INFINEON ICE2A765I

Datasheet, V2.6, 25 Dec 2006
CoolSET™-F2
ICE2A0565/165/265/365
ICE2B0565/165/265/365
ICE2A0565G
ICE2A0565Z
ICE2A180Z/280Z
ICE2A765I/2B765I
ICE2A765P2/2B765P2
ICE2A380P2
Off-Line SMPS Current Mode
Controller with integrated 650V/
800V CoolMOS™
Pow e r M a na ge m e nt & S upply
N e v e r
s t o p
t h i n k i n g .
CoolSET™-F2
Revision History:
2006-12-25
Datasheet
Previous Version: 2.5.
Page
Subjects (major changes since last revision)
Add ICE2A380P2
4,17~22,
24~28, 30~31
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://
www.infineon.com.
CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.
Edition 2006-12-25
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address
list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
CoolSET™-F2
Off-Line SMPS Current Mode Controller
with integrated 650V/800V CoolMOS™
Product Highlights
PG-DIP-7-1
P-DIP-7-1
• Best in class in DIP8, DIP7, TO220 and DSO16/12
packages
• No heat-sink required for DIP8, DIP7 and DSO16/12
• Increased creepage distance for TO220, DIP7 and
DSO16/12
• Isolated drain for TO220 packages
• Lowest standby power dissipation
• Enhanced protection functions with
Auto Restart Mode
• Pb-free lead plating for all packages; RoHS compliant
PG-DIP-8-6
P-DIP-8-4, -6
PG-TO220-6-46
P-TO220-6-46
PG-TO220-6-47
P-TO220-6-47
PG-DSO-16/12
Features
Description
•
•
•
•
•
•
The second generation CoolSET™-F2 provides several
special enhancements to satisfy the needs for low power
standby and protection features. In standby mode
frequency reduction is used to lower the power
consumption and support a stable output voltage in this
mode. The frequency reduction is limited to 20kHz/21.5
kHz to avoid audible noise. In case of failure modes like
open loop, overvoltage or overload due to short circuit the
device switches in Auto Restart Mode which is controlled by
the internal protection unit. By means of the internal precise
peak current limitation, the dimension of the transformer
and the secondary diode can be sized lower which leads to
more cost effective for the overall system.
•
•
•
•
•
•
•
•
650V/800V avalanche rugged CoolMOS™
Only few external components required
Input Vcc Undervoltage Lockout
67kHz/100kHz switching frequency
Max duty cycle 72%
Low Power Standby Mode to meet
European Commission Requirements
Thermal Shut Down with Auto Restart
Overload and Open Loop Protection
Overvoltage Protection during Auto Restart
Adjustable Peak Current Limitation via
external resistor
Overall tolerance of Current Limiting < ±5%
Internal Leading Edge Blanking
User defined Soft Start
Soft driving for low EMI
Typical Application
+
RStart-up
85 ... 270 VAC
Converter
DC Output
Snubber
-
CVCC
VCC
Drain
Feedback
Low Power
StandBy
SoftS
Power
Management
Soft-Start Control
CSoft Start
CoolMOS™
PWM Controller
Current Mode
Isense
Precise Low Tolerance
Peak Current Limitation
RSense
FB
Protection Unit
GND
PWM-Controller
Feedback
Version 2.6
CoolSET™-F2
3
25 Dec 2006
CoolSET™-F2
Overview
230VAC ±15%2)
85-265 VAC2)
Package
VDS
FOSC
RDSon1)
ICE2A0565
PG-DIP-8-6
650V
100kHz
4.7Ω
23W
13W
ICE2A165
PG-DIP-8-6
650V
100kHz
3.0Ω
31W
18W
ICE2A265
PG-DIP-8-6
650V
100kHz
0.9Ω
52W
32W
ICE2A365
PG-DIP-8-6
650V
100kHz
0.45Ω
67W
45W
ICE2B0565
PG-DIP-8-6
650V
67kHz
4.7Ω
23W
13W
ICE2B165
PG-DIP-8-6
650V
67kHz
3.0Ω
31W
18W
ICE2B265
PG-DIP-8-6
650V
67kHz
0.9Ω
52W
32W
ICE2B365
PG-DIP-8-6
650V
67kHz
0.45Ω
67W
45W
ICE2A0565Z
PG-DIP-7-1
650V
100kHz
4.7Ω
23W
13W
ICE2A180Z
PG-DIP-7-1
800V
100kHz
3.0Ω
29W
17W
ICE2A280Z
PG-DIP-7-1
800V
100KHz
0.8Ω
50W
31W
Type
1)
typ @ T=25°C
2)
Maximum power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm²
Type
ICE2A0565G
Package
VDS
FOSC
RDSon1)
PG-DSO-16/12
650V
100kHz
4.7Ω
230VAC ±15%2)
23W
1)
typ @ T=25°C
2)
Maximum power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm²
85-265 VAC2)
13W
Package
VDS
FOSC
RDSon1)
ICE2A765I
PG-TO-220-6-46
650V
100kHz
0.45Ω
240W
130W
ICE2B765I
PG-TO-220-6-46
650V
67kHz
0.45Ω
240W
130W
ICE2A765P2
PG-TO-220-6-47
650V
100kHz
0.45Ω
240W
130W
ICE2B765P2
PG-TO-220-6-47
650V
67kHz
0.45Ω
240W
130W
ICE2A380P2
PG-TO-220-6-47
800V
100kHz
1.89Ω
111W
60W
Type
230VAC ±15%2)
1)
typ @ T=25°C
2)
Maximum practical continuous power in an open frame design at Ta=75°C, Tj=125°C and RthCA=2.7K/W
Version 2.6
4
85-265 VAC2)
25 Dec 2006
CoolSET™-F2
Table of Contents
Page
1
1.1
1.2
1.3
1.4
1.5
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Pin Configuration with PG-DIP-8-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Pin Configuration with PG-DIP-7-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Pin Configuration with PG-TO220-6-46/7 . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Pin Configuration with PG-DSO-16/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2
Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3
3.1
3.2
3.2.1
3.2.2
3.3
3.4
3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Improved Current Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
PWM-OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
PWM-Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Oscillator and Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
PWM-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Protection Unit (Auto Restart Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Overload / Open Loop with Normal Load . . . . . . . . . . . . . . . . . . . . . . . .15
Overvoltage due to Open Loop with No Load . . . . . . . . . . . . . . . . . . . . .16
Thermal Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4
4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Thermal Impedance (ICE2X765I and ICE2X765P2) . . . . . . . . . . . . . . . . . .20
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Control Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Protection Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
CoolMOS™ Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
5
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .26
6
Layout Recommendation for C18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
7
Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Version 2.6
5
25 Dec 2006
CoolSET™-F2
Pin Configuration and Functionality
1
Pin Configuration and Functionality
1.1
Pin Configuration with PG-DIP-8-6
1.2
Pin Configuration with PG-DIP-7-1
Pin
Symbol
Function
Pin
Symbol
Function
1
SoftS
Soft-Start
1
SoftS
Soft-Start
2
FB
Feedback
2
FB
Feedback
3
Isense
Controller Current Sense Input,
CoolMOS™ Source Output
3
Isense
Controller Current Sense Input,
CoolMOS™ Source Output
4
Drain
650V1)/800V2) CoolMOS™ Drain
4
N.C.
Not connected
5
Drain
650V1)/800V2) CoolMOS™ Drain
5
Drain
650V1)/800V2) CoolMOS™ Drain
6
N.C
Not connected
7
VCC
Controller Supply Voltage
7
VCC
Controller Supply Voltage
8
GND
Controller Ground
8
GND
Controller Ground
1)
at Tj = 110°C
2)
at Tj = 25°C
1)
at Tj = 110°C
2)
at Tj = 25°C
Package PG-DIP-8-6
Package PG-DIP-7-1
SoftS
1
8
GND
SoftS
1
8
GND
FB
2
7
VCC
FB
2
7
VCC
Isense
3
6
N.C
Isense
3
4
5
Drain
Figure 1
Drain
n.c.
