IRF IRGP30B60KD-E

PD - 94388A
IRGP30B60KD-E
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
Low VCE (on) Non Punch Through IGBT Technology.
Low Diode VF.
10µs Short Circuit Capability.
Square RBSOA.
Ultrasoft Diode Reverse Recovery Characteristics.
Positive VCE (on) Temperature Coefficient.
TO-247AD Package
C
IC = 30A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
Benefits
VCES = 600V
VCE(on) typ. = 1.95V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-247AD
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ T C = 25°C
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ T C = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current 
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw
Max.
Units
600
60
30
120
120
60
30
120
±20
304
122
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.24
–––
6.0
0.41
1.32
–––
40
–––
Units
°C/W
g
1
10/14/02
IRGP30B60KD-E
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VCE(on)
V(BR)CES
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Min.
600
–––
–––
–––
Gate Threshold Voltage
3.5
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance
–––
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.4
1.95
2.40
4.5
-10
18
5.0
1000
1.30
1.25
–––
Ref.Fig.
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500µA
––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C)
5, 6,7
2.35
V
IC = 30A, VGE = 15V
2.75
IC = 30A,VGE = 15V,
TJ = 150°C 9,10,11
9,10,11
5.5
V
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) 12
–––
S
VCE = 50V, I C = 50A, PW=80µs
250
µA
VGE = 0V, VCE = 600V
2000
VGE = 0V, VCE = 600V, TJ = 150°C
1.55
V
IF = 30A
8
TJ = 150°C
1.50
IF = 30A
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
RBSOA
SCSOA
Erec
trr
Irr
Ref.Fig.
Max. Units
Conditions
23
153
IC = 30A
21
nC VCC = 400V
CT.1
66
VGE = 15V
620
µJ
IC = 30A, VCC = 400V
CT.4
955
VGE =15V, RG = 10Ω, L=200µH,
1575
LS = 150nH
TJ = 25°C ‚
60
IC = 30A, VCC = 400V
39
VGE = 15V, RG = 10Ω L =200µH
CT.4
200
ns
LS = 150nH, TJ = 25°C
40
CT.4
1085
IC = 30A, VCC = 400V
13,15
1350
µJ
VGE = 15V,RG = 10Ω, L =200µH
2435
LS = 150nH
TJ = 150°C ‚ WF1,WF2
CT.4
60
IC = 30A, VCC = 400V
39
VGE = 15V, RG = 10Ω L =200µH
14, 16
235
ns
LS = 150nH, TJ = 150°C
WF1,WF2
42
–––
VGE = 0V
22
–––
pF
VCC = 30V
–––
f = 1.0MHz
4
TJ = 150°C, IC = 120A, Vp =600V
Reverse Bias Safe Operting Area
FULL SQUARE
VCC = 500V, VGE = +15V to 0V, R G=10Ω CT.2
CT.3
TJ = 150°C, Vp =600V, RG = 10Ω
µs
Short Circuit Safe Operting Area
10 ––– –––
WF.4
VCC = 360V, VGE = +15V to 0V
17,18,19
Reverse Recovery energy of the diode ––– 925 1165
µJ
TJ = 150°C
20,21
Diode Reverse Recovery time
––– 125 –––
ns
VCC = 400V, IF = 30A, L = 200µH
CT.4,WF.3
Diode Peak Reverse Recovery Current ––– 43
48
A
VGE = 15V,RG = 10Ω, LS = 150nH
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
102
14
44
350
825
1175
46
28
185
31
635
1150
1785
46
28
205
32
1750
160
60
Notes:  VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω.
2
‚ Energy losses include "tail" and diode reverse recovery.
