MAXIM MAX13175EETU+

19-4595; Rev 1; 7/09
Multiprotocol, Pin-Selectable
Data Interface Chipset
Features
♦ Supports V.28 (RS-232), V.10 (RS-423), V.11
(RS-449/V.36, RS-530, RS-530A, X.21) and V.35
Protocols
The MAX13171E along with the MAX13173E/
MAX13175E, form a complete pin-selectable data terminal equipment (DTE) or data communication equipment
(DCE) interface port that support the V.28 (RS-232),
V.10/V.11 (RS-449/V.36, RS-530, RS-530A, X.21), and
V.35 protocols. The MAX13171E transceivers carry the
high-speed clock and data signals, while the MAX13173E
transceivers carry the control signals. The MAX13171E
can be terminated by the MAX13175E pin-selectable
resistor termination network. The MAX13175E contains six
pin-selectable, multiprotocol cable termination networks.
The MAX13171E/MAX13173E have an internal charge
pump and low-dropout transmitter output stages that
allow V.10-, V.11-, V.28-, and V.35-compliant operation
from a single supply. The MAX13171E/MAX13173E feature a no-cable mode that reduces supply current and
disables all transmitter and receiver outputs (high impedance). Short-circuit current limiting and thermal shutdown
circuitry protects the receiver and transmitter outputs
against excessive power dissipation. The MAX13171E/
MAX13173E have extended ESD protection for all the
transmitter outputs and receivers inputs.
The MAX13171E/MAX13173E/MAX13175E operate over
the +3.135V to +5.5V supply range and are available in
5mm x 7mm, 38-pin TQFN packages. These devices operate over the -40°C to +85°C extended temperature range.
♦ Pin-Selectable Cable Termination Using the
MAX13175E
♦ Pin-Selectable DCE/DTE Configurations
♦ 20/40Mbps (max) Data Rate in RS-449, RS-530,
RS-530A, X.21, and V.35
♦ True Fail-Safe Receivers while Maintaining V.11
and V.35 Compatibility
♦ Operates Over a Wide +3.135V to +5.5V VCC
Supply Range
♦ Flexible VL Logic Reference Input Allows
Interfacing Down to 1.62V
♦ Extended ESD Protection for All the Transmitter
Outputs and Receivers Inputs to GND
♦ Small, 5mm x 7mm, 38-Pin TQFN Package
Ordering Information
Applications
Data Networking
PCI Cards
Telecommunication
Equipment
CSU and DSU
Data Routers
TEMP RANGE
PINPACKAGE
MAX13171EETU+
-40°C to +85°C
38 TQFN-EP*
MAX13173EETU+
-40°C to +85°C
38 TQFN-EP*
PART
MAX13175EETU+
-40°C to +85°C
38 TQFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
Data Switches
Typical Operating Circuit
T4
LL
CTS
DSR
R4
R3
R2
DCD
R1
MAX13173E T3
DTR
RTS
T2
T1
RXD
RXC
R3
R2
TXC
R1
MAX13171E T3
SCTE TXD
T2
T1
MAX13175E
18
13 5 10 8
22 6
23 20 19 4
1
7
16 3
9 17
12 15 11 24 14 2
TXD A (103)
TXD B
SCTE A (113)
SCTE B
TXC A (114)
TXC B
RXC A (115)
RXC B
RXD A (104)
RXD B
SG (102)
SHIELD (101)
RTS A (105)
RTS B
DTR A (108)
DTR B
DCD A (107)
DCD B
DSR A (109)
DSR B
CTS A (106)
CTS B
LL A (141)
DB-25 CONNECTOR
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX13171E/MAX13173E/MAX13175E
General Description
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
ABSOLUTE MAXIMUM RATINGS
Transmitter Outputs
T_OUT_, T_OUT_/R_IN_
(no-cable, V.28, V.10 modes) ...............................-15V to +15V
Short-Circuit Duration to GND..................................Continuous
Receiver Inputs
R_IN_, T_OUT_/R_IN ............................................-15V to +15V
R_INA to R_INB, T3OUTA/R3INA
to T3OUTB/R3INB ................................................-15V to +15V
Continuous Power Dissipation (TA = +70°C)
38-Pin TQFN (derate 35.7mW/°C above +70°C) ........2857mW
Junction-to-Case Thermal Resistance (θJC) (Note 1)
38-Pin TQFN ....................................................................1°C/W
Junction-to-Ambient Thermal Resistance (θJA) (Note 1)
38-Pin TQFN ..................................................................28°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range ............................-65°C to +150°C
Lead Temperature (soldering, 10s) ................................+300°C
(All voltages to GND, unless otherwise noted.)
Supply Voltages
VCC ........................................................................ -0.3V to +6V
VL ........................................................................... -0.3V to +6V
VEE ..................................................................... +0.3V to -7.1V
VDD .................................................................... -0.3V to +7.1V
VDD to VCC ............................................................-0.3V to +6V
Logic-Input Voltages
M0, M1, M2, DCE/DTE, LATCH, INVERT, T_IN ..... -0.3V to +6V
Termination Network Inputs
R_A, R_B, R_C.......................................................-15V to +15V
R_A to R_B (only for high-Z state) .....................................±14V
R_A to R_B...........................................................................±6V
R_A to R_C (only for high-Z state) .....................................±14V
R_A to R_C...........................................................................±3V
R_B to R_C (only for high-Z state) .......................................±3V
Logic-Output Voltages
R_OUT ........................................................-0.3V to (VL + 0.3V)
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer
board. For detailed information on package thermal considerations, refer to http://www.maxim-ic.com/thermal-tutorial.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
MAX13171E ELECTRICAL CHARACTERISTICS
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF (Figure 15), TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
VCC Operating Range
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
VCC
3.135
5.5
V
VL Operating Range
VL
1.62
VCC
V
VL Supply Current
IL
VCC Supply Current (DCE Mode)
(Digital Inputs = GND or VCC)
(Transmitter Outputs Static)
ICC
All inputs connected to GND, all receiver
outputs low, VL = +5.5V
550
800
µA
RS-530, RS-530A, X.21, V.36/RS-449
mode (V.11), no load
15
28
mA
RS-530, RS-530A, X.21, V.36/RS-449
mode (V.11), full load
150
200
mA
mA
V.35 mode, no load
21
38
V.35 mode, full load
150
210
mA
V.28 mode, no load
15
30
mA
V.28 mode, full load
Internal Power Dissipation
(DCE Mode)(Static)
2
PD
28
42
mA
No-cable mode
0.01
10
µA
RS-530, RS-530A, X.21, V.36/RS-449
mode (V.11), full load
100
V.35 mode, full load
500
V.28 mode, full load
70
_______________________________________________________________________________________
mW
Multiprotocol, Pin-Selectable
Data Interface Chipset
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF (Figure 15), TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
V.28, V.35 modes, no load (Note 3)
Positive Charge-Pump Output
Voltage
Negative Charge-Pump Output
Voltage
VDD
VEE
Thermal Shutdown Protection
MAX
5.93
7.1
V.28 mode, full load (Note 3)
5.6
5.86
V.35 mode, full load (Note 3)
4.6
5.1
RS-530, RS-530A, X.21, V.36/RS-449 mode
(V.11) (Note 3)
4.9
5.26
5.7
VCC
V.28, V.35 modes, no load (Note 3)
-5.89
V.28 mode, full load (Note 3)
-5.74
-5.4
V.35 mode, full load, Note 3
-4.46
-3.8
-4.47
-4.16
RS-530, RS-530A, X.21, V.36/RS-449 mode
(V.11) (Note 3)
-4.84
UNITS
V
No-cable mode
No-cable mode
V
0
Time until all VDD and VEE specifications
meet
Charge-Pump Enable Time
TYP
THSD
<1
ms
+145
°C
LOGIC INPUTS (M0, M1, M2, DCE/DTE, T1IN, T2IN, T3IN)
Input High Voltage
VIH
Input Low Voltage
VIL
Logic-Input Current
IIN
Pullup Resistor
RPUIN
0.66 x VL
V
0.33 x VL
T1IN, T2IN, T3IN
-1
M0, M1, M2, DCE/DTE to VL
50
100
V
+1
µA
170
kΩ
LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT)
Output High Voltage
VOH
ISOURCE = 4mA
0.66 x VL
Output Low Voltage
VOL
ISINK = 4mA
Output Pullup Resistor
RPUY
No-cable mode (to VL)
Open-Circuit Differential Output
Voltage
VODO
Open circuit, R = 1.95kΩ, Figure 1
-VCC
Loaded Differential Output
Voltage
VODL
R = 50Ω, Figure 1
0.5 x
VODO
R = 50Ω, Figure 1
I2I
V
0.33 x VL
71.4
V
kΩ
V.11 TRANSMITTER
+VCC
V
V
Change in Magnitude of Output
Differential Voltage
|∆VOD|
R = 50Ω, Figure 1
0.2
V
Common-Mode Output Voltage
VOC
R = 50Ω, Figure 1
3.0
V
Change in Magnitude of
Common-Mode Output Voltage
|∆VOC|
R = 50Ω, Figure 1 (Note 3)
0.2
V
150
mA
Short-Circuit Current
ISC
VOUT = GND
Rise Time
tr
Figures 2, 6
4.5
ns
Fall Time
tf
Figures 2, 6
6.5
ns
_______________________________________________________________________________________
3
MAX13171E/MAX13173E/MAX13175E
MAX13171E ELECTRICAL CHARACTERISTICS (continued)
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
MAX13171E ELECTRICAL CHARACTERISTICS (continued)
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF (Figure 15), TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
Transmitter Input to Output
Propagation Delay (Figures 2, 6)
tPHL, tPLH
Data Skew
|tPHL-tPLH|
Channel-to-Channel Skew
tSKEW
TYP
MAX
Figures 2, 6
CONDITIONS
MIN
22
28
VL ≥ +3V, Figures 2, 6
20
25
UNITS
ns
Figures 2, 6 (Note 3)
2
ns
Figures 2, 6 (Notes 3, 4)
3
ns
-50
mV
V.11 RECEIVER
Differential Threshold Voltage
Input Hysteresis
Receiver Input Current
VTH
-7V ≤ VCM ≤ +7V
∆VTH
-7V ≤ VCM ≤ +7V
-200
15
IIN
-10V ≤ VA,B ≤ +10V
-0.66
Receiver Input Resistance
RIN
-10V ≤ VA,B ≤ +10V
15
Rise or Fall Time
tr, tf
Figures 2, 7
Receiver Input to Output Delay
tPHL, tPLH
Figures 2, 7
Data Skew
|tPHL-tPLH|
Channel-to-Channel Skew
tSKEWR
mV
+0.66
30
mA
kΩ
3
ns
2.5
ns
Figures 2, 7 (Note 3)
3
ns
Figures 2, 7 (Notes 3, 4)
3
ns
V.35 TRANSMITTER
Differential Output Voltage
VOD
Full load, -4V < VCM < +4V, Figure 3
±0.44
±0.55
±0.66
V
Output High Current
IOH
VA,B = 0V
-13
-11
-9
mA
Output Low Current
IOL
VA,B = 0V
9
11
13
mA
±0.05
±5
µA
Output Leakage Current
Rise or Fall Time
Transmitter Input to Output Delay
Data Skew
Channel-to-Channel Skew
IZ
tr, tf
tPLH, tPHL
|tPLH - tPHL|
tSKEWR
-0.25V ≤ VOUT ≤ +0.25V, power off or
no-cable mode
