GP1A52LR GP1A52LR OPIC Photointerrupter ■ Features ■ Outline Dimensions 1. Output inverting type of GPIA52HR 2. High sensing accuracy ( Slit width: 0.5mm ) 3. TTL and CMOS compatible output 4. PWB mounting type ( Unit : mm ) Internal connection diagram 3 4 (15kΩ ) Voltage regulator Amp 2 1 5 ■ Applications S A52 1. OA equipment, such as printers, floppy disk drives, etc. 2. VCRs 1 Anode 2 Cathode 12.2 ± 0.3 5.0 + 0.5 3.5 1.5 3.0 - 0.2 0.1 10.0 C1.0 Slit width ( Both sides of detector and emitter ) 9.0MIN. 2.5 7.5 1A52LR + 5 - 0.4 - 0.3 0.1 3 V CC 4 VO 5 GND (1.5) 5 - 0.45+(1.27) 0.3 0.1 (1.27) (9.2) 5 1 3 2 4 *Unspecified tolerances shall be as follows ; Dimensions(d) Tolerance d<= 6.0 ± 0.1 6.0< d<=18.0 ± 0.2 *( ) : Reference dimensions *“ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter Forward current *1 Peak forward current Input Reverse voltage Power dissipation Supply voltage Output Low level output current Power dissipation Operating temperature Storage temperature *2 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC I OL PO T opr T stg Tsol Rating 50 1 6 75 - 0.5 to + 17 50 250 - 25 to + 85 - 40 to + 100 260 Unit mA A V mW V mA W ˚C ˚C ˚C *1 Pulse width<=100µ s, Duty ratio= 0.01 *2 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GP1A52LR ■ Electro-optical Characteristics Output Transfer characteristics Response time Input Parameter Forward voltage Reverse current Operating supply voltage Low level output voltage High level output voltage Low level supply current High level supply current *3 “High→Low” threshold input current *4 Hysteresis “ High→Low” propagation delay time ( Ta = 25˚C ) Symbol VF IR VCC VOL VOH I CCL I CCH I FHL Conditions I F = 5mA V R = 3V VCC = 5V, I F = 5mA, I OL = 16mA V CC = 5V, I F = 0mA V CC = 5V, I F = 5mA V CC = 5V, I F = 0mA MIN. 4.5 4.9 - V CC = 5V I FLH /I FHL V CC = 5V TYP. 1.1 0.15 1.7 0.7 MAX. 1.4 10.0 17.0 0.4 3.8 2.2 Unit V µA V V V mA mA mA - 1.0 5.0 0.55 0.75 0.95 − 3.0 9.0 - 5.0 15.0 - 0.1 0.05 0.5 0.5 t PHL V CC = 5V, I F = 5mA “ Low→High” propagation dealy time t PLH tr tf Rise time Fall time R L = 280Ω µs *3 I FHL represents forward current when output changes from high to low. *4 I FLH represents forward current when output changes from low to high. Hysteresis stands for IFLH /I FHL . ■ Recommended Operating Conditions Parameter Low level output current Forward current Symbol I OL IF Operating temp. Ta = 0 to + 70˚C MAX. 16.0 20.0 60 300 50 250 40 30 20 10 0 - 25 0 25 50 75 85 Ambient temperature T a ( ˚C) Unit mA mA Fig. 2 Output Power Dissipation vs. Ambient Temperature Output power dissipation P O ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature MIN. 10.0 100 200 150 100 50 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C) 100 GP1A52LR Fig. 4 Forward Current vs. Forward Voltage 60 500 50 200 Forward current I F ( mA ) Low level output current I OL ( mA ) Fig. 3 Low Level Output Current vs. Ambient Temperature 40 30 20 25˚C 0˚C - 25˚C T a = 75˚C 50˚C 100 50 20 10 5 10 2 0 - 25 1 0 25 50 75 85 100 0 0.5 1 Ambient temperature Ta ( ˚C) 1.5 2 2.5 Fig. 5 Relative Threshold Input Current vs. Supply Voltage Relative threshold input current I FHL , I FLH Relative threshold input current I FHL , I FLH T a = 25˚C I FHL 0.9 0.8 I FLH 0.7 0.6 I FHL = 1 at V CC = 5V 10 5 15 20 25 V CC = 5V 1.6 1.4 I FHL 1.2 1.0 I FLH 0.8 0.6 0.4 - 25 0.5 0 I FHL = 1 at T a = 25˚C 0 Supply voltage VCC ( V) 50 75 100 Fig. 8 Low Level Output Voltage vs. Ambient Temperature 0.6 V CC = 5V T a = 25˚C V CC = 5V Low level output voltage V OL ( V) Low level output voltage VOL ( V) 0.5 25 Ambient temperature Ta ( ˚C ) Fig. 7 Low Level Output Voltage vs. Low Level Output Current 1.0 3.5 Fig. 6 Relative Threshold Input Current vs. Ambient Temperature 1.1 1.0 3 Forward voltage VF ( V) 0.2 0.1 0.05 0.02 0.5 0.4 0.3 I OL = 30mA 0.2 16mA 0.1 5mA 0.01 1 2 5 10 20 50 Low level output current I OL ( mA ) 100 0 - 25 0 25 50 75 Ambient temperature T a ( ˚C) 100 GP1A52LR Fig. 9 Supply Current vs. Ambient Temperature Fig.10 Propagation Delay Time vs. Forward Current 3.0 Supply current I CC ( mA ) 2.5 V CC= 17V 2.0 10V 1.5 5V I CCL 1.0 V CC = 17V I CCH 0.5 5V 10V 0 - 25 Propagation delay time t PLH ,t PHL ( µ s ) 12 V CC = 5V R L = 280Ω T a = 25˚C 10 t PLH 8 6 4 t PHL 2 0 0 25 50 75 100 0 20 10 40 50 0.8 T a = 25˚C Input V CC = 5V 0.7 Voltage regulator IF = 5mA + 5V (15kΩ ) I F = 5mA 0.6 0.5 0.01 µ F 47 Ω 0.4 Amp. tr GND 0.3 0.2 50% Input tPHL 0.1 tf Output 0 0.5 1 2 5 10 Load resistance R L ( k Ω ) 20 50 280 Ω Output t r=tf=0.01 µ s Zo=50Ω 0.1 0.2 60 Test Circuit for Response Time Fig.11 Rise Time, Fall Time vs. Load Resistance Rise time, fall time t r ,t f ( µ s ) 30 Forward current I F ( mA ) Ambient temperature T a ( ˚C ) tPLH VOH 90% 10% tr ■ Precautions for Use ( 1 ) In case of cleaning, use only the following type of cleaning solvent. Ethyl alcohol, Methyl alcohol, Isopropyl alcohol ( 2 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µ F between Vcc and GND near the device. ( 3 ) As for other general cautions refer to the chapter “Precautions for Use ” . tf 1.5V VOL