Pin Configuration PG-DIP-8-6 (top view)
Version 2.6
Figure 2
6
4
5
Drain
Pin Configuration PG-DIP-7-1 (top view)
25 Dec 2006
CoolSET™-F2
Pin Configuration and Functionality
1.3
Pin Configuration with PG-TO220-6-46/
7
1.4
Pin Configuration with PG-DSO-16/12
Pin
Symbol
Function
1
N.C.
Not Connected
650V CoolMOS™ Drain
2
SoftS
Soft-Start
Isense
Controller Current Sense Input,
CoolMOS™ Source Output
3
FB
Feedback
4
GND
Controller Ground
4
Isense
Controller Current Sense Input,
CoolMOS™ Source Output
5
VCC
Controller Supply Voltage
5
Drain
650V1) CoolMOS™ Drain
6
SoftS
Soft-Start
6
Drain
650V1) CoolMOS™ Drain
7
FB
Feedback
7
Drain
650V1) CoolMOS™ Drain
8
Drain
650V1) CoolMOS™ Drain
9
N.C.
Not Connected
10
N.C.
Not Connected
11
VCC
Controller Supply Voltage
12
GND
Controller Ground
Pin
Symbol
1
Drain
3
1)
Function
1)
at Tj = 110°C
Package PG-TO220-6-46/47
1)
at Tj = 110°C
Package PG-DSO-16/12
Figure 3
6
7
FB
5
SoftS
4
VCC
3
GND
2
Isense
Drain
1
Pin Configuration PG-TO220-6-46/47
(top view)
Version 2.6
Figure 4
7
N.C
1
12
GND
SoftS
2
11
VCC
FB
3
10
N.C
Isense
4
9
N.C.
Drain
5
8
Drain
Drain
6
7
Drain
Pin Configuration PG-DSO-16/12 (top
view)
25 Dec 2006
CoolSET™-F2
Pin Configuration and Functionality
1.5
Pin Functionality
SoftS (Soft Start & Auto Restart Control)
This pin combines the function of Soft Start in case of
Start Up and Auto Restart Mode and the controlling of
the Auto Restart Mode in case of an error detection.
FB (Feedback)
The information about the regulation is provided by the
FB Pin to the internal Protection Unit and to the internal
PWM-Comparator to control the duty cycle.
Isense (Current Sense)
The Current Sense pin senses the voltage developed
on the series resistor inserted in the source of the
integrated CoolMOS™. When Isense reaches the
internal threshold of the Current Limit Comparator, the
Driver output is disabled. By this means the Over
Current Detection is realized.
Furthermore the current information is provided for the
PWM-Comparator to realize the Current Mode.
Drain (Drain of integrated CoolMOS™)
Pin Drain is the connection to the Drain of the internal
CoolMOSTM.
VCC (Power supply)
This pin is the positive supply of the IC. The operating
range is between 8.5V and 21V.
To provide overvoltage protection the driver gets
disabled when the voltage becomes higher than 16.5V
during Start Up Phase.
GND (Ground)
This pin is the ground of the primary side of the SMPS.
Version 2.6
8
25 Dec 2006
Figure 5
Version 2.6
9
FB
CSoft-Start
T1
C3
C4
C2
C1
GND
Standby Unit
fosc
R
S
Q
Q
UFB
Error-Latch
Spike
Blanking
5 s
Power-Up
Reset
Protection Unit
G3
13.5V
Power-Down
Reset
8.5V
x3.65
C5
PWM
Comparator
Soft-Start
Comparator
6.5V
5.3V
4.8V
4.0V
G4
100kHz
21.5kHz
fstandby
ICE2Axxxx
Vcsth
Q
Q
20kHz
67kHz
ICE2Bxxxx
Current Limiting
R
S
PWM-Latch
0.72
Duty Cycle Max
Propagation-Delay
Compensation
Current-Limit
Comparator
fstandby-fnorm
Clock
Duty Cycle
max
Oscillator
fnorm
Improved Current Mode
PWM OP
0.8V
0.3V
Soft Start
Voltage
Reference
Internal Bias
Power Management
Undervoltage
Lockout
fnorm
fstandby
G2
G1
CVCC
CLine
Tj >140°C
Thermal Shutdown
4.8V
5.3V
4.0V
CoolSET™-F2
RFB
6.5V
5.6V
RSoft-Start
6.5V
16.5V
VCC
RStart-up
Leading Edge
Blanking
220ns
Gate
Driver
D1
10k
CoolMOS™
Drain
Snubber
Optocoupler
Isense
RSense
2
SoftS
85 ... 270 VAC
+
Converter
DC Output
VOUT
-
CoolSET™-F2
Representative Blockdiagram
Representative Blockdiagram
Representative Blockdiagram
25 Dec 2006
CoolSET™-F2
Functional Description
3
Functional Description
3.1
Power Management
3.2
Improved Current Mode
Soft-Start Comparator
Main Line (100V-380V)
PWM-Latch
FB
RStart-Up
R
Q
Driver
Primary Winding
PWM Comparator
CVCC
S
VCC
0.8V
Power Management
Undervoltage
Internal
Lockout
PWM OP
Bias
13.5V
8.5V
x3.65
6.5V
Power-Down
Reset
4.8V
Reference
4.0V
Power-Up
Reset
Figure 7
R
SoftS
S
Current Mode
Current Mode means that the duty cycle is controlled
by the slope of the primary current. This is done by
comparison the FB signal with the amplified current
sense signal.
Q
PWM-Latch
RSoft-Start
Isense
Improved
Current Mode
5.3V
Voltage
6.5V
Q
Q
Error-Latch
Soft-Start Comparator
Amplified Current Signal
CSoft-Start
T1
Error-Detection
FB
Figure 6
Power Management
0.8V
The Undervoltage Lockout monitors the external
supply voltage VVCC. In case the IC is inactive the
current consumption is max. 55µA. When the SMPS is
plugged to the main line the current through RStart-up
charges the external Capacitor CVCC. When VVCC
exceeds the on-threshold VCCon=13.5V the internal bias
circuit and the voltage reference are switched on. After
that the internal bandgap generates a reference
voltage VREF=6.5V to supply the internal circuits. To
avoid uncontrolled ringing at switch-on a hysteresis is
implemented which means that switch-off is only after
active mode when Vcc falls below 8.5V.
In case of switch-on a Power Up Reset is done by
resetting the internal error-latch in the protection unit.
When VVCC falls below the off-threshold VCCoff=8.5V the
internal reference is switched off and the Power Down
reset let T1 discharging the soft-start capacitor CSoft-Start
at pin SoftS. Thus it is ensured that at every switch-on
the voltage ramp at pin SoftS starts at zero.
Version 2.6
Driver
t
T on
t
Figure 8
Pulse Width Modulation
In case the amplified current sense signal exceeds the
FB signal the on-time Ton of the driver is finished by
resetting the PWM-Latch (see Figure 8).
The primary current is sensed by the external series
resistor RSense inserted in the source of the integrated
CoolMOS™. By means of Current Mode regulation, the
10
25 Dec 2006
CoolSET™-F2
Functional Description
secondary output voltage is insensitive on line
variations. Line variation changes the current
waveform slope which controls the duty cycle.
The external RSense allows an individual adjustment of
the maximum source current of the integrated
CoolMOS™.
VOSC
max.