Figures 3, 6
5
Figures 3, 6
19
ns
35
ns
Figures 3, 6 (Note 3)
3
ns
Figures 3, 6 (Notes 3, 4)
3
ns
-50
mV
V.35 RECEIVER
Differential Threshold Voltage
Input Hysteresis
VTH
-2V ≤ VCM ≤ +2V
∆VTH
-2V ≤ VCM ≤ +2V
-200
15
Receiver Input Current
IIN
-10V ≤ VA,B ≤ +10V
-0.66
Receiver Input Resistance
RIN
-10V ≤ VA,B ≤ +10V
15
Rise or Fall Time
mV
+0.66
30
mA
kΩ
tr, tf
Figures 3, 7
Receiver Input to Output Delay
tPHL, tPLH
Figures 3, 7
25
ns
Data Skew
|tPHL- tPLH|
Figures 3, 7 (Note 3)
3
ns
Figures 3, 7 (Notes 3, 4)
3
ns
Channel-to-Channel Skew
tSKEWR
3
ns
V.28 TRANSMITTER
Output-Voltage Swing
Short-Circuit Current
4
|VOD|
Open circuit
RL = 3kΩ
7.1
5
6
IOH
_______________________________________________________________________________________
85
V
mA
Multiprotocol, Pin-Selectable
Data Interface Chipset
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF (Figure 15), TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
Output Leakage Current
Output Slew Rate
Transmitter Input to Output Delay
SYMBOL
IZ
CONDITIONS
MIN
-0.25V ≤ VOUT ≤ +0.25V, power off or
no-cable mode
SRR/F
RL = 3kΩ, CL = 2500pF (swing in ±3V),
Figures 4, 10
tPHL, tPLH
RL = 3kΩ, CL = 2500pF, Figures 4, 10
TYP
MAX
UNITS
±0.05
±5
µA
30
V/µs
2
µs
2
V
4
1
V.28 RECEIVER
Input Threshold Low
VIL
Input Threshold High
VIH
1.2
VHYST
0.25
Input Hysteresis
0.8
Input Resistance
RIN
-15V ≤ VIN ≤ +15V
Rise or Fall Time
tr, tf
Figures 5, 11
tPHL, tPLH
Figures 5, 11
Receiver Input to Output Delay
3
1.2
5
V
V
7
3
kΩ
ns
150
ns
ESD PROTECTION
T_OUT, T3OUT_/R1IN_, R_IN to
GND
Human Body Model
±15
Air Gap Discharge IEC 61000-4-2
±12
Contact Discharge IEC 61000-4-2
±8
kV
MAX13173E ELECTRICAL CHARACTERISTICS
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF (Figure 15), TA = -40°C to +85°C, unless
otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
VCC Operating Range
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
VCC
3.135
5.5
V
VL Operating Range
VL
1.62
VCC
V
VL Supply Current
IL
VCC Supply Current
ICC
Internal Power Dissipation
Positive Charge-Pump Output
Voltage
PD
VDD
All inputs connected to GND, all receiver
outputs low, VL = +5.5V
680
1100
µA
RS-530A, no load
11
21
mA
RS-530, X.21, V.36/RS-449, DCE mode,
INVERT = low, full load, transmitter outputs
static, digital inputs = GND or VL
41
210
mA
V.28 mode, no load
21
38
mA
V.28 mode, full load
42
65
mA
No-cable mode
0.01
10
µA
RS-530, X.21, V.36/RS-449; DCE mode,
INVERT = low, full load
120
V.28 mode, no load (Note 3)
5.9
V.28 mode with full load (Note 3)
5.6
RS-530 mode, full load (Note 3)
4.84
mW
7.1
5.79
5.15
RS-530A mode, full load
5.15
No-cable mode
VCC
5.5
V
_______________________________________________________________________________________
5
MAX13171E/MAX13173E/MAX13175E
MAX13171E ELECTRICAL CHARACTERISTICS (continued)
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
MAX13173E ELECTRICAL CHARACTERISTICS (continued)
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF (Figure 15), TA = -40°C to +85°C, unless
otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
Negative Charge-Pump Output
Voltage
SYMBOL
VEE
CONDITIONS
MIN
V.28 mode with full load (Note 3)
-5.55
-5.3
-4.44
-4.17
RS-530 mode, full load (Note 3)
-4.71
UNITS
V
-4.44
No-cable mode
0
THSD
Time until all VDD and VEE specifications
meet
Charge-Pump Enable Time
MAX
-5.83
RS-530A mode, full load
Thermal Shutdown Protection
TYP
V.28 mode, no load (Note 3)
+145
°C
<1
ms
LOGIC INPUTS (M0, M1, M2, DCE/DTE, INVERT, T1IN, T2IN, T3IN, T4IN, T5IN/R5OUT)
Input High Voltage
VIH
Input Low Voltage
VIL
Logic-Input Current
Pullup Resistor
IIN
RPUIN
0.66 x VL
V
0.33 x VL
T1IN, T2IN, T3IN, T4IN
-1
M0, M1, M2, DCE/DTE, INVERT to VL
50
100
V
+1
µA
170
kΩ
LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT, R4OUT, T5IN/R5OUT)
Output High Voltage
VOH
ISOURCE = 4mA
Output Low Voltage
VOL
ISINK = 4mA
0.66 x VL
Output Pullup Resistor
RPUY
No-cable mode (to VL)
VODO
Open circuit, R = 1.95kΩ, Figure 1
-VCC
R = 50Ω, Figure 1
0.5 x
VODO
R = 50Ω, Figure 1
|2|
V
0.33 x VL
71.4
V
kΩ
V.11 TRANSMITTER (T1, T2, T3)
Open-Circuit Differential Output
Voltage
+VCC
V
Loaded Differential Output
Voltage
VODL
Change in Magnitude of Output
Differential Voltage
|∆VOD|
R = 50Ω, Figure 1
0.2
V
Common-Mode Output Voltage
VOC
R = 50Ω, Figure 1
3.0
V
Change in Magnitude of
Common-Mode Output Voltage
|∆VOC|
R = 50Ω, Figure 1 (Note 3)
0.2
V
VOUT = GND
150
mA
±0.05
±5
µA
Short-Circuit Current
ISC
V
IZ
-0.25V ≤ VOUT ≤ +0.25V, power-off or nocable mode
Rise Time
tr
Figures 2, 6
4
10
ns
Fall Time
tf
Figures 2, 6
6
10
ns
Figures 2, 6
20
28
ns
Output Leakage Current
Transmitter Input to Output Prop
Delay
tPHL, tPLH
Data Skew
|tPHL- tPLH|
Channel-to-Channel Skew
6
tSKEW
Figures 2, 6, VL ≥ +3V
25
ns
Figures 2, 6 (Note 3)
2
ns
Figures 2, 6 (Notes 3, 4)
3
ns
_______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF (Figure 15), TA = -40°C to +85°C, unless
otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
-50
mV
V.11 RECEIVER (R1, R2, R3)
Differential Threshold Voltage
VTH
-7V ≤ VCM ≤ +7V
Input Hysteresis
∆VTH
-7V ≤ VCM ≤ +7V
-200
15
Receiver Input Current
IIN
-10V ≤ VA,B ≤ +10V
-0.66
Receiver Input Resistance
RIN
-10V ≤ VA,B ≤ +10V
15
Rise or Fall Time
mV
+0.66
30
mA
kΩ
tr, tf
Figures 2, 7
Receiver Input to Output Delay
tPHL, tPLH
Figures 2, 7
27
ns
Data Skew
|tPHL- tPLH|
Figures 2, 7 (Note 3)
3
ns
Figures 2, 7 (Notes 3, 4)
3
ns
Channel-to-Channel Skew
tSKEWR
3
ns
V.10 TRANSMITTER (T2, T4, T5)
Open-Circuit Output Voltage
Swing
VO
Output-Voltage Swing
VT
Short-Circuit Current
ISC
Output Leakage Current
IZ
Rise or Fall Time
Transmitter Input to Output Delay
RL = 3.9kΩ (out high)
4
6
RL = 3.9kΩ (out low)
-6
-4
RL = 450Ω (out high)
3.6
RL = 450Ω (out low)
-3.6
RL = 450Ω
0.9 x
|VO|
VO = GND
-55
-0.25V ≤ VOUT ≤ +0.25V, power-off or
no-cable mode
±0.05
V
V
+55
mA
+5
µA
tr, tf
RL = 450Ω, CL = 100pF, Figure 8
2
µs
tPLH, tPHL
RL = 450Ω, CL = 100pF, Figure 8
1
µs
V.10 RECEIVER (R2, R4, R5)
Input Threshold Voltage
VTH
Input Hysteresis
∆VTH
50
25
Receiver Input Current
IIN
-10V ≤ VA ≤ +10V
-0.66
Receiver Input Resistance
RIN
-10V ≤ VA ≤ +10V
15
Rise or Fall Time
Receiver Input to Output Delay
Data Skew
250
mV
+0.66
mA
30
kΩ
ns
tr, tf
Figures 5, 9
3
tPLH
Figure 9
55
tPHL
Figure 9
109
Figures 5, 9 (Note 3)
60
|tPHL - tPLH|
mV
ns
ns
V.28 TRANSMITTER (All CHANNELS)
Output-Voltage Swing
Short-Circuit Current
Output Leakage Current
|VOD|
Open circuit
RL = 3kΩ
7.1
5
6
IOH
IZ
-0.25V ≤ VOUT ≤ +0.25V, power-off or
no-cable mode
±0.05
V
90
mA
±5
µA
_______________________________________________________________________________________
7
MAX13171E/MAX13173E/MAX13175E
MAX13173E ELECTRICAL CHARACTERISTICS (continued)
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
MAX13173E ELECTRICAL CHARACTERISTICS (continued)
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF, Figure 15, TA = -40°C to +85°C, unless
otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
Output Slew Rate
Transmitter Input to Output Delay
SYMBOL
CONDITIONS
SRR/F
RL = 3kΩ, CL = 2500pF (swing in ±3V)
Figures 4, 10
tPHL, tPLH
RL = 3kΩ, CL = 2500pF, Figures 4, 10
MIN
TYP
4
1
MAX
UNITS
30
V/µs
2
µs
2
V
V.28 RECEIVER (All CHANNELS)
Input Threshold Low
VIL
Input Threshold High
VIH
1.2
VHYST
0.25
Input Hysteresis
0.8
Input Resistance
RIN
-15V ≤ VIN ≤ +15V
Rise or Fall Time
tr, tf
Figures 5, 11
tPHL, tPLH
Figures 5, 11
Receiver Input to Output Delay
3
1.2
5
V
V
7
3
kΩ
ns
150
ns
ESD PROTECTION
T_OUT, T_OUT/R_IN_, R_IN
Human Body Model
±15
Air Gap Discharge IEC 61000-4-2
Contact Discharge
±15
kV
±5
MAX13175E ELECTRICAL CHARACTERISTICS (continued)
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF, Figure 15, TA = -40°C to +85°C, unless
otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
VCC Operating Range
VL Operating Range
SYMBOL
MAX
UNITS
VCC
CONDITIONS
3.135
MIN
TYP
5.5
V
VL
1.62
VCC
V
VDD Operating Range
VDD
4.5
7.1
V
VEE Operating Range
VEE
-7.1
-4
V
VL POR Rising Threshold
VCC POR Rising Threshold
VDD Supply Current
VCC Supply Current
0.7
1.06
1.46
V
1
1.88
2.75
V
IDD
All inputs connected to GND or VL, except
no-cable mode
0.05
0.25
mA
ICC
All inputs connected to GND or VL, except
no-cable mode
2.15
5.9
mA
1.29
2.6
mA
+1
µA
ICC_NOCAB VEE = 0V, M[x] = 1111 (Note 5)
VL Supply Current
IL
All inputs connected to GND or VL
-1
VEE Supply Current
IEE
All inputs connected to GND or VL
-3.5
-1
mA
TERMINATOR INPUTS
Differential-Mode Impedance
V.35 Mode
-2V ≤ VCM ≤ +2V, all channels, Figure 12
90
104
110
Ω
Common-Mode Impedance V.35
Mode
-2V ≤ VCM ≤ +2V, all channels, Figure 13
135
153
165
Ω
8
_______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
(VCC = +3.135V to +5.5V, VL = +1.62V to +5.5V, C1 = C2 = 1µF, C3 = C4 = C5 = 4.7µF, Figure 15, TA = -40°C to +85°C, unless
otherwise noted. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
-7V ≤ VCM ≤ +7V, all channels, except nocable mode, Figure 12
Differential-Mode Impedance
V.11 Mode
MIN
TYP
MAX
100
104
110
UNITS
Ω
-7V ≤ VCM ≤ +7V, no cable, VEE = 0V,
VAB < 2V, Figure 12
115
Differential Path Enable Time
50
µs
Differential Path Disable Time
300
µs
Common-Mode Path Enable Time
12
µs
Common-Mode Path Disable
Time
2
µs
High-Impedance Leakage
Current
IZ
-15V ≤ VR_A ≤ +15V
-50
+50
µA
LOGIC INPUTS (M0, M1, M2, LATCH, DCE/DTE)
Input High Voltage
VIH
Input Low Voltage
VIL
Logic Input Current
IIN
0.66 x VL
V
0.33 x VL
VIN = GND or VL
-1
+1
V
µA
ESD PROTECTION
Human Body Model
±15
R_A, R_B to GND
Air Gap Discharge IEC 61000-4-2
±10
Contact Discharge IEC 61000-4-2
±6
All Other Pins
Human Body Model
±2
kV
kV
Note 2: All devices are 100% production tested at TA = +85°C for the MAX13171E/MAX13173E and TA = +25°C for the
MAX13175E. Specifications over temperature are guaranteed by design.
