PD- 95967 IRGPS40B120UDP INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE UltraFast Co-Pack IGBT C Features • Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Super-247 Package. • Lead-Free VCES = 1200V VCE(on) typ. = 3.12V G @ VGE = 15V, E ICE = 40A, Tj=25°C N-channel Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Significantly Less Snubber Required • Excellent Current Sharing in Parallel Operation. Super-247™ Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Max. Units 1200 80 40 160 160 80 40 160 ± 20 595 238 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt Le www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight Internal Emitter Inductance (5mm from package) Min. Typ. Max. ––– ––– ––– ––– 20 (2) ––– ––– ––– ––– 0.24 ––– ––– 6.0 (0.21) 13 0.20 0.83 ––– 40 ––– ––– ––– Units °C/W N(kgf) g (oz) nH 1 11/19/04 IRGPS40B120UDP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 ––– Temperature Coeff. of Breakdown Voltage ––– 0.40 Collector-to-Emitter Saturation Voltage ––– 3.12 ––– 3.39 ––– 3.88 ––– 4.24 Gate Threshold Voltage 4.0 5.0 Temperature Coeff. of Threshold Voltage ––– -12 Forward Transconductance ––– 30.5 Zero Gate Voltage Collector Current ––– ––– ––– 420 Diode Forward Voltage Drop ––– 2.03 ––– 2.17 ––– 2.26 ––– 2.46 Gate-to-Emitter Leakage Current ––– ––– Ref.Fig. Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-125°C) 5, 6 3.40 IC = 40A VGE = 15V 7, 9 3.70 V IC = 50A 10 4.30 IC = 40A, TJ = 125°C 4.70 IC = 50A, TJ = 125°C 11 9,10 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-125°C) 11 ,12 ––– S VCE = 50V, IC = 40A, PW=80µs 500 µA VGE = 0V, VCE = 1200V 1200 VGE = 0V, VCE = 1200V, TJ = 125°C 2.40 IC = 40A 8 2.60 V IC = 50A 2.68 IC = 40A, TJ = 125°C 2.95 IC = 50A, TJ = 125°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operting Area SCSOA Short Circuit Safe Operting Area Erec trr Irr Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current 2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 340 40 165 1400 1650 3050 1950 2200 4150 76 39 332 25 4300 330 160 Max. Units Conditions 510 IC = 40A 60 nC VCC = 600V 248 VGE = 15V 1750 µJ IC = 40A, VCC = 600V 2050 VGE = 15V,RG = 4.7Ω, L =200µH 3800 Ls = 150nH TJ = 25°C 2300 TJ = 125°C 2950 µJ Energy losses include "tail" and 5250 diode reverse recovery. 99 IC = 40A, VCC = 600V 55 VGE = 15V, RG = 4.7Ω L =200µH 365 ns Ls = 150nH, T J = 125°C 33 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz TJ = 150°C, IC = 160A, Vp =1200V FULL SQUARE VCC = 1000V, VGE = +15V to 0V RG = 4.7Ω TJ = 150°C, Vp =1200V 10 ––– ––– µs VCC = 900V, VGE = +15V to 0V, RG = 4.7Ω ––– 3346 ––– µJ TJ = 125°C ––– 180 ––– ns VCC = 600V, IF = 60A, L =200µH ––– 50 ––– A VGE = 15V,RG = 4.7Ω, Ls = 150nH Ref.Fig. 23 CT1 CT4 WF1 WF2 13,15 14, 16 CT4 WF1 WF2 22 4 CT2 CT3 WF4 17,18,19 20, 21 CT4,WF3 www.irf.com IRGPS40B120UDP 700 100 600 80 500 IC (A) Ptot (W) 60 40 400 300 200 20 100 0 0 0 20 40 60 80 0 100 120 140 160 50 Fig. 1 - Maximum DC Collector Current vs. Case Temperature 150 200 Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 2 µs 100 10 µs 10 100 µs DC 100 IC A) IC (A) 100 T C (°C) T C (°C) 1ms 10 1 10ms 0.1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJS ≤ 150°C www.irf.com 10000 1 10 100 1000 10000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGPS40B120UDP 80 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 60 50 ICE (A) ICE (A) 60 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 70 40 40 30 20 20 10 0 0 0 1 2 3 4 5 6 0 1 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 5 6 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 70 60 -40°C 25°C 125°C 70 60 50 IF (A) 50 ICE (A) 4 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 80 40 40 30 30 20 20 10 10 0 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 4 3 VCE (V) 0 1 2 3 4 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com IRGPS40B120UDP 20 20 18 18 16 16 14 12 10 ICE = 20A ICE = 40A 8 ICE = 80A VCE (V) VCE (V) 14 ICE = 20A ICE = 40A 12 10 ICE = 80A 8 6 