GP1A15 GP1A15 High Sensing Accuracy Type OPIC Photointerrupter ■ Features ■ Outline Dimensions 1. High sensing accuracy ( slit width : 0.25mm ) 2. Built-in schmidt trigger circuit 3. Low threshold input current ( IFLH : MAX. 10mA ) 4. Low level supply current ( ICCL : MAX. 5mA ) 5. Operating supply voltage V CC : 4.5 to 17V 6. TTL and CMOS compatible output ( Unit : mm ) Internal connection diagram Voltage regulator 1 0.25 2 1 Anode 2 Cathode + (1.5) (1.27) 2 - (2.54) (8.8) 5.26 ± 0.2 5.5 ± 0.1 4 3 5 10.5MIN. 2.0 - 00.15 2.3 0.45 +- 0.3 0.1 11.0MIN. 5- 6.0 0.25 ± 0.05 Slit width ( Both sides of emitter and detector ) C0.5 3 - 12.0 MIN. 8.0 3.7 +- 0.1 0 2 - 0.7 2.5 1. Floppy disk drives 2. Copiers, printers, facsimiles 3. Opetoelectronic switches, optoelectronic counters 3 3 V CC 4 VO 5 GND 12.0 3.0 +- 0.2 0.1 1A15 ■ Applications Amp. 5 ( 10kΩ ) 4 *Unspecified tolerances shall be as follows; Dimensions(d) Tolerance d<=6.0 ± 0.15 6.0< d<=12.0 ± 0.25 *( ) : Reference dimensions 2 - φ 0.7 ± 0.1 2 1 3.5 ± 0.1 *“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter Forward current *1 Peak forward current Input Reverse voltage Power dissipation Supply voltage Output Output current Power dissipation Operating tamperature Storage temperture *2 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC IO PO T opr T stg T sol Rating 50 1 6 75 - 0.5 to + 17 50 250 - 25 to + 85 - 40 to + 100 260 Unit mA A V mW V mA mW ˚C ˚C ˚C *1 Pules width <=100 µ s, Duty ratio = 0.01 *2 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GP1A15 ■ Electro-optical Charcateristics Input Transfer characteristics Response time Output ( Ta = 25˚C ) Parameter Forward voltage Reverse current Operating supply voltage Low level output voltage High level output voltage Low level supply current High level supply current *3 “ Low→High” threshold input current *4 Hysteresis “ Low→High” propagation delay time “ High→Low” propagation delay time Rise time Fall time Symbol VF IR V CC V OL V OH I CCL I CCH I FLH I FHL /I FLH t PLH t PHL tr tf Conditions I F = 10mA V R = 3V I OL = 16mA, V CC = 5V, I F = 0 V CC = 5V, I F = 10mA V CC = 5V, I F = 0 V CC = 5V, I F = 10mA V CC = 5V MIN. 4.5 4.9 0.2 0.55 - V CC= 5V I F = 10mA R L = 280Ω - TYP. 1.15 0.15 2.5 1.0 2.5 0.75 3 5 0.1 0.05 MAX. 1.4 10 17 0.4 5.0 3.0 10 0.95 9 15 0.5 0.5 *3 I FLH represents forward current when output goes from low to high. *4 I FHL represents forward current when output goes from high to low. Hysteresis stands for I FHL /I FLH . ■ Recommended Operating Conditions Parameter Low level output current Forward current Symbol I OL IF Operating temperature Ta= 0 to + 70˚C Fig. 1 Forward Current vs. Ambient Temperature MIN. 12.5 MAX. 16.0 20.0 Unit mA mA Fig. 2 Output Power Dissipation vs. Ambient Temperature 300 Output power dissipation P O ( mW ) Forward current I F ( mA ) 50 40 30 20 10 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C ) 100 250 200 150 100 50 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C ) 100 Unit V µA V V V mA mA mA µs GP1A15 Fig.4 Forward Current vs. Forward Voltage 60 500 50 200 Forward current I F ( mA ) Low level output current I OL ( mA ) Fig. 3 Low Level Output Current vs. Ambient Temperature 40 30 20 T a = 75˚C 50˚C 25˚C 0˚C - 25˚C 100 50 20 10 5 10 2 0 - 25 1 0 25 50 75 85 100 0 0.5 1.0 Ambient temperature Ta ( ˚C) Fig. 5 Relative Threshold Input Current vs. Supply Voltage 2.5 3.0 1.4 Relative threshold input current I FHL /I 1.0 I FLH 0.8 I FHL 0.6 0.4 IFLH = 1 at VCC = 5V 0.2 10 5 15 1.2 I FLH 1.0 I FHL 0.8 0.6 I FLH = 1 at T a = 25˚C 0.4 - 25 0 0 V CC = 5V FLH T a = 25˚C FLH Relative threshold input current I FHL /I 2.0 Fig. 6 Relative Threshold Input Current vs. Ambient Temperature 1.2 20 0 Supply voltage VCC ( V) 1.0 0.4 Low level output voltage VOL ( V) 0.2 0.1 0.05 0.02 0.01 1 2 5 10 20 Low level output current I OL 50 75 100 Fig. 8 Low Level Output Voltage vs. Ambient Temperature V CE = 5V T a = 25˚C 0.5 25 Ambient temperature Ta ( ˚C) Fig. 7 Low Level Output Voltage vs. Low Level Output Current Low level output voltage V OL ( V) 1.5 Forward voltage VF ( V) 50 ( mA ) 100 V CC = 5V 0.3 I OL = 30mA 0.2 16mA 0.1 5mA 0 - 25 0 25 50 Ambient temperature T a ( ˚C ) 75 100 GP1A15 Fig. 9 Supply Current vs. Supply Voltage Fig.10 Propagation Delay Time vs. Forward Current 6 7 Propagation delay time t PLH ,t PHL ( µ s ) Supply current I CCL /ICCH ( mA) t PHL 5 T a =- 25˚C 4 25˚C 3 85˚C I CCL 2 T a =- 25˚C 25˚C 1 I CCH 6 5 4 3 t PLH 2 V CC = 5V R L = 280Ω T a = 25˚C 1 85˚C 0 0 2 6 4 8 10 12 14 16 0 20 10 30 40 Forward current I F ( mA ) Supply voltage VCC ( V) Fig.11 Rise Time, Fall Time vs. Load Resistance Rise time, fall time t r ,t f ( µ s ) 0.5 I F = 10mA V CC = 5V T a = 25˚C 0.4 0.3 0.2 tr 0.1 tf 0 0.2 0.5 2 1 5 10 Load resistanc R L ( k Ω ) Test Circuit for Response Time IF = 10mA Voltage regulator + 5V Input 10kΩ Input 50% 280Ω t PLH Output t PHL 90% t r= tf= 0.01m s ZO= 50Ω 47Ω 0.01m F Output 10% Amp. tr tf ■ Precautions for Use ( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01µ F between Vcc and GND near the device. ( 2 ) As for other general cautions, refer to the chapter “ Precautions for Use ” . VOH 1.5V VOL 50