Note 3: Guaranteed by design, not production tested.
Note 4: Output-to-output skews are evaluated as difference of propagation delays between different channels in the same condition
and for the same polarity (LH or HL).
Note 5: M[x] is the input bus DTE/DCE, M2, M1, M0.
_______________________________________________________________________________________
9
MAX13171E/MAX13173E/MAX13175E
MAX13175E ELECTRICAL CHARACTERISTICS (continued)
MAX13171E Typical Operating Characteristics
(VCC = +3.3V, VL = +1.8V, TA = +25°C, unless otherwise noted.)
V.28 SUPPLY CURRENT
vs. DATA RATE
150
100
MAX13171E toc02
30
0
0.1
10
200
150
100
0
0
10,000
1000
250
50
10
0
50
100
150
250
200
0.1
10
10,000
1000
DATA RATE (kbps)
DATA RATE (kbps)
DATA RATE (kbps)
V.11 DIFFERENTIAL OUTPUT VOLTAGE
vs. TEMPERATURE
V.28 OUTPUT VOLTAGE
vs. TEMPERATURE
V.35 OUTPUT VOLTAGE
vs. TEMPERATURE
DC OUTPUT
DCE MODE,
R = 50Ω
-1
2
DC OUTPUT
DCE MODE,
RL = 3kΩ
-2
400
MAX13171E toc06
VOUT+
4
0
600
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
1
0
6
MAX13171E toc05
VOUT+
2
8
MAX13171E toc04
3
VOH
200
DC OUTPUT
DCE MODE,
VCM = 0V, FULL LOAD
0
-200
-4
-2
VOUT-
VOUT-
-3
-600
-8
-40
-15
10
35
60
85
VOL
-400
-6
-40
-15
10
35
60
-40
85
-15
10
35
60
85
TEMPERATURE (°C)
TEMPERATURE (°C)
TEMPERATURE (°C)
V.35 LOADED DIFFERENTIAL OUTPUT
VOLTAGE vs. COMMON-MODE VOLTAGE
V.11/V.35 RECEIVER INPUT CURRENT
vs. INPUT VOLTAGE
V.28 RECEIVER INPUT CURRENT
vs. INPUT VOLTAGE
DC OUTPUT
550
|VOD|
545
540
535
530
DC OUTPUT
DTE MODE
R1INA
300
INPUT CURRENT (µA)
555
400
200
100
0
R2INA, R3INA
-100
-200
-2
0
2
COMMON-MODE VOLTAGE (V)
4
2.0
DC OUTPUT
DTE MODE
1.5
1.0
0.5
0
-0.5
-1.0
-300
-1.5
-400
-2.0
-2.5
-500
-4
2.5
MAX13171E toc09
500
MAX13171E toc07
560
INPUT CURRENT (mA)
DIFFERENTIAL OUTPUT VOLTAGE (V)
40
20
50
10
50
DCE MODE, FULLY LOADED,
ALL TRANSMITTERS
OPERATING AT THE
SPECIFIED DATA RATE
300
SUPPLY CURRENT (mA)
200
60
350
MAX13171E toc08
SUPPLY CURRENT (mA)
250
DCE MODE, ALL TRANSMITTERS
OPERATING AT THE SPECIFIED
DATA RATE, RL = 3kΩ, CL = 2500pF
70
SUPPLY CURRENT (mA)
DCE MODE, R = 50Ω,
ALL TRANSMITTERS
OPERATING AT THE
SPECIFIED DATA RATE
300
80
MAX13171E toc01
350
V.35 SUPPLY CURRENT
vs. DATA RATE
MAX13171E toc03
RS-530 SUPPLY CURRENT
vs. DATA RATE
DIFFERENTIAL OUTPUT VOLTAGE (mV)
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
-10 -8 -6 -4
-2
0
2
4
INPUT VOLTAGE (V)
6
8
10
-10 -8 -6 -4
-2
0
2
4
INPUT VOLTAGE (V)
______________________________________________________________________________________
6
8
10
Multiprotocol, Pin-Selectable
Data Interface Chipset
V.28 LOOPBACK OPERATION (250kbps)
V.11 LOOPBACK OPERATION (40Mbps)
MAX13171E toc11
MAX13171E toc10
RL = 3kΩ, CL = 2500pF
R = 50Ω
T_IN
2V/div
T_IN
2V/div
T_OUT_/R_IN_
2V/div
T_OUT_/R_IN_
5V/div
R_OUT
2V/div
R_OUT
2V/div
10ns/div
1µs/div
V.35 LOOPBACK OPERATION (40Mbps)
V.28 SLEW RATE vs.
LOAD CAPACITANCE
MAX13171E toc12
MAX13171E toc13
35
RL = 3kΩ
FULL LOAD
30
SLEW RATE (V/µs)
T_IN
2V/div
T_OUT_/R_IN_
0.5V/div
25
20
SRF
15
SRR
10
R_OUT
2V/div
5
0
0
1µs/div
1000
2000
3000
4000
5000
LOAD CAPACITANCE (pF)
14
12
10
8
6
tPHL
15
10
5
4
25
MAX13171E toc16
20
30
PROPAGATION DELAY (ns)
tPLH
tPLH
MAX13171E toc15
PROPAGATION DELAY (ns)
16
25
PROPAGATION DELAY (ns)
tPHL
18
MAX13171E toc14
20
V.35 TRANSMITTER PROPAGATION
DELAY vs. TEMPERATURE
V.11 TRANSMITTER PROPAGATION
DELAY vs. TEMPERATURE
V.11/V.35 RECEIVER PROPAGATION
DELAY vs. TEMPERATURE
tPHL
20
tPLH
15
10
5
2
0
0
0
-40
-15
10
35
TEMPERATURE (°C)
60
85
-40
-15
10
35
TEMPERATURE (°C)
60
85
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________
11
MAX13171E/MAX13173E/MAX13175E
MAX13171E Typical Operating Characteristics (continued)
(VCC = +3.3V, VL = +1.8V, TA = +25°C, unless otherwise noted.)
MAX13173E Typical Operating Characteristics
(VCC = +3.3V, VL = +1.8V, TA = +25°C, unless otherwise noted.)
150
FULL LOAD, R = 50Ω
60
50
NO LOAD
40
30
DCE MODE, INVERT = 1
ALL TRANSMITTERS
OPERATING AT THE
SPECIFIED DATA RATE
20
50
NO LOAD, R = 1.95kΩ
10
0
1
1000
-1
0
-3
50
100
150
200
MAX13171E toc20
VOUT+
2
RL = 450Ω
-2
VOUT-
6
-4
2
DC OUTPUT
DCE MODE,
RL = 3kΩ
0
-2
VOUT-
-8
-15
-40
10
35
60
85
-40
-15
10
35
60
TEMPERATURE (°C)
TEMPERATURE (°C)
V.11 RECEIVER INPUT CURRENT
vs. INPUT VOLTAGE
V.28 RECEIVER INPUT CURRENT
vs. INPUT VOLTAGE
DC OUTPUT
DCE MODE
200
R2INA
0
-100
-200
85
2
1
0
-1
-2
R1INA
-300
DC OUTPUT
3
INPUT CURRENT (mA)
300
R3INA
4
MAX13171E toc22
500
INPUT CURRENT (µV)
VOUT+
4
-6
-8
100
60
-4
RL = 3.9kΩ
-6
400
35
8
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
4
10
TEMPERATURE (°C)
V.28 OUTPUT VOLTAGE
vs. TEMPERATURE
RL = 3.9kΩ
0
-15
-40
250
DATA RATE (kbps)
8
DC OUTPUT
DCE MODE
VOUT-
-2
-4
100,000
V.10 OUTPUT VOLTAGE
vs. TEMPERATURE
6
DC OUTPUT
DCE MODE,
INVERT = 1,
R = 50Ω
0
MAX13171E toc21
10
DATA RATE (kbps)
-3
-400
-500
-4
-10 -8
-6 -4
-2
0
2
4
INPUT VOLTAGE (V)
12
2
0
0
VOUT+
3
MAX13171E toc23
100
FULL LOAD, RL = 50Ω,
CL = 2500pF
70
4
DIFFERENTIAL OUTPUT VOLTAGE (V)
80
SUPPLY CURRENT (mA)
DCE MODE, INVERT = 1
3 TRANSMITTERS OPERATING
AT THE SPECIFIED DATA RATE
IN V.11 MODE
MAX13171E toc18
90
MAX13171E toc17
250
200
V.11 DIFFERENTIAL OUTPUT VOLTAGE
vs. TEMPERATURE
V.28 SUPPLY CURRENT
vs. DATA RATE
MAX13171E toc19
R-530 SUPPLY CURRENT
vs. DATA RATE
SUPPLY CURRENT (mA)
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
6
8
10
-15
-10
-5
0
5
INPUT VOLTAGE (V)
______________________________________________________________________________________
10
15
85
Multiprotocol, Pin-Selectable
Data Interface Chipset
V.28 SLEW RATE vs.