Duty Cycle
Soft-Start Comparator
PWM Comparator
Voltage Ramp
FB
PWM-Latch
Oscillator
0.3V
Gate Driver
VOSC
C1
Gate Driver
20pF
x3.65
V1
PWM OP
t
Figure 10
Voltage Ramp
Figure 9
3.2.1
Improved Current Mode
Light Load Conditions
PWM-OP
The input of the PWM-OP is applied over the internal
leading edge blanking to the external sense resistor
RSense connected to pin Isense. RSense converts the
source current into a sense voltage. The sense voltage
is amplified with a gain of 3.65 by PWM OP. The output
of the PWM-OP is connected to the voltage source V1.
The voltage ramp with the superimposed amplified
current signal is fed into the positive inputs of the PWMComparator, C5 and the Soft-Start-Comparator.
To improve the Current Mode during light load
conditions the amplified current ramp of the PWM-OP
is superimposed on a voltage ramp, which is built by
the switch T2, the voltage source V1 and the 1st order
low pass filter composed of R1 and C1(see Figure 9,
Figure 10). Every time the oscillator shuts down for
max. duty cycle limitation the switch T2 is closed by
VOSC. When the oscillator triggers the Gate Driver T2 is
opened so that the voltage ramp can start.
In case of light load the amplified current ramp is to
small to ensure a stable regulation. In that case the
Voltage Ramp is a well defined signal for the
comparison with the FB-signal. The duty cycle is then
controlled by the slope of the Voltage Ramp.
By means of the Comparator C5, the Gate Driver is
switched-off until the voltage ramp exceeds 0.3V. It
allows the duty cycle to be reduced continuously till 0%
by decreasing VFB below that threshold.
Version 2.6
t
0.8V
R1
T2
0.8V
FB
0.3V
C5
10kΩ
t
3.2.2
PWM-Comparator
The PWM-Comparator compares the sensed current
signal of the integrated CoolMOSTM with the feedback
signal VFB (see Figure 11). VFB is created by an
external optocoupler or external transistor in
combination with the internal pull-up resistor RFB and
provides the load information of the feedback circuitry.
When the amplified current signal of the integrated
CoolMOS™ exceeds the signal VFB the PWMComparator switches off the Gate Driver.
11
25 Dec 2006
CoolSET™-F2
Functional Description
pull-up resistor RSoft-Start. The Soft-Start-Comparator
compares the voltage at pin SoftS at the negative input
with the ramp signal of the PWM-OP at the positive
input. When Soft-Start voltage VSoftS is less than
Feedback voltage VFB the Soft-Start-Comparator limits
the pulse width by resetting the PWM-Latch (see
Figure 12). In addition to Start-Up, Soft-Start is also
activated at each restart attempt during Auto Restart.
By means of the above mentioned CSoft-Start the SoftStart can be defined by the user. The Soft-Start is
finished when VSoftS exceeds 5.3V. At that time the
Protection Unit is activated by Comparator C4 and
senses the FB by Comparator C3 wether the voltage is
below 4.8V which means that the voltage on the
secondary side of the SMPS is settled. The internal
Zener Diode at SoftS has a clamp voltage of 5.6V to
prevent the internal circuit from saturation (see Figure
13).
6.5V
Soft-Start Comparator
RFB
FB
PWM-Latch
PWM Comparator
0.8V
Optocoupler
PWM OP
Isense
x3.65
6.5V
5.6V
Improved
Current Mode
Figure 11
3.3
RSoft-Start
Error-Latch
SoftS
6.5V
5.3V
PWM Controlling
Soft-Start
4.8V
RFB
FB
VSoftS
C4
G2
C3
Clock
R
Q
S
Q
R
Q
Gate
Driver
S
Q
PWM-Latch
5.6V
5.3V
Figure 13
Gate Driver
Activation of Protection Unit
The Start-Up time TStart-Up within the converter output
voltage VOUT is settled must be shorter than the SoftStart Phase TSoft-Start (see Figure 14).
TSoft-Start
T Soft – Start
C Soft – Start = -----------------------------------R Soft – Start × 1.69
t
By means of Soft-Start there is an effective
minimization of current and voltage stresses on the
integrated CoolMOS™, the clamp circuit and the output
overshoot and prevents saturation of the transformer
during Start-Up.
t
Figure 12
Power-Up Reset
Soft-Start Phase
The Soft-Start is realized by the internal pull-up resistor
RSoft-Start and the external Capacitor CSoft-Start (see
Figure 5). The Soft-Start voltage VSoftS is generated by
charging the external capacitor CSoft-Start by the internal
Version 2.6
12
25 Dec 2006
CoolSET™-F2
Functional Description
VSoftS
kHz
100
fOSC
5.3V
TSoft-Start
VFB
65
21.5
t
1.0
4.8V
1.1
TStart-Up
t
Start Up Phase
3.4
Oscillator and Frequency
Reduction
3.4.1
Oscillator
fnorm
100kHz
67kHz
fstandby
21.5kHz
20kHz
1.6
1.7
1.8
1.9
2.0
V
VFB
Frequency Dependence
Current Limiting
3.5.1
The oscillator generates a frequency fswitch = 67kHz/
100kHz. A resistor, a capacitor and a current source
and current sink which determine the frequency are
integrated. The charging and discharging current of the
implemented oscillator capacitor are internally
trimmed, in order to achieve a very accurate switching
frequency. The ratio of controlled charge to discharge
current is adjusted to reach a max. duty cycle limitation
of Dmax=0.72.
3.4.2
1.5
There is a cycle by cycle current limiting realized by the
Current-Limit Comparator to provide an overcurrent
detection. The source current of the integrated
CoolMOSTM is sensed via an external sense resistor
RSense. By means of RSense the source current is
transformed to a sense voltage VSense. When the
voltage VSense exceeds the internal threshold voltage
Vcsth the Current-Limit-Comparator immediately turns
off the gate drive. To prevent the Current Limiting from
distortions caused by leading edge spikes a Leading
Edge Blanking is integrated at the Current Sense.
Furthermore a Propagation Delay Compensation is
added to support the immediate shut down of the
CoolMOS™ in case of overcurrent.
VOUT
Figure 14
1.4
ICE2Bxxxx
3.5
t
1.3
ICE2Axxxx
Figure 15
VOUT
1.2
Leading Edge Blanking
VSense
Vcsth
tLEB = 220ns
Frequency Reduction
The frequency of the oscillator is depending on the
voltage at pin FB. The dependence is shown in Figure
15. This feature allows a power supply to operate at
lower frequency at light loads thus lowering the
switching losses while maintaining good cross
regulation performance and low output ripple. In case
of low power the power consumption of the whole
SMPS can now be reduced very effective. The minimal
reachable frequency is limited to 20kHz/21.5 kHz to
avoid audible noise in any case.
Version 2.6
t
Figure 16
Leading Edge Blanking
Each time when CoolMOS™ is switched on a leading
spike is generated due to the primary-side
capacitances and secondary-side rectifier reverse
recovery time. To avoid a premature termination of the
switching pulse this spike is blanked out with a time
constant of tLEB = 220ns. During that time the output of
13
25 Dec 2006
CoolSET™-F2
Functional Description
the Current-Limit Comparator cannot switch off the
gate drive.
3.5.2
The propagation delay compensation is done by
means of a dynamic threshold voltage Vcsth (see Figure
18). In case of a steeper slope the switch off of the
driver is earlier to compensate the delay.
E.g. Ipeak = 0.5A with RSense = 2. Without propagation
delay compensation the current sense threshold is set
to a static voltage level Vcsth=1V. A current ramp of
dI/dt = 0.4A/µs, that means dVSense/dt = 0.8V/µs, and a
propagation delay time of i.e. tPropagation Delay =180ns
leads then to a Ipeak overshoot of 14.4%. By means of
propagation delay compensation the overshoot is only
about 2% (see Figure 19).
Propagation Delay Compensation
In case of overcurrent detection by ILimit the shut down
of CoolMOS™ is delayed due to the propagation delay
of the circuit. This delay causes an overshoot of the
peak current Ipeak which depends on the ratio of dI/dt of
the peak current (see Figure 17).
