SHARP GP1A15

GP1A15
GP1A15
High Sensing Accuracy Type OPIC
Photointerrupter
■ Features
■ Outline Dimensions
1. High sensing accuracy
( slit width : 0.25mm )
2. Built-in schmidt trigger circuit
3. Low threshold input current
( IFLH : MAX. 10mA )
4. Low level supply current
( ICCL : MAX. 5mA )
5. Operating supply voltage V CC : 4.5 to 17V
6. TTL and CMOS compatible output
( Unit : mm )
Internal connection
diagram
Voltage regulator
1
0.25
2
1 Anode
2 Cathode
+
(1.5)
(1.27)
2 - (2.54)
(8.8)
5.26 ± 0.2
5.5 ± 0.1
4
3
5
10.5MIN.
2.0 - 00.15
2.3
0.45 +- 0.3
0.1
11.0MIN.
5-
6.0
0.25 ± 0.05
Slit width
( Both sides of
emitter and
detector )
C0.5
3 - 12.0 MIN. 8.0
3.7 +- 0.1
0
2 - 0.7 2.5
1. Floppy disk drives
2. Copiers, printers, facsimiles
3. Opetoelectronic switches, optoelectronic
counters
3
3 V CC
4 VO
5 GND
12.0
3.0 +- 0.2
0.1
1A15
■ Applications
Amp.
5 (
10kΩ )
4
*Unspecified tolerances shall be as follows;
Dimensions(d) Tolerance
d<=6.0
± 0.15
6.0< d<=12.0 ± 0.25
*( ) : Reference dimensions
2 - φ 0.7 ± 0.1
2
1
3.5 ± 0.1
*“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Input
Reverse voltage
Power dissipation
Supply voltage
Output
Output current
Power dissipation
Operating tamperature
Storage temperture
*2
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
IO
PO
T opr
T stg
T sol
Rating
50
1
6
75
- 0.5 to + 17
50
250
- 25 to + 85
- 40 to + 100
260
Unit
mA
A
V
mW
V
mA
mW
˚C
˚C
˚C
*1 Pules width <=100 µ s, Duty ratio = 0.01
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP1A15
■ Electro-optical Charcateristics
Input
Transfer
characteristics
Response time
Output
( Ta = 25˚C )
Parameter
Forward voltage
Reverse current
Operating supply voltage
Low level output voltage
High level output voltage
Low level supply current
High level supply current
*3
“ Low→High” threshold input current
*4
Hysteresis
“ Low→High” propagation delay time
“ High→Low” propagation delay time
Rise time
Fall time
Symbol
VF
IR
V CC
V OL
V OH
I CCL
I CCH
I FLH
I FHL /I FLH
t PLH
t PHL
tr
tf
Conditions
I F = 10mA
V R = 3V
I OL = 16mA, V CC = 5V, I F = 0
V CC = 5V, I F = 10mA
V CC = 5V, I F = 0
V CC = 5V, I F = 10mA
V CC = 5V
MIN.
4.5
4.9
0.2
0.55
-
V CC= 5V
I F = 10mA
R L = 280Ω
-
TYP.
1.15
0.15
2.5
1.0
2.5
0.75
3
5
0.1
0.05
MAX.
1.4
10
17
0.4
5.0
3.0
10
0.95
9
15
0.5
0.5
*3 I FLH represents forward current when output goes from low to high.
*4 I FHL represents forward current when output goes from high to low.
Hysteresis stands for I FHL /I FLH .
■ Recommended Operating Conditions
Parameter
Low level output current
Forward current
Symbol
I OL
IF
Operating temperature
Ta= 0 to + 70˚C
Fig. 1 Forward Current vs. Ambient
Temperature
MIN.
12.5
MAX.
16.0
20.0
Unit
mA
mA
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
300
Output power dissipation P O ( mW )
Forward current I F ( mA )
50
40
30
20
10
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C )
100
250
200
150
100
50
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C )
100
Unit
V
µA
V
V
V
mA
mA
mA
µs
GP1A15
Fig.4 Forward Current vs. Forward Voltage
60
500
50
200
Forward current I F ( mA )
Low level output current I OL ( mA )
Fig. 3 Low Level Output Current vs.
Ambient Temperature
40
30
20
T a = 75˚C
50˚C
25˚C
0˚C
- 25˚C
100
50
20
10
5
10
2
0
- 25
1
0
25
50
75
85 100
0
0.5
1.0
Ambient temperature Ta ( ˚C)
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
2.5
3.0
1.4
Relative threshold input current I FHL /I
1.0
I FLH
0.8
I FHL
0.6
0.4
IFLH = 1 at VCC = 5V
0.2
10
5
15
1.2
I FLH
1.0
I FHL
0.8
0.6
I FLH = 1 at T a = 25˚C
0.4
- 25
0
0
V CC = 5V
FLH
T a = 25˚C
FLH
Relative threshold input current I FHL /I
2.0
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
1.2
20
0
Supply voltage VCC ( V)
1.0
0.4
Low level output voltage VOL ( V)
0.2
0.1
0.05
0.02
0.01
1
2
5
10
20
Low level output current I
OL
50
75
100
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
V CE = 5V
T a = 25˚C
0.5
25
Ambient temperature Ta ( ˚C)
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
Low level output voltage V OL ( V)
1.5
Forward voltage VF ( V)
50
( mA )
100
V CC = 5V
0.3
I OL = 30mA
0.2
16mA
0.1
5mA
0
- 25
0
25
50
Ambient temperature T a ( ˚C )
75
100
GP1A15
Fig. 9 Supply Current vs. Supply Voltage
Fig.10 Propagation Delay Time vs.
Forward Current
6
7
Propagation delay time t PLH ,t PHL ( µ s )
Supply current I CCL /ICCH ( mA)
t PHL
5
T a =- 25˚C
4
25˚C
3
85˚C
I CCL
2
T a =- 25˚C
25˚C
1
I CCH
6
5
4
3
t PLH
2
V CC = 5V
R L = 280Ω
T a = 25˚C
1
85˚C
0
0
2
6
4
8
10
12
14
16
0
20
10
30
40
Forward current I F ( mA )
Supply voltage VCC ( V)
Fig.11 Rise Time, Fall Time vs.
Load Resistance
Rise time, fall time t r ,t f ( µ s )
0.5
I F = 10mA
V CC = 5V
T a = 25˚C
0.4
0.3
0.2
tr
0.1
tf
0
0.2
0.5
2
1
5
10
Load resistanc R L ( k Ω )
Test Circuit for Response Time
IF = 10mA
Voltage regulator
+ 5V
Input
10kΩ
Input
50%
280Ω
t PLH
Output
t PHL
90%
t r= tf= 0.01m s
ZO= 50Ω
47Ω
0.01m F
Output
10%
Amp.
tr
tf
■ Precautions for Use
( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01µ F
between Vcc and GND near the device.
( 2 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .
VOH
1.5V
VOL
50