LOAD CAPACITANCE
V.10 TRANSMITTER RISE/FALL
TIME vs. LOAD CAPACITANCE
1.8
1.6
RISE/FALL TIME (µs)
25
20
SRF
15
SRR
10
FULL LOAD
T_IN
2V/div
FALL
1.4
1.2
T_OUT_/R_IN_
2V/div
RISE
1.0
0.8
0.6
R_OUT
2V/div
0.4
5
0.2
0
0
0
1000
2000
4000
3000
5000
0
LOAD CAPACITANCE (pF)
1000
2000
3000
4000
5000
10ns/div
LOAD CAPACITANCE (pF)
V.28 LOOPBACK OPERATION (250kbps)
V.10 LOOPBACK OPERATION (100kbps)
MAX13171E toc27
MAX13171E toc28
RL = 3kΩ, CL = 2500pF
T_IN
2V/div
T_IN
2V/div
RL = 3.9kΩ
T_OUT_/R_IN_
5V/div
T_OUT_/R_IN_
5V/div
RL = 450Ω
R_OUT
2V/div
R_OUT
2V/div
1µs/div
4µs/div
V.11 RECEIVER PROPAGATION
DELAY vs. TEMPERATURE
V.11 TRANSMITTER PROPAGATION
DELAY vs. TEMPERATURE
tPLH
15
10
5
20
MAX13171E toc30
tPHL
20
25
PROPAGATION DELAY (ns)
MAX13171E toc29
25
PROPAGATION DELAY (ns)
SLEW RATE (V/µs)
30
MAX13171E toc26
MAX13171E toc25
RL = 3kΩ
V.11 LOOPBACK OPERATION (40Mbps)
2.0
MAX13171E toc24
35
tPHL
tPLH
15
10
5
0
0
-40
-15
10
35
TEMPERATURE (°C)
60
85
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________
13
MAX13171E/MAX13173E/MAX13175E
MAX13173E Typical Operating Characteristics (continued)
(VCC = +3.3V, VL = +1.8V, TA = +25°C, unless otherwise noted.)
MAX13175E Typical Operating Characteristics
(VCC = +3.3V, VL = +1.8V, TA = +25°C, unless otherwise noted.)
107
VCM = 0V
VCM = +7V
106
105
104
103
110
107
106
105
104
109
108
107
106
105
104
103
103
102
102
101
101
101
100
100
VCM = -7V
102
-40
-15
10
35
60
85
-5
-3
-1
1
3
5
100
7
3.0
3.5
4.0
4.5
5.0
5.5
TEMPERATURE (NC)
VCM (V)
VCC (V)
V.11 OR V.35 DIFFERENTIAL IMPEDANCE
vs. SUPPLY VOLTAGE (VEE)
V.35 COMMON-MODE IMPEDANCE
vs. TEMPERATURE
V.35 COMMON-MODE IMPEDANCE vs.
COMMON-MODE VOLTAGE (VCM)
IMPEDANCE (I)
107
160
106
105
104
103
102
150
VCM = -2V
145
-7
-5
-6
VEE (V)
-4
135
175
170
165
160
155
150
145
140
101
180
VCM = +2V
155
MAX13175E toc36
108
185
IMPEDANCE (I)
109
MAX13175E toc35
165
MAX13175E toc34
110
100
-7
V.11 OR V.35 DIFFERENTIAL IMPEDANCE
vs. SUPPLY VOLTAGE (VCC)
MAX13175E toc33
108
IMPEDANCE (I)
IMPEDANCE (I)
108
109
IMPEDANCE (I)
109
14
110
MAX13175E toc31
110
V.11 OR V.35 DIFFERENTIAL IMPEDANCE
vs. COMMON-MODE VOLTAGE (VCM)
MAX13175E toc32
V.11 OR V.35 DIFFERENTIAL
IMPEDANCE vs. TEMPERATURE
IMPEDANCE (I)
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
140
-40
-15
10
35
TEMPERATURE (NC)
60
85
135
-2
-1
0
VCM (V)
______________________________________________________________________________________
1
2
Multiprotocol, Pin-Selectable
Data Interface Chipset
VCM = -2V
150
VCM = -2V
145
140
140
3.5
4.0
4.5
5.5
5.0
135
MAX13175E toc39
700
600
500
400
ICC
300
IEE
200
-7
-5
-6
0
-4
-40
VEE (V)
VCC (V)
80
60
40
35
60
85
V.11 OR V.35 DIFFERENTIAL IMPEDANCE
PHASE vs. FREQUENCY
15
10
5
PHASE (DEGREES)
100
10
TEMPERATURE (NC)
V.11 OR V.35 DIFFERENTIAL IMPEDANCE
MAGNITUDE vs. FREQUENCY
120
-15
M AX13175E toc41
3.0
800
100
M AX13175E toc40
135
VCM = +2V
155
HI-Z MODE SUPPLY CURRENT
vs. TEMPERATURE
SUPPLY CURRENT (FA)
150
145
160
IMPEDANCE (I)
VCM = +2V
IM PEDANCE (I )
IMPEDANCE (I)
160
155
165
MAX13175E toc37
165
V.35 COMMON-MODE IMPEDANCE
vs. SUPPLY VOLTAGE (VEE)
MAX13175E toc38
V.35 COMMON-MODE IMPEDANCE
vs. SUPPLY VOLTAGE
0
-5
-10
-15
-20
-25
20
-30
-35
0
0.1
1
10
FREQUENCY (MHz)
100
0.1
1
10
100
FREQUENCY (MHz)
______________________________________________________________________________________
15
MAX13171E/MAX13173E/MAX13175E
MAX13175E Typical Operating Characteristics (continued)
(VCC = +3.3V, VL = +1.8V, TA = +25°C, unless otherwise noted.)
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
MAX13171E Pin Description
PIN
NAME
1, 2, 6, 30, 31
N.C.
No Connection. Not internally connected.
3, 16
VCC
Device Supply Voltage. Bypass VCC with a 4.7µF capacitor to ground as close as possible to
pin 3.
4
T1IN
Transmitter 1 Logic Input
5
T2IN
Transmitter 2 Logic Input
7
T3IN
Transmitter 3 Logic Input
8
R1OUT
9
R2OUT
Receiver 2 Logic Output with Internal Pullup to VL
10
R3OUT
Receiver 3 Logic Output with Internal Pullup to VL
11
M0
Mode-Select 0 Input with Internal Pullup to VL
12
VL
Logic-Supply Reference Input. VL determines the voltage level of the logic interface. Bypass VL
with a 0.1µF capacitor to ground as close as possible to the device.
13
M1
Mode-Select 1 Input with Internal Pullup to VL
14
M2
Mode-Select 2 Input with Internal Pullup to VL
15
DCE/DTE
17
R3INB
18
R3INA
19, 24, 29, 35
GND
20
R2INB
Receiver 2 Noninverting Input
21
R2INA
Receiver 2 Inverting Input
22
T3OUTB/R1INB
23
T3OUTA/R1INA
25
T2OUTB
Transmitter 2 Noninverting Output
26
T2OUTA
Transmitter 2 Inverting Output
27
T1OUTB
Transmitter 1 Noninverting Output
28
T1OUTA
Transmitter 1 Inverting Output
32
VEE
Charge-Pump Negative Supply Output. Connect a 4.7µF ceramic capacitor from VEE to ground
as close as possible to the device.
33
C2-
VEE Charge-Pump Flying-Capacitor Negative Terminal. Connect a 1µF ceramic capacitor
between C2+ and C2-.
34
C2+
VEE Charge-Pump Flying-Capacitor Positive Terminal. Connect a 1µF ceramic capacitor
between C2+ and C2-.
36
C1-
VDD Charge-Pump Flying-Capacitor Negative Terminal. Connect a 1µF ceramic capacitor
between C1+ and C1-.
37
C1+
VDD Charge-Pump Flying-Capacitor Positive Terminal. Connect a 1µF ceramic capacitor
between C1+ and C1-.
38
VDD
Charge-Pump Positive-Supply Output. Connect a 4.7µF ceramic capacitor from VDD to ground
as close as possible to the device.
—
EP
Exposed Pad. Internally connected to VEE. Connect to a large VEE plane to maximize thermal
performance. Not intended as an electrical connection point. Do not share the same plane as
the MAX13173E.
16
FUNCTION
Receiver 1 Logic Output with Internal Pullup to VL
DCE/DTE Mode-Select Input with Internal Pullup to VL
Receiver 3 Noninverting Input
Receiver 3 Inverting Input
Ground
Transmitter 3 Noninverting Output/Receiver 1 Noninverting Input
Transmitter 3 Inverting Output/Receiver 1 Inverting Input
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
PIN
NAME
FUNCTION
1
T1IN
Transmitter 1 Logic Input
2
VCC
Device Supply Voltage. Bypass VCC with a 4.7µF capacitor to ground as close as possible to
the device.
3
T2IN
Transmitter 2 Logic Input
4
T3IN
Transmitter 3 Logic Input
5
VL
6
R1OUT
Receiver 1 Logic Output with Internal Pullup to VL
7
R2OUT
Receiver 2 Logic Output with Internal Pullup to VL
8
R3OUT
Receiver 3 Logic Output with Internal Pullup to VL
9
R5OUT/T5IN
Receiver 5 Logic Output/Transmitter 5 Logic Input
Logic-Supply Reference Input. VL determines the voltage level of the logic interface. Bypass VL
with a 0.1µF capacitor to ground, as close as possible to the device.
10
T4IN
11
R4OUT
12
M0
Mode-Select 0 Input with Internal Pullup to VL
13
M1
Mode-Select 1 Input with Internal Pullup to VL
14
M2
Mode-Select 2 Input with Internal Pullup to VL
15
DCE/DTE
16
INVERT
17
Transmitter 4 Logic Input
Receiver 4 Logic Output
DCE/DTE Mode-Select Input with Internal Pullup to VL
T4/R4 and T5/R5 Select Input with Internal Pullup to VL. INVERT reverses the action of DCE/DTE
for channels 4 and 5.
T4OUTA/R4INA Transmitter 4 Inverting Output/Receiver 4 Inverting Input
18, 25, 31, 35
GND
19
R3INB
Receiver 3 Noninverting Input
Ground
20
R3INA
Receiver 3 Inverting Input
21
R2INB
Receiver 2 Noninverting Input
22
R2INA
Receiver 2 Inverting Input
23
T3OUTB/R1INB Transmitter 3 Noninverting Output/Receiver 1 Noninverting Input
24
T3OUTA/R1INA Transmitter 3 Inverting Output/Receiver 1 Inverting Input
26
T2OUTB
Transmitter 2 Noninverting Output
27
T2OUTA
Transmitter 2 Inverting Output
28
T1OUTB
Transmitter 1 Noninverting Output
29
T1OUTA
Transmitter 1 Inverting Output
30
T5OUTA/R5INA Transmitter 5 Inverting Output/Receiver 5 Inverting Input
32
VEE
Charge-Pump Negative-Supply Output. Connect a 4.7µF ceramic capacitor from VEE to ground
as close as possible to the device.
33
C2-
VEE Charge-Pump Flying-Capacitor Negative Terminal. Connect a 1µF ceramic capacitor
between C2+ and C2-.
34
C2+
VEE Charge-Pump Flying-Capacitor Positive Terminal. Connect a 1µF ceramic capacitor
between C2+ and C2-.
36
C1-
VDD Charge-Pump Flying-Capacitor Negative Terminal. Connect a 1µF ceramic capacitor
between C1+ and C1-.
______________________________________________________________________________________
17
MAX13171E/MAX13173E/MAX13175E
MAX13173E Pin Description
Multiprotocol, Pin-Selectable
Data Interface Chipset
MAX13171E/MAX13173E/MAX13175E
MAX13173E Pin Description (continued)
PIN
NAME
FUNCTION
37
C1+
VDD Charge-Pump Flying-Capacitor Positive Terminal. Connect a 1µF ceramic capacitor
between C1+ and C1-.
