D a t a s h e e t V e r s i o n 0 .0 , 2 3 S e p 2 00 4 CoolSET™-F2 ICE2A380P2 Off-Line SMPS Current Mode Controller with integrated 800V CoolMOS™ Power Management & Supply N e v e r s t o p t h i n k i n g . CoolSET™-F2 ICE2A380P2 Revision History: 2004-09-23 Version 0.0 Previous Version: Page Subjects (major changes since last revision) For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http:// www.infineon.com. CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG. Edition 2004-09-23 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2004. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. CoolSET™-F2 ICE2A380P2 Off-Line SMPS Current Mode Controller with integrated 800V CoolMOS™ Product Highlights • • • • • Best in class in TO220 packages Increased creepage distance for TO220 Isolated drain for TO220 packages Lowest standby power dissipation Enhanced protection functions with Auto Restart Mode P-TO220-6-47 P-TO220-6-47 Features Description • • • • • • The second generation CoolSET™-F2 provides several special enhancements to satisfy the needs for low power standby and protection features. In standby mode frequency reduction is used to lower the power consumption and support a stable output voltage in this mode. The frequency reduction is limited to 21.5 kHz to avoid audible noise. In case of failure modes like open loop, overvoltage or overload due to short circuit the device switches in Auto Restart Mode which is controlled by the internal protection unit. By means of the internal precise peak current limitation, the dimension of the transformer and the secondary diode can be sized lower which leads to more cost effective for the overall system. 800V avalanche rugged CoolMOS™ Only few external components required Input Vcc Undervoltage Lockout 100kHz switching frequency Max duty cycle 72% Low Power Standby Mode to meet European Commission Requirements Thermal Shut Down with Auto Restart Overload and Open Loop Protection Overvoltage Protection during Auto Restart Adjustable Peak Current Limitation via external resistor Overall tolerance of Current Limiting < ±5% Internal Leading Edge Blanking User defined Soft Start Soft Switching for low EMI • • • • • • • Typical Application + RStart-up 85 ... 270 VAC Converter DC Output Snubber - CVCC VCC Drain Feedback Low Power StandBy SoftS Power Management Soft-Start Control CSoft Start CoolMOS™ PWM Controller Current Mode Isense Precise Low Tolerance Peak Current Limitation RSense FB Protection Unit GND PWM-Controller CoolSET™-F2 Feedback Type Ordering Code ICE2A380P2 Package VDS FOSC RDSon1) 230VAC ±15%2) P-TO-220-6-47 800V 100kHz 2.1Ω 128W 1) typ @ T=25°C 2) Maximum practical continuous power in an open frame design at Ta=75°C, Tj=125°C and RthCA=2.7K/W Version 0.0 3 85-265 VAC2) 62W 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Table of Contents Page 1 1.1 1.2 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Configuration with P-TO220-6-47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2 Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 3 3.1 3.2 3.2.1 3.2.2 3.3 3.4 3.4.1 3.4.2 3.5 3.5.1 3.5.2 3.6 3.7 3.8 3.8.1 3.8.2 3.8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Improved Current Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 PWM-OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 PWM-Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Oscillator and Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 PWM-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Protection Unit (Auto Restart Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Overload / Open Loop with Normal Load . . . . . . . . . . . . . . . . . . . . . . . .12 Overvoltage due to Open Loop with No Load . . . . . . . . . . . . . . . . . . . . .13 Thermal Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Control Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Protection Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 CoolMOS™ Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 5 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .18 6 Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Version 0.0 4 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Pin Configuration and Functionality 1 Pin