4 6 2 4 2 0 5 10 15 5 20 10 500 18 450 T J = 25°C 16 400 T J = 125°C 14 350 10 ICE = 20A ICE = 40A 8 ICE = 80A ICE (A) 20 12 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C VCE (V) 15 VGE (V) VGE (V) 300 250 200 6 150 4 100 2 50 0 T J = 125°C T J = 25°C 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 125°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRGPS40B120UDP 4500 1000 4000 tdOFF Swiching Time (ns) 3500 Energy (µJ) 3000 EOFF 2500 2000 EON 1500 td ON 100 tF 1000 tR 500 0 0 20 40 60 10 80 20 IC (A) 60 80 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=200µH; VCE= 600V RG= 4.7Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=200µH; VCE= 600V RG= 4.7Ω; VGE= 15V 5000 1000 4500 tdOFF EOFF 4000 3000 Swiching Time (ns) 3500 Energy (µJ) 40 EON 2500 2000 1500 tdON 100 tR tF 1000 500 0 10 0 5 10 15 20 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 125°C; L=200µH; VCE= 600V ICE= 40A; VGE= 15V 6 25 0 5 10 15 20 25 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 125°C; L=200µH; VCE= 600V ICE= 40A; VGE= 15V www.irf.com IRGPS40B120UDP 60 60 50 50 RG = 4.7Ω 40 IRR (A) IRR (A) 40 30 RG = 22 Ω 20 20 RG = 47 Ω RG = 100 Ω 10 30 10 0 0 0 20 40 60 80 100 0 50 100 IF (A) RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 40A Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C 60 9 4.7Ω 8 50 80A 22Ω 7 47 Ω 6 Q RR (µC) 40 IRR (A) 150 30 40A 5 4 20A 3 20 100Ω 2 10 1 0 0 0 500 1000 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 40A; TJ = 125°C www.irf.com 1500 0 500 1000 1500 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C 7 IRGPS40B120UDP Energy (µJ) 3500 3000 4.7Ω 2500 22Ω 2000 47Ω 1500 100Ω 1000 500 0 0 20 40 60 80 100 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 125°C 10000 16 Cies 14 600V 800V 10 VGE (V) Capacitance (pF) 12 1000 Coes Cres 8 6 100 4 2 0 10 0 20 40 60 80 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 100 200 300 400 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 40A; L = 600µH www.irf.com IRGPS40B120UDP Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.01 0.02 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 24. Normalized Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.01 0.02 0.1 SINGLE PULSE ( THERMAL RESPONSE ) 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-005 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 25. Normalized Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGPS40B120UDP L L VCC DUT 80 V DUT 0 1000V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-on) diode clamp / DUT Driver D C L - 5V 900V DUT / DRIVER DUT VCC Rg Fig.C.T.3 - RBSOA Circuit Fig.C.T.4 - RBSOA Circuit R= VCC ICM DUT VCC Rg Fig.C.T.5 - RBSOA Circuit 10 www.irf.com IRGPS40B120UDP Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4 Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125C using Fig. CT.4 50 1100 1000 40 900 900 90 800 80 700 70 800 TEST CURRENT 50 tf 500 400 20 5% V CE 10 300 5% ICE 200 VCE (V) 500 600 ICE (A) VCE (V) 60 600 30 400 40 90% test current 30 300 10% test current 200 20 5% V CE 10 100 0 100 0 Eoff Loss -100 -0.20 0.00 0.20 0.40 0.60 -10 0.80 I CE (A) 90% ICE 700 0 0 -100 4.10 4.20 4.30 4.40 4.50 -10 4.60 Time (µs) Time(µs) Fig. WF.3 - Typ. Diode Recovery Waveform @Tj=125°C using Fig. CT.4 200 QRR 1000 40 900 20 -100 10 -200 0 -300 -10 -400 10% Peak IRR Peak IRR -20 450 800 400 ICE 700 V CE (V) tRR 0 500 V CE 30 I F (A) V F (V) 100 50 350 600 300 500 250 400 200 300 150 -500 -30 -600 -40 200 100 -700 -50 100 50 -800 -0.25 -60 0.25 time (µS) www.irf.com 0.75 0 -5.00 0.00 5.00 10.00 I CE (A) 300 Fig. WF.4 - Typ. S.C. Waveform @ TC=150°C using Fig. CT.3 0 15.00 time (µS) 11 IRGPS40B120UDP Case Outline and Dimensions — Super-247 Super-247 (TO-274AA) Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPS37N50A 719C 17 89 ASSEMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C TOP VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 4.7Ω. Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/04 12 www.irf.com