LTC1343 Software-Selectable Multiprotocol Transceiver U FEATURES ■ ■ ■ ■ ■ ■ DESCRIPTIO The LTC®1343 is a 4-driver/4-receiver multiprotocol transceiver that operates from a single 5V supply. Two LTC1343s form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA-530, EIA-530-A, V.35, V.36 or X.21 protocols. Cable termination may be implemented using the LTC1344 software-selectable cable termination chip or by using existing discrete designs. The LTC1343 runs from a single 5V supply using an internal charge pump that requires only five space saving surface mount capacitors. The mode pins are latched internally to allow sharing of the select lines between multiple interface ports. Software-selectable echoed clock and loop-back modes help eliminate the need for external glue logic between the serial controller and line transceiver. The part features a flowthrough architecture to simplify EMI shielding and is available in the 44-lead SSOP surface mount package. Software-Selectable Transceiver Supports: RS232, RS449, EIA-530, EIA-530-A, V.35, V.36, X.21 NET1 and NET2 Compliant Software-Selectable Cable Termination Using the LTC1344 4-Driver/4-Receiver Configuration Provides a Complete 2-Chip DTE or DCE Port Operates from Single 5V Supply Internal Echoed Clock and Loop-Back Logic U APPLICATIO S ■ ■ ■ Data Networking CSU and DSU Data Routers , LTC and LT are registered trademarks of Linear Technology Corporation. U TYPICAL APPLICATIO DTE Multiprotocol Serial Interface with DB-25 Connector CTS DSR DCD DTR RTS RL D3 D2 D1 TM RXD RXC TXC R3 R4 R2 TXD LL D3 D2 D1 LTC1343 LTC1343 D4 SCTE D4 R1 R3 R4 R2 R1 LTC1344 13 5 22 6 10 8 23 20 19 4 21 1 7 25 16 3 17 12 15 11 24 14 2 18 LL A (141) TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B TM A (142) SGND (102) SHIELD (101) RL A (140) RTS A (105) RTS B DTR A (108) DTR B DCD A (109) DCD B DSR A (107) CTS A (106) DSR B CTS B DB-25 CONNECTOR 9 1343 TA01 1 LTC1343 U W U U W W W ABSOLUTE MAXIMUM RATINGS PACKAGE/ORDER INFORMATION (Note 1) Supply Voltage ....................................................... 6.5V Input Voltage Transmitters ........................... – 0.3V to (VCC + 0.3V) Receivers ............................................... – 18V to 18V Logic Pins .............................. – 0.3V to (VCC + 0.3V) Output Voltage Transmitters ................. (VEE – 0.3V) to (VDD + 0.3V) Receivers ................................ – 0.3V to (VCC + 0.3V) Logic Pins .............................. – 0.3V to (VCC + 0.3V) VEE ........................................................ – 10V to 0.3V VDD ....................................................... – 0.3V to 10V Short-Circuit Duration Transmitter Output ..................................... Indefinite Receiver Output .......................................... Indefinite VEE .................................................................. 30 sec Operating Temperature Range LTC1343C .............................................. 0°C to 70°C LTC1343I ........................................... – 40°C to 85°C Storage Temperature Range ................ – 65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C TOP VIEW ORDER PART NUMBER 44 C2 + VDD 1 C1+ 2 PWRVCC 3 42 VEE C1– 4 41 PGND D1 5 40 GND D2 6 D3 7 VCC 8 D4 9 43 C2 – CHARGE PUMP LTC1343CGW LTC1343IGW 39 D1 A D1 38 D2 A D2 37 D2 B 36 D3 A D3 D4EN 10 35 D3 B INVERT 11 34 D4 A D4 R1EN 12 33 D4 B R1O 13 32 R1 A R1 R2O 14 31 R1 B R3O 15 30 R2 A R2 R4O 16 29 R2 B M0 17 28 R3 A R3 M1 18 M2 19 27 R3 B 26 R4 A R4 CTRL/CLK 20 25 423 SET DCE/DTE 21 24 EC LATCH 22 23 LB GW PACKAGE 44-LEAD PLASTIC SSOP TJMAX = 150°C, θJA = 65°C/ W Consult factory for Military grade parts. ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3) SYMBOL PARAMETER CONDITIONS VCC Supply Current (DCE Mode, All Digital Pins = GND or VCC) V.10 Mode, No Load V.10 Mode, Full Load RS530, RS530-A, X.21 Modes, No Load RS530, RS530-A, X.21 Modes, Full Load V.35 Mode, No Load V.35 Mode, Full Load V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode MIN TYP MAX UNITS Supplies ICC ● ● ● ● PD Internal Power Dissipation (DCE Mode, All Digital Pins = GND or VCC) V.10 Mode, Full Load RS530, RS530-A, X.21 Modes, Full Load V.35 Mode, Full Load V.28 Mode, Full Load V+ Positive Charge Pump Output Voltage Any Mode, No Load V.28 Mode, with Load ● ● V– Negative Charge Pump Output Voltage V.28 Mode, Full Load 2 12 80 80 160 20 115 20 30 0.05 ● 150 200 160 90 1 mA mA mA mA mA mA mA mA mA 400 680 500 150 mW mW mW mW 8.5 8.0 9.1 7.0 V V ● – 7.8 – 8.4 V V.35 Mode, Full Load – 40°C ≤ TA ≤ 85°C ● ● – 5.8 – 5.5 – 6.7 V V V.10, RS530, RS530A, X.21 Modes, Full Load – 40°C ≤ TA ≤ 85°C ● ● – 5.0 – 4.8 – 6.1 V V LTC1343 ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3) SYMBOL PARAMETER CONDITIONS tr Supply Rise Time No-Cable Mode or Power-Up to Turn On MIN TYP MAX 2 UNITS ms Logic Inputs and Outputs VIH Logic Input High Voltage ● 2 VIL Logic Input Low Voltage ● 0.8 V IIN Logic Input Current ● ±10 µA VOH Output High Voltage IO = – 4mA ● VOL Output Low Voltage IO = 4mA ● IOSR Output Short-Circuit Current 0V ≤ VO ≤ VCC, 0°C ≤ TA ≤ 70°C 0V ≤ VO ≤ VCC, – 40°C ≤ TA ≤ 85°C ● ● IOZR Three-State Output Current M0 = M1 = M2 = VCC, 0V ≤ VO ≤ VCC VOD Differential Output Voltage Open Circuit, RL = 1.95k RL = 50Ω (Figure 1), VOD at 50Ω > 1/2 VOD at RL = 1.95k ● ● ∆VOD Change in Magnitude of Differential Output Voltage RL = 50Ω (Figure 1) VOC Common Mode Output Voltage ∆VOC 3 V 4.5 0.3 – 60 – 70 V 0.8 V 60 70 mA mA ±1 µA V.11 Driver ±6 V V ● 0.2 V RL = 50Ω (Figure 1) ● 3.0 V Change in Magnitude of Common Mode Output Voltage RL = 50Ω (Figure 1) ● 0.2 V ISS Short-Circuit Current – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled IOZ Output Leakage Current – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled ● t r, t f Rise or Fall Time (Figures 2, 6) ● t PLH Input to Output (Figures 2, 6), 0°C ≤ TA ≤ 70°C (Figures 2, 6), – 40°C ≤ TA ≤ 85°C t PHL Input to Output ∆t t SKEW ±2 ±150 mA ±0.01 ±100 µA 4 13 25 ns ● ● 25 25 55 55 80 90 ns ns (Figures 2, 6), 0°C ≤ TA ≤ 70°C (Figures 2, 6), – 40°C ≤ TA ≤ 85°C ● ● 25 25 55 55 80 90 ns ns Input to Output Difference, tPLH – tPHL (Figures 2, 6), 0°C ≤ TA ≤ 70°C (Figures 2, 6), – 40°C ≤ TA ≤ 85°C ● ● 0 0 3 3 17 25 ns ns Output to Output Skew (Figures 2, 6) 3 ns V.11 Receiver VTH Input Threshold Voltage – 7V ≤ VCM ≤ 7V, 0°C ≤ TA ≤ 70°C – 7V ≤ VCM ≤ 7V, – 40°C ≤ TA ≤ 85°C ● ● ∆VTH Input Hysteresis – 7V ≤ VCM ≤ 7V, 0°C ≤ TA ≤ 70°C – 7V ≤ VCM ≤ 7V, – 40°C ≤ TA ≤ 85°C ● ● IIN Input Current (A, B) – 10V ≤ VA, B ≤ 10V ● RIN Input Impedance – 10V ≤ VA, B ≤ 10V ● t r, t f Rise or Fall Time (Figures 2, 7) t PLH Input to Output (Figures 2, 7), CTRL = GND, 0°C ≤ TA ≤ 70°C CTRL = VCC, 0°C ≤ TA ≤ 70°C ● 35 80 400 115 ns ns (Figures 2, 7), CTRL = GND, – 40°C ≤ TA ≤ 85°C CTRL = VCC, – 40°C ≤ TA ≤ 85°C ● 25 80 400 130 ns ns – 0.2 – 0.3 15 20 0.2 0.3 V V 40 60 mV mV ±0.50 mA 32 kΩ 15 ns 3 LTC1343 ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS t PHL Input to Output (Figures 2, 7), CTRL = GND, 0°C ≤ TA ≤ 70°C CTRL = VCC, 0°C ≤ TA ≤ 70°C ● 35 80 400 115 ns ns (Figures 2, 7), CTRL = GND, –40°C ≤ TA ≤ 85°C CTRL = VCC, –40°C ≤ TA ≤ 85°C ● 25 80 400 130 ns ns Input to Output Difference, tPLH – tPHL (Figures 2, 7), 0°C ≤ TA ≤ 70°C (Figures 2, 7), –40°C ≤ TA ≤ 85°C ● ● 0 0 5 5 17 25 ns ns Differential Output Voltage Open Circuit With Load, – 4.0V ≤ VCM = 4.0V (Figure 3) ● ±0.44 ±0.55 6.0 ±0.66 V V ∆t V.35 Driver VOD IOH Transmitter Output High Current VA, B = 0V ● – 12.6 – 11 – 9.4 mA IOL Transmitter Output Low Current VA, B = 0V ● 9.4 11 12.6 mA IOZ Transmitter Output Leakage Current – 0.25V ≤ VA, B ≤ 0.25V ● ±0.01 ±100 µA t r , tf t PLH Rise or Fall Time (Figures 3, 6) Input to Output (Figures 3, 6), 0°C ≤ TA ≤ 70°C (Figures 3, 6), –40°C ≤ TA ≤ 85°C ● ● 25 25 45 45 75 90 ns ns t PHL Input to Output (Figures 3, 6), 0°C ≤ TA ≤ 70°C (Figures 3, 6), –40°C ≤ TA ≤ 85°C ● ● 25 25 45 45 75 90 ns ns ∆t Input to Output Difference, tPLH – tPHL (Figures 3, 6), 0°C ≤ TA ≤ 70°C (Figures 3, 6), –40°C ≤ TA ≤ 85°C ● ● 0 0 5 5 17 25 ns ns t SKEW Output to Output Skew (Figures 3, 6) 5 ns 4 ns V.35 Receiver VTH Differential Receiver Input Threshold Voltage – 2V ≤ (VA + VB)/2 ≤ 2V (Figure 3) ● ∆VTH Receiver Input Hysteresis – 2V ≤ (VA + VB)/2 ≤ 2V (Figure 3) ● IIN Receiver Input Current (A, B) – 10V ≤ VA, B ≤ 10V ● RIN Receiver Input Impedance – 10V ≤ VA, B ≤ 10V ● t r, t f Rise or Fall Time (Figures 3, 7) tPLH Input to Output (Figures 3, 7), 0°C ≤ TA ≤ 70°C (Figures 3, 7), –40°C ≤ TA ≤ 85°C ● ● 80 80 115 130 ns ns tPHL Input to Output (Figures 3, 7), 0°C ≤ TA ≤ 70°C (Figures 3, 7), –40°C ≤ TA ≤ 85°C ● ● 100 100 115 130 ns ns ∆t Input to Output Difference, tPLH – tPHL (Figures 3, 7), 0°C ≤ TA ≤ 70°C (Figures 3, 7), –40°C ≤ TA ≤ 85°C ● ● 4 4 17 25 ns ns VO Output Voltage Open Circuit, RL = 3.9k RL = 450Ω (Figure 4) VO at 450Ω > 0.9 VO at RL = 3.9k Driver 1 Only ±6.0 V V ISS Short-Circuit Current VO = GND; EIA-530, X.21, EIA-530-A Modes ±150 mA IOZ Output Leakage Current – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled ±100 µA t r, t f Rise or Fall Time (Figures 4, 8), RL = 450Ω, CL = 100pF R423SET = 100k 4 µs t PLH Input to Output (Figures 4, 8), RL = 450Ω, CL = 100pF R423SET = 100k 8 µs t PHL Input to Output (Figures 4, 8), RL = 450Ω, CL = 100pF R423SET = 100k 8 µs – 0.2 11 20 0.2 V 40 mV ±0.50 mA 32 kΩ 15 ns V.10 Driver 4 ±4.0 ±3.6 ● ±0.1 LTC1343 ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS 0.2 0.3 V V V.10 Receiver VTH Receiver Input Threshold Voltage ∆VTH Receiver Input Hysteresis IIN Receiver Input Current RIN t r, t f 0°C ≤ TA ≤ 70°C –7V ≤ VCM ≤ 7V, – 40°C ≤ TA ≤ 85°C ● ● – 0.2 – 0.3 11 ● 50 mV ±0.50 mA – 10V ≤ VA ≤ 10V ● Receiver Input Impedance – 10V ≤ VA ≤ 10V ● 30 kΩ Rise or Fall Time (Figures 5, 9) 15 ns t PLH Input to Output (Figures 5, 9) 350 ns t PHL Input to Output (Figures 5, 9) 350 ns Output Voltage Open Circuit RL = 3k (Figure 4) ● 20 V.28 Driver VO ±5 ±10 V V ±150 mA ±100 µA 7.6 ISS Short-Circuit Current VO = GND ● IOZ Output Leakage Current – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled ● SR Slew Rate (Figures 4, 8), RL = 3k, CL = 2500pF ● 30.0 V/µs t PLH Input to Output (Figures 4, 8), RL = 3k, CL = 2500pF ● 1.6 2.5 µs t PHL Input to Output (Figures 4, 8), RL = 3k, CL = 2500pF ● 1.6 2.5 µs 1.4 0.8 V ±0.01 4.0 V.28 Receiver VTHL Input Low Threshold Voltage ● VTLH Input High Threshold Voltage ● 2.0 1.4 ∆VTH Receiver Input Hysteresis ● 0.1 0.4 1.0 RIN Receiver Input Impedance – 15V ≤ VA ≤ 15V ● 3 5 7 t r, tf tPLH Rise or Fall Time (Figures 5, 9) Input to Output (Figures 5, 9), CTRL = 0V CTRL = VCC ● 110 330 800 ns ns (Figures 5, 9), CTRL = 0V CTRL = VCC ● 170 480 800 ns ns tPHL Input to Output Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired. Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified. V 15 V kΩ ns Note 3: All typicals are given for VCC = 5V, C1 = C2 = CVCC = CVDD = 1µF, CVEE = 3.3µF tantalum capacitors and TA = 25°C. U U U PIN FUNCTIONS VDD (Pin 1): Generated Positive Supply Voltage for RS232. Connect a 1µF capacitor to ground. C1 + (Pin 2): Capacitor C1 Positive Terminal. Connect a 1µF capacitor between C1 + and C1 –. PWRVCC (Pin 3): Positive Supply for the Charge Pump. 4.75V ≤ PWRVCC ≤ 5.25V. Tie to VCC (Pin 8) and bypass with a 1µF capacitor to ground. C1 –␣ (Pin 4): Capacitor C1 Negative Terminal. D1 (Pin 5): TTL Level Driver 1 Input. D2 (Pin 6): TTL Level Driver 2 Input. D3 (Pin 7): TTL Level Driver 3 Input. Becomes a CMOS level output when the chip is in the echoed clock mode (EC = 0V). 5 LTC1343 U U U PIN FUNCTIONS VCC (Pin 8): Positive Supply for the Transceivers. 4.75V ≤ VCC ≤ 5.25V. Tie to PWRVCC (Pin 3). respective input buffers. The data latch allows the logic lines to be shared between multiple I/O ports. D4 (Pin 9): TTL Level Driver 4 Input. LB (Pin 23): TTL Level Loop-Back Select Input. When low the chip enters the loop-back configuration and is configured for normal operation when LB is high. The data on LB is latched when LATCH is high. D4EN (Pin 10): TTL Level Enable Input for Driver 4. When high, driver 4 outputs are enabled. When low, driver 4 outputs are forced into a high impedance state. D4EN is not affected by the LATCH pin. INVERT (Pin 11): TTL Level Signal Invert Input. When high, an extra inverter will be added to the driver 4 and receiver 1 signal path. The data stream will change polarity, i.e., a 1 becomes 0 and a 0 becomes a 1. When the pin is low the data flows through with no polarity change. INVERT is not affected by the LATCH pin. R1EN (Pin 12): Logic Level Enable Input for Receiver 1. When low, receiver 1 output is enabled. When high, receiver 1 output is forced into a high impedance state. R1O (Pin 13): CMOS Level Receiver 1 Output. R2O (Pin 14): CMOS Level Receiver 2 