38
VDD
Charge-Pump Positive-Supply Output. Connect a 4.7µF ceramic capacitor from VDD to ground
as close as possible to the device.
—
EP
Exposed Pad. Internally connected to VEE. Connect to a large VEE plane to maximize thermal
performance, not intended as an electrical connection point. Does not share the same plane as
the MAX13171E.
MAX13175E Pin Description
18
PIN
NAME
FUNCTION
1, 38
R1B
Load 1, Node B
2, 3
R1A
Load 1, Node A
4, 5
R2A
Load 2, Node A
6, 7
R2B
Lode 2, Node B
8
R2C
Lode 2, Center Tap
9, 10
R3A
Load 3, Node A
11, 12
R3B
Lode 3, Node B
13, 18
GND
Ground
14
R3C
15
VL
Logic-Supply Reference Input. VL determines the voltage level of the logic interface.
16
VEE
Negative Supply Voltage. Bypass VEE to GND with a 0.1µF capacitor. Connect to VEE from the
MAX13173E.
17
VDD
Positive Supply Voltage. Bypass VDD to GND with a 0.1µF capacitor. Connect to VDD from the
MAX13173E.
19
VCC
Supply Voltage. Bypass VCC to GND with a 0.1µF capacitor as close as possible to the device.
20, 21
R4B
Load 4, Node B
22, 23
R4A
Load 4, Node A
24, 25
R5B
Load 5, Node B
26, 27
R5A
Load 5, Node A
28, 29
R6A
Load 6, Node A
30, 31
R6B
Load 6, Node B
32
DCE/DTE
Lode 3, Center Tap
DCE/DTE Mode-Select Input
Latch Signal Input. When LATCH is low, the input latches are transparent. When LATCH is high,
the data at the mode-select inputs are latched.
33
LATCH
34
M2
Mode-Select Input 2
35
M1
Mode-Select Input 1
36
M0
Mode-Select Input 0
37
R1C
Load 1, Center Tap
—
EP
Exposed Pad. Internally connected to VEE. Connect to a large VEE plane to maximize thermal
performance, not intended as an electrical connection point. If VEE is powered from the
MAX13173E’s VEE, planes can be shared.
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
A
100pF
T
R
B
B
A
VOD
R
100Ω
A
15pF
VOC
R
100pF
B
Figure 1. V.11 DC Test Circuit
Figure 2. V.11 AC Test Circuit
50Ω
T
B
50Ω
125Ω
VCM
125Ω
B
VOD
R
A
50Ω
A
50Ω
15pF
Figure 3. V.35 Transmitter/Receiver Test Circuit
T
A
T
VO CL
Figure 4. V.10/V.28 Transmitter Test Circuit
A
R
RL
15pF
Figure 5. V.10/V.28 Receiver Test Circuit
______________________________________________________________________________________
19
MAX13171E/MAX13173E/MAX13175E
Test Circuits
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
Timing Diagrams
VL
TIN_
f = 1MHz: tr, tf ≤ 1ns
VL/2
0V
VL/2
tPHL
tPLH
V0
B-A
90%
90%
10%
50%
-V0
50%
tF
tR
Figure 6. V.11 Transmitter Propagation Delays
+1V
f = 1MHz: tr, tf ≤ 1ns
0
B-A
INPUT
0
-1V
tPLH
tPHL
V0H
90%
VL/2
R
V0L
90%
OUTPUT
10%
VL/2
10%
tF
tR
Figure 7. V.11 Receiver Propagation Delays
VL
tR, tF ≤ 10ns
VL/2
TIN_
0V
VL/2
tPHL
V0H
tPLH
90%
90%
0
0
A
10%
10%
-V0L
tR
tF
Figure 8. V.10 Transmitter Propagation Delay
VIH
A
VIL
tR, tF ≤ 10ns
0
tPLH
tPHL
V0H
R
V0L
0
90%
VL/2
10%
tF
90%
10%
VL/2
tR
Figure 9. V.10 Receiver Propagation Delay
20
______________________________________________________________________________________
10%
Multiprotocol, Pin-Selectable
Data Interface Chipset
VL
tR, tF ≤ 10ns
VL/2
TIN_
0V
VL/2
tPHL
V0H
tPLH
3V
3V
0
0
A
-3V
-3V
-V0L
SRF = 6/tF
tF
tR
SRR = 6/tR
Figure 10. V.28 Transmitter Propagation Delay
(2.0V) VIH
A
(0.8V) VIL
tR, tF ≤ 10ns
1.3V
1.3V
tPLH
tPHL
V0H
R
V0L
90%
VL/2
90%
10%
10%
VL/2
tR
tF
Figure 11. V.28 Receiver Propagation Delay
A
A
I
R1 = 52Ω
R1 = 52Ω
AMMETER
S1 ON
S1 ON
R3 = 127Ω
R3 = 127Ω
S2 OFF
AMMETER
VDM = ±2V
S2 ON
R2 = 52Ω
I
R2 = 52Ω
VCM = ±2V
B
VCM = ±7V OR ±2V
V
RDM = DM
I
Figure 12. V.11 or V.35 Differential Impedance Measurement
V
RCM = CM
I
B
Figure 13. V.35 Common-Mode Impedance Measurement
______________________________________________________________________________________
21
MAX13171E/MAX13173E/MAX13175E
Timing Diagrams (continued)
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
VCC
VL
R1C
R2C
R3C
VDD
VEE
EP
MAX13175E
LATCH
VEE
DCE/DTE M2 M1 M0
GND
R1A R1B
R2A R2B R3A R3B R4A R4B R5A R5B R6A R6B
Figure 14. MAX13175E Block Diagram
Detailed Description
The MAX13171E/MAX13173E/MAX13175E form a complete pin-selectable DTE or DCE interface port that
supports the V.28 (RS-232), V.10/V.11 (RS-449/V.36,
RS-530, RS-530A, X.21), and V.35 protocols. The
MAX13171E transceivers carry the high-speed clock
and data signals, while the MAX13173E transceivers
carry serial-interface control signaling. The MAX13171E
can be terminated by the MAX13175E pin-selectable
resistor termination network, or by a discrete termination network. The MAX13171E/MAX13173E feature a
low supply current, no-cable mode, true fail-safe operation, and thermal-shutdown circuitry. Thermal shutdown
protects the drivers against excessive power dissipation. When activated, the thermal-shutdown circuitry
places the driver and receiver outputs into a highimpedance state.
The MAX13171E is a three-driver/three-receiver, multiprotocol transceiver that operates from a single
+3.135V to +5.5V supply. The MAX13173E is a five-driver/five-receiver multiprotocol transceiver that operates
from a single +3.135V to +5.5V supply. The
MAX13175E contains six pin-selectable multiprotocol
cable termination networks (Figure 14). Each network is
capable of terminating V.11 (RS-422, RS-530, RS-530A,
RS-449, V.36 and X.21) with a 100Ω differential load,
V.35 with a T-network load, or V.28 (RS-232) and V.10
(RS-423) with an open-circuit load for use with transceivers having on-chip termination. The terminations
and protocols are pin selectable. The MAX13175E
replaces discrete resistor termination networks and
22
expensive relays required for multiprotocol termination,
saving space and cost.
Dual Charge-Pump Voltage Converter
The MAX13171E/MAX13173E have internal-regulated
dual charge pumps that provide positive and negative
output voltages from a single supply. The charge pump
operates in discontinuous mode. If the output voltage is
less than the regulated voltage, the charge pump is
enabled. If the output voltage exceeds the regulated
voltage, the charge pump is disabled. Each charge
pump requires flying capacitors (C1, C2), and reservoir
capacitors (C3, C5), to generate the VDD and VEE supplies. Figure 15 shows the charge-pump connections.
MAX13171E
MAX13173E
C3
4.7µF
VDD
C2+
C1+
C2-
C1-
VEE
C2
1µF
C1
1µF
+3.135V
TO +5.5V
C5
4.7µF
VCC
GND
C4
4.7µF
Figure 15. Charge Pump
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
Mode Selection
The mode-select inputs M0, M1, and M2 determine
which interface protocol is selected (Table 1 for the
MAX13171E, Table 2 for the MAX13173E). The state of
the DCE/DTE input determines whether the transceivers
are configured as a DTE serial port or a DCE serial port.
The INVERT input on the MAX13173E changes the
DCE/DTE functionality regarding T4/T5 and R4/R5 only.
M0, M1, M2, INVERT, and DCE/DTE are internally
pulled up to VL to ensure logic-high if left unconnected.
If the M0, M1, and M2 mode inputs are all unconnected, the MAX13171E/MAX13173E enter no-cable mode.
The MAX13175E mode select inputs and DCE/DTE
input do not have an internal pullup to VL. They are
pulled logic-high if their mode-select inputs are tied to
the MAX13171E/MAX13173E’s mode select inputs.
Termination Modes
The termination networks in the MAX13175E can be set
to one of three modes, V.11, V.35, or high impedance.
Table 1. MAX13171E Mode Selection
MAX13171E
MODE NAME
M2
M1
M0
DCE/
DTE
T1
T2
T3
R1
R2
R3
Not Used (Default V.11)
RS-530A
0
0
0
0
V.11
V.11
Z
V.11
V.11
V.11
0
0
1
0
V.11
V.11
Z
V.11
V.11
V.11
RS-530
0
1
0
0
V.11
V.11
Z
V.11
V.11
V.11
X.21
0
1
1
0
V.11
V.11
Z
V.11
V.11
V.11
V.35
1
0
0
0
V.35
V.35
Z
V.35
V.35
V.35
RS-449/V.36
1
0
1
0
V.11
V.11
Z
V.11
V.11
V.11
V.28/RS-232
1
1
0
0
V.28
V.28
Z
V.28
V.28
V.28
No Cable
1
1
1
0
Z
Z
Z
Z
Z
Z
Not Used (Default V.11)
0
0
0
1
V.11
V.11
V.11
Z
V.11
V.11
RS-530A
0
0
1
1
V.11
V.11
V.11
Z
V.11
V.11
RS-530
0
1
0
1
V.11
V.11
V.11
Z
V.11
V.11
X.21
0
1
1
1
V.11
V.11
V.11
Z
V.11
V.11
V.35
1
0
0
1
V.35
V.35
V.35
Z
V.35
V.35
RS-449/V.36
1
0
1
1
V.11
V.11
V.11
Z
V.11
V.11
V.28/RS-232
1
1
0
1
V.28
V.28
V.28
Z
V.28
V.28
No Cable
1
1
1
1
Z
Z
Z
Z
Z
Z
______________________________________________________________________________________
23
MAX13171E/MAX13173E/MAX13175E
Fail-Safe
The MAX13171E/MAX13173E guarantee a logic-high
receiver output when the receiver inputs are shorted, or
when they are connected to a terminated transmission
line with all drivers disabled by setting the receiver
threshold between -50mV and -200mV in the V.11 and
V.35 modes. If the differential receiver input voltage (B A) is ≥ -50mV, R_OUT is logic-high. If (B - A) is ≤ -200mV,
R_OUT is logic-low. In the case of a terminated bus with
all transmitters disabled, the receiver’s differential input
voltage is pulled to zero by the termination. This results in
a logic-high with a 50mV minimum noise margin.