.
Signal1
ISense
IOvershoot2
Ipeak2
Ipeak1
ILimit
Signal2
tPropagation Delay
without compensation
with compensation
V
1.3
1.25
1.2
IOvershoot1
VSense
1.15
1.1
1.05
1
0.95
t
Figure 17
0.9
Current Limiting
0
Figure 19
3.6
0.6
0.8
1
1.2
1.4
1.6
1.8
2
V/us
Overcurrent Shutdown
PWM-Latch
The oscillator clock output applies a set pulse to the
PWM-Latch when initiating CoolMOS™ conduction.
After setting the PWM-Latch can be reset by the PWMOP, the Soft-Start-Comparator, the Current-LimitComparator, Comparator C3 or the Error-Latch of the
Protection Unit. In case of resetting the driver is shut
down immediately.
dV Sense
dI peak
- ≤ --------------0 ≤ R Sense× ----------dt
dt
max. Duty Cycle
3.7
off time
Propagation Delay
Vcsth
t
Signal1
Signal2
Dynamic Voltage Threshold Vcsth
Version 2.6
Driver
The driver-stage drives the gate of the CoolMOS™ and
is optimized to minimize EMI and to provide high circuit
efficiency. This is done by reducing the switch on slope
when reaching the CoolMOS™ threshold. This is
achieved by a slope control of the rising edge at the
driver’s output (see Figure 20) to the CoolMOS™ gate.
Thus the leading switch on spike is minimized. When
CoolMOS™ is switched off, the falling shape of the
driver is slowed down when reaching 2V to prevent an
overshoot below ground. Furthermore the driver circuit
is designed to eliminate cross conduction of the output
stage. At voltages below the undervoltage lockout
threshold VVCCoff the gate drive is active low.
t
VSense
Figure 18
0.4
dVSense
dt
The overshoot of Signal2 is bigger than of Signal1 due
to the steeper rising waveform.
A propagation delay compensation is integrated to
bound the overshoot dependent on dI/dt of the rising
primary current. That means the propagation delay
time between exceeding the current sense threshold
Vcsth and the switch off of CoolMOS™ is compensated
over temperature within a range of at least.
VOSC
0.2
14
25 Dec 2006
CoolSET™-F2
Functional Description
VGate
Overload / Open Loop with Normal Load
ca. t = 130ns
5µs Blanking
FB
4.8V
Failure
Detection
5V
t
Figure 20
3.8
5.3V
Soft-Start Phase
Internal Gate Rising Slope
Protection Unit (Auto Restart Mode)
An overload, open loop and overvoltage detection is
integrated within the Protection Unit. These three
failure modes are latched by an Error-Latch. Additional
thermal shutdown is latched by the Error-Latch. In case
of those failure modes the Error-Latch is set after a
blanking time of 5µs and the CoolMOS™ is shut down.
That blanking prevents the Error-Latch from distortions
caused by spikes during operation mode.
3.8.1
t
SoftS
t
TBurst1
Driver
TRestart
t
Overload / Open Loop with Normal
Load
VCC
13.5V
Figure 21 shows the Auto Restart Mode in case of
overload or open loop with normal load. The detection
of open loop or overload is provided by the Comparator
C3, C4 and the AND-gate G2 (see Figure 22). The
detection is activated by C4 when the voltage at pin
SoftS exceeds 5.3V. Till this time the IC operates in the
Soft-Start Phase. After this phase the comparator C3
can set the Error-Latch in case of open loop or overload
which leads the feedback voltage VFB to exceed the
threshold of 4.8V. After latching VCC decreases till
8.5V and inactivates the IC. At this time the external
Soft-Start capacitor is discharged by the internal
transistor T1 due to Power Down Reset. When the IC
is inactive VVCC increases till VCCon = 13.5V by charging
the Capacitor CVCC by means of the Start-Up Resistor
RStart-Up. Then the Error-Latch is reset by Power Up
Reset and the external Soft-Start capacitor CSoft-Start is
charged by the internal pull-up resistor RSoft-Start. During
the Soft-Start Phase which ends when the voltage at
pin SoftS exceeds 5.3V the detection of overload and
open loop by C3 and G2 is inactive. In this way the Start
Up Phase is not detected as an overload.
8.5V
t
Figure 21
Auto Restart Mode
6.5V
Power Up Reset
SoftS
RSoft-Start
CSoft-Start
5.3V
C4
T1
4.8V
Error-Latch
G2
C3
FB
RFB
6.5V
Figure 22
Version 2.6
15
FB-Detection
25 Dec 2006
CoolSET™-F2
Functional Description
But the Soft-Start Phase must be finished within the
Start Up Phase to force the voltage at pin FB below the
failure detection threshold of 4.8V.
3.8.2
normal operation mode is prevented from overvoltage
detection due to varying of VCC concerning the
regulation of the converter output. When the voltage
VSoftS is above 4.0V the overvoltage detection by C1 is
deactivated.
Overvoltage due to Open Loop with
No Load
VCC
Open loop & no load condition
FB
6.5V
5µs Blanking
16.5V
4.8V
4.0V
SoftS
t
Soft-Start Phase
C2
CSoft-Start
T1
5.3V
4.0V
Error Latch
G1
RSoft-Start
Failure
Detection
SoftS
C1
Power Up Reset
Overvoltage
Detection Phase
Figure 24
t
TBurst2
Driver
3.8.3
TRestart
Overvoltage Detection
Thermal Shut Down
Thermal Shut Down is latched by the Error-Latch when
junction temperature Tj of the pwm controller is
exceeding an internal threshold of 140°C. In that case
the IC switches in Auto Restart Mode.
Overvoltage Detection
VCC
16.5V
13.5V
t
8.5V
t
Figure 23
Auto Restart Mode
Figure 23 shows the Auto Restart Mode for open loop
and no load condition. In case of this failure mode the
converter output voltage increases and also VCC. An
additional protection by the comparators C1, C2 and
the AND-gate G1 is implemented to consider this
failure mode (see Figure 24).The overvoltage detection
is provided by Comparator C1 only in the first time
during the Soft-Start Phase till the Soft-Start voltage
exceeds the threshold of the Comparator C2 at 4.0V
and the voltage at pin FB is above 4.8V. When VCC
exceeds 16.5V during the overvoltage detection phase
C1 can set the Error-Latch and the Burst Phase during
Auto Restart Mode is finished earlier. In that case
TBurst2 is shorter than TSoft-Start. By means of C2 the
Version 2.6
Note:
16
All the values which are mentioned in the
functional description are typical. Please refer
to Electrical Characteristics for min/max limit
values.
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4
Electrical Characteristics
4.1
Absolute Maximum Ratings
Note:
Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction
of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 6
(VCC) is discharged before assembling the application circuit.
Parameter
Symbol
Limit Values
min.
max.
Unit
Remarks
Drain Source Voltage
ICE2A0565/165/265/365/765I/765P2
ICE2B0565/165/265/365/765I/765P2
ICE2A0565G
ICE2A0565Z
VDS
-
650
V
Tj = 110°C
Drain Source Voltage
ICE2A180Z/280Z/380P2
VDS
-
800
V
Tj = 25°C
Pulsed drain current,
tp limited by Tjmax
ICE2A0565/
ICE2B056/
ICE2A0565G/
ICE2A0565Z
ID_Puls1
2.0
A
ICE2A165/
ICE2B165
ID_Puls2
3.8
A
ICE2A265/
ICE2B265
ID_Puls3
9.8
A
ICE2A365/
ICE2B365
ID_Puls4
23.3
A
ICE2A180Z
ID_Puls5
4.1
A
ICE2A280Z
ID_Puls6
14.8
A
ICE2A765P2/
ICE2B765P2/
ICE2A765I/
ICE2B765I
ID_Puls7
19.0
A
ICE2A380P2/
ID_Puls8
5.7
A
Version 2.6
17
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
Parameter
Symbol
Unit
min.
max.
