GP1A58HR GP1A58HR OPIC Photointerrupter ■ Features ■ Outline Dimensions 1. High sensing accuracy ( Slit width: 0.5mm ) 2. PWB mounting type S ■ Applications ( Unit : mm ) Internal connection Voltage regulator diagram Amp. 1 5 15k Ω 4 A58 2 1 Anode 2 Cathode 1. OA equipment such as printers, facsimiles, etc. 2. VCRs 2- φ 0.7 + 0.4 - 0.3 0.1 (1.5) 1 4 2.5 (1.27 ) 2 *“OPIC” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Paramerter Forward currnt *1 Peak forward current Reverse voltage Power dissipation Supply voltage Output current Power dissipation Operating temperature Storage temperature *2 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC IO PO T opr T stg T sol Rating 50 1 6 75 - 0.5 to + 17 50 250 - 25 to + 85 - 40 to + 100 260 +0.3 - 0.1 * Unspecified tolerances shall be as follows ; Dimensions(d) Tolerance d<=6.0 ± 0.1 6.0< d<=18.0 ± 0.2 * ( ) : Reference dimensions 6.5 3 5 - 0.45 (1.27) (10.3) 5 C1.0 10.0 ( Both sides of 5.2 detector and emitter ) 0.5 Slit width 10.0MIN. 2 - 0.7 7.5 1A58HR 5- 3.5 (2.5) 13.7 ± 0.3 5.0 +- 0.2 0.1 3 3 V CC 4 VO 5 GND Unit mA A V mW mA mA mW ˚C ˚C ˚C *1 Pulse width<= 100µ s, Duty ratio= 0.01 *2 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GP1A58HR ■ Electro-optical Characteristics Input Output Transfer characterisitics Parameter Forward voltage Reverse current Operating supply voltage Low level output voltage High level output voltage Low level supply current High level supply current *1 "Low→High" threshold input current *2 Hysteresis "Low→High"propagation delay time Response "High→Low"propagation delay time time Rise time Fall time ( Ta = 25˚C ) Symbol VF IR VCC VOL VOH I CCL I CCH I FLH I FHL /I FLH t PLH t PHL tr tf Conditions I F = 8mA V R = 3V V CC = 5V, I F = 0mA, I OL = 16mA V CC = 5V, I F = 8mA V CC = 5V, I F = 0mA V CC = 5V, I F = 8mA V CC = 5V V CC = 5V V CE = 5V, I F = 8mA R L = 280Ω MIN. 4.5 4.9 0.55 - TYP. 1.14 0.15 1.7 0.7 1.5 0.75 3.0 5.0 0.1 0.05 MAX. 1.4 10.0 17.0 0.4 3.8 2.2 8.0 0.95 9.0 15.0 0.5 0.5 *1 I FLH represents forward current when output changes from low to high. *2 I FHL represents forward current when output changes from high to low. ■ Recommended Operating Conditions Parameter Output current Forward current Symbol IO IF Operating temperature range MIN. 10.0 Ta = 0 to + 70˚C Fig. 1 Forward Current vs. Ambient Temperature Output power dissipation P O ( mW ) 300 50 Forward current I F ( mA ) Unit mA mA Fig. 2 Output Power Dissipation vs. Ambient Temperature 60 40 30 20 10 0 - 25 MAX. 16.0 20.0 0 25 50 75 85 Ambient temperature Ta ( ˚C ) 100 250 200 150 100 50 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C ) 100 Unit V µA V V V mA mA mA µs µs µs µs GP1A58HR Fig. 4 Forward Current vs. Forward Voltage 50 200 40 ( mA ) 500 100 F 60 50 Forward current I Low level output current I OL ( mA ) Fig. 3 Low Level Output Current vs. Ambient Temperature 30 20 T a = 75˚C 50˚C 25˚C 0˚C - 25˚C 20 10 5 10 2 0 - 25 1 0 25 50 75 85 Ambient temperature T a ( ˚C ) 100 Fig. 5 Relative Threshold Input Current vs. Supply Voltage 0 0.5 1 Relative threshold input current I FHL , I FLH Relative threshold input current T a = 25˚C 1.0 0.9 0.8 I FHL 0.7 0.6 I FLH = 1 at V CC = 5V 5 10 15 Supply voltage VCC ( V ) 20 25 Fig. 7 Low Level Output Voltage vs. Low Level Output Current I FLH 1.2 1.0 I FHL 0.8 0.6 I FLH = 1 at T a= 25˚C 0 25 50 75 Ambient temperature Ta ( ˚C ) 100 0.6 VCC = 5V T a = 25˚C 0.5 1.4 Fig. 8 Low Level Output Voltage vs. Ambient Temperature V CC = 5V Low levle output voltage V OL ( V ) Low levle output voltage VOL ( V ) 1.0 3.5 V CC = 5V 1.6 0.4 - 25 0.5 0 3 Fig. 6 Relative Threshold Input Current vs. Ambient Temperature 1.1 I FLH 1.5 2 2.5 Forward voltage V F ( V ) 0.2 0.1 0.05 0.02 0.5 0.4 0.3 I OL = 30mA 0.2 16mA 0.1 5mA 0.01 1 2 5 10 20 50 Low level output current I OL ( mA ) 100 0 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) 100 GP1A58HR Fig. 9 Supply Current vs. Ambient Temperature Fig.10 Propagation Delay Time vs. Forward Current 3.0 Supply current I CC ( mA ) 2.5 V CC = 17V 2.0 10V } 1.5 5V I CCL 1.0 V CC = 17V } I CCH 5V 0.5 10V Propagation delay time t PLH ,t PHL ( µ s ) 12 VCC = 5V RL= 280Ω T a = 25˚C 10 8 6 4 t PLH 2 0 0 - 25 0 25 50 75 0 100 20 10 30 40 50 60 Forward current I F ( mA ) Ambient temperature Ta ( ˚C ) Fig.11 Rise Time, Fall Time vs. Load Resistance Test Circuit for Response Time 0.8 IF = 5mA T a = 25˚C VCC = 5V 0.7 Rise time, fall time t r ,t f ( µ s ) t PHL Voltage regulator I F = 5mA 0.6 + 5V Input 280Ω 15kΩ Output t r=tf=0.01µ s ZO=50 Ω 0.5 0.01 µ F 47Ω 0.4 Amp. tr GND 0.3 Input 0.2 0.1 0 0.1 t PLH tf 0.2 0.5 1 2 5 10 Load resistance R L ( k Ω ) 50% 20 50 Output t PHL V 90% OH 1.5V 10% tr ■ Precautions for Use ( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more th an 0.01µ F between Vcc and GND near the device. ( 2 ) In case of cleaning, use only the following type of cleaning solvent. Ethyl alcohol, Methyl alcohol, Isopropyl alcohol ( 3 ) As for other general cautions, refer to the chapter “Precautions for Use ”. tf VOL