A) 100 10 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 1 0.05 0.10 0.1 0.01 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 25 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 3.0A 20 15 10 5 0 25 50 75 100 125 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 150 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRLL024Z D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRLL024Z SOT-223 (TO-261AA) Package Outline Dimensions are shown in milimeters (inches) SOT-223 (TO-261AA) Part Marking Information +(;)(7352'8&70$5.,1* 7+,6,6$1,5)/ ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 )/ 3 723 www.irf.com /27&2'( $;;;; $ $66(0%/<6,7( '$7(&2'( &2'( <<:: << <($5 :: :((. 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ %27720 9 IRLL024Z SOT-223 (TO-261AA) Tape & Reel Information Dimensions are shown in milimeters (inches) 4.10 (.161) 3.90 (.154) 2.05 (.080) 1.95 (.077) TR 0.35 (.013) 0.25 (.010) 1.85 (.072) 1.65 (.065) 7.55 (.297) 7.45 (.294) 16.30 (.641) 15.70 (.619) 7.60 (.299) 7.40 (.292) 1.60 (.062) 1.50 (.059) TYP. FEED DIRECTION 12.10 (.475) 11.90 (.469) 2.30 (.090) 2.10 (.083) 7.10 (.279) 6.90 (.272) NOTES : 1. CONTROLLING DIMENSION: MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. 3. EACH O330.00 (13.00) REEL CONTAINS 2,500 DEVICES. 15.40 (.607) 11.90 (.469) 13.20 (.519) 12.80 (.504) 4 330.00 (13.000) MAX. 50.00 (1.969) MIN. NOTES : 1. OUTLINE COMFORMS TO EIA-418-1. 2. CONTROLLING DIMENSION: MILLIMETER.. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 18.40 (.724) MAX. 14.40 (.566) 12.40 (.488) 4 3 Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 10 www.irf.com