Configuration and Functionality 1.1 Pin Configuration with P-TO220-6-47 Pin Symbol Function 1 Drain 800V1) CoolMOS™ Drain 3 Isense Controller Current Sense Input, CoolMOS™ Source Output 4 GND Controller Ground 5 VCC Controller Supply Voltage 6 SoftS Soft-Start 7 FB Feedback 1) 1.2 Pin Functionality SoftS (Soft Start & Auto Restart Control) This pin combines the function of Soft Start in case of Start Up and Auto Restart Mode and the controlling of the Auto Restart Mode in case of an error detection. FB (Feedback) The information about the regulation is provided by the FB Pin to the internal Protection Unit and to the internal PWM-Comparator to control the duty cycle. Isense (Current Sense) The Current Sense pin senses the voltage developed on the series resistor inserted in the source of the integrated CoolMOS™. When Isense reaches the internal threshold of the Current Limit Comparator, the Driver output is disabled. By this means the Over Current Detection is realized. Furthermore the current information is provided for the PWM-Comparator to realize the Current Mode. at Tj = 25°C Package P-TO220-6-47 Drain (Drain of integrated CoolMOS™) Pin Drain is the connection to the Drain of the internal CoolMOSTM. VCC (Power supply) This pin is the positive supply of the IC. The operating range is between 8.5V and 21V. To provide overvoltage protection the driver gets disabled when the voltage becomes higher than 16.5V during Start Up Phase. 1 2 3 4 5 6 7 Figure 1 FB SoftS VCC GND Isense Drain GND (Ground) This pin is the ground of the primary side of the SMPS. Pin Configuration P-TO220-6-47 ( top view) Version 0.0 5 23 Sep 2004 Figure 2 Version 0.0 FB CSoft-Start T1 6 Thermal Shutdown C3 C4 C2 C1 GND Protection Unit Tj >140°C 4.8V 5.3V 4.0V CoolSET™-F2 RFB 6.5V 5.6V RSoft-Start 6.5V 16.5V VCC RStart-up G2 G1 8.5V fnorm fstandby R Q S Q fosc UFB Error-Latch Spike Blanking 5 s Power-Up Reset Power-Down Reset 13.5V x3.65 C5 PWM Comparator Soft-Start Comparator 6.5V 5.3V 4.8V 4.0V fstandby fnorm Improved Current Mode PWM OP 0.8V 0.3V Soft Start Voltage Reference Internal Bias Power Management Undervoltage Lockout Standby Unit G3 CVCC CLine G4 21.5kHz 100kHz Current Limiting R S Vcsth Q Q PWM-Latch Propagation-Delay Compensation Current-Limit Comparator fstandbyfnorm Clock Duty Cycle max Oscillator Duty Cycle Max 0.72 Leading Edge Blanking 220ns Gate Driver D1 10k CoolMOS™ Drain Snubber Optocoupler Isense RSense 2 SoftS 85 ... 270 VAC + Converter DC Output VOUT - CoolSET™-F2 ICE2A380P2 Representative Blockdiagram Representative Blockdiagram Representative Blockdiagram 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Functional Description 3 Functional Description at pin SoftS. Thus it is ensured that at every switch-on the voltage ramp at pin SoftS starts at zero. 3.1 Power Management 3.2 Improved Current Mode Soft-Start Comparator Main Line (100V-380V) RStart-Up Primary Winding PWM-Latch FB CVCC R Q Driver VCC PWM Comparator Power Management Undervoltage S Lockout 0.8V Bias 13.5V 8.5V PWM OP 6.5V Power-Down Reset 5.3V Voltage x3.65 4.8V Reference 4.0V Power-Up R Q Figure 4 PWM-Latch SoftS RSoft-Start S Figure 3 T1 Error-Latch Error-Detection Amplified Current Signal FB Power Management The Undervoltage Lockout monitors the external supply voltage VVCC. In case the IC is inactive the current consumption is max. 55µA. When the SMPS is plugged to the main line the current through RStart-up charges the external Capacitor CVCC. When VVCC exceeds the on-threshold VCCon=13.5V the internal bias circuit and the voltage reference are switched on. After that the internal bandgap generates a reference voltage VREF=6.5V to supply the internal circuits. To avoid uncontrolled ringing at switch-on a hysteresis is implemented which means that switch-off is only after active mode when Vcc falls below 8.5V. In case of switch-on a Power Up Reset is done by resetting the internal error-latch in the protection unit. When VVCC falls below the off-threshold VCCoff=8.5V the internal reference is switched off and the Power Down reset let T1 discharging the soft-start capacitor CSoft-Start Version 0.0 Current Mode Current Mode means that the duty cycle is controlled by the slope of the primary current. This is done by comparison the FB signal with the amplified current sense signal. Q Soft-Start Comparator CSoft-Start Isense Improved Current Mode Reset 6.5V Q Internal 0.8V Driver t T on t Figure 5 Pulse Width Modulation In case the amplified current sense signal exceeds the FB signal the on-time Ton of the driver is finished by resetting the PWM-Latch (see Figure 5). 