www.irf.com
IRGP30B60KD-E
80
350
300
250
Ptot (W)
IC (A)
60
40
200
150
100
20
50
0
0
0
20
40
60
80
100 120 140 160
0
T C (°C)
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
100
IC A)
IC (A)
10 µs
10
100 µs
10
1ms
1
DC
0.1
1
1
10
100
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
1000
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGP30B60KD-E
60
50
VGE = 18V
VGE = 15V
40
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
ICE (A)
60
30
50
VGE = 18V
VGE = 15V
40
VGE = 12V
VGE = 10V
VGE = 8.0V
30
20
20
10
10
0
0
0
1
2
3
4
5
0
1
2
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
5
60
50
VGE = 18V
VGE = 15V
50
40
VGE = 12V
VGE = 10V
40
VGE = 8.0V
IF (A)
ICE (A)
4
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
60
30
20
10
10
0
-40°C
25°C
150°C
30
20
0
0
1
2
3
4
5
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
3
VCE (V)
0.0
0.5
1.0
1.5
2.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
10
ICE = 15A
ICE = 30A
8
ICE = 60A
VCE (V)
VCE (V)
IRGP30B60KD-E
12
ICE = 15A
10
ICE = 30A
8
ICE = 60A
6
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
250
20
18
T J = 25°C
T J = 150°C
200
16
12
10
ICE = 15A
ICE = 30A
8
ICE = 60A
ICE (A)
VCE (V)
14
150
100
6
T J = 150°C
50
4
T J = 25°C
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGP30B60KD-E
3000
1000
Swiching Time (ns)
2500
Energy (µJ)
2000
EOFF
1500
EON
1000
tdOFF
100
td ON
tF
500
tR
0
0
20
40
60
10
80
0
20
40
IC (A)
60
80
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 200µH; VCE = 400V
RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L = 200µH; VCE = 400V
RG = 10Ω; VGE = 15V
10000
3000
Swiching Time (ns)
2500
Energy (µJ)
2000
EOFF
EON
1500
1000
1000
tdOFF
100
tdON
tF
500
tR
10
0
0
25
50
75
100
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 200µH; VCE = 400V
ICE = 30A; VGE = 15V
6
125
0
25
50
75
100
125
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L = 200µH; VCE = 400V
ICE = 30A; VGE = 15V
www.irf.com
IRGP30B60KD-E
50
50
RG = 4.7Ω
45
45
40
35
RG = 10Ω
35
30
RG = 22Ω
30
25
RG = 47Ω
IRR (A)
IRR (A)
40
20
25
20
RG = 100Ω
15
15
10
10
5
5
0
0
0
20
40
60
80
0
25
50
IF (A)
100
125
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 30A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
50
5000
45
22Ω
4000
40
10Ω 4.7Ω60A
47Ω
Q RR (nC)
35
IRR (A)
75
RG (Ω)
30
25
20
30A
100 Ω
3000
15A
2000
15
1000
10
5
0
0
0
500
1000
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
IF= 30A; TJ = 150°C
www.irf.com
1500
0
500
1000
1500
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGP30B60KD-E
1400
Energy (µJ)
1200
4.7Ω
1000
10Ω
800
22Ω
47Ω
600
100 Ω
400
200
0
0
20
40
60
80
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
10000
14
200V
12
400V
1000
10
VGE (V)
Capacitance (pF)
Cies
8
6
Coes
100
4
2
Cres
0
10
0
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
25
50
75
100
125
Q G, Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 30A; L = 600µH
www.irf.com
IRGP30B60KD-E
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
τJ
0.05
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
Ri (°C/W) τi (sec)
0.200
0.000428
τ
0.209
τ2
0.013031
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ3
τ2
Ci= τi/Ri
Ci i/Ri
0.01
R3
R3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.205
0.000136
0.505
0.567
0.001645
0.037985
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGP30B60KD-E
L
L
VCC
DUT
80 V
DUT
0
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
L
4x
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGP30B60KD-E
700
35
700
70
600
30
600
60
25
500
90% ICE
tf
300
15
5% V CE
5% ICE
0
40
300
30
90% test current
10
200
5
100
0
0
tr
0.00
0.20
0.40
0
0.60
-5
0.80
-100
15.90
16.00
Time(µs)
100
QRR
300
500
250
0
-400
10%
Peak
IRR
Peak
IRR
-600
200
VCE
VCE (V)
-300
ICE
400
IF (A)
V F (V)
10
300
150
200
100
100
50
-10
-20
-30
-0.05
0.15
-40
0.35
time (µS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
600
20
tRR
-700
-0.25
-10
16.30
30
-200
-500
16.20
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
40
-100
16.10
Time (µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
0
10
Eon Loss
Eof f Loss
-100
-0.20
20
10% test current
5% V CE
ICE (A)
100
400
ICE (A)
20
VCE (V)
400
200
50
TEST CURRENT
ICE (A)
V CE (V)
500
0
-5.00
0.00
5.00
10.00
0
15.00
time (µS)
Fig. WF4- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
11
IRGP30B60KD-E
TO-247AD Case Outline and Dimensions
TO-247AD package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/02
12
www.irf.com