Photointerrupter(Reflective) KIR1004S (Unit : mm) DIMENSION The KIR1004S carrying a unique hysterisis transistor(BAMBIT) developed by KODENSHI CORP. facililates digital output bymeans of two leads. This digital photointerrupter, because of its ultracompact size, requires little space. FEATURES Digital output : Directly connect to a microcomputer digital port. Hysterisis : Stable against chattering of the object. High speed response : Faster than transistor output type. RoHS Compliance. APPLICATIONS Detection of paper marks Detection of high speed object Detection of bar codes Portable video camera Printer Projection TV Card readerProjection TV MAXIMUM RATINGS Parameter Input Forward Current Reverse Voltage Power Dissipation Collector-Emitter Breakdown Voltage Output Emitter-Collector Breakdown Voltage Collector Current Storage Temperature Operating Temperature *1 Lead Soldering Temperature *2 Symbol IF VR PD BVCEO BVECO IC Tstg Topr Tsol (Ta=25 ) Rating Unit Block Diagram 50 mA 5 V 75 mW 10 V 0.3 V 0.5 mA -30~+100 -25~+85 260 *1. No icebound or dew *2. For 2 times at 260 reflow ELECTRO-OPTICAL CHARACTERISTICS Parameter Forward Voltage Reverse Current Peak Wavelength Operating Supply Voltage Low Level Output Voltage Output High Level Output Voltage Peak Wavelength Threshold Input Current *3 Hysterisis*4 Transmission L -> H Propagation Time H -> L Propagation Time Rise Time Fall Time Input Symbol VF IR P VCC VOL VOH Condition IF=10mA VR=5V IF=20mA VCC=5V, IF=0mA, RL=100k VCC=5V, IF=20mA, RL=100k IFLH VCC=5V, RL=100k IFHL/IFLH tPLH tPHL VCC=5V, IF=0mA, RL=100k tr tf P *3. IFLH represents forward current when output changes from low to high. *4. IFHL represents forward current when output changes from high to low. 1/2 (Ta=25 , unless otherwise noted) Min. Typ. Max. Unit. 2.0 4.5 2.0 - 940 5.0 0.5 4.7 880 0.85 15 40 4.5 25 1.30 10 7.0 0.7 7.2 0.4 - V mA nm V V V nm mA ms ms ms ms Photointerrupter(Reflective) KIR1004S Power dissipation Vs. Ambient temperature 10 8 LED IF[mA] 75 50 25 6 4 2 0 20 40 60 80 Ambient temperature Ta[ 100 ] 1 -20 40 60 80 100 0.0 ] 0 20 40 60 80 0.5 0.3 0.1 20 40 60 80 2 3 4 5 6 100 Load resistance RL[K ] 10 40 60 80 10 100 ] Output voltage[V] VCC INPUT 2.5 2.0 Vout Rf RL 1.0 0.5 0.0 3.0 4.0 5.0 Distance[mm] 2/2 100 Load resistance RL[k ] 3.0 2.0 100 100 Measurement of propagation time IF 1.0 80 Switching time Vs. Load resistance d=1mm 0.0 60 ] 20 4.0 1.5 40 LED IF[mA] 4.5 3.5 20 1 0 Ambient temperature Ta[ Output voltage Vs. Distance 6 4 0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -20 5.0 10 8 7 Switching time [ Hysteresis width 0.7 0 1 Hysteresis width Vs. Ambient temperature 0.9 14 12 Supply voltage [Vcc] Hysteresis width Vs. Load resistance 1.1 18 16 ] 0 1.3 2.0 2 0 ] 1.5 1.5 LED Vs. Load resistance 7 6 5 4 3 100 1.0 20 10 9 8 2 1 0 Ambient temperature Ta[ 0.5 Forward voltage VF[V] Load Resistance RL[K LED IF[mA] Output voltage[V] 20 LED Vs. Supply voltage 20 18 16 14 12 10 8 6 4 2 0 -20 Hysteresis width 0 Ambient temperature Ta[ Output voltage Vs. Ambient temperature -0.1 10 0 0 Forward current Vs. Forward voltage 100 Forward current IF[mA] Power dissipation Po[mW] 100 Threshold input current Vs. Ambient temperature OUTPUT