7 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Functional Description The primary current is sensed by the external series resistor RSense inserted in the source of the integrated CoolMOS™. By means of Current Mode regulation, the secondary output voltage is insensitive on line variations. Line variation changes the current waveform slope which controls the duty cycle.The external RSense allows an individual adjustment of the maximum source current of the integrated CoolMOS™. VOSC max. Duty Cycle Soft-Start Comparator Voltage Ramp t PWM Comparator FB 0.8V FB 0.3V PWM-Latch Oscillator 0.3V Gate Driver C5 Gate Driver VOSC 10kΩ 0.8V R1 T2 C1 t 20pF x3.65 V1 t PWM OP Voltage Ramp Figure 7 Figure 6 Light Load Conditions Improved Current Mode 3.2.1 To improve the Current Mode during light load conditions the amplified current ramp of the PWM-OP is superimposed on a voltage ramp, which is built by the switch T2, the voltage source V1 and the 1st order low pass filter composed of R1 and C1(see Figure 6, Figure 7). Every time the oscillator shuts down for max. duty cycle limitation the switch T2 is closed by VOSC. When the oscillator triggers the Gate Driver T2 is opened so that the voltage ramp can start. In case of light load the amplified current ramp is too small to ensure a stable regulation. In that case the Voltage Ramp is a well defined signal for the comparison with the FB-signal. The duty cycle is then controlled by the slope of the Voltage Ramp. By means of the Comparator C5, the Gate Driver is switched-off until the voltage ramp exceeds 0.3V. It allows the duty cycle to be reduced continuously till 0% by decreasing VFB below that threshold. Version 0.0 PWM-OP The input of the PWM-OP is applied over the internal leading edge blanking to the external sense resistor RSense connected to pin Isense. RSense converts the source current into a sense voltage. The sense voltage is amplified with a gain of 3.65 by PWM OP. The output of the PWM-OP is connected to the voltage source V1. The voltage ramp with the superimposed amplified current signal is fed into the positive inputs of the PWMComparator, C5 and the Soft-Start-Comparator. 3.2.2 PWM-Comparator The PWM-Comparator compares the sensed current signal of the integrated CoolMOSTM with the feedback signal VFB (see Figure 8). VFB is created by an external optocoupler or external transistor in combination with the internal pull-up resistor RFB and provides the load information of the feedback circuitry. When the amplified current signal of the integrated CoolMOS™ exceeds the signal VFB the PWM-Comparator switches off the Gate Driver. 8 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Functional Description pull-up resistor RSoft-Start. The Soft-Start-Comparator compares the voltage at pin SoftS at the negative input with the ramp signal of the PWM-OP at the positive input. When Soft-Start voltage VSoftS is less than Feedback voltage VFB the Soft-Start-Comparator limits the pulse width by resetting the PWM-Latch (see Figure 9). In addition to Start-Up, Soft-Start is also activated at each restart attempt during Auto Restart. By means of the above mentioned CSoft-Start the SoftStart can be defined by the user. The Soft-Start is finished when VSoftS exceeds 5.3V. At that time the Protection Unit is activated by Comparator C4 and senses the FB by Comparator C3 wether the voltage is below 4.8V which means that the voltage on the secondary side of the SMPS is settled. The internal Zener Diode at SoftS has a clamp voltage of 5.6V to prevent the internal circuit from saturation (see Figure 10). 