PD-94427D IRGIB6B60KD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. VCES = 600V IC = 6.0A, TC=90°C G tsc > 10µs, TJ=175°C E n-channel VCE(on) typ. = 1.8V Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220 Full-Pak Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 11 IC @ TC = 100°C Continuous Collector Current 7.0 ICM c 22 ILM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current IF @ TC = 25°C Diode Continuous Forward Current 9.0 IF @ TC = 100°C Diode Continuous Forward Current 6.0 IFM Diode Maximum Forward Current VISOL RMS Isolation Voltage, Terminal to Case, t = 1 min 2500 VGE Gate-to-Emitter Voltage ±20 PD @ TC = 25°C Maximum Power Dissipation 38 PD @ TC = 100°C Maximum Power Dissipation 19 TJ Operating Junction and TSTG Storage Temperature Range Soldering Temperature for 10 sec. A 22 18 V W -55 to +175 °C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf.in (1.1N.m) Thermal / Mechanical Characteristics Parameter Min. Typ. Max. ––– ––– 3.9 RθJC Junction-to-Case- IGBT RθJC Junction-to-Case- Diode ––– ––– 6.0 RθCS Case-to-Sink, flat, greased surface ––– 0.50 ––– RθJA Junction-to-Ambient, typical socket mount ––– ––– 62 Wt Weight ––– 2.0 ––– www.irf.com Units °C/W g 1 4/14/04 IRGIB6B60KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) Collector-to-Emitter Voltage 1.50 — — VGE(th) Gate Threshold Voltage 3.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — gfe Forward Transconductance — ICES Zero Gate Voltage Collector Current — — — VFM Diode Forward Voltage Drop — — — IGES Gate-to-Emitter Leakage Current — — 0.30 1.80 2.20 2.30 4.5 -10 3.0 1.0 200 720 1.25 1.20 1.15 — Conditions Ref.Fig. — V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) 2.20 V IC = 5A, VGE = 15V, TJ = 25°C IC = 5A, VGE = 15V, TJ = 150°C 2.50 IC = 5A, VGE = 15V, TJ = 175°C 2.60 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA (25°C-150°C) — S VCE = 50V, IC = 5.0A, PW = 80µs 150 µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C 500 VGE = 0V, VCE = 600V, TJ = 175°C 1100 1.45 V IF = 5.0A, VGE = 0V IF = 5.0A, VGE = 0V, TJ = 150°C 1.40 IF = 5.0A, VGE = 0V, TJ = 175°C 1.35 ±100 nA VGE = ±20V, VCE = 0V 5,6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (PEAK) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge Min. Typ. Max. Units — 18.2 27.3 — 1.9 2.85 — 9.2 13.8 — 110 210 — 135 245 — 245 455 — 25 34 — 17 26 — 215 230 — 13.2 22 — 150 260 — 190 300 — 340 560 — 28 37 — 17 26 — 240 255 — 18 27 — 7.5 — — 290 435 — 34 51 — 10 15 FULL SQUARE 10 — — — — — — 50 90 70 10 350 — — 175 91 13 455 nC µJ ns µJ ns Conditions Ref.Fig. IC = 5.0A VCC = 400V VGE = 15V IC = 5.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 1.4mH Ls= 150nH, TJ = 25°C IC = 5.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 1.4mH Ls= 150nH, TJ = 25°C 23 CT1 CT4 d IC = 5.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 1.4mH Ls= 150nH, TJ = 150°C IC = 5.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 1.4mH Ls= 150nH, TJ = 150°C d CT4 CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2 nH pF Measured 5 mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 18A, Vp = 600V µs A µJ ns A nC 22 4 VCC=500V,VGE = +15V to 0V,RG = 100Ω CT2 TJ = 150°C, Vp = 600V, RG = 100Ω VCC=360V,VGE = +15V to 0V WF4 CT3 WF4 TJ = 150°C VCC = 400V, IF = 5.0A, L = 1.4mH VGE = 15V, RG = 100Ω, Ls= 150nH di/dt = 400A/µs 17,18,19 20,21 CT4,WF3 Vcc =80% (VCES), VGE = 20V, L =100µH, RG = 50Ω. Energy losses include "tail" and diode reverse recovery. 2 www.irf.com IRGIB6B60KD 12 40 35 10 30 25 Ptot (W) IC (A) 8 6 20 15 4 10 2 5 0 0 0 20 40 60 80 100 120 140 160 180 0 T C (°C) 40 60 80 100 120 140 160 180 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 10 10 µs 1 100 µs IC A) 100 IC (A) 20 10 1ms 0.1 DC 0.01 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 175°C www.irf.com 10000 1 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V 3 IRGIB6B60KD 20 20 18 16 14 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 14 ICE (A) 12 ICE (A) 18 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 10 8 12 10 8 6 6 4 4 2 2 0 0 0 2 4 0 6 2 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 6 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 30 20 18 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 14 12 -40°C 25°C 150°C 25 20 IF (A) ICE (A) 4 VCE (V) VCE (V) 10 15 8 10 6 4 5 2 0 0 0 2 4 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 0.0 0.5 1.0 1.5 2.