EAR1
-
0.01
mJ
EAR2
-
0.07
mJ
EAR3
-
0.40
mJ
ICE2A365
EAR4
-
0.50
mJ
ICE2B0565
EAR5
-
0.01
mJ
ICE2B165
EAR6
-
0.07
mJ
ICE2B265
EAR7
-
0.40
mJ
ICE2B365
EAR8
-
0.50
mJ
ICE2A0565G
EAR9
-
0.01
mJ
ICE2A0565Z
EAR10
-
0.01
mJ
ICE2A180Z
EAR11
-
0.07
mJ
ICE2A280Z
EAR12
-
0.40
mJ
ICE2A765I
EAR13
-
0.50
mJ
ICE2B765I
EAR14
-
0.50
mJ
ICE2A765P2
EAR15
-
0.50
mJ
ICE2B765P2
EAR16
-
0.50
mJ
ICE2A380P2
EAR17
-
0.06
mJ
Avalanche energy,
ICE2A0565
repetitive tAR limited by
ICE2A165
max. Tj=150°C1)
ICE2A265
1)
Limit Values
Remarks
Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR* f
Version 2.6
18
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
Parameter
Symbol
Limit Values
Unit
min.
max.
IAR1
-
0.5
A
IAR2
-
1
A
IAR3
-
2
A
ICE2A365
IAR4
-
3
A
ICE2B0565
IAR5
-
0.5
A
ICE2B165
IAR6
-
1
A
ICE2B265
IAR7
-
2
A
ICE2B365
IAR8
-
3
A
ICE2A0565G IAR9
-
0.5
A
ICE2A0565Z IAR10
-
0.5
A
ICE2A180Z
IAR11
-
1
A
ICE2A280Z
IAR12
-
2
A
ICE2A765I
IAR13
-
7
A
ICE2B765I
IAR14
-
7
A
ICE2A765P2 IAR15
-
7
A
ICE2B765P2 IAR16
-
7
A
ICE2A380P2 IAR17
-
2.4
A
ICE2A0565
Avalanche current,
repetitive tAR limited by
ICE2A165
max. Tj=150°C
ICE2A265
Remarks
VCC Supply Voltage
VCC
-0.3
22
V
FB Voltage
VFB
-0.3
6.5
V
SoftS Voltage
VSoftS
-0.3
6.5
V
ISense
ISense
-0.3
3
V
Junction Temperature
Tj
-40
150
°C
Storage Temperature
TS
-50
150
°C
Thermal Resistance
Junction-Ambient
RthJA1
-
90
K/W
PG-DIP-8-6
RthJA2
-
96
K/W
PG-DIP-7-1
RthJA3
-
110
K/W
P-DSO-16/12
VESD
-
22)
kV
Human Body Model
ESD Robustness1)
1)
Equivalent to discharging a 100pF capacitor through a 1.5 kΩ series resistor
2)
1kV at pin drain of ICE2x0565, ICE2A0565Z and ICE2A0565G
Version 2.6
19
Controller & CoolMOS™
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.2
Thermal Impedance (ICE2X765I and ICE2X765P2)
Parameter
Thermal Resistance
Junction-Ambient
Junction-Case
4.3
Note:
Symbol
Limit Values
Unit
Remarks
Free standing with no
heat-sink
min.
max.
RthJA4
ICE2A765I
ICE2B765I
ICE2A765P2
ICE2B765P2
-
74
K/W
ICE2A380P2 RthJA5
-
82
K/W
RthJC1
ICE2A765I
ICE2B765I
ICE2A765P2
ICE2B765P2
-
2.5
K/W
ICE2A380P2 RthJC2
-
2.86
K/W
Operating Range
Within the operating range the IC operates as described in the functional description.
Parameter
Symbol
Limit Values
min.
max.
Unit
VCC Supply Voltage
VCC
VCCoff
21
V
Junction Temperature of
Controller
TJCon
-25
130
°C
Junction Temperature of
CoolMOS™
TJCoolMOS
-25
150
°C
Version 2.6
20
Remarks
Limited due to thermal shut down
of controller
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.4
Note:
4.4.1
Characteristics
The electrical characteristics involve the spread of values given within the specified supply voltage and
junction temperature range TJ from – 25 °C to 125 °C.Typical values represent the median values, which
are related to 25°C. If not otherwise stated, a supply voltage of VCC = 15 V is assumed.
Supply Section
Parameter
Symbol
Limit Values
min.
typ.
max.
Unit
Test Condition
Start Up Current
IVCC1
-
27
55
µA
VCC=VCCon -0.1V
Supply Current with Inactive
Gate
IVCC2
-
5.0
6.6
mA
VSoftS = 0
IFB = 0
Supply Current ICE2A0565
with Active Gate
ICE2A165
IVCC3
-
5.3
6.7
mA
IVCC4
-
6.5
7.8
mA
VSoftS = 5V
IFB = 0
ICE2A265
IVCC5
-
6.7
8.0
mA
ICE2A365
IVCC6
-
8.5
9.8
mA
ICE2B0565
IVCC7
-
5.2
6.7
mA
ICE2B165
IVCC8
-
5.5
7.0
mA
ICE2B265
IVCC9
-
6.1
7.3
mA
ICE2B365
IVCC10
-
7.1
8.3
mA
ICE2A0565G IVCC11
-
5.3
6.7
mA
ICE2A0565Z
IVCC12
-
5.3
6.7
mA
ICE2A180Z
IVCC13
-
6.5
7.8
mA
ICE2A280Z
IVCC14
-
7.7
9.0
mA
IVCC15
-
8.5
9.8
mA
IVCC16
-
7.1
8.3
mA
ICE2A765P2
IVCC17
-
8.5
9.8
mA
ICE2B765P2
IVCC18
-
7.1
8.3
mA
ICE2A380P2
IVCC19
-
6.7
8.0
mA
VCCon
VCCoff
VCCHY
13
4.5
13.5
8.5
5
14
5.5
V
V
V
Supply Current ICE2A765I
with Active Gate
ICE2B765I
VCC Turn-On Threshold
VCC Turn-Off Threshold
VCC Turn-On/Off Hysteresis
Version 2.6
21
VSoftS = 5V
IFB = 0
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.4.2
Internal Voltage Reference
Parameter
Trimmed Reference Voltage
4.4.3
Symbol
Limit Values
VREF
min.
typ.
max.
6.37
6.50
6.63
Unit
Test Condition
V
measured at pin FB
Control Section
Parameter
Symbol
Limit Values
min.
typ.
max.
Unit
Test Condition
Oscillator Frequency
ICE2A0565/165/265/365/765I/765P2
ICE2A0565G/0565Z/180Z/280Z/380P2
fOSC1
93
100
107
kHz
VFB = 4V
Oscillator Frequency
ICE2B0565/165/265/365/765I/765P2
fOSC3
62
67
72
kHz
VFB = 4V
Reduced Osc. Frequency
ICE2A0565/165/265/365/765I/765P2
ICE2A0565G/0565Z/180Z/280Z/380P2
fOSC2
-
21.5
-
kHz
VFB = 1V
Reduced Osc. Frequency
ICE2B0565/165/265/365/765I/765P2
fOSC4
-
20
-
kHz
VFB = 1V
Frequency Ratio fosc1/fosc2
ICE2A0565/165/265/365/765I/765P2
ICE2A0565G/0565Z/180Z/280Z/380P2
4.5
4.65
4.9
Frequency Ratio fosc3/fosc4
ICE2B0565/165/265/365/765I/765P2
3.18
3.35
3.53
Max Duty Cycle
Dmax
0.67
0.72
0.77
Min Duty Cycle
Dmin
0
-
-
PWM-OP Gain
AV
3.45
3.65
3.85
VFB Operating Range Min Level
VFBmin
0.3
-
-
V
VFB Operating Range Max level
VFBmax
-
-
4.6
V
Feedback Resistance
RFB
3.0
3.7
4.9
kΩ
Soft-Start Resistance
RSoft-Start
42
50
62
kΩ
Version 2.6
22
VFB < 0.3V
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.4.4
Protection Unit
Parameter
Symbol
Limit Values
min.
typ.
max.