6.5V Soft-Start Comparator RFB FB PWM-Latch PWM Comparator 0.8V Optocoupler PWM OP Isense x3.65 6.5V 5.6V Improved Current Mode Figure 8 3.3 RSoft-Start Error-Latch SoftS 6.5V 5.3V PWM Controlling Soft-Start 4.8V RFB FB VSoftS C4 G2 C3 Clock R Q S Q R Q Gate Driver S Q PWM-Latch 5.6V 5.3V Figure 10 Gate Driver Activation of Protection Unit The Start-Up time TStart-Up within the converter output voltage VOUT is settled must be shorter than the SoftStart Phase TSoft-Start (see Figure 11). TSoft-Start T Soft – Start CSoft – Start = -----------------------------------R Soft – Start × 1.69 t By means of Soft-Start there is an effective minimization of current and voltage stresses on the integrated CoolMOS™, the clamp circuit and the output overshoot and prevents saturation of the transformer during Start-Up. t Figure 9 Power-Up Reset Soft-Start Phase The Soft-Start is realized by the internal pull-up resistor RSoft-Start and the external Capacitor CSoft-Start (see Figure 2). The Soft-Start voltage VSoftS is generated by charging the external capacitor CSoft-Start by the internal Version 0.0 9 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Functional Description kHz VSoftS 100 fOSC 5.3V TSoft-Start VFB 65 21.5 t 1.0 4.8V 1.1 fnorm 100kHz fstandby 21.5kHz Figure 12 VOUT 3.5 t TStart-Up t Start Up Phase 3.4 Oscillator and Frequency Reduction 3.4.1 Oscillator 1.4 1.5 1.6 1.7 1.8 1.9 2.0 V VFB Frequency Dependence Current Limiting 3.5.1 The oscillator generates a frequency fswitch = 100kHz. A resistor, a capacitor and a current source and current sink which determine the frequency are integrated. The charging and discharging current of the implemented oscillator capacitor are internally trimmed, in order to achieve a very accurate switching frequency. The ratio of controlled charge to discharge current is adjusted to reach a max. duty cycle limitation of Dmax=0.72. 3.4.2 1.3 There is a cycle by cycle current limiting realized by the Current-Limit Comparator to provide an overcurrent detection. The source current of the integrated CoolMOSTM is sensed via an external sense resistor RSense. By means of RSense the source current is transformed to a sense voltage VSense. When the voltage VSense exceeds the internal threshold voltage Vcsth the Current-Limit-Comparator immediately turns off the gate drive. To prevent the Current Limiting from distortions caused by leading edge spikes a Leading Edge Blanking is integrated at the Current Sense. Furthermore a Propagation Delay Compensation is added to support the immediate shut down of the CoolMOS™ in case of overcurrent. VOUT Figure 11 1.2 Leading Edge Blanking VSense Vcsth tLEB = 220ns Frequency Reduction The frequency of the oscillator is depending on the voltage at pin FB. The dependence is shown in Figure 12. This feature allows a power supply to operate at lower frequency at light loads thus lowering the switching losses while maintaining good cross regulation performance and low output ripple. In case of low power the power consumption of the whole SMPS can now be reduced very effective. The minimal reachable frequency is limited to 21.5 kHz to avoid audible noise in any case. Version 0.0 t Figure 13 Leading Edge Blanking Each time when CoolMOS™ is switched on a leading spike is generated due to the primary-side capacitances and secondary-side rectifier reverse recovery time. To avoid a premature termination of the switching pulse this spike is blanked out with a time constant of tLEB = 220ns. During that time the output of 10 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Functional Description the Current-Limit Comparator cannot switch off the gate drive. 3.5.2 The propagation delay compensation is done by means of a dynamic threshold voltage Vcsth (see Figure 15). In case of a steeper slope the switch off of the driver is earlier to compensate the delay. E.g. Ipeak = 0.5A with RSense = 2. Without propagation delay compensation the current sense threshold is set to a static voltage level Vcsth=1V. A current ramp of dI/dt = 0.4A/µs, that means dVSense/dt = 0.8V/µs, and a propagation delay time of i.e. tPropagation Delay =180ns leads then to a Ipeak overshoot of 12%. By means of propagation delay compensation the overshoot is only about 2% (see Figure 16). Propagation Delay Compensation In case of overcurrent detection by ILimit the shut down of CoolMOS™ is delayed due to the propagation delay of the circuit. This delay causes an overshoot of the peak current Ipeak which depends on the ratio of dI/dt of the peak current (see Figure 14). . Signal1 ISense IOvershoot2 Ipeak2 Ipeak1 ILimit Signal2 tPropagation Delay without compensation with compensation V 1.3 1.25 1.2 IOvershoot1 VSense 1.15 1.1 1.05 1 0.95 t Figure 14 0.9 Current Limiting 0 Figure 16 3.