Output. R3O (Pin 15): CMOS Level Receiver 3 Output. R4O (Pin 16): CMOS Level Receiver 4 Output. M0 (Pin 17): TTL Level Mode Select Input 0. The data on M0 is latched when LATCH is high. EC (Pin 24): TTL Level Echoed Clock Select Input. When low the part enters the echoed clock configuration and is configured for normal operation when EC is high. The data on EC is latched when LATCH is high. 423 SET (Pin 25): Analog Input Pin for the RS423 Driver Output Rise and Fall Time Set Resistor. Connect the resistor from the pin to ground. R4 A (Pin 26): Receiver 4 Inverting Input. R3 B (Pin 27): Receiver 3 Noninverting Input. R3 A (Pin 28): Receiver 3 Inverting Input. R2 B (Pin 29): Receiver 2 Noninverting Input. R2 A (Pin 30): Receiver 2 Inverting Input. R1 B (Pin 31): Receiver 1 Noninverting Input. R1 A (Pin 32): Receiver 1 Inverting Input. D4 B (Pin 33): Driver 4 Noninverting Output. M1 (Pin 18): TTL Level Mode Select Input 1. The data on M1 is latched when LATCH is high. D4 A (Pin 34): Driver 4 Inverting Output. M2 (Pin 19): TTL Level Mode Select Input 2. The data on M2 is latched when LATCH is high. D3 A (Pin 36): Driver 3 Inverting Output. CTRL/CLK (Pin 20): TTL Level Mode Select Input. When the pin is low the chip will be configured for clock and data signals. When the pin is high the chip will be configured for control signals. The data on CTRL/CLK is latched when LATCH is high. DCE/DTE (Pin 21): TTL Level Mode Select Input. When high, the DCE mode is selected. When low the DTE mode is selected. The data on DCE/DTE is latched when LATCH is high. LATCH (Pin 22): TTL Level Logic Signal Latch Input. When low the input buffers on M0, M1, M2, CTRL/CLK, DCE/ DTE, LB and EC are transparent. When LATCH is pulled high the data on the logic pins is latched into their 6 D3 B (Pin 35): Driver 3 Noninverting Output. D2 B (Pin 37): Driver 2 Noninverting Output. D2 A (Pin 38): Driver 2 Inverting Output. D1 A (Pin 39): Driver 1 Inverting Output. GND (Pin 40): Signal Ground. Connect to PGND (Pin 41). PGND (Pin 41): Charge Pump Power Ground. Connect to the GND (Pin 40). VEE (Pin 42): Generated Negative Supply Voltage. Connect a 3.3µF capacitor to ground. C2 – (Pin 43): Capacitor C2 Negative Terminal. Connect a 1µF capacitor between C2 + and C2 –. C2 + (Pin 44): Capacitor C2 Positive Terminal. Connect a 1µF capacitor between C2 + and C2 – . LTC1343 TEST CIRCUITS A RL 50Ω B RL 100Ω A VOD RL 50Ω CL 100pF B CL 100pF A R 15pF VOC B 1343 F01 1343 F02 Figure 1. RS422 Driver Test Circuit Figure 2. RS422 Driver/Receiver AC Test Circuit 50Ω B D 125Ω VCM 50Ω B 125Ω R VOD A A 15pF 50Ω 50Ω 1343 F03 Figure 3. V.35 Driver/Receiver Test Circuit D A D A A R RL CL 15pF 1343 F04 1343 F04 Figure 4. V.10/V.28 Driver Test Circuit Figure 5. V.10/V.28 Receiver Test Circuit U W ODE SELECTIO LTC1343 MODE NAME M2 M1 M0 CTRL/CLK D1 D2 D3 D4 R1 R2 R3 R4 V.10, RS423 0 0 0 X V.10 V.10 V.10 V.10 V.10 V.10 V.10 V.10 EIA-530-A Clock and Data 0 0 1 0 V.10 V.11 V.11 V.11 V.11 V.11 V.11 V.10 EIA-530-A Control 0 0 1 1 V.10 V.11 V.10 V.11 V.11 V.10 V.11 V.10 Reserved 0 1 0 X V.10 V.11 V.11 V.11 V.11 V.11 V.11 V.10 X.21 0 1 1 X V.10 V.11 V.11 V.11 V.11 V.11 V.11 V.10 V.35 Clock and Data 1 0 0 0 V.28 V.35 V.35 V.35 V.35 V.35 V.35 V.28 V.35 Control 1 0 0 1 V.28 V.28 V.28 V.28 V.28 V.28 V.28 V.28 EIA-530, RS449, V.36 1 0 1 X V.10 V.11 V.11 V.11 V.11 V.11 V.11 V.10 V.28, RS232 1 1 0 X V.28 V.28 V.28 V.28 V.28 V.28 V.28 V.28 No Cable 1 1 1 X Z Z Z Z Z Z Z Z 7 LTC1343 U W W SWITCHI G TI E WAVEFOR S 5V f = 1MHz : t r ≤ 10ns : t f ≤ 10ns 1.5V D 0V 1.5V t PHL t PLH B–A VO 90% 50% –VO 10% tr 90% VDIFF = V(A) – V(B) 50% 1/2 VO 10% tf A VO B t SKEW t SKEW 1343 F06 Figure 6. V.11, V.35 Driver Propagation Delays VOD2 B–A –VOD2 f = 1MHz : t r ≤ 10ns : t f ≤ 10ns 0V INPUT t PLH VOH R VOL 0V t PHL OUTPUT 1.5V 1.5V 1343 F07 Figure 7. V.11, V.35 Receiver Propagation Delays 3V 1.5V 1.5V D 0V t PHL VO t PLH 3V 3V 0V A 0V –3V –VO 1343 F08 –3V tf tr Figure 8. V.10, V.28 Driver Propagation Delays VIH 1.7V 1.3V A VIL VOH R VOL t PHL t PLH 2.4V 0.8V Figure 9. V.10, V.28 Receiver Propagation Delays 8 1343 F09 LTC1343 U U W U APPLICATIONS INFORMATION Overview software-selectable cable termination chip or by using existing discrete designs. The LTC1343 is a 4-driver/4-receiver multiprotocol transceiver that operates from a single 5V supply. Two LTC1343s form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA-530, EIA-530-A, V.35, V.36 or X.21 protocols. Cable termination may be implemented using the LTC1344 A complete DCE-to-DTE interface operating in EIA-530 mode is shown in Figure 10. The first LTC1343 of each port is used to generate the clock and data signals along with LL (Local Loop-back) and TM (Test Mode). The second LTC1343 is used to generate the control signals along with DTE SERIAL CONTROLLER LL LTC1343 DCE LTC1344 LTC1344 LL D1 LTC1343 R4 SERIAL CONTROLLER LL TXD D2 TXD 103Ω R3 TXD SCTE D3 SCTE 103Ω R2 SCTE R1 D4 TXC R1 103Ω TXC D4 TXC RXC R2 103Ω RXC D3 RXC RXD R3 103Ω RXD D2 RXD TM R4 D1 TM TM LTC1343 LTC1343 RL RL D1 RTS D2 DTR D3 R4 RL RTS R3 RTS DTR R2 DTR R1 D4 DCD R1 DCD D4 DCD DSR R2 DSR D3 DSR CTS R3 CTS D2 CTS RI R4 D1 RI RI 1343 F10 Figure 10. Complete Multiprotocol Interface in EIA-530 Mode 9 LTC1343 U U W U APPLICATIONS INFORMATION will configure the port for DCE mode when high, and DTE when low. RL (Remote Loop-back) and RI (Ring Indicate). The LTC1344 cable termination chip is used only for the clock and data signals because they must support V.35 cable termination. The control signals do not need any external resistors. The interface protocol may be selected simply by plugging the appropriate interface cable into the connector. The mode pins are routed to the connector and are left unconnected (1) or wired to ground (0) in the cable as shown in Figure 11. Mode Selection The interface protocol is selected using the mode select pins M0, M1, M2 and CTRL/CLK (see the Mode Selection table). The CTRL/CLK pin should be pulled high if the LTC1343 is being used to generate control signals and pulled low if used to generate clock and data signals. The pull-up resistors R1 through R4 will ensure a binary 1 when a pin is left unconnected and that the two LTC1343s and the LTC1344 enter the no-cable mode when the cable is removed. In the no-cable mode the LTC1343 supply current drops to less than 200µA and all LTC1343 driver outputs and LTC1344 resistive