Unit
Test Condition
Over Load & Open Loop
Detection Limit
VFB2
4.65
4.8
4.95
V
VSoftS > 5.5V
Activation Limit of Overload &
Open Loop Detection
VSoftS1
5.15
5.3
5.46
V
VFB > 5V
Deactivation Limit of
Overvoltage Detection
VSoftS2
3.88
4.0
4.12
V
VFB > 5V
VCC > 17.5V
Overvoltage Detection Limit
VVCC1
16
16.5
17.2
V
VSoftS < 3.8V
VFB > 5V
Latched Thermal Shutdown
TjSD
130
140
150
°C
1)
Spike Blanking
tSpike
-
5
-
µs
1)
The parameter is not subject to production test - verified by design/characterization
4.4.5
Current Limiting
Parameter
Symbol
Limit Values
min.
typ.
max.
Unit
Test Condition
dVsense / dt = 0.6V/µs
Peak Current Limitation
(incl. Propagation Delay Time)
Vcsth
0.95
1.0
1.05
V
Leading Edge Blanking
tLEB
-
220
-
ns
Version 2.6
23
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
4.4.6
CoolMOS™ Section
Parameter
Symbol
Limit Values
min.
typ.
max.
Unit
Test Condition
Drain Source Breakdown Voltage
ICE2A0565/165/265/365/765I/765P2
ICE2B0565/165/265/365/765I/765P2
ICE2A0565G/0565Z
V(BR)DSS
600
650
-
-
V
V
Tj=25°C
Tj=110°C
Drain Source Breakdown Voltage
ICE2A180Z/280Z/380P2
V(BR)DSS
800
870
-
-
V
V
Tj=25°C
Tj=110°C
Drain Source
On-Resistance
ICE2A0565
RDSon1
-
4.7
10.0
5.5
12.5
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A165
RDSon2
-
3
6.6
3.3
7.3
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A265
RDSon3
-
0.9
1.9
1.08
2.28
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A365
RDSon4
-
0.45
0.95
0.54
1.14
Ω
Ω
Tj=25°C
Tj=125°C
ICE2B0565
RDSon5
-
4.7
10.0
5.5
12.5
Ω
Ω
Tj=25°C
Tj=125°C
ICE2B165
RDSon6
-
3
6.6
3.3
7.3
Ω
Ω
Tj=25°C
Tj=125°C
ICE2B265
RDSon7
-
0.9
1.9
1.08
2.28
Ω
Ω
Tj=25°C
Tj=125°C
ICE2B365
RDSon8
-
0.45
0.95
0.54
1.14
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A0565G
RDSon9
-
4.7
10.0
5.5
12.5
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A0565Z
RDSon10
-
4.7
10.0
5.5
12.5
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A180Z
RDSon11
-
3
6.6
3.3
7.3
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A280Z
RDSon12
-
0.8
1.7
1.06
2.04
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A765I
RDSon13
-
0.45
0.95
0.54
1.14
Ω
Ω
Tj=25°C
Tj=125°C
ICE2B765I
RDSon14
-
0.45
0.95
0.54
1.14
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A765P2
RDSon15
-
0.45
0.95
0.54
1.14
Ω
Ω
Tj=25°C
Tj=125°C
ICE2B765P2
RDSon16
-
0.45
0.95
0.54
1.14
Ω
Ω
Tj=25°C
Tj=125°C
ICE2A380P2
RDSon17
-
1.89
4.15
2.27
4.98
Ω
Ω
Tj=25°C
Tj=125°C
Version 2.6
24
25 Dec 2006
CoolSET™-F2
Electrical Characteristics
Parameter
Effective output
capacitance,
energy related
Symbol
Limit Values
min.
typ.
max.
Unit
Test Condition
VDS =0V to 480V
ICE2A0565
Co(er)1
-
4.751
-
pF
ICE2A165
Co(er)2
-
7
-
pF
ICE2A265
Co(er)3
-
21
-
pF
ICE2A365
Co(er)4
-
30
-
pF
ICE2B0565
Co(er)5
-
4.751
-
pF
ICE2B165
Co(er)6
-
7
-
pF
ICE2B265
Co(er)7
-
21
-
pF
ICE2B365
Co(er)8
-
30
-
pF
ICE2A0565G
Co(er)9
-
4.751
-
pF
ICE2A0565Z
Co(er)10
-
4.751
-
pF
ICE2A180Z
Co(er)11
-
7
-
pF
ICE2A280Z
Co(er)12
-
22
-
pF
ICE2A765I
Co(er)13
-
30
-
pF
ICE2B765I
Co(er)14
-
30
-
pF
ICE2A765P2
Co(er)15
-
30
-
pF
ICE2B765P2
Co(er)16
-
30
-
pF
ICE2A380P2
Co(er)17
-
16.8
-
pF
IDSS
-
0.5
Zero Gate Voltage Drain Current
-
µA
1)
Rise Time
trise
-
30
-
ns
Fall Time
tfall
-
301)
-
ns
1)
VVCC=0V
Measured in a Typical Flyback Converter Application
Version 2.6
25
25 Dec 2006
CoolSET™-F2
Typical Performance Characteristics
Typical
Performance
Characteristics
40
7,1
Supply Current IVCCi [mA]
34
32
PI-001-190101
Start Up Current IVCC1 [µA]
36
30
28
26
24
22
-25 -15
ICE2B365
6,9
38
6,7
6,5
6,3
ICE2B265
6,1
5,9
5,7
ICE2B165
5,5
5,3
5,1
ICE2B0565
4,9
4,7
-5
5
15
25
35
45
55
65
75
85
4,5
-25 -15
95 105 115 125
-5
5
Figure 28
Start Up Current IVCC1 vs. Tj
45
55
65
75
85
95 105 115 125
Supply Current IVCCI vs. Tj
8,1
5,3
5,1
4,9
4,7
7,9
7,7
ICE2A280Z
7,5
7,3
7,1
PI-002-190101
Supply Current IVCCi [mA]
5,5
PI-003-190101
Supply Current IVCC2 [mA]
35
8,3
5,7
6,9
6,7
6,5
ICE2A180Z
6,3
6,1
5,9
5,7
-5
5
15
25
35
45
55
65
75
85
5,5
-25 -15
95 105 115 125
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 26
25
8,5
5,9
4,5
-25 -15
15
Junction Temperature [°C]
Junction Temperature [°C]
Figure 25
PI-002-190101
5
Figure 29
Static Supply Current IVCC2 vs. Tj
Supply Current IVCCI vs. Tj
8.9
8.7
8.8
7.6
7.2
6.8
ICE2A265
6.4
ICE2A165
6.0
5.6
5.2
ICE2A0565/G/Z
/G/Z
4.8
8.1
7.7
7.5
7.3
ICE2B765P2
7.1
6.9
6.7
6.5
ICE2A380P2
6.3
-5
5
15
25
35
45
55
65
75
85
5.9
-25 -15
95 105 115 125
Figure 30
Supply Current IVCCI vs. Tj
Version 2.6
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Junction Temperature [°C]
Figure 27
ICE2A765P2
7.9
6.1
4.4
4.0
-25 -15
8.3
PI-002-190101
Supply Current IVCCi [mA]
8.0
PI-002-190101
Supply Current IVCCi [mA]
8.5
ICE2A365
8.4
26
Supply Current IVCCI vs. Tj
25 Dec 2006
CoolSET™-F2
Typical Performance Characteristics
13,56
13,54
13,52
13,50
13,48
13,46
13,44
5
15
25
35
45
55
65
75
85
95 105 115 125
6,495
6,490
6,485
6,480
6,475
6,470
-25 -15
-5
5
15
VCC Turn-On Threshold VCCon vs. Tj
Figure 34
102.0
8,64
101.5
Oscillator Frequency fOSC1 [kHz]
8,67
8,61
8,58
8,55
PI-005-190101
VCC Turn-Off Threshold VVCCoff [V]
Figure 31
8,52
8,49
8,46
8,43
8,40
-25 -15
-5
5
15
25
35
45
55
65
75
85
VCC Turn-Off Threshold VVCCoff vs. Tj
65
75
85
95 105 115 125
100.5