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 V/us Overcurrent Shutdown PWM-Latch The oscillator clock output applies a set pulse to the PWM-Latch when initiating CoolMOS™ conduction. After setting the PWM-Latch can be reset by the PWMOP, the Soft-Start-Comparator, the Current-LimitComparator, Comparator C3 or the Error-Latch of the Protection Unit. In case of resetting the driver is shut down immediately. dIpeak dV Sense 0 ≤ R Sense× ----------- ≤ --------------dt dt max. Duty Cycle 3.7 off time Propagation Delay Vcsth t Signal1 Signal2 Dynamic Voltage Threshold Vcsth Version 0.0 Driver The driver-stage drives the gate of the CoolMOS™ and is optimized to minimize EMI and to provide high circuit efficiency. This is done by reducing the switch on slope when reaching the CoolMOS™ threshold. This is achieved by a slope control of the rising edge at the driver’s output (see Figure 17) to the CoolMOS™ gate. Thus the leading switch on spike is minimized. When CoolMOS™ is switched off, the falling shape of the driver is slowed down when reaching 2V to prevent an overshoot below ground. Furthermore the driver circuit is designed to eliminate cross conduction of the output stage. At voltages below the undervoltage lockout threshold VVCCoff the gate drive is active low. t VSense Figure 15 0.4 dVSense dt The overshoot of Signal2 is bigger than of Signal1 due to the steeper rising waveform. A propagation delay compensation is integrated to bound the overshoot dependent on dI/dt of the rising primary current. That means the propagation delay time between exceeding the current sense threshold Vcsth and the switch off of CoolMOS™ is compensated over temperature within a range of at least. VOSC 0.2 11 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Functional Description VGate Overload / Open Loop with Normal Load ca. t = 130ns 5µs Blanking FB 4.8V Failure Detection 5V t Figure 17 3.8 5.3V Soft-Start Phase Internal Gate Rising Slope Protection Unit (Auto Restart Mode) An overload, open loop and overvoltage detection is integrated within the Protection Unit. These three failure modes are latched by an Error-Latch. Additional thermal shutdown is latched by the Error-Latch. In case of those failure modes the Error-Latch is set after a blanking time of 5µs and the CoolMOS™ is shut down. That blanking prevents the Error-Latch from distortions caused by spikes during operation mode. 3.8.1 t SoftS t TBurst1 Driver TRestart t Overload / Open Loop with Normal Load VCC 13.5V Figure 18 shows the Auto Restart Mode in case of overload or open loop with normal load. The detection of open loop or overload is provided by the Comparator C3, C4 and the AND-gate G2 (see Figure 19). The detection is activated by C4 when the voltage at pin SoftS exceeds 5.3V. Till this time the IC operates in the Soft-Start Phase. After this phase the comparator C3 can set the Error-Latch in case of open loop or overload which leads the feedback voltage VFB to exceed the threshold of 4.8V. After latching VCC decreases till 8.5V and inactivates the IC. At this time the external Soft-Start capacitor is discharged by the internal transistor T1 due to Power Down Reset. When the IC is inactive VVCC increases till VCCon = 13.5V by charging the Capacitor CVCC by means of the Start-Up Resistor RStart-Up. Then the Error-Latch is reset by Power Up Reset and the external Soft-Start capacitor CSoft-Start is charged by the internal pull-up resistor RSoft-Start. During the Soft-Start Phase which ends when the voltage at pin SoftS exceeds 5.3V the detection of overload and open loop by C3 and G2 is inactive. In this way the Start Up Phase is not detected as an overload. 