terminations are forced into a high impedance state. Note that the data latch pin, LATCH, is shorted to ground for all chips. For example, if the port is configured as a V.35 interface, the mode selection pins should be M2 = 1, M1 = 0, M0 = 0. For the control signals, CTRL/CLK = 1 and the drivers and receivers will operate in RS232 (V.28) electrical mode. For the clock and data signals, CTRL/CLK = 0 and the drivers and receivers will operate in V.35 electrical mode, except for the single-ended driver and receiver which will operate in the RS232 (V.28) electrical mode. The DCE/DTE pin LATCH The interface protocol may also be selected by the serial controller or host microprocessor as shown in Figure 12. The mode selection pins M0, M1, M2 and DCE/DTE can be shared between multiple interface ports, while each port 21 LTC1344 DCE/ DTE M2 22 23 M1 M0 (DATA) 24 1 CONNECTOR (DATA) R1, 10k LTC1343 M0 17 R2, 10k 20 CTRL/CLK M1 LATCH M2 18 R3, 10k 22 19 21 VCC VCC NC R4, 10k DCE/DTE VCC VCC NC CABLE LTC1343 DCE/DTE M2 VCC 20 22 CTRL/CLK M1 LATCH M0 21 19 18 17 (DATA) Figure 11: Single Port DCE/V.35 Mode Selection in the Cable 10 1343 F11 LTC1343 U W U U APPLICATIONS INFORMATION remain off even though the signal voltage is beyond the supply voltage for the FET drivers or the power is off. PORT #1 M1 M2 DCE/DTE CONNECTOR #1 M0 LATCH PORT #2 V.10 (RS423) Interface M2 DCE/DTE CONTROLLER CONNECTOR #2 M0 M1 LATCH M0 M1 M1 M2 M2 DCE/DTE DCE/DTE LATCH 1 CONNECTOR #3 PORT #3 M0 Using the LTC1344 along with the LTC1343 solves the cable termination switching problem. Via software control, the LTC1344 provides termination for the V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35 electrical protocols. A typical V.10 unbalanced interface is shown in Figure 13. A V.10 single-ended generator output A with ground C is connected to a differential receiver with inputs A' connected to A, and input B' connected to the signal return ground C. The receiver’s ground C' is separate from the signal return. Usually, no cable termination is required for V.10 interfaces, but the receiver inputs must be compliant with the impedance curve shown in Figure 14. GENERATOR BALANCED INTERCONNECTING CABLE LATCH 2 LATCH 3 LOAD CABLE TERMINATION LATCH A A' C B' RECEIVER 1343 F12 Figure 12: Mode Selection by the Controller has a unique data latch signal which acts as a write enable. When the LATCH pin is low the buffers on the M0, M1, M2, CTRL/CLK, DCE/DTE, LB and EC pins are transparent. When the LATCH pin is pulled high the buffers latch the data and changes on the input pins will no longer affect the chip. C' 1343 F13 Figure 13. Typical V.10 Interface IZ 3.25mA The mode selection may also be accomplished by using jumpers to connect the mode pins to ground or VCC. Cable Termination Traditional implementations have included switching resistors with expensive relays, or requiring the user to change termination modules every time the interface standard has changed. Custom cables have been used with the termination in the cable head, or separate terminations are built on the board and a custom cable routes the signals to the appropriate termination. Switching the terminations with FETs is difficult because the FETs must –10V –3V VZ 3V 10V 1343 F14 –3.25mA Figure 14. V.10 Receiver Input Impedance 11 LTC1343 U U W U APPLICATIONS INFORMATION The V.10 receiver configuration in the LTC1343 and LTC1344 is shown in Figure 15. In V.10 mode switches S1 and S2 inside the LTC1344 and S3 inside the LTC1343 are turned off. Switch S4 inside the LTC1343 shorts the noninverting receiver input to ground so the B input at the connector can be left floating. The cable termination is then the 30k input impedance to ground of the LTC1343 V.10 receiver. V.11 (RS422) Interface A typical V.11 balanced interface is shown in Figure 16. A V.11 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.11 interface has a differential termination at the receiver end that has a minimum value of 100Ω. The termination resistor is optional in the V.11 specification, but for the high speed clock and data lines, the termination is required to prevent reflections from corrupting the data. The re- ceiver inputs must also be compliant with the impedance curve shown in Figure 14. In V.11 mode, all switches are off except S1 inside the LTC1344 which connects a 103Ω differential termination impedance to the cable as shown in Figure 17. V.28 (RS232) Interface A typical V.28 unbalanced interface is shown in Figure 18. A. V.28 single-ended generator output A with ground C is connected to a single-ended receiver with inputs A' connected to A, ground C' connected via the signal return ground C. In V.28 mode all switches are off except S3 inside the LTC1343 which connects a 6k (R8) impedance to ground in parallel with 20k (R5) plus 10k (R6) for a combined impedance of 5k as shown in Figure 19. The noninverting input is disconnected inside the LTC1343 receiver and connected to a TTL level reference voltage for a 1.4V receiver trip point. A' A' A R1 51.5Ω S1 LTC1344 R8 6k R2 51.5Ω R5 20k R1 51.5Ω R6 10k S3 R3 124Ω S2 R4 20k B R7 10k 1343 F15 B' C C' R7 10k S4 C' GND 1343 F17 BALANCED INTERCONNECTING CABLE LOAD CABLE TERMINATION RECEIVER A A' C C' RECEIVER 100Ω MIN Figure 16. Typical V.11 Interface 12 B GENERATOR A' B R4 20k Figure 17. V.11 Receiver Configuration LOAD CABLE TERMINATION RECEIVER S3 B' Figure 15. V.10 Receiver Configuration A R8 6k R3 124Ω R2 51.5Ω GND GENERATOR LTC1343 R5 20k R6 10k S1 S4 BALANCED INTERCONNECTING CABLE LTC1344 RECEIVER S2 B' C' A LTC1343 1343 F16 Figure 18. Typical V.28 Interface 1343 F18 LTC1343 U U W U APPLICATIONS INFORMATION A' A' A R1 51.5Ω S1 S2 LTC1344 R8 6k R2 51.5Ω R5 20k R1 51.5Ω R6 10k S3 R3 124Ω A LTC1343 B' R7 10k R4 20k B B' GND 1343 F19 Figure 19. V.28 Receiver Configuration A typical V.35 balanced interface is shown in Figure 20. A V.35 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.35 interface requires a T or delta network termination at the receiver end and the generator end. The receiver differential impedance measured at the connector must be 100Ω␣ ±10Ω, and the impedance between shorted terminals (A' and B) and ground C' must be 150Ω ±15Ω. In V.35 mode, both switches S1 and S2 inside the LTC1344 are on, connecting the T network impedance as shown in Figure 21. Both switches in the LTC1343 are off. The 30k input impedance of