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
ICE2A180Z
ICE2A280Z
ICE2A765P2
ICE2A380P2
100.0
99.5
99.0
98.5
98.0
97.5
Figure 35
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Oscillator Frequency fOSC1 vs. Tj
70,0
Oscillator Frequency f OSC3 [kHz]
5,04
5,01
4,98
PI-006-190101
VCC Turn-On/Off Hysteresis V CCHY [V]
55
Junction Temperature [°C]
5,07
4,95
4,92
4,89
4,86
-5
5
15
25
35
45
55
65
75
85
69,5
69,0
68,5
68,0
67,5
67,0
66,0
65,5
65,0
64,5
64,0
-25 -15
95 105 115 125
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
VCC Turn-On/Off Hysteresis VVCCHY vs. Tj
Version 2.6
ICE2B0565
ICE2B165
ICE2B265
ICE2B365
ICE2B765P2
66,5
Junction Temperature [°C]
Figure 33
45
101.0
97.0
-25 -15
95 105 115 125
5,10
4,83
-25 -15
35
Trimmed Reference VREF vs. Tj
Junction Temperature [°C]
Figure 32
25
Junction Temperature [°C]
Junction Temperature [°C]
PI-008-190101
-5
6,500
PI-008a-190101
13,42
-25 -15
6,505
PI-007-190101
Trimmed Reference Voltage V REF [V]
6,510
PI-004-190101
VCC Turn-On Threshold VCCon [V]
13,58
Figure 36
27
Oscillator Frequency fOSC3 vs. Tj
25 Dec 2006
CoolSET™-F2
3,45
21.8
3,43
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
ICE2A180Z
ICE2A280Z
ICE2A765P2
ICE2A380P2
21.4
21.2
21.0
20.8
20.6
20.4
20.2
20.0
-25 -15
-5
5
15
25
35
45
55
65
75
85
3,41
3,39
3,35
3,33
3,31
3,29
3,27
3,25
-25 -15
95 105 115 125
ICE2B0565
ICE2B165
ICE2B265
ICE2B365
ICE2B765P2
3,37
-5
5
Figure 40
21,0
0,730
20,8
0,728
20,0
19,8
19,6
25
35
45
55
65
75
85
0,710
-25 -15
95 105 115 125
-5
5
3,70
3,69
4.63
4.61
45
55
65
75
85
3,60
-25 -15
95 105 115 125
95 105 115 125
85
95 105 115 125
Max. Duty Cycle vs. Tj
-5
5
15
25
35
45
55
65
75
Junction Temperature [°C]
Frequency Ratio fOSC1 / fOSC2 vs. Tj
Version 2.6
85
3,63
Junction Temperature [°C]
Figure 39
75
3,64
3,61
35
65
3,65
4.57
25
55
3,66
3,62
15
45
3,67
4.59
5
35
PI-012-190101
4.65
PWM-OP Gain AV
4.67
25
3,68
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
ICE2A180Z
ICE2A280Z
ICE2A765P2
ICE2A380P2
4.69
PI-010-190101
Frequency Ratio fOSC1/fOSC2
Figure 41
4.73
4.71
15
Junction Temperature [°C]
Reduced Osc. Frequency fOSC4 vs. Tj
-5
95 105 115 125
0,716
4.75
4.55
-25 -15
85
Frequency Ratio fOSC3 / fOSC4 vs. Tj
Junction Temperature [°C]
Figure 38
75
0,718
0,712
15
65
0,720
0,714
5
55
0,722
19,2
-5
45
0,724
19,4
19,0
-25 -15
35
PI-011-190101
Max. Duty Cycle
20,2
25
0,726
ICE2B0565
ICE2B165
ICE2B265
ICE2B365
ICE2B765P2
20,4
PI-009a-190101
Reduced Osc. Frequency fOSC4 [kHz]
Reduced Osc. Frequency fOSC2 vs. Tj
20,6
15
Junction Temperature [°C]
Junction Temperature [°C]
Figure 37
PI-010a-190101
21.6
Frequency Ratio fOSC3/fOSC4
22.0
PI-009-190101
Reduced Osc. Frequency fOSC2 [kHz]
Typical Performance Characteristics
Figure 42
28
PWM-OP Gain AV vs. Tj
25 Dec 2006
CoolSET™-F2
5,320
3,95
5,315
3,90
3,85
3,80
3,75
3,70
3,65
3,60
3,55
3,50
-25 -15
-5
5
15
25
35
45
55
65
75
85
5,310
5,305
5,300
5,295
5,290
5,285
5,280
5,275
5,270
-25 -15
95 105 115 125
PI-016-190101
Detection Limit VSoft-Start1 [V]
4,00
PI-013-190101
Feedback Resistance R FB [kOhm]
Typical Performance Characteristics
-5
5
Junction Temperature [°C]
Figure 46
4,05
56
4,04
Detection Limit VSoft-Start2 [V]
58
54
52
50
48
46
44
42
40
-25 -15
-5
5
15
25
35
45
55
65
75
85
95
4,795
4,790
4,785
25
35
45
55
65
75
85
95 105 115 125
95 105 115 125
4,00
3,99
3,98
3,97
3,96
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Detection Limit VSoft-Start2 vs. Tj
16,80
16,75
16,70
16,65
16,60
16,55
16,50
16,45
16,40
16,35
16,30
16,25
16,20
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Detection Limit VFB2 vs. Tj
Version 2.6
85
4,01
Junction Temperature [°C]
Figure 45
75
PI-018-190101
Overvoltage Detection Limit V VCC1 [V]
PI-015-190101
Detection Limit VFB2 [V]
4,800
15
65
4,02
Figure 47
4,805
5
55
Junction Temperature [°C]
Soft-Start Resistance RSoft-Start vs. Tj
-5
45
4,03
3,95
-25 -15
105 115 125
4,810
4,780
-25 -15
35
Detection Limit VSoft-Start1 vs. Tj
Junction Temperature [°C]
Figure 44
25
PI-017-190101
Feedback Resistance RFB vs. Tj
PI-014-190101
Soft-Start Resistance R Soft-Start [kOhm]
Figure 43
15
Junction Temperature [°C]
Figure 48
29
Overvoltage Detection Limit VVCC1 vs. Tj
25 Dec 2006
CoolSET™-F2
2,2
1,008
2,0
1,006
1,004
1,002
1,000
0,998
0,996
0,994
0,992
5
15
25
35
45
55
65
75
85
1,4
1,0
ICE2A280Z
0,8
0,6
0,4
-25 -15
95 105 115 125
ICE2A265
ICE2B265
1,2
-5
5
Junction Temperature [°C]
Peak Current Limitation Vcsth vs. Tj
Figure 52
10
270
9
On-Resistance R dson [Ohm]
280
260
250
240
230
220
210
200
190
180
-25 -15
-5
5
15
25
35
45
55
65
75
85
On-Resistance R dson [Ohm]
PI-022-190101
On-Resistance R dson [Ohm]
0,6
0,5
ICE2A365
ICE2B365
0,3
45
55
65
75
85
ICE2A380P2
2
-5
5
25
35
45
55
65
75
85
95 105 115 125
Drain Source On-Resistance RDSon vs. Tj
0,7
0,6
ICE2A765P2
ICE2B765P2
0,5
0,4
0,3
0,2
-25 -15
95 105 115 125
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Drain Source On-Resistance RDSon vs. Tj
Version 2.6
15
0,8
Junction Temperature [°C]
Figure 51
ICE2A165
ICE2B165
ICE2A180Z
3
Figure 53
0,7
35
95 105 115 125
Junction Temperature [°C]
0,8
25
85
4
0,9
15
75
5
0,9
5
65
6
1,0
-5
55
ICE2A0565/G/Z
ICE2B0565
7
1,0
0,2
-25 -15
45
8
1
-25 -15
95 105 115 125
Leading Edge Blanking VVCC1 vs. Tj
0,4