The V.10 receiver threshold is set between 50mV and
250mV. If the V.10 receiver input voltage is less than or
equal to 50mV, R_OUT is logic-high. The V.28 receiver
threshold is set between 0.8V and 2.0V. If the receiver
input voltage is less than or equal to 0.8V, R_OUT is
logic-high. In the case of a terminated bus with transmitters disabled, the receiver’s input voltage is pulled to
GND by the termination.
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
Table 2. MAX13173E Mode Selection
PROTOCOL
M2
M1
M0
DCE/
DTE
INVERT
T1
T2
T3
R1
R2
R3
T4
R4
T5
R5
Not Used
(Default V.11)
0
0
0
0
0
V.11
V.11
Z
V.11
V.11
V.11
Z
V.10
Z
V.10
RS-530A
0
0
1
0
0
V.11
V.10
Z
V.11
V.10
V.11
Z
V.10
Z
V.10
RS-530
0
1
0
0
0
V.11
V.11
Z
V.11
V.11
V.11
Z
V.10
Z
V.10
X.21
0
1
1
0
0
V.11
V.11
Z
V.11
V.11
V.11
Z
V.10
Z
V.10
V.35
1
0
0
0
0
V.28
V.28
Z
V.28
V.28
V.28
Z
V.28
Z
V.28
RS-449/V.36
1
0
1
0
0
V.11
V.11
Z
V.11
V.11
V.11
Z
V.10
Z
V.10
V.28/RS-232
1
1
0
0
0
V.28
V.28
Z
V.28
V.28
V.28
Z
V.28
Z
V.28
No Cable
1
1
1
0
0
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Not Used
(Default V.11)
0
0
0
0
1
V.11
V.11
Z
V.11
V.11
V.11
V.10
Z
V.10
Z
RS-530A
0
0
1
0
1
V.11
V.10
Z
V.11
V.10
V.11
V.10
Z
V.10
Z
RS-530
0
1
0
0
1
V.11
V.11
Z
V.11
V.11
V.11
V.10
Z
V.10
Z
X.21
0
1
1
0
1
V.11
V.11
Z
V.11
V.11
V.11
V.10
Z
V.10
Z
V.35
1
0
0
0
1
V.28
V.28
Z
V.28
V.28
V.28
V.28
Z
V.28
Z
RS-449/V.36
1
0
1
0
1
V.11
V.11
Z
V.11
V.11
V.11
V.10
Z
V.10
Z
V.28/RS-232
1
1
0
0
1
V.28
V.28
Z
V.28
V.28
V.28
V.28
Z
V.28
Z
No Cable
1
1
1
0
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Not Used
(Default V.11)
0
0
0
1
0
V.11
V.11
V.11
Z
V.11
V.11
V.10
Z
V.10
Z
RS-530A
RS-530
X.21
V.35
RS-449/V.36
V.28/RS-232
No Cable
Not Used
(Default V.11)
RS-530A
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
V.11
V.11
V.11
V.28
V.11
V.28
Z
V.10
V.11
V.11
V.28
V.11
V.28
Z
V.11
V.11
V.11
V.28
V.11
V.28
Z
Z
Z
Z
Z
Z
Z
Z
V.10
V.11
V.11
V.28
V.11
V.28
Z
V.11
V.11
V.11
V.28
V.11
V.28
Z
V.10
V.10
V.10
V.28
V.10
V.28
Z
Z
Z
Z
Z
Z
Z
Z
V.10
V.10
V.10
V.28
V.10
V.28
Z
Z
Z
Z
Z
Z
Z
V.10
0
0
0
1
1
V.11
V.11
V.11
Z
V.11
V.11
Z
V.10
Z
V.10
0
0
1
1
1
V.11
V.10
V.11
Z
V.10
V.11
Z
V.10
Z
V.10
RS-530
0
1
0
1
1
V.11
V.11
V.11
Z
V.11
V.11
Z
V.10
Z
V.10
X.21
0
1
1
1
1
V.11
V.11
V.11
Z
V.11
V.11
Z
V.10
Z
V.10
V.35
1
0
0
1
1
V.28
V.28
V.28
Z
V.28
V.28
Z
V.28
Z
V.28
RS-449/V.36
1
0
1
1
1
V.11
V.11
V.11
Z
V.11
V.11
Z
V.10
Z
V.10
V.28/RS-232
1
1
0
1
1
V.28
V.28
V.28
Z
V.28
V.28
Z
V.28
Z
V.28
No Cable
1
1
1
1
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
24
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
The state of the MAX13175E’s mode-select inputs, M0,
M1, M2, and DCE/DTE determines the mode of each of
the six termination networks. Table 3 shows a cross-reference of termination mode and select input state for
each of the six termination networks within the
MAX13175E.
A
A
A
MAX13175E
MAX13175E
R1
52Ω
R1
52Ω
S1
CLOSED
S1
CLOSED
MAX13175E
R1
52Ω
S1
OPEN
C
C
S2
OPEN
S2
CLOSED
R3
127Ω
R2
52Ω
C
S2
OPEN
R3
127Ω
R2
52Ω
R2
52Ω
B
B
R3
127Ω
B
(a) V.11
(b) V.35
(c) Z
Figure 16. Termination Modes
Table 3. MAX13175E Termination Mode Selection
PROTOCOL
V.10/RS-423
RS-530A
RS-530
X.21
V.35
RS-449/V.36
V.28/RS-232
No Cable
V.10/RS-423
RS-530A
RS-530
X.21
V.35
RS-449/V.36
V.28/RS-232
No Cable
DCE/DTE
M2
M1
M0
R1
R2
R3
R4
R5
R6
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Z
Z
Z
Z
V.35
Z
Z
V.11
Z
Z
Z
Z
V.35
Z
Z
V.11
Z
Z
Z
Z
V.35
Z
Z
V.11
Z
Z
Z
Z
V.35
Z
Z
V.11
Z
Z
Z
Z
Z
Z
Z
V.11
Z
Z
Z
Z
V.35
Z
Z
V.11
Z
V.11
V.11
V.11
V.35
V.11
Z
V.11
Z
Z
Z
Z
Z
Z
Z
V.11
Z
V.11
V.11
V.11
V.35
V.11
Z
V.11
Z
V.11
V.11
V.11
V.35
V.11
Z
V.11
Z
V.11
V.11
V.11
V.35
V.11
Z
V.11
Z
V.11
V.11
V.11
V.35
V.11
Z
V.11
______________________________________________________________________________________
25
MAX13171E/MAX13173E/MAX13175E
As shown in Figure 16, in V.11 mode, switch S1 is
closed and switch S2 is open, presenting 104Ω across
terminals A and B. In V.35 mode, switches S1 and S2
are both closed, presenting a T-network with 104Ω differential impedance and 153Ω common-mode impedance. In high-impedance mode, switches S1 and S2
are both open, presenting a high impedance across
terminals A and B suitable for V.28 and V.10 modes.
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
No-Cable Mode
The MAX13171E/MAX13173E enter no-cable mode
when the mode-select inputs are left unconnected or
connected high (M0 = M1 = M2 = 1). The receiver outputs enter a high-impedance state in no-cable mode,
allowing these output lines to be shared with other
receiver outputs (the receiver outputs have an internal
pullup resistor to pull the outputs high if not driven).
Also, in no-cable mode, the transmitter outputs enter a
high-impedance state, so these output lines can be
shared with other devices.
The MAX13175E enters no-cable mode when the mode
select inputs, M0, M1, and M2 are connected high. In
no-cable mode, all six termination networks are placed
in V.11 mode, with S1 closed and S2 open.
VL Logic Supply
The MAX13171E/MAX13173E/MAX13175E include a VL
logic supply that allows user-defined interface logicvoltage levels referenced to VL. VL can go down to
+1.62V and up to VCC. All logic inputs and outputs are
referred to VL.
Data Rate
The MAX13171E/MAX13173E/MAX13175E support a
maximum data rate of 40Mbps in RS-449/V.36, RS-530,
RS-530A, X.21, V.35 if only one of the MAX13171E
high-speed transceivers is operated at the maximum
data rate. If two high-speed transceivers operate simultaneously, the maximum data rate is 20Mbps.
Applications Information
Capacitor Selection
The capacitors used for the charge pumps, as well as
for supply bypassing, must have a low equivalent
series resistance (ESR), low inductance (ESL), and low
temperature coefficient. Multilayer ceramic capacitors
with an X7R dielectric offer the best combination of performance, size, and cost. The flying capacitors (C1, C2)
should have a value of 1µF, while the bypass capacitor
(C4) and reservoir capacitors (C3, C5) should have a
26
minimum value of 4.7µF (Figure 15). To reduce the ripple present on the transmitter outputs, capacitors C3,
C4, and C5 can be increased. The values of C1 and C2
should not be increased.
Cable Mode-Select Application
A cable-selectable multiprotocol interface is shown in
Figure 17. The mode control lines M0, M1, and DCE/DTE
are wired to the DB-25 connector. To select the serial
interface mode, the appropriate combination of M0, M1,
and DCE/DTE are grounded within the cable wiring. The
control lines that are not grounded are pulled high by the
internal pullups on the MAX13171E/MAX13173E. The
serial interface protocol of the MAX13171E/
MAX13173E/MAX13175E is selected based on the cable
that is connected to the DB-25 interface.
V.10 (RS-423) Interface
(MAX13173E Only)
The V.10 interface (Figure 18) is an unbalanced singleended interface capable of driving a 450Ω load. The
V.10 driver generates a minimum VO voltage of ±4V
across A’ and C’ when unloaded, and a minimum voltage of 0.9 x V O when loaded with 450Ω. The V.10
receiver has a single-ended input and does not reject
common-mode differences between C and C’. The V.10
receiver-input trip threshold is defined between +50mV
and +250mV with input impedance characteristic
shown in Figure 19.
The MAX13173E V.10 mode receiver has a threshold
between +50mV and +250mV. To ensure that the
receiver has proper fail-safe operation, see the FailSafe section. To aid in rejecting system noise, the
MAX13173E V.10 receiver has a typical hysteresis of
25mV. Switch S3 in Figures 20a and 20b is open in
V.10 mode to disable the V.28 5kΩ termination at the
receiver input. Switch S4 is closed and switch S5 is
open to internally ground the receiver B input.