the receiver is placed in parallel with the T network termination, but does not affect the overall input impedance significantly. S4 C' GND 1343 F21 The generator differential impedance must be 50Ω to 150Ω and the impedance between shorted terminals (A and B) and ground C must be 150Ω ±15Ω. For the generator termination, switches S1 and S2 are both on and the top side of the center resistor is brought out to a pin so it can be bypassed with an external capacitor to reduce common mode noise as shown in Figure 22. Any mismatch in the driver rise and fall times or skew in the driver propagation delays will force current through the center termination resistor to ground, causing a high frequency common mode spike on the A and B terminals. The common mode spike can cause EMI problems that are reduced by capacitor C1 which shunts much of the common mode energy to ground rather than down the cable. A LTC1344 GENERATOR LOAD CABLE TERMINATION A R7 10k Figure 21. V.35 Receiver Configuration V.35 Interface BALANCED INTERCONNECTING CABLE RECEIVER S3 R3 124Ω R2 51.5Ω S4 C' R8 6k R6 10k S2 B LTC1343 R5 20k RECEIVER S1 R4 20k LTC1344 V.35 DRIVER 124Ω 51.5Ω S2 ON S1 ON RECEIVER 51.5Ω A' B 50Ω 125Ω 125Ω 50Ω 50Ω C1 100pF B B' C C' C 1343 F22 50Ω Figure 22. V.35 Driver Using the LTC1344 1343 F20 Figure 20. Typical V.35 Interface 13 LTC1343 U U W U APPLICATIONS INFORMATION Echoed Clock Mode Loop-Back The LTC1343 contains the logic to generate the echoed clock when using a serial controller with only two clock pins. Figure 23 shows the chip in both the DTE and DCE echoed clock in EIA-530 mode. The control signals are not shown. The echoed clock configuration is selected by pulling the EC pin low. On the DTE side the transmit clock TXC receiver output is connected to the echoed clock, SCTE, driver input. The TXC pin on the serial controller is configured as an input. On the DCE side, the transmit clock from the serial controller is used to generate both TXC and RXC. A phase inverter is placed in the TXC signal path on both the DTE and DCE side to help correct phase problems with long cables. If the Invert pin is high, the phase of the data is inverted. The LTC1343 contains logic for placing the interface into a loop-back configuration for testing. Both DTE and DCE loop-back configurations are supported. Figure 24 shows a complete DTE interface in the loop-back configuration with the EC pin pulled high. The loop-back configuration is selected by pulling the LB pin low. Both the line side and logic side signals are looped back. The DCE loop-back configuration is shown in Figure 25. If the echoed clock mode is selected by pulling EC low, D3 becomes an output and is connected to receiver 2’s output R3 in DTE mode as shown in Figure 26. In the echoed clock DCE loop-back mode, driver 4 is connected to driver 3’s input D3 as shown in Figure 27. DTE SERIAL CONTROLLER LL DCE LTC1343 LTC1344 LTC1344 LTC1343 LL D1 R4 SERIAL CONTROLLER LL TXD D2 TXD 103Ω R3 RXD TXC D3 SCTE 103Ω R2 RXC R1 D4 INVERT INVERT R1 103Ω TXC D4 RXC R2 103Ω RXC D3 TXC RXD R3 103Ω RXD D2 TXD TM R4 D1 TM M0 M1 M2 CTRL/CLK DCE/DTE LB EC LATCH M0 M1 M2 DCE/DTE LATCH M0 M1 M2 DCE/DTE LATCH M0 M1 M2 CTRL/CLK DCE/DTE LB EC LATCH TM 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1343 F23 Figure 23. EIA-530 Echoed Clock Configuration 14 LTC1343 U U W U APPLICATIONS INFORMATION SERIAL CONTROLLER LL LTC1343 LTC1344 D1 LTC1344 LL LL LTC1343 R4 SERIAL CONTROLLER LL TXD D2 TXD TXD 103Ω R3 TXD SCTE D3 SCTE SCTE 103Ω R2 SCTE D4 R1 RXD D2 RXD TM R4 TM TM D1 TM LATCH RXD EC 103Ω LB R3 DCE/DTE RXD CTRL/CLK RXC M2 D3 M1 RXC M0 RXC M0 M1 M2 DCE/DTE LATCH 103Ω M0 M1 M2 DCE/DTE LATCH R2 LATCH RXC EC TXC LB D4 DCE/DTE TXC CTRL/CLK TXC M2 103Ω M1 R1 M0 TXC 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 LTC1343 LTC1343 RL RL D2 RTS D3 DTR RL D1 RTS DTR R4 RL RTS R3 RTS DTR R2 DTR D4 R1 D2 CTS RI R4 RI RI D1 RI 1 0 1 1 0 0 1 0 Figure 24. Normal DTE Loop-Back 1343 F24 LATCH CTS EC CTS LB R3 DCE/DTE CTS CTRL/CLK DSR M2 D3 M1 DSR M0 DSR LATCH R2 EC DSR LB DCD DCE/DTE D4 CTRL/CLK DCD M2 DCD M1 R1 M0 DCD 1343 F25 1 0 1 1 1 0 1 0 Figure 25. Normal DCE Loop-Back 15 LTC1343 U U W U APPLICATIONS INFORMATION SERIAL CONTROLLER LL LTC1343 LTC1344 D1 LTC1344 LL LL LTC1343 R4 SERIAL CONTROLLER LL TXD D2 TXD TXD 103Ω R3 RXD TXC D3 TXCE SCTE 103Ω R2 RXC D4 R1 TXD TM R4 TM TM D1 TM LATCH D2 EC RXD LB RXD DCE/DTE 103Ω CTRL/CLK R3 M2 RXD M1 TXC M0 D3 M0 M1 M2 DCE/DTE LATCH RXC M0 M1 M2 DCE/DTE LATCH RXC LATCH 103Ω EC R2 LB RXC DCE/DTE D4 CTRL/CLK TXC M2 TXC M1 103Ω M0 R1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 LTC1343 LTC1343 RL RL D2 RTS D3 DTR RL D1 RTS DTR R4 RL RTS R3 RTS DTR R2 DTR D4 R1 D2 CTS RI R4 RI RI D1 RI 1 0 1 1 0 0 1 0 Figure 26. Echoed Clock, DTE Loop-Back 16 1343 F26 LATCH CTS EC CTS LB R3 DCE/DTE CTS CTRL/CLK DSR M2 D3 M1 DSR M0 DSR LATCH R2 EC DSR LB DCD DCE/DTE D4 CTRL/CLK DCD M2 DCD M1 R1 M0 DCD 1 0 1 1 1 0 1 0 Figure 27. Echoed Clock, DCE Loop-Back 1343 F27 LTC1343 U W U U APPLICATIONS INFORMATION The no-cable mode (M0 = M1 = M2 = 1) is intended for the case when the cable is disconnected from the connector. The charge pump, bias circuitry, drivers and receivers are turned off, the driver outputs are forced into a high impedance state, and the supply current drops to less than 200µA. It can also be used to share I/O lines with other drivers and receivers without loading down the signals. 5V 1 + C3 1µF + + 2 C1 1µF 3 C4 1µF 4 8 44 VDD C2 + C1+ 43 C2 – LTC1343 PWRVCC VEE C1– PGND VCC GND + C2 1µF 42 + No-Cable Mode 41 C5 3.3µF 40 1343 F28 Charge Pump Receiver Fail-Safe and Glitch Filter All LTC1343 receivers feature fail-safe operation in all modes except no-cable mode. If the receiver inputs are left floating or shorted together by a termination resistor, the receiver output will always be forced to a logic high. External pull-up resistors are required on receiver outputs if fail-safe operation in the no-cable mode is desired. When the chip is configured for control signals by pulling the CTRL/CLK pin high, a glitch filter is connected to all receiver inputs. The filter will reject any glitches at the receiver inputs less than 300ns. Figure 28. Charge Pump 100 DRIVER RISE/FALL TIME (µs) The LTC1343 uses an internal capacitive charge pump to generate VDD and VEE as shown in Figure 28. A voltage doubler generates about 8V on VDD and a voltage inverter