8.5V t Figure 18 Auto Restart Mode 6.5V Power Up Reset SoftS RSoft-Start CSoft-Start 5.3V C4 T1 4.8V Error-Latch G2 C3 FB RFB 6.5V Figure 19 Version 0.0 12 FB-Detection 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Functional Description normal operation mode is prevented from overvoltage detection due to varying of VCC concerning the regulation of the converter output. When the voltage VSoftS is above 4.0V the overvoltage detection by C1 is deactivated. But the Soft-Start Phase must be finished within the Start Up Phase to force the voltage at pin FB below the failure detection threshold of 4.8V. 3.8.2 Overvoltage due to Open Loop with No Load VCC Open loop & no load condition FB 6.5V 5µs Blanking 16.5V 4.8V 4.0V SoftS t Soft-Start Phase C2 CSoft-Start T1 5.3V 4.0V Error Latch G1 RSoft-Start Failure Detection SoftS C1 Power Up Reset Overvoltage Detection Phase Figure 21 t TBurst2 Driver 3.8.3 TRestart Overvoltage Detection Thermal Shut Down Thermal Shut Down is latched by the Error-Latch when junction temperature Tj of the pwm controller is exceeding an internal threshold of 140°C. In that case the IC switches in Auto Restart Mode. Overvoltage Detection VCC 16.5V 13.5V t 8.5V t Figure 20 Auto Restart Mode Figure 20 shows the Auto Restart Mode for open loop and no load condition. In case of this failure mode the converter output voltage increases and also VCC. An additional protection by the comparators C1, C2 and the AND-gate G1 is implemented to consider this failure mode (see Figure 21).The overvoltage detection is provided by Comparator C1 only in the first time during the Soft-Start Phase till the Soft-Start voltage exceeds the threshold of the Comparator C2 at 4.0V and the voltage at pin FB is above 4.8V. When VCC exceeds 16.5V during the overvoltage detection phase C1 can set the Error-Latch and the Burst Phase during Auto Restart Mode is finished earlier. In that case TBurst2 is shorter than TSoft-Start. By means of C2 the Version 0.0 Note: 13 All the values which are mentioned in the functional description are typical. Please refer to Electrical Characteristics for min/max limit values. 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Electrical Characteristics 4 Electrical Characteristics 4.1 Absolute Maximum Ratings Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 6 (VCC) is discharged before assembling the application circuit. Parameter Symbol Limit Values Unit Remarks Tj = 25°C min. max. VDS - 800 V EAR Avalanche energy, repetitive tAR limited by max. Tj=150°C1) - 0.05 mJ Avalanche current, repetitive tAR limited by max. Tj=150°C IAR - 3 A VCC Supply Voltage VCC -0.3 22 V FB Voltage VFB -0.3 6.5 V SoftS Voltage VSoftS -0.3 6.5 V ISense ISense -0.3 3 V Junction Temperature Tj -40 150 °C Storage Temperature TS -50 150 °C Thermal Resistance Junction-Ambient RthJA1 - 74 K/W Junction-Case RthJC - 2.5 K/W VESD - 2 kV Drain Source Voltage 2) ESD Robustness Controller & CoolMOS™ Free standing with no heat-sink Human Body Model 1) Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR* f 2) Equivalent to discharging a 100pF capacitor through a 1.5 kΩ series resistor Version 0.0 14 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Electrical Characteristics 4.2 Note: Operating Range Within the operating range the IC operates as described in the functional description. Parameter Symbol Limit Values min. max. Unit VCC Supply Voltage VCC VCCoff 21 V Junction Temperature of Controller TJCon -25 130 °C Junction Temperature of CoolMOS™ TJCoolMOS -25 150 °C 4.3 Note: 4.3.1 Remarks Limited due to thermal shut down of controller Characteristics The electrical characteristics involve the spread of values given within the specified supply voltage and junction temperature range TJ from – 25 °C to 125 °C.Typical values represent the median values, which are related to 25°C. If not otherwise stated, a supply voltage of VCC = 15 V is assumed. Supply Section Parameter Symbol Limit Values min. typ. max. Unit Test Condition Start Up Current IVCC1 - 27 55 µA VCC=VCCon -0.1V Supply Current with Inactive Gate IVCC2 - 5.0 6.6 mA VSoftS = 0 IFB = 0 Supply Current with Active Gate IVCC3 - 8.5 9.8 mA VSoftS = 5V IFB = 0 VCC Turn-On Threshold VCC Turn-Off Threshold VCC Turn-On/Off Hysteresis 13 4.5 13.5 8.5 5 14 5.5 V V V Version 0.0 VCCon VCCoff VCCHY 15 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Electrical Characteristics 4.3.2 Internal Voltage Reference Parameter Trimmed Reference Voltage 4.3.3 Symbol Limit Values VREF min. typ. max. 