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
MAX13171E/MAX13173E/MAX13175E
100pF
VCC
100pF 100pF
VCC
C4
4.7µF
VL
0.1µF
0.1µF
VDD
MAX13175E
DTE_TXD/DCE_RXD
T1IN
DTE_SCTE/DCE_RXC
T2IN
T3IN
DTE_TXC/DCE_TXC
R1OUT
DTE_RXC/DCE_SCTE
R2OUT
DTE_RXD/DCE_TXD
R3OUT
VL
T1
T2
NC
VL
DTE
2
TXD A
14
TXD B
24
SCTE A
11
SCTE B
DCE
RXD A
RXD B
RXC A
RXC B
T3
R1
R2
R3
T3OUTA/R1INA
T3OUTB/R1INB
R2INA
R2INB
R3INA
R3INB
15
12
17
9
3
16
7
MAX13171E
M0
M1
M2
0.1µF
R6A
R6B
0.1µF
T1OUTA
T1OUTB
T2OUTA
T2OUTB
R5A
R5B
VEE
R4A
R4B
C5
4.7µF
M0
LATCH
VEE
R2A
R2B
R3A
R3B
C3
4.7µF
CHARGE
PUMP
R1A
R1B
VDD
0.1µF
DCE/DTE
M2
M1
C2
1µF
C1
1µF
1
TXC A
TXC B
TXC A
TXC B
RXC A SCTE A
RXC B SCTE B
RXD A TXD A
RXD B TXD B
SG
SHIELD
DCE/DTE
DB-25
CONNECTOR
C4
4.7µF
VCC
C2
1µF
C1
1µF
VDD
C3
4.7µF
CHARGE
PUMP
25
VEE
C5
4.7µF
T1OUTA
DTE_RTS/DCE_CTS
T1IN
DTE_DTR/DCE_DSR
T2IN
T3IN
DTE_DCD/DCE_DCD
R1OUT
DTE_DSR/DCE_DTR
R2OUT
DTE_CTS/DCE_RTS
R3OUT
T4IN
T1
T2
4
19
20
23
RTS A
RTS B
CTS A
CTS B
DTR A
DTR B
DSR A
DSR B
T3
R1
R2
R3
T4
R4OUT
R5OUT/T5IN
T1OUTB
T2OUTA
T2OUTB
DCE/DTE
21
M1
18
M0
T3OUTA/R1INA
T3OUTB/R1INB
R2INA
R2INB
R3INA
R3INB
8
DCD A
10
DCD B
6
DSR A
22
DSR B
5
CTS A
13 CTS B
DCD A
DCD B
DTR A
DTR B
RTS A
RTS B
T4OUTA/R4INA
R4
T5OUTA/R5INA
T5
R5
VL
0.1µF
NC
MAX13173E
M0
M1
M2
DCE/DTE INVERT
Figure 17. Cable-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector
______________________________________________________________________________________
27
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
UNBALANCED
INTERCONNECTING
CABLE
GENERATOR
LOAD
CABLE
TERMINATION
A
A′
C
C′
RECEIVER
Figure 18. Typical V.10/V.28 Interface
IZ
-10V
+3.25mA
-3V
VZ
+10V
+3V
-3.25mA
Figure 19. Receiver Input Impedance Curve
A′
A′
A
R8
5kΩ
A
MAX13171E
MAX13173E
R5
55kΩ
R8
5kΩ
R6
11kΩ
MAX13173E
R5
55kΩ
RECEIVER
S3
R6
11kΩ
RECEIVER
S3
+
1.4V
R7
11kΩ
B′
R4
55kΩ
B
S1
S2
C′
GND
Figure 20a. V.10 Internal Resistance Network for Receivers 1,
2, and 3
28
C′
GND
Figure 20b. V.10 Internal Resistance Network for Receivers 4
and 5
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
tem noise, the MAX13171E/MAX13173E V.11 receivers
have a typical hysteresis of 15mV. Switch S3 in Figure
23 is open in V.11 mode to disable the V.28 5kΩ termination at the inverting receiver input. Because the control signals are slow (60kbps), 100Ω termination
resistance is generally not required for the MAX13173E.
For high-speed data transmission, the V.11 specification recommends terminating the cable at the receiver
with a 100Ω resistor. This resistor, although not
required, prevents reflections from corrupting transmitted data. In Figure 23, the MAX13175E is used to terminate the V.11 receiver. Internal to the MAX13175E, S1 is
closed and S2 is open to present a 100Ω minimum differential resistance. The MAX13171E’s internal V.28 termination is disabled by opening S3.
BALANCED
INTERCONNECTING
CABLE
GENERATOR
IZ
LOAD
CABLE
TERMINATION
RECEIVER
-3V
-10V
A′
A
+3V
100Ω
MIN
B
B′
C
C′
VZ
+10V
-3.25mA
Figure 22. Receiver Input Impedance
Figure 21. Typical V.11 Interface
A′
A
MAX13171E
R5
55kΩ
R1
52Ω
R8
5kΩ
MAX13175E
S2
R6
11kΩ
RECEIVER
S3
S1
R3
127Ω
+
1.4V
R2
52Ω
B′
+3.25mA
R7
R4 11kΩ
55kΩ
B
S1
S2
C′
GND
Figure 23. V.11 Termination and Internal Resistance Networks
______________________________________________________________________________________
29
MAX13171E/MAX13173E/MAX13175E
V.11 (RS-422) Interface
As shown in Figure 21, the V.11 protocol is a fully balanced differential interface. The V.11 driver generates a
minimum of ±2V between nodes A and B when a 100Ω
(min) resistance is present at the load. The V.11 receiver
is sensitive to differential signals of ±200mV at receiver
inputs A’ and B’. The V.11 receiver input must comply
with the impedance curve of Figure 22 and reject common-mode signals developed across the cable (referenced from C to C’ in Figure 21) of up to ±7V.
The MAX13171E/MAX13173E V.11 mode receivers
have a differential threshold between -50mV and
-200mV to ensure that the receiver has fail-safe operation (see the Fail-Safe section.) To aid in rejecting sys-
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
V.28 (RS-232) Interface
The V.28 interface is an unbalanced single-ended interface (Figure 18). The V.28 driver generates a minimum
of ±5V across the 3kΩ load impedance between A’ and
C’. The V.28 receiver has a single-ended input.
The MAX13171E/MAX13173E V.28 mode receivers have
a threshold between +0.8V and +2.0V. To aid in rejecting system noise, the MAX13171E/MAX13173E V.28
receivers have a typical hysteresis of 250mV. Switch S3
in Figures 24a and 24b is closed in V.28 mode to enable
the 5kΩ V.28 termination at the receiver inputs.
V.35 Interface
Figure 25 shows a fully-balanced, differential standard
V.35 interface. The generator and the load must both
present a 100Ω ±10Ω differential impedance and a
150Ω ±15Ω common-mode impedance as shown by
the resistive T-networks in Figure 26. The V.35 driver
generates a current output (±11mA, typ) that develops
an output voltage of ±550mV across the generator and
A′
A
load termination networks. The V.35 receiver is sensitive to ±200mV differential signals at receiver inputs A’
and B’. The V.35 receiver rejects common-mode signals developed across the cable (referenced from C to
C’) of up to ±4V, allowing for error-free reception in
noisy environments.
In Figure 26, the MAX13175E is used to implement the
resistive T-network that is needed to properly terminate
the V.35 driver and receiver. Internal to the
MAX13175E, S1 and S2 are closed to connect the Tnetwork resistors to the circuit. The V.28 termination
resistor (internal to the MAX13171E) is disabled by
opening S3 to avoid interference with the T-network
impedance.
The V.35 specification allows for ±4V of ground difference between the V.35 generator and V.35 load. The
MAX13174E maintains correct termination impedance
over this condition.
A′
R8
5kΩ
A
MAX13171E
MAX13173E
R5
55kΩ
R8
5kΩ
R6
11kΩ
MAX13173E
R5
55kΩ
RECEIVER
S3
R6
11kΩ
RECEIVER
S3
+
1.4V
R7
11kΩ
B′
R4
55kΩ
B
S1
S2
C′
GND
Figure 24a. V.28 Termination and Internal Resistance Network
for Receiver 1, 2, and 3
30
C′
GND
Figure 24b. V.28 Internal Resistance Network for Receiver 4
and 5
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
50Ω
LOAD
CABLE
TERMINATION
A′
A
MAX13171E/MAX13173E/MAX13175E
BALANCED
INTERCONNECTING
CABLE
GENERATOR
125Ω
RECEIVER
50Ω
125Ω
50Ω
50Ω
B
B′
C
C′
GND
GND
Figure 25. Typical V.35 Interface
A
A′
MAX13171E
R5
55kΩ
R1
52Ω
R8
5kΩ
MAX13175E
RECEIVER
S3
S1
S2
R6
11kΩ
R3
127Ω
+
1.4V
R7
11kΩ
R2
52Ω
B′
R4
55kΩ
B
S1
S2
C′
GND
Figure 26. V.35 Termination and Internal Resistance Networks
DTE/DCE Mode Applications
The MAX13171E/MAX13173E can be hardwired for
either DTE or DCE mode in one of two ways: a dedicated DTE or DCE port with an appropriate gender connector, or a port with a connector that can be configured
for DTE or DCE operation by rerouting the signals to the
MAX13171E and MAX13173E, using a dedicated DTE
cable or dedicated DCE cable. The interface mode is
selected by logic outputs from the controller or from
jumpers to either VL or GND on the mode select inputs.
A dedicated DCE port using a DB-25 female connector
is shown in Figure 28. Figure 29 illustrates a dedicated
DTE port using a DB-25 male connector.
Figure 27 shows an application circuit with one common DB-25 connector that can be configured for either
DTE or DCE mode. The configuration requires separate
cables for proper signal routing in DTE or DCE operation. Figure 27 illustrates a DCE or DTE controller-selectable interface. The DCE/DTE and INVERT inputs switch
the port’s mode of operation (Tables 1, 2).