generates about – 7.5V for VEE. Four 1µF surface mounted tantalum or ceramic capacitors are required for C1, C2, C3 and C4. The VEE capacitor C5 should be a minimum of 3.3µF. All capacitors are 16V. 10 1 0.1 1k 10k 100k RESISTANCE (Ω) 1M 5M 1343 F29 Figure 29. V.10 Driver Rise and Fall Time vs Resistor Value V.10 Driver Rise and Fall Times The rise and fall times of the V.10 drivers is programmed by placing a 1/8W, 5% resistor between the 423 SET (Pin 25) and ground. The graph of Driver Rise and Fall Times vs Resistor Value is shown in Figure 29. LTC1343 5 DCE/DTE D1 21 16 Enabling the Single-Ended Driver and Receiver When the LTC1343 is being used to generate the control signals (CTRL/CLK = high) and the EC pin is pulled low, the DCE/DTE pin becomes an enable for driver 1 and receiver 4 so their inputs and outputs can be tied together as shown in Figure 30. VCC 39 20 24 R4 26 CTRL/CLK EC 1343 F30 Figure 30. Single-Ended Driver and Receiver Enable 17 LTC1343 U W U U APPLICATIONS INFORMATION The EC pin has no affect on the configuration when CTRL/ CLK is high except to allow the DCE/DTE pin to become an enable. When DCE/DTE is low, the driver 1 output is enabled. The receiver 4 output goes into three-state and the input presents a 30kΩ load to ground. drivers and receivers into a high impedance state. In the DCE mode, the middle two LTC1343s are enabled and the top and bottom LTC1343s disabled. With this scheme, any connector pin can be configured for sending or receiving signals. Note that only one LTC1344 is required. When DCE/DTE is high, the driver 1 output goes into threestate and the receiver 4 output is enabled. The receiver 4 input presents a 30kΩ load to ground in all modes except when configured for RS232 operation when the input impedance is 5kΩ to ground. Multiprotocol Interface with Ring-Indicate and a DB-25 Connector DTE vs DCE Operation The DCE/DTE pin does not allow a given LTC1343 pin to be reconfigured as a driver or receiver. The DCE/DTE pin only selects the loop-back topology and acts as an enable for the single-ended driver and receiver for control signals. However, the LTC1343 can be configured for either DTE or DCE operation in one of three ways: a dedicated DTE or DCE port with a connector of appropriate gender, a port with one connector that can be configured for DTE or DCE operation by rerouting the signals to the LTC1343 using a dedicated DTE cable or dedicated DCE cable, or a port with one connector and one cable using four LTC1343s. A dedicated DTE port using a DB-25 male connector is shown in Figure 31. The interface mode is selected by logic outputs from the controller or from jumpers to either VCC or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 32. A port with one DB-25 connector that can be configured for either DTE or DCE operation is shown in Figure 33. The configuration requires separate cables for proper signal routing in DTE or DCE operation. For example, in DTE mode, the TXD signal is routed to connector Pins 2 and 14 via driver 2 in the LTC1343. In DCE mode, driver 2 now routes the RXD signal to Pins 2 and 14. A combination DTE/DCE port that doesn’t require separate DCE/DTE cables is shown in Figure 34. In DTE mode, the top and bottom LTC1343s are enabled and the middle two are placed in the no-cable mode, which forces all of the 18 If the RI signal in RS232 mode is implemented, driver 4 and receiver 1 in the control chip can be tied to connector Pin 22 in order to implement the RI signal in RS232 mode and DSR B signal for the other modes. Figure 35 shows the DTE configuration and Figure 36 the DCE configuration. In DCE mode, the DCE/DTE pin should be driven with a logic signal from the controller that goes low only when the interface is in the RS232 mode. Since the receiver 4 input impedance is greater than 30kΩ in all modes except RS232, it can be enabled at all other times and not load down the line. When driver 1 is disabled, it remains in a high impedance state and does not load the line. Cable-Selectable Multiprotocol Interface A cable-selectable multiprotocol DTE/DCE interface is shown in Figure 37. The control signals LL, RL and TM are not implemented. The select lines M0, M1 and DCE/DTE are brought out to the connector. The mode is selected through the cable by wiring M0 (connector Pin 18), M1 (connector Pin 21) and DCE/DTE (connector Pin 25) to ground (connector Pin 7) or letting them float. If M0, M1 or DCE/DTE are floating, pull-up resistors R3, R4 and R5 will pull the signals to VCC. The select bit M1 is hard wired to VCC. When the cable is pulled out, the interface will go into the no-cable mode. Multiprotocol Interface with a µDB-26 Connector The controller-selectable multiprotocol DTE/DCE interface with a standard µDB-26 connector is shown in Figure 38. The RL, LL and TM signals are implemented and RI is mapped to Pin 26 on the connector. A cable-selectable version is shown in Figure 39. The TM and RL signals have been dropped, but LL is still implemented. LTC1343 U U W U APPLICATIONS INFORMATION C6 100pF C7 100pF 3 C8 100pF 8 11 12 13 LTC1344 VCC 5V 14 + C1 1µF 2 43 42 4 CHARGE PUMP 3 + C5 1µF 41 8 6 TXD D4 10 12 13 TXC R1 14 RXC R2 15 RXD R3 16 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET TM R1 100k + VCC C11 1µF C9 1µF + C12 1µF CHARGE PUMP 14 15 CTS 16 VCC LATCH R2 100k LB 18 17 19 20 22 23 24 1 18 LL A (141) 2 TXD A (103) 14 TXD B 24 SCTE A (113) 11 SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B TM A (142) VCC 7 + C10 1 SGND (102) SHIELD (101) 1µF C13 3.3µF LTC1343 10 12 13 DSR 24 41 9 DCD 16 15 25 43 42 7 DTR 9 10 26 21 2 6 RTS 7 15 12 17 9 3 16 44 5 RL 6 19 M2 18 M1 17 M0 EC 8 DB-25 MALE CONNECTOR 32 31 30 29 28 27 1 3 + DCE 40 GND 23 LB 4 4 38 37 36 35 34 33 D3 9 LATCH DCE/ DTE M2 M1 M0 5 D2 7 SCTE 2 VEE C4 3.3µF 39 D1 21 1µF LTC1343 5 LL LATCH + C2 + C3 1µF 44 + + 1 VCC D1 D2 D3 D4 39 38 37 36 35 34 33 R2 32 31 30 29 R3 28 27 R1 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 26 21 DCE 19 M2 18 M1 17 M0 24 EC 21 RL A (140) 4 RTS A (105) 19 RTS B 20 DTR A (108) 23 DTR B 8 DCD A (109) 10 DCD B 6 DSR A (107) 22 DSR B 5 CTS A (106) 13 CTS B 1343 F31 40 GND 23 LB M2 M1 M0 Figure 31: Controller-Selectable Multiprotocol DTE Port with DB-25 Connector 19 LTC1343 U U W U APPLICATIONS INFORMATION C6 100pF C7 100pF 3 C8 100pF 8 11 12 13 LTC1344 VCC 5V 14 C1 1µF + 2 43 42 4 CHARGE PUMP 3 + C5 1µF 