35
Drain Source On-Resistance RDSon vs. Tj
Junction Temperature [°C]
Figure 50
25
Junction Temperature [°C]
PI-020-190101
Leading Edge Blanking tLEB [ns]
Figure 49
15
PI-022-190101
-5
1,6
PI-022-190101
0,990
-25 -15
1,8
PI-022-190101
On-Resistance R dson [Ohm]
1,010
PI-019-190101
Peak Current Limitation Vcsth [V]
Typical Performance Characteristics
Figure 54
30
Drain Source On-Resistance RDSon vs. Tj
25 Dec 2006
CoolSET™-F2
Typical Performance Characteristics
700
680
660
/G/Z
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
ICE2B0565
ICE2B165
ICE2B265
ICE2B365
ICE2A765P2
ICE2B765P2
640
620
600
PI-025-190101
Breakdown Voltage V(BR)DSS [V]
720
580
560
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Figure 55
Breakdown Voltage VBR(DSS) vs. Tj
920
900
880
ICE2A180Z
ICE2A280Z
ICE2A380P2
860
PI-025-190101
Breakdown Voltage V(BR)DSS [V]
940
840
820
800
780
-25 -15
-5
5
15
25
35
45
55
65
75
85
95 105 115 125
Junction Temperature [°C]
Figure 56
Breakdown Voltage VBR(DSS) vs. Tj
Version 2.6
31
25 Dec 2006
CoolSET™-F2
Layout Recommendation for C18
6
Note:
Layout Recommendation for C18
Only for ICE2A765I/P2 and ICE2B765I/P2
Soft Start Capacitor Layout Recommendation in Detail
Detail X
Figure 57B Detail X, Soft Start Capacitor C18 Layout
Recommendation
Place Soft Start capacitor C18 in the same way as
shown in Detail X (blue mark).
Figure 57A
Layout of Board EVALSF2_ICE2B765P2
To improve the startup behavior of the IC during
startup or auto restart mode, place the soft start
capacitor C18 (red section Detail X in Figure 57A)
as close as possible to the soft start PIN 6 and
GND PIN 4. More details see Detail X in Figure
57B.
Figure 57
Layout Recommendation for ICE2A765I/P2 and ICE2B765I/P2
Version 2.6
32
25 Dec 2006
CoolSET™-F2
Outline Dimension
7
Outline Dimension
PG-DIP-8-6
(Plastic Dual In-line
Package)
1.7 MAX.
2.54
0.46 ±0.1
0.35 7x
7
3.25 MIN.
PG-DIP-7-1
(Plastic Dual In-line
Package)
4.37 MAX.
PG-DIP-8-6 (Plastic Dual In-line Package)
0.38 MIN.
Figure 58
7.87 ±0.38
0.25 +0.1
6.35 ±0.25 1)
8.9 ±1
5
4
1
1)
±0.25
9.52
Index Marking
1)
Figure 59
Does not include plastic or metal protrusion of 0.25 max. per side
PG-DIP-7-1 (Plastic Dual In-line Package)
Dimensions in mm
Version 2.6
33
25 Dec 2006
CoolSET™-F2
Outline Dimension
PG-TO220-6-46
Isodrain Package
9.9
7.5
1.3 +0.1
-0.02
(0.8)
B
9.2 ±0.2
0.05
8
1)
8.6 ±0.3
10.2 ±0.3
12.1±0.3
6.6
4.4
A
7.62
0.25
0...0.15
M
0.5 ±0.1
A B
2.4
6 x 0.6 ±0.1
5.3 ±0.3
4 x 1.27
8.4 ±0.3
1) Shear and punch direction no burrs this surface
Back side, heatsink contour
All metal surfaces tin plated, except area of cut.
PG-TO220-6-46 (Isodrain Package)
9.9 ±0.2
A
9.5 ±0.2
7.5
B
3.7 -0.15
13
0.05
1)
8.6 ±0.3
15.6 ±0.3
17.5 ±0.3
6.6
4.4
1.3 +0.1
-0.02
9.2 ±0.2
PG-TO220-6-47
Isodrain Package
2.8 ±0.2
Figure 60
7.62
0...0.15
0.25
M
0.5 ±0.1
A B
2.4
6 x 0.6 ±0.1
4 x 1.27
5.3 ±0.3
8.4 ±0.3
1) Shear and punch direction no burrs this surface
Back side, heatsink contour
All metal surfaces tin plated, except area of cut.
Figure 61
PG-TO220-6-47 (Isodrain Package)
Dimensions in mm
Version 2.6
34
25 Dec 2006
CoolSET™-F2
Outline Dimension
PG-DSO-16/12
(Plastic Dual Small
Outline Package)
Figure 62 PG-DSO-16/12 (Plastic Dual Small Outline Package)
Dimensions in mm
Version 2.6
35
25 Dec 2006
Total Quality Management
Qualität hat für uns eine umfassende
Bedeutung. Wir wollen allen Ihren
Ansprüchen in der bestmöglichen
Weise gerecht werden. Es geht uns also
nicht nur um die Produktqualität –
unsere
Anstrengungen
gelten
gleichermaßen der Lieferqualität und
Logistik, dem Service und Support
sowie allen sonstigen Beratungs- und
Betreuungsleistungen.
Dazu
gehört
eine
bestimmte
Geisteshaltung unserer Mitarbeiter.
Total Quality im Denken und Handeln
gegenüber Kollegen, Lieferanten und
Ihnen, unserem Kunden. Unsere
Leitlinie ist jede Aufgabe mit „Null
Fehlern“ zu lösen – in offener
Sichtweise auch über den eigenen
Arbeitsplatz hinaus – und uns ständig
zu verbessern.
Unternehmensweit orientieren wir uns
dabei auch an „top“ (Time Optimized
Processes), um Ihnen durch größere
Schnelligkeit
den
entscheidenden
Wettbewerbsvorsprung zu verschaffen.
Geben Sie uns die Chance, hohe
Leistung durch umfassende Qualität zu
beweisen.
Wir werden Sie überzeugen.
http://www.infineon.com
Published by Infineon Technologies AG
Quality takes on an allencompassing
significance at Semiconductor Group.
For us it means living up to each and
every one of your demands in the best
possible way. So we are not only
concerned with product quality. We
direct our efforts equally at quality of
supply and logistics, service and
support, as well as all the other ways in
which we advise and attend to you.
Part of this is the very special attitude of
our staff. Total Quality in thought and
deed, towards co-workers, suppliers
and you, our customer. Our guideline is
“do everything with zero defects”, in an
open manner that is demonstrated
beyond your immediate workplace, and
to constantly improve.
Throughout the corporation we also
think in terms of Time Optimized
Processes (top), greater speed on our
part to give you that decisive
competitive edge.
Give us the chance to prove the best of
performance through the best of quality
– you will be convinced.