______________________________________________________________________________________
31
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
100pF
VCC
100pF 100pF
VCC
C4
4.7µF
VL
0.1µF
0.1µF
VDD
MAX13175E
DTE_TXD/DCE_RXD
T1IN
DTE_SCTE/DCE_RXC
T2IN
T3IN
DTE_TXC/DCE_TXC
R1OUT
DTE_RXC/DCE_SCTE
R2OUT
DTE_RXD/DCE_TXD
R3OUT
VL
T1
T2
R6A
R6B
M0
LATCH
T1OUTA
T1OUTB
T2OUTA
T2OUTB
DTE
2
TXD A
14
TXD B
24
SCTE A
11
SCTE B
DCE
RXD A
RXD B
RXC A
RXC B
T3OUTA/R1INA
T3OUTB/R1INB
15
12
TXC A
TXC B
R2INA
R2INB
R3INA
R3INB
17
9
T3
R1
R2
R3
3
16
7
MAX13171E
M0
M1
M2
DCE/DTE
0.1µF
R5A
R5B
0.1µF
R4A
R4B
C5
4.7µF
VEE
M1
VEE
R2A
R2B
R3A
R3B
C3
4.7µF
CHARGE
PUMP
R1A
R1B
VDD
0.1µF
DCE/DTE
M2
C2
1µF
C1
1µF
1
TXC A
TXC B
RXC A SCTE A
RXC B SCTE B
RXD A TXD A
RXD B TXD B
SG
SHIELD
DB-25
CONNECTOR
C4
4.7µF
VCC
C2
1µF
C1
1µF
VDD
C3
4.7µF
CHARGE
PUMP
VEE
C5
4.7µF
T1OUTA
DTE_RTS/DCE_CTS
T1IN
DTE_DTR/DCE_DSR
T2IN
T3IN
DTE_DCD/DCE_DCD
R1OUT
DTE_DSR/DCE_DTR
R2OUT
DTE_CTS/DCE_RTS
R3OUT
DTE_LL/DCE_LL
T4IN
R4OUT
R5OUT/T5IN
T1
T2
T1OUTB
T2OUTA
T2OUTB
4
19
20
23
RTS A
RTS B
CTS A
CTS B
DTR A
DTR B
DSR A
DSR B
T3
R1
R2
R3
T4
T3OUTA/R1INA
T3OUTB/R1INB
R2INA
R2INB
R3INA
R3INB
8
DCD A
10
DCD B
6
DSR A
22
DSR B
5
CTS A
13 CTS B
T4OUTA/R4INA
R4
T5OUTA/R5INA
T5
R5
VL
0.1µF
MAX13173E
M0
M1
M2
DCE/DTE INVERT
DCE/DTE
M2
M1
M0
INVERT
Figure 27. Controller-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector
32
______________________________________________________________________________________
DCD A
DCD B
DTR A
DTR B
RTS A
RTS B
Multiprotocol, Pin-Selectable
Data Interface Chipset
MAX13171E/MAX13173E/MAX13175E
100pF
VCC
100pF 100pF
VCC
C4
4.7µF
VL
0.1µF
0.1µF
VDD
MAX13175E
RXD
T1IN
RXC
T2IN
T3IN
TXC
R1OUT
SCTE
R2OUT
TXD
R3OUT
VL
0.1µF
NC
C4
4.7µF
T1
T2
R6A
R6B
R5A
R5B
0.1µF
T1OUTA
T1OUTB
T2OUTA
T2OUTB
R4A
R4B
C5
4.7µF
VEE
VL
M0
LATCH
VEE
R2A
R2B
R3A
R3B
C3
4.7µF
CHARGE
PUMP
R1A
R1B
VDD
0.1µF
DCE/DTE
M2
M1
C2
1µF
C1
1µF
DCE
3
RXD A (104)
16
RXD B
17
RXC A (115)
9
RXC B
T3
R1
R2
R3
T3OUTA/R1INA
T3OUTB/R1INB
R2INA
R2INB
R3INA
R3INB
15
12
24
11
2
14
7
MAX13171E
M0
M1
M2
DCE/DTE
1
VCC
VDD
CHARGE
PUMP
VEE
C5
4.7µF
T1OUTA
T1IN
T2IN
T3IN
DCD
R1OUT
DTR
R2OUT
RTS
R3OUT
LL
SHIELD (101)
C2
1µF
C3
4.7µF
DSR
SCTE A (113)
SCTE B
TXD A (103)
TXD B
SG
DB-25
FEMALE
CONNECTOR
C1
1µF
CTS
TXC A (114)
TXC B
T4IN
R4OUT
R5OUT/T5IN
T1
T2
T1OUTB
T2OUTA
T2OUTB
4
19
20
23
CTS A
CTS B
DSR A
DSR B
T3
R1
R2
R3
T4
R2INA
R2INB
R3INA
R3INB
8
DCD A (109)
10
DCD B
20
DTR A (108)
23
DTR B
4
RTS A (105)
19 RTS B
T4OUTA/R4INA
18
T3OUTA/R1INA
T3OUTB/R1INB
LL A (141)
R4
T5OUTA/R5INA
T5
R5
VL
0.1µF
NC
MAX13173E
M0
M1
M2
DCE/DTE INVERT
M2
M1
M0
INVERT
Figure 28. Controller-Selectable DCE Port with DB-25 Connector
______________________________________________________________________________________
33
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
100pF
VCC
100pF 100pF
VCC
C4
4.7µF
VL
0.1µF
0.1µF
VDD
MAX13175E
TXD
T1IN
SCTE
T2IN
T3IN
TXC
R1OUT
RXC
R2OUT
RXD
R3OUT
VL
T1
T2
M0
DTE
2
TXD A (103)
14
TXD B
24
SCTE A (113)
11
SCTE B
T3
R1
R2
R3
T3OUTA/R1INA
T3OUTB/R1INB
R2INA
R2INB
R3INA
R3INB
15
12
17
9
3
14
7
MAX13171E
M0
M1
M2
DCE/DTE
0.1µF
R6A
R6B
0.1µF
T1OUTA
T1OUTB
T2OUTA
T2OUTB
R5A
R5B
VEE
R4A
R4B
C5
4.7µF
LATCH
M1
VEE
R2A
R2B
R3A
R3B
C3
4.7µF
CHARGE
PUMP
R1A
R1B
VDD
0.1µF
DCE/DTE
M2
C2
1µF
C1
1µF
1
TXC A (114)
TXC B
RXC A (115)
RXC B
RXD A (104)
RXD B
SG
SHIELD (101)
DB-25 MALE
CONNECTOR
C4
4.7µF
VCC
C2
1µF
C1
1µF
VDD
C3
4.7µF
CHARGE
PUMP
VEE
C5
4.7µF
T1OUTA
RTS
T1IN
DTR
T2IN
T3IN
DCD
R1OUT
DSR
R2OUT
CTS
R3OUT
LL
T4IN
R4OUT
R5OUT/T5IN
T1
T2
T1OUTB
T2OUTA
T2OUTB
4
19
20
23
RTS A (105)
RTS B
DTR A (108)
DTR B
T3
R1
R2
R3
T4
R2INA
R2INB
R3INA
R3INB
8
DCD A (109)
10
DCD B
6
DSR A (107)
22
DSR B
5
CTS A (106)
13 CTS B
T4OUTA/R4INA
18
T3OUTA/R1INA
T3OUTB/R1INB
LL A (141)
R4
T5OUTA/R5INA
T5
R5
VL
0.1µF
MAX13173E
M0
M1
M2
DCE/DTE INVERT
M2
M1
M0
INVERT
Figure 29. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector
34
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
extra protection against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage.
The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an
ESD event, the MAX13171E/MAX13173E/MAX13175E
keep working without latchup or damage. ESD protection can be tested in various ways. The Electrical
Characteristics table shows the various limits for each
device and they are characterized for protection to the
following methods:
• Human Body Model
• Contact Method specified in IEC 61000-4-2
ESD Protection
ESD-protection structures are incorporated on all pins to
protect against electrostatic discharges encountered
during handling and assembly. The driver outputs and
receiver inputs of the MAX13171E/MAX13173E have
• Air-Gap Discharge Method specified in IEC 61000-4-2
DTE
SERIAL
CONTROLLER
MAX13171E
DCE
MAX13175E
MAX13175E
TXD
T1
TXD
SCTE
T2
SCTE
T3
TXC
R3
RXC
R2
RXD
R1
104Ω
104Ω
MAX13171E
SERIAL
CONTROLLER
R3
TXD
R2
SCTE
R1
104Ω
104Ω
104Ω
TXC
T1
TXC
RXC
T2
RXC
RXD
T3
RXD
MAX13173E
MAX13173E
RTS
T1
RTS
R3
RTS
DTR
T2
DTR
R2
DTR
T3
R1
DCD
R1
DCD
T3
DCD
DSR
R2
DSR
T2
DSR
CTS
R3
CTS
T1
CTS
LL
D4
T4
LL
R4
LL
T4
Figure 30. DCE-to-DTE X.21 Interface
______________________________________________________________________________________
35
MAX13171E/MAX13173E/MAX13175E
Complete Multiprotocol X.21 Interface
A complete DTE-to-DCE interface operating in X.21
mode is shown in Figure 30. The MAX13171E is used to
generate the clock and data signals, and the
MAX13173E generates the control signals and local
loopback (LL). The MAX13175E is used to terminate the
clock and data signals to support the V.11 protocol for
cable termination. The control signals do not need
external termination.
ESD Test Conditions
ESD performance depends on a variety of conditions.
Contact Maxim for a reliability report that documents
test setup, test methodology, and test results.
Human Body Model
Figure 31a shows the Human Body Model, and Figure
31b shows the current waveform it generates when discharged into a low impedance. This model consists of a
100pF capacitor charged to the ESD voltage of interest,
which is then discharged into the test device through a
1.5kΩ resistor.
RC
1MΩ
CHARGE-CURRENT
LIMIT RESISTOR
HIGHVOLTAGE
DC
SOURCE
Cs
100pF
IEC 61000-4-2
The IEC 61000-4-2 standard covers ESD testing and
performance of finished equipment. However, it does
not specifically refer to integrated circuits. The
MAX13171E/MAX13173E/MAX13175E help equipment
designs to meet IEC 61000-4-2, without the need for
additional ESD-protection components.
The major difference between tests done using the
Human Body Model and IEC 61000-4-2 is higher peak
current in IEC 61000-4-2 because series resistance is
lower in the IEC 61000-4-2 model. Figure 31c shows
the IEC 61000-4-2 model, and Figure 31d shows the
current waveform for the IEC 61000-4-2 ESD Contact
Discharge test.
RD
1500Ω
RC
50MΩ TO 100MΩ
DISCHARGE
RESISTANCE
CHARGE-CURRENT
LIMIT RESISTOR
DEVICE
UNDER
TEST
STORAGE
CAPACITOR
Figure 31a. Human Body ESD Test Model
IP 100%
90%
Ir
HIGHVOLTAGE
DC
SOURCE
Cs
150pF
RD
330Ω
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
DEVICE
UNDER
TEST
Figure 31c. ICE 61000-4-2 ESD Test Model
I
100%
90%
PEAK-TO-PEAK RINGING
(NOT DRAWN TO SCALE)
IPEAK
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
AMPS
36.8%
10%
10%
0
0
tRL
TIME
tDL
CURRENT WAVEFORM
Figure 31b. Human Body Current Waveform
36
tr = 0.7ns TO 1ns
t
30ns
60ns
Figure 31d. IEC 61000-4-2 ESD Generator Current Waveform
______________________________________________________________________________________
Multiprotocol, Pin-Selectable
Data Interface Chipset
N.C.
N.C.
GND
T1OUTA
T1OUTB
T2OUTA
T2OUTB
GND
T3OUTA/R1INA
T3OUTB/R1INB
R2INA
R2INB
TOP VIEW
31
30
29
28
27
26
25
24
23
22
21
20
VEE 32
19 GND
C2- 33
18 R3INA
C2+ 34
17 R3INB
MAX13171E
GND 35
16 VCC
15 DCE/DTE
C1- 36
C1+ 37
+
VCC
T1IN
T2IN
N.C.
7
8
9
10
11
12
VL
6
M0
5
R3OUT
4
R2OUT
3
R1OUT
2
T3IN
1
N.C.
13 M1
N.C.
VDD 38
14 M2
*EP
TQFN
GND
T5OUTA/R5INA
T1OUTA
T1OUTB
T2OUTA
T2OUTB
GND
T3OUTA/R1INA
T3OUTB/R1INB
R2INA
R2INB
R3INA
*CONNECT EXPOSED PAD TO VEE.
31
30
29
28
27
26
25
24
23
22
21
20
VEE 32
19 R3INB
C2- 33
18 GND
C2+ 34
17 T4OUTA/R4INA
MAX13173E
GND 35
16 INVERT
C1- 36
15 DCE/DTE
C1+ 37
+
2
3
4
5
6
7
8
9
10
11
12
VCC
T2IN
T3IN
VL
R1OUT
R2OUT
R3OUT
R5OUT/T5IN
T4IN
R4OUT
M0
13 M1
1
T1IN
VDD 38
14 M2
*EP
TQFN
*CONNECT EXPOSED PAD TO VEE.
______________________________________________________________________________________
37
MAX13171E/MAX13173E/MAX13175E
Pin Configurations
Pin Configurations (continued)
R6B
R6B
R6A
R6A
R5A
R5A
R5B
R5B
R4A
R4A
R4B
R4B
TOP VIEW
31
30
29
28
27
26
25
24
23
22
21
20
DCE/DTE 32
19 VCC
LATCH 33
18 GND
M2 34
17 VDD
MAX13175E
M1 35
16 VEE
M0 36
15 VL
R1C 37
+
1
2
3
4
5
6
7
8
9
10
11
12
R1A
R2A
R2A
R2B
R2B
R2C
R3A
R3A
R3B
R3B
13 GND
R1A
R1B 38
14 R3C
*EP
R1B
MAX13171E/MAX13173E/MAX13175E
Multiprotocol, Pin-Selectable
Data Interface Chipset
TQFN
*CONNECT EXPOSED PAD TO VEE
Package Information
Chip Information
PROCESS: BiCMOS
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
38 TQFN-EP
T3857-1
21-0172
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
38 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.