KODENSHI KIR1004S

Photointerrupter(Reflective)
KIR1004S
(Unit : mm)
DIMENSION
The KIR1004S carrying a unique hysterisis transistor(BAMBIT)
developed by KODENSHI CORP. facililates digital output bymeans
of two leads. This digital photointerrupter, because of its ultracompact size, requires little space.
FEATURES
Digital output : Directly connect to a microcomputer digital port.
Hysterisis : Stable against chattering of the object.
High speed response : Faster than transistor output type.
RoHS Compliance.
APPLICATIONS
Detection of paper marks
Detection of high speed object
Detection of bar codes
Portable video camera
Printer
Projection TV
Card readerProjection TV
MAXIMUM RATINGS
Parameter
Input
Forward Current
Reverse Voltage
Power Dissipation
Collector-Emitter Breakdown Voltage
Output Emitter-Collector Breakdown Voltage
Collector Current
Storage Temperature
Operating Temperature *1
Lead Soldering Temperature *2
Symbol
IF
VR
PD
BVCEO
BVECO
IC
Tstg
Topr
Tsol
(Ta=25 )
Rating Unit
„ Block Diagram
50
mA
5
V
75
mW
10
V
0.3
V
0.5
mA
-30~+100
-25~+85
260
*1. No icebound or dew
*2. For 2 times at 260 reflow
ELECTRO-OPTICAL CHARACTERISTICS
Parameter
Forward Voltage
Reverse Current
Peak Wavelength
Operating Supply Voltage
Low Level Output Voltage
Output
High Level Output Voltage
Peak Wavelength
Threshold Input Current *3
Hysterisis*4
Transmission
L -> H Propagation Time
H -> L Propagation Time
Rise Time
Fall Time
Input
Symbol
VF
IR
P
VCC
VOL
VOH
Condition
IF=10mA
VR=5V
IF=20mA
VCC=5V, IF=0mA, RL=100k
VCC=5V, IF=20mA, RL=100k
IFLH
VCC=5V, RL=100k
IFHL/IFLH
tPLH
tPHL
VCC=5V, IF=0mA, RL=100k
tr
tf
P
*3. IFLH represents forward current when output changes from low to high.
*4. IFHL represents forward current when output changes from high to low.
1/2
(Ta=25 , unless otherwise noted)
Min.
Typ.
Max.
Unit.
2.0
4.5
2.0
-
940
5.0
0.5
4.7
880
0.85
15
40
4.5
25
1.30
10
7.0
0.7
7.2
0.4
-
V
mA
nm
V
V
V
nm
mA
ms
ms
ms
ms
Photointerrupter(Reflective)
KIR1004S
Power dissipation Vs.
Ambient temperature
10
8
LED IF[mA]
75
50
25
6
4
2
0
20
40
60
80
Ambient temperature Ta[
100
]
1
-20
40
60
80
100
0.0
]
0
20
40
60
80
0.5
0.3
0.1
20
40
60
80
2
3
4
5
6
100
Load resistance RL[K ]
10
40
60
80
10
100
]
Output voltage[V]
VCC
INPUT
2.5
2.0
Vout
Rf
RL
1.0
0.5
0.0
3.0
4.0
5.0
Distance[mm]
2/2
100
Load resistance RL[k ]
3.0
2.0
100
100
Measurement of propagation time
IF
1.0
80
Switching time Vs.
Load resistance
d=1mm
0.0
60
]
20
4.0
1.5
40
LED IF[mA]
4.5
3.5
20
1
0
Ambient temperature Ta[
Output voltage Vs. Distance
6
4
0
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-20
5.0
10
8
7
Switching time [
Hysteresis width
0.7
0
1
Hysteresis width Vs.
Ambient temperature
0.9
14
12
Supply voltage [Vcc]
Hysteresis width Vs.
Load resistance
1.1
18
16
]
0
1.3
2.0
2
0
]
1.5
1.5
LED Vs. Load resistance
7
6
5
4
3
100
1.0
20
10
9
8
2
1
0
Ambient temperature Ta[
0.5
Forward voltage VF[V]
Load Resistance RL[K
LED IF[mA]
Output voltage[V]
20
LED Vs. Supply voltage
20
18
16
14
12
10
8
6
4
2
0
-20
Hysteresis width
0
Ambient temperature Ta[
Output voltage Vs.
Ambient temperature
-0.1
10
0
0
Forward current Vs.
Forward voltage
100
Forward current IF[mA]
Power dissipation Po[mW]
100
Threshold input current Vs.
Ambient temperature
OUTPUT