SHARP GP1A52LR

GP1A52LR
GP1A52LR
OPIC Photointerrupter
■ Features
■ Outline Dimensions
1. Output inverting type of GPIA52HR
2. High sensing accuracy ( Slit width: 0.5mm )
3. TTL and CMOS compatible output
4. PWB mounting type
( Unit : mm )
Internal connection diagram
3
4
(15kΩ )
Voltage regulator
Amp
2
1
5
■ Applications
S
A52
1. OA equipment, such as printers, floppy
disk drives, etc.
2. VCRs
1 Anode
2 Cathode
12.2 ± 0.3
5.0
+
0.5
3.5
1.5
3.0 - 0.2
0.1
10.0
C1.0
Slit width
( Both sides of
detector and
emitter )
9.0MIN.
2.5
7.5
1A52LR
+
5 - 0.4 - 0.3
0.1
3 V CC
4 VO
5 GND
(1.5)
5 - 0.45+(1.27)
0.3
0.1
(1.27)
(9.2)
5
1
3
2
4
*Unspecified tolerances shall be as follows ;
Dimensions(d) Tolerance
d<= 6.0
± 0.1
6.0< d<=18.0 ± 0.2
*( ) : Reference dimensions
*“ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Input
Reverse voltage
Power dissipation
Supply voltage
Output
Low level output current
Power dissipation
Operating temperature
Storage temperature
*2
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
I OL
PO
T opr
T stg
Tsol
Rating
50
1
6
75
- 0.5 to + 17
50
250
- 25 to + 85
- 40 to + 100
260
Unit
mA
A
V
mW
V
mA
W
˚C
˚C
˚C
*1 Pulse width<=100µ s, Duty ratio= 0.01
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP1A52LR
■ Electro-optical Characteristics
Output
Transfer
characteristics
Response
time
Input
Parameter
Forward voltage
Reverse current
Operating supply voltage
Low level output voltage
High level output voltage
Low level supply current
High level supply current
*3
“High→Low”
threshold input current
*4
Hysteresis
“ High→Low”
propagation delay time
( Ta = 25˚C )
Symbol
VF
IR
VCC
VOL
VOH
I CCL
I CCH
I FHL
Conditions
I F = 5mA
V R = 3V
VCC = 5V, I F = 5mA, I OL = 16mA
V CC = 5V, I F = 0mA
V CC = 5V, I F = 5mA
V CC = 5V, I F = 0mA
MIN.
4.5
4.9
-
V CC = 5V
I FLH /I FHL V CC = 5V
TYP.
1.1
0.15
1.7
0.7
MAX.
1.4
10.0
17.0
0.4
3.8
2.2
Unit
V
µA
V
V
V
mA
mA
mA
-
1.0
5.0
0.55
0.75
0.95
−
3.0
9.0
-
5.0
15.0
-
0.1
0.05
0.5
0.5
t PHL
V CC = 5V, I F = 5mA
“ Low→High”
propagation dealy time
t PLH
tr
tf
Rise time
Fall time
R L = 280Ω
µs
*3 I FHL represents forward current when output changes from high to low.
*4 I FLH represents forward current when output changes from low to high.
Hysteresis stands for IFLH /I FHL .
■ Recommended Operating Conditions
Parameter
Low level output current
Forward current
Symbol
I OL
IF
Operating temp.
Ta = 0 to + 70˚C
MAX.
16.0
20.0
60
300
50
250
40
30
20
10
0
- 25
0
25
50
75 85
Ambient temperature T a ( ˚C)
Unit
mA
mA
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
Output power dissipation P O ( mW )
Forward current I F ( mA )
Fig. 1 Forward Current vs. Ambient
Temperature
MIN.
10.0
100
200
150
100
50
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C)
100
GP1A52LR
Fig. 4 Forward Current vs. Forward Voltage
60
500
50
200
Forward current I F ( mA )
Low level output current I OL ( mA )
Fig. 3 Low Level Output Current vs.
Ambient Temperature
40
30
20
25˚C
0˚C
- 25˚C
T a = 75˚C
50˚C
100
50
20
10
5
10
2
0
- 25
1
0
25
50
75 85
100
0
0.5
1
Ambient temperature Ta ( ˚C)
1.5
2
2.5
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
Relative threshold input current I FHL , I FLH
Relative threshold input current I FHL , I FLH
T a = 25˚C
I FHL
0.9
0.8
I FLH
0.7
0.6
I FHL = 1 at V CC = 5V
10
5
15
20
25
V CC = 5V
1.6
1.4
I FHL
1.2
1.0
I FLH
0.8
0.6
0.4
- 25
0.5
0
I FHL = 1 at T a = 25˚C
0
Supply voltage VCC ( V)
50
75
100
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
0.6
V CC = 5V
T a = 25˚C
V CC
= 5V
Low level output voltage V OL ( V)
Low level output voltage VOL ( V)
0.5
25
Ambient temperature Ta ( ˚C )
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
1.0
3.5
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
1.1
1.0
3
Forward voltage VF ( V)
0.2
0.1
0.05
0.02
0.5
0.4
0.3
I OL = 30mA
0.2
16mA
0.1
5mA
0.01
1
2
5
10
20
50
Low level output current I OL ( mA )
100
0
- 25
0
25
50
75
Ambient temperature T a ( ˚C)
100
GP1A52LR
Fig. 9 Supply Current vs.
Ambient Temperature
Fig.10 Propagation Delay Time vs.
Forward Current
3.0
Supply current I CC ( mA )
2.5
V CC= 17V
2.0
10V
1.5
5V
I CCL
1.0
V CC = 17V
I CCH
0.5
5V
10V
0
- 25
Propagation delay time t PLH ,t PHL ( µ s )
12
V CC = 5V
R L = 280Ω
T a = 25˚C
10
t PLH
8
6
4
t PHL
2
0
0
25
50
75
100
0
20
10
40
50
0.8
T a = 25˚C
Input
V CC = 5V
0.7
Voltage regulator
IF = 5mA
+ 5V
(15kΩ )
I F = 5mA
0.6
0.5
0.01 µ F
47 Ω
0.4
Amp.
tr
GND
0.3
0.2
50%
Input
tPHL
0.1
tf
Output
0
0.5
1
2
5
10
Load resistance R L ( k Ω )
20
50
280 Ω
Output
t r=tf=0.01 µ s
Zo=50Ω
0.1 0.2
60
Test Circuit for Response Time
Fig.11 Rise Time, Fall Time vs.
Load Resistance
Rise time, fall time t r ,t f ( µ s )
30
Forward current I F ( mA )
Ambient temperature T a ( ˚C )
tPLH
VOH
90%
10%
tr
■ Precautions for Use
( 1 ) In case of cleaning, use only the following type of cleaning solvent.
Ethyl alcohol, Methyl alcohol, Isopropyl alcohol
( 2 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µ F
between Vcc and GND near the device.
( 3 ) As for other general cautions refer to the chapter “Precautions for Use ” .
tf
1.5V
VOL