6.37 6.50 6.63 Unit Test Condition V measured at pin FB Control Section Parameter Symbol Limit Values min. typ. max. Unit Test Condition Oscillator Frequency fOSC1 93 100 107 kHz VFB = 4V Reduced Osc. Frequency fOSC2 - 21.5 - kHz VFB = 1V 4.5 4.65 4.9 Frequency Ratio fosc1/fosc2 Max Duty Cycle Dmax 0.67 0.72 0.77 Min Duty Cycle Dmin 0 - - PWM-OP Gain AV 3.45 3.65 3.85 VFB Operating Range Min Level VFBmin 0.3 - - V VFB Operating Range Max level VFBmax - - 4.6 V Feedback Resistance RFB 3.0 3.7 4.9 kΩ Soft-Start Resistance RSoft-Start 42 50 62 kΩ 4.3.4 VFB < 0.3V Protection Unit Parameter Symbol Limit Values min. typ. max. Unit Test Condition Over Load & Open Loop Detection Limit VFB2 4.65 4.8 4.95 V VSoftS > 5.5V Activation Limit of Overload & Open Loop Detection VSoftS1 5.15 5.3 5.46 V VFB > 5V Deactivation Limit of Overvoltage Detection VSoftS2 3.88 4.0 4.12 V VFB > 5V VCC > 17.5V Overvoltage Detection Limit VVCC1 16 16.5 17.2 V VSoftS < 3.8V VFB > 5V Latched Thermal Shutdown TjSD 130 140 150 °C 1) Spike Blanking tSpike - 5 - µs 1) The parameter is not subject to production test - verified by design/characterization Version 0.0 16 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Electrical Characteristics 4.3.5 Current Limiting Parameter Symbol Limit Values min. typ. max. Unit Test Condition dVsense / dt = 0.6V/µs Peak Current Limitation (incl. Propagation Delay Time) Vcsth 0.95 1.0 1.05 V Leading Edge Blanking tLEB - 220 - ns 4.3.6 CoolMOS™ Section Parameter Symbol Limit Values min. typ. max. Unit Test Condition Drain Source Breakdown Voltage V(BR)DSS 800 870 - - V V Tj=25°C Tj=110°C Drain Source On-Resistance RDSon - 2.1 4.41 t.b.d t.b.d Ω Ω Tj=25°C Tj=125°C Effective output capacitance, energy related Co(er) - 10 - pF VDS =0V to 480V Zero Gate Voltage Drain Current IDSS - 0.5 - µA VVCC=0V Rise Time trise - 301) - ns - 1) - ns Fall Time 1) tfall 30 Measured in a Typical Flyback Converter Application Version 0.0 17 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Typical Performance Characteristics 5 Typical Performance Characteristics Version 0.0 18 23 Sep 2004 CoolSET™-F2 ICE2A380P2 Outline Dimension Outline Dimension 9.9 ±0.2 A 9.5 ±0.2 7.5 B 3.7 -0.15 13 0.05 1) 8.6 ±0.3 15.6 ±0.3 17.5 ±0.3 6.6 4.4 1.3 +0.1 -0.02 9.2 ±0.2 P-TO220-6-47 Isodrain Package 2.8 ±0.2 6 7.62 0...0.15 0.25 M 0.5 ±0.1 A B 2.4 6 x 0.6 ±0.1 4 x 1.27 5.3 ±0.3 8.4 ±0.3 1) Shear and punch direction no burrs this surface Back side, heatsink contour All metal surfaces tin plated, except area of cut. Figure 22 P-TO220-6-47 (Isodrain Package) Dimensions in mm Version 0.0 19 23 Sep 2004 Total Quality Management Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen. Dazu gehört eine bestimmte Geisteshaltung unserer Mitarbeiter. Total Quality im Denken und Handeln gegenüber Kollegen, Lieferanten und Ihnen, unserem Kunden. Unsere Leitlinie ist jede Aufgabe mit „Null Fehlern“ zu lösen – in offener Sichtweise auch über den eigenen Arbeitsplatz hinaus – und uns ständig zu verbessern. Unternehmensweit orientieren wir uns dabei auch an „top“ (Time Optimized Processes), um Ihnen durch größere Schnelligkeit den entscheidenden Wettbewerbsvorsprung zu verschaffen. Geben Sie uns die Chance, hohe Leistung durch umfassende Qualität zu beweisen. Wir werden Sie überzeugen. http://www.infineon.com Published by Infineon Technologies AG Quality takes on an allencompassing significance at Semiconductor Group. For us it means living up to each and every one of your demands in the best possible way. So we are not only concerned with product quality. We direct our efforts equally at quality of supply and logistics, service and support, as well as all the other ways in which we advise and attend to you. Part of this is the very special attitude of our staff. Total Quality in thought and deed, towards co-workers, suppliers and you, our customer. Our guideline is “do everything with zero defects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly improve. Throughout the corporation we also think in terms of Time Optimized Processes (top), greater speed on our part to give you that decisive competitive edge. Give us the chance to prove the best of performance through the best of quality – you will be convinced.