41 8 6 RXD D2 7 RXC D3 9 TXC D4 10 12 13 VCC R2 15 TXD LL R1 100k + VCC C11 1µF C9 1µF + 27 44 2 43 42 3 + C12 1µF 41 8 6 7 DSR 9 DCD 10 12 13 VCC VCC LATCH R2 100k LB D2 D3 16 15 18 17 19 20 22 23 24 1 RXD A (104) RXD B RXC A (115) RXC B TXC A (114) TXC B 24 SCTE A (113) 11 SCTE B 2 TXD A (103) 14 TXD B 18 LL A (141) VCC VCC 7 + C10 1 SHIELD (101) SGND (102) 1µF C13 3.3µF D4 28 27 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 26 21 DCE 19 M2 18 M1 17 M0 40 GND 23 LB 5 13 6 22 8 10 R1 EC CTS A (106) CTS B DSR A (107) DSR B DCD A (109) DCD B 20 DTR A (108) 23 DTR B 4 RTS A (105) 19 RTS B 21 RL A (140) VCC 24 M2 M1 M0 Figure 32: Controller-Selectable Multiprotocol DCE Port with DB-25 Connector 20 TM A (142) VCC 35 34 33 R3 16 RL 10 38 37 36 R2 15 CTS 9 39 D1 32 31 30 29 14 DTR 7 LTC1343 5 CTS 24 1 CHARGE PUMP 6 3 16 17 9 15 12 26 21 DCE 19 M2 18 M1 17 M0 4 4 25 R3 EC DB-25 FEMALE CONNECTOR DCE/ DTE M2 M1 M0 38 37 36 35 34 33 16 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 40 GND 23 LB LATCH 39 32 31 30 29 28 R1 14 SCTE 2 VEE C4 3.3µF 5 D1 21 1µF LTC1343 5 TM LATCH + C2 + C3 1µF 44 + + 1 VCC 1343 F32 LTC1343 U U W U APPLICATIONS INFORMATION C6 100pF C7 100pF 3 C8 100pF 8 11 12 13 LTC1344 VCC 5V 14 + C1 1µF 2 43 42 4 CHARGE PUMP 3 + C5 1µF 41 8 6 DTE_TXD/DCE_RXD D2 7 DTE_SCTE/DEC_RXC D3 9 D4 10 12 13 DTE_TXC/DCE_TXC R1 14 DTE_RXC/DCE_SCTE R2 15 DTE_RXD/DCE_TXD DTE_TM/DCE_LL R1 100k + C11 1µF C9 + 1µF VCC C12 1µF 43 42 41 7 DTE_DTR/DCE_DSR 9 10 12 13 DTE_DCD/DCE_DCD D2 D3 D4 R3 28 27 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 21 DCE 19 M2 18 M1 17 M0 R1 16 VCC LATCH R2 100k LB 18 17 19 20 22 23 24 1 DTE LL A TXC A TXC B RXC A RXC B RXD A RXD B 25 TM A VCC 7 + C10 1 DCE TM A RXD A RXD B RXC A RXC B TXC A TXC B SCTE A SCTE B TXD A TXD B LL A SGND SHIELD 1µF C13 3.3µF 38 37 36 35 34 33 R2 15 DTE_CTS/DCE_RTS 16 15 39 D1 32 31 30 29 14 DTE_DSR/DCE_DTR 10 LTC1343 6 DTE_RTS/DCE_CTS 24 2 5 DTE_RL/DCE_RL 9 15 12 17 9 3 16 44 8 7 32 31 30 29 28 1 CHARGE PUMP 6 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 27 4 4 38 37 36 35 34 33 26 21 DCE 19 M2 18 M1 17 M0 EC DB-25 CONNECTOR DCE/ DTE M2 M1 M0 18 R3 40 GND 23 LB LATCH 39 16 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 3 + 2 VEE C4 3.3µF 5 D1 21 1µF LTC1343 5 DTE_LL/DCE_TM LATCH + C2 + C3 1µF 44 + + 1 VCC 40 GND 23 LB 21 RL A 4 RTS A 19 RTS B 20 DTR A 23 DTR B 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B RL A CTS A CTS B DSR A DSR B DCD A DCD B DTR A DTR B RTS A RTS B 26 EC 1343 F33 24 DCE/DTE M2 M1 M0 Figure 33. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector 21 LTC1343 U U W U APPLICATIONS INFORMATION LTC1343 5 D1 6 D2 7 21 DCE 9 D3 D4 10 12 39 38 37 36 35 34 33 C6 100pF C7 100pF 3 8 C8 100pF 11 12 13 LTC1344 13 R2 32 31 30 29 R3 28 27 R1 14 15 DCE/ DTE 5 16 R4 4 6 7 9 10 16 15 18 17 19 20 22 26 DCE/DTE DB-25 CONNECTOR LTC1343 5 TM D1 6 RXD D2 7 21 DCE 9 RXC TXC VCC D3 D4 10 12 13 15 TXD 16 LL 25 38 37 36 35 34 33 3 16 17 9 15 12 R2 32 31 30 29 R3 28 27 R1 14 SCTE 39 R4 26 7 CTS DSR VCC DCD DTR RTS RL D1 6 D2 7 21 DCE 9 D3 D4 10 12 13 14 15 16 38 37 36 35 34 33 R2 R3 28 27 R4 26 LTC1343 5 6 7 21 DCE 9 10 12 13 14 15 16 D1 D2 D3 D4 38 37 36 35 34 33 R2 R3 28 27 R4 26 Figure 34. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 22 5 13 6 22 8 10 1 CTS A (106) CTS B DSR A (107) DSR B DCD A (109) DCD B SHIELD (101) 20 DTR A (108) 23 DTR B 4 RTS A (105) 19 RTS B 21 RL A (140) 1343 F34 39 32 31 30 29 R1 SGND (102) 39 32 31 30 29 R1 RXD A (104) RXD B RXC A (115) RXC B TXC A (114) TXC B 24 SCTE A (113) 11 SCTE B 2 TXD A (103) 14 TXD B 18 LL A (141) LTC1343 5 TM A (142) LTC1343 U U W U APPLICATIONS INFORMATION C6 100pF C7 100pF 3 C8 100pF 8 11 12 13 LTC1344 VCC 5V 14 C1 1µF + 2 43 42 4 CHARGE PUMP 3 + C5 1µF 41 8 TXD D4 10 12 13 TXC R1 14 RXC R2 15 RXD TM R1 100k + C11 1µF C9 1µF VCC + R3 16 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET C12 1µF LATCH R2 100k LB 18 17 19 20 22 23 24 1 18 LL A (141) 2 TXD A (103) 14 TXD B 24 SCTE A (113) 11 SCTE B 12 17 9 3 16 TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B TM A (142) VCC 7 + C10 1 SHIELD (101) SGND (102) 1µF C13 3.3µF 40 GND 23 LB RL A (140) 4 RTS A (105) 19 RTS B 20 DTR A (108) 23 DTR B 38 37 36 D2 D3 35 34 33 D4 R2 32 31 30 29 R3 28 27 R1 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 21 39 D1 8 DCD A (109) 10 DCD B 6 DSR A (107) 22 DSR B/RI A (125) 5 CTS A (106) 13 CTS B 26 16 VCC 16 15 LTC1343 15 RI 24 41 14 CTS EC 8 10 12 13 DSR 10 19 M2 18 M1 17 M0 CHARGE PUMP 9 DCD 9 25 43 42 7 DTR 7 26 21 2 6 RTS 6 15 44 5 RL DB-25 MALE CONNECTOR 32 31 30 29 28 27 1 3 + DCE 40 GND 23 LB 4 4 38 37 36 35 34 33 D3 9 LATCH DCE/ DTE M2 M1 M0 5 D2 7 SCTE 2 VEE C4 3.3µF 39 D1 6 21 1µF LTC1343 5 LL LATCH + C2 + C3 1µF 44 + + 1 VCC DCE 21 1343 F35 19 M2 18 M1 17 M0 EC 24 VCC M2 M1 M0 Figure 35. Controller-Selectable Multiprotocol DTE Port with RI and DB-25 Connector 23 LTC1343 U U W U APPLICATIONS INFORMATION C6 100pF C7 100pF 3 C8 100pF 8 11 12 13 LTC1344 VCC 5V 14 C1 1µF + 2 43 42 4 CHARGE PUMP 3 + C5 1µF 6 RXD D2 7 RXC D3 9 TXC D4 10 12 13 VCC LL R1 100k + C11 1µF + C9 1µF VCC C12 1µF 44 2 43 42 4 CHARGE PUMP 41 8 6 CTS 7 DSR 9 DCD VCC 10 12 13 D2 D3 D4 R3 28 27 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 21 DCE 19 M2 18 M1 17 M0 R1 16 RL VCC LATCH R2 100k 10 16 15 18 17 19 20 22 23 24 1 RXD A (104) RXD B RXC A (115) RXC B TXC A (114) TXC B 24 SCTE A (113) 11 SCTE B 2 TXD A (103) 14 TXD B 18 LL A (141) VCC VCC 7 + C10 1 SGND (102) SHIELD (101) 1µF C13 3.3µF 40 GND 23 LB 5 13 6 22 8 10 26 EC CTS A (106) CTS B DSR A (107) DSR B/RI A (125) DCD A (109) DCD B 20 DTR A (108) 23 DTR B 4 RTS A (105) 19 RTS B 21 RL A (140) RIEN = RS232 24 M2 M1 M0 Figure 36. Controller-Selectable Multiprotocol DCE Port with RI and DB-25 Connector 24 TM A (142) VCC 38 37 36 35 34 33 R2 15 CTX 9 39 D1 32 31 30 29 14 DTR 7 LTC1343 5 RI 24 1 3 + EC 6 3 16 17 9 15 12 26 21 DCE 19 M2 18 M1 17 M0 40 GND 23 LB 4 25 R3 15 TXD DB-25 FEMA;E CONNECTOR DCE/ DTE M2 M1 M0 38 37 36 35 34 33 16 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET R2 LATCH 39 32 31 30 29 28 27 R1 14 SCTE 2 VEE C4 3.3µF 5 D1 21 1µF LTC1343 5 TM LB 41 8 LATCH + C2 + C3 1µF 44 + + 1 VCC 1343 F36 LTC1343 U U W U APPLICATIONS INFORMATION C6 100pF C7 100pF 3 C8 100pF 8 12 13 11 LTC1344 VCC 5V 14 + C1 1µF 2 43 42 4 CHARGE PUMP 3 + C5 1µF 41 8 D4 10 12 13 R2 15 DTE_RXD/DCE_TXD R1 100k + C11 1µF C9 1µF VCC + R3 27 16 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 26 21 DCE 19 M2 18 M1 17 M0 40 GND 23 LB C12 1µF 44 43 42 CHARGE PUMP 41 8 DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 15 12 17 9 3 16 TXC A TXC B RXC A RXC B RXD A RXD B 7 1 TXC A TXC B SCTE A SCTE B TXD A TXD B SHIELD VCC + C10 1µF VCC R3 10k VCC R4 10k VCC R5 10k 25 C13 3.3µF 21 18 DCE/DTE M1 M0 39 D1 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 26 21 DCE 19 M2 18 M1 17 M0 40 GND 23 LB DCE RXD A RXD B RXC A RXC B SGND VCC 28 27 16 LB 23 24 1 VCC R3 15 R2 100k 18 17 19 20 22 R2 14 VCC 16 15 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 10 12 13 DTE_CTS/ DCE_RTS 10 32 31 30 29 9 DTE_DSR/DCE_DTR 9 4 RTS A 19 RTS B 20 DTR A 23 DTR B 7 DTE_DCD/DCE_DCD 7 38 37 36 35 34 33 6 DTE_DTR/DCE_DSR 6 LTC1343 5 DTE_RTS/DCE_CTS 24 1 3 + EC 2 4 4 32 31 30 29 28 R1 14 DTE_RXC/DCE_SCTE DB-25 CONNECTOR DCE/ DTE M2 M1 M0 38 37 36 35 34 33 D3 9 DTE_TXC/DCE_TXC 2 VEE C4 3.3µF 5 D2 7 DTE_SCTE/DEC_RXC 21 39 D1 6 DTE_TXD/DCE_RXD LATCH 1µF LTC1343 5 VCC + C2 + C3 1µF 44 + + 1 D2 D3 D4 R1 24 EC CTS A CTS B DSR A DSR B DCD A DCD B DTR A DTR B RTS A RTS B 1343 F37 VCC CABLE WIRING FOR MODE SELECTION MODE PIN 18 PIN 21 V.35 PIN 7 PIN 7 EIA-530, RS449, NC PIN 7 V.36, X.21 RS232 PIN 7 NC CABLE WIRING FOR DTE/DCE SELECTION MODE PIN 25 DTE PIN 7 DCE NC Figure 37. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector 25 LTC1343 U U W U APPLICATIONS INFORMATION C6 100pF C7 100pF 3 C8 100pF 8 11 12 13 LTC1344 VCC 5V 14 C1 1µF + 2 43 42 4 CHARGE PUMP 3 + C5 1µF 41 8 6 DTE_TXD/DCE_RXD D2 7 DTE_SCTE/DEC_RXC D3 9 D4 10 12 13 DTE_TXC/DCE_TXC R1 14 DTE_RXC/DCE_SCTE R2 15 DTE_RXD/DCE_TXD DTE_TM/DCE_LL R1 100k + C11 1µF + C9 1µF VCC C12 1µF 43 42 41 7 DTE_DTR/DCE_DSR 9 10 12 13 DTE_DCD/DCE_DCD VCC LATCH R2 100k LB D2 D3 D4 R3 28 27 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 26 21 DCE 19 M2 18 M1 17 M0 16 DTE_RI/DCE_RL 18 17 19 20 22 23 24 1 VCC 7 + 1 C10 1µF TXC A TXC B RXC A RXC B RXD A RXD B DCE TM A RXD A RXD B RXC A RXC B TXC A TXC B SCTE A SCTE B TXD A TXD B LL A SGND SHIELD C13 3.3µF 40 GND 23 LB 21 RL A 4 RTS A 19 RTS B 20 DTR A 23 DTR B R1 EC 24 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 26 RI A RI A CTS A CTS B DSR A DSR B DCD A DCD B DTR A DTR B RTS A RTS B RL A 1343 F38 VCC DCE/DTE M2 M1 M0 Figure 38. Controller-Selectable Multiprotocol DTE/DCE Port with DB-26 Connector 26 DTE LL A 25 TM A 38 37 36 35 34 33 R2 15 DTE_CTS/DCE_RTS 16 15 39 D1 32 31 30 29 14 DTE_DSR/DCE_DTR 10 LTC1343 6 DTE_RTS/DCE_CTS 24 2 5 DTE_RL/DCE_RI 9 15 12 17 9 3 16 44 8 7 32 31 30 29 28 1 CHARGE PUMP 6 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 27 4 4 38 37 36 35 34 33 26 21 DCE 19 M2 18 M1 17 M0 EC µDB-26 CONNECTOR DCE/ DTE M2 M1 M0 18 R3 40 GND 23 LB LATCH 39 16 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 3 + 2 VEE C4 3.3µF 5 D1 21 1µF LTC1343 5 DTE_LL/DCE_TM LATCH + C2 + C3 1µF 44 + + 1 VCC LTC1343 U U W U APPLICATIONS INFORMATION C6 100pF C7 100pF 3 C8 100pF 8 12 13 11 LTC1344 VCC 5V 14 C1 1µF + 44 2 43 42 4 CHARGE PUMP 3 + C5 1µF 41 8 DTE_TXD/DCE_RXD D4 10 12 13 DTE_TXC/DCE_TXC R3 32 31 30 29 28 27 16 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 26 21 DCE 19 M2 18 M1 17 M0 R1 14 DTE_RXC/DCE_SCTE R2 15 DTE_RXD/DCE_TXD R1 100k + C11 1µF C9 1µF VCC + 40 GND 23 LB C12 1µF 44 43 42 CHARGE PUMP 41 8 LB DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 15 12 17 9 3 16 TXC A TXC B RXC A RXC B RXD A RXD B 7 1 TXC A TXC B SCTE A SCTE B TXD A TXD B SHIELD VCC + VCC C10 1µF R3 10k VCC R4 10k VCC R5 10k 25 C13 3.3µF 21 18 DCE/DTE M1 M0 39 D1 R4 20 CTRL 22 LATCH 11 INVERT 25 423 SET 26 21 DCE 19 M2 18 M1 17 M0 40 GND 23 LB DCE RXD A RXD B RXC A RXC B SGND VCC 28 27 16 R2 100k VCC R3 15 VCC 18 17 19 20 22 23 24 1 R2 14 DTE_CTS/DCE_RTS 16 15 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 26 LL B 10 12 13 DTE_DSR/DCE_DTR 10 32 31 30 29 9 DTE_DCD/DCE_DCD 9 4 RTS A 19 RTS B 20 DTR A 23 DTR B 7 DTE_DTR/DCE_DSR 7 38 37 36 35 34 33 6 DTE_RTS/DCE_CTS 6 LTC1343 5 DTE_LL/DCE_LL 24 1 3 + EC 2 4 4 38 37 36 35 34 33 D3 9 µDB-26 CONNECTOR DCE/ DTE M2 M1 M0 5 D2 7 DTE_SCTE/DEC_RXC 21 39 D1 6 LATCH 1µF 2 VEE C4 3.3µF LTC1343 5 VCC + C2 + C3 1µF + + 1 D2 D3 D4 R1 24 EC CTS A CTS B DSR A DSR B DCD A DCD B DTR A DTR B RTS A RTS B LL B VCC 1343 F39 CABLE WIRING FOR MODE SELECTION MODE PIN 18 PIN 21 V.35 PIN 7 PIN 7 EIA-530, RS449, NC PIN 7 V.36, X.21 RS232 PIN 7 NC CABLE WIRING FOR DTE/DCE SELECTION MODE PIN 25 DTE PIN 7 DCE NC Figure 39. Cable-Selectable Multiprotocol DTE Port with DB-26 Connector Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 27 LTC1343 U PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted. GW Package 44-Lead Plastic SSOP (Wide 0.300) (LTC DWG # 05-08-1642) 17.805 – 18.059* (0.701 – 0.711) 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 10.160 – 10.414 (0.400 – 0.410) 7.417 – 7.595** (0.292 – 0.299) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2.286 – 2.387 (0.090 – 0.094) 2.463 – 2.641 (0.097 – 0.104) 0.254 – 0.406 × 45° (0.010 – 0.016) 0° – 8° TYP 0.231 – 0.3175 (0.0091 – 0.0125) 0.610 – 1.016 (0.024 – 0.040) 0.800 (0.0315) BSC 0.127 – 0.292 (0.005 – 0.0115) 0.304 – 0.431 (0.012 – 0.017) NOTE: DIMENSIONS ARE IN MILLIMETERS *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE SHALL NOT EXCEED 0.152mm (0.006") PER SIDE G44 SSOP 1098 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC1321 Dual RS232/RS485 Transceiver 2 RS232 Driver/Receiver Pairs or 2 RS485 Driver/Receiver Pairs LTC1334 Single 5V RS232/RS485 Multiprotocol Transceiver 2 RS232 Driver/Receiver or 4 RS232 Driver/Receiver Pairs LTC1344/LTC1344A Software-Selectable Cable Terminator Perfect for Terminating the LTC1343 LTC1345 Single Supply V.35 Transceiver 3 Driver/3 Receiver for Data and Clock Signals LTC1346A Dual Supply V.35 Transceiver 3 Driver/3 Receiver for Data and Clock Signals LTC1543 Software-Selectable Multiprotocol Transceiver 3 Driver/3 Receiver for Data and Clock Signals LTC1544 Software-Selectable Multiprotocol Transceiver 4 Driver/4 Receiver for Control Signals Including LL LTC1545 Software-Selectable Multiprotocol Transceiver 5 Driver/5 Receiver for Control Signals Including LL, RL, TM 28 Linear Technology Corporation 1343fa LT/TP 0899 2K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900 ● FAX: (408) 434-0507 ● www.linear-tech.com LINEAR TECHNOLOGY CORPORATION 1996