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A VCE (V) VCE (V) IRGIB6B60KD 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 40 18 35 16 T J = 25°C T J = 150°C 30 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A 25 ICE (A) VCE (V) 14 20 15 6 10 T J = 150°C 4 5 2 T J = 25°C 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRGIB6B60KD 700 1000 600 tdOFF EON Swiching Time (ns) Energy (µJ) 500 400 EOFF 300 200 100 tF tdON tR 10 100 0 0 5 10 15 1 20 0 IC (A) 5 10 15 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V 1000 250 EOFF tdOFF Swiching Time (ns) Energy (µJ) 200 150 EON 100 100 tdON tR tF 10 50 1 0 0 50 100 150 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V 6 200 0 50 100 150 200 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V www.irf.com IRGIB6B60KD 25 20 18 RG = 22 Ω 20 16 14 15 IRR (A) IRR (A) RG = 47 Ω RG = 100 Ω 10 12 10 8 RG = 150 Ω 6 5 4 2 0 0 0 5 10 15 20 0 50 100 IF (A) 150 200 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 5.0A Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C 1200 20 18 14 12 10 8 10A 47Ω 800 Q RR (nC) IRR (A) 22Ω 1000 16 100 Ω 150Ω 600 5.0A 3.0A 400 6 4 200 2 0 0 0 200 400 600 800 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 5.0A; TJ = 150°C www.irf.com 1000 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRGIB6B60KD 300 22 Ω Energy (µJ) 250 200 47 Ω 150 100 Ω 100 150 Ω 50 0 5 10 15 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 16 1000 14 Cies 300V Capacitance (pF) 12 100 400V VGE (V) 10 Coes Cres 8 6 10 4 2 0 1 0 1 10 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 5 10 15 20 100 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600µH www.irf.com IRGIB6B60KD Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci τi/Ri 0.01 Ri (°C/W) τi (sec) 1.157 0.000607 1.134 0.107781 1.608 1.9249 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 0.20 1 0.10 0.05 τJ 0.02 0.01 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci τi/Ri 0.01 Ri (°C/W) τi (sec) 2.530 0.001 1.354 0.068689 2.114 2.758 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGIB6B60KD L L VCC DUT + - 80 V 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGIB6B60KD 9 400 8 350 7 90% ICE 300 6 25 400 20 300 15 TEST CURRENT 150 4 3 5% V CE 100 50 1 0 0 Eoff Loss 0.30 200 100 2 5% ICE -50 -0.20 VCE (V) tf 200 ICE (A) 5 VCE (V) 250 500 tr 0 -1 -100 16.00 0.80 0 Eon Loss 16.10 50 50 400 40 0 -200 -2 Peak IRR 10% Peak IRR -300 -4 30 200 20 100 10 -6 -350 -8 -400 -10 -12 0.14 ICE 300 I CE (A) -150 0.24 time (µS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 500 V CE VCE (V) 2 IF (A) VF (V) 4 tRR 0.04 -5 16.40 6 QRR -450 -0.06 16.30 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 8 -100 -250 16.20 time (µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 -50 5 10% test current 5% V CE time(µs) 0 10 90% test current ICE (A) 450 0 -5.00 0.00 5.00 10.00 0 15.00 time (µS) Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3 11 IRGIB6B60KD TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) 10.60 (.417) 10.40 (.409) ø 3.40 (.133) 3.10 (.123) 4.80 (.189) 4.60 (.181) -A3.70 (.145) 3.20 (.126) 16.00 (.630) 15.80 (.622) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 7.10 (.280) 6.70 (.263) 1.15 (.045) MIN. NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 1 2 3 2 CONTROLLING DIMENSION: INCH. 3.30 (.130) 3.10 (.122) -B- 13.70 (.540) 13.50 (.530) C A 3X 1.40 (.055) 1.05 (.042) 0.90 (.035) 3X 0.70 (.028) 0.25 (.010) 3X M A M 0.48 (.019) 0.44 (.017) 2.85 (.112) 2.65 (.104) B 2.54 (.100) 2X D B MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189) TO-220 Full-Pak Part Marking Information E XAMP L E : T H IS IS AN IR F I840G WIT H AS S E MB L Y L OT CODE 3432 AS S E MB L E D ON WW 24 1999 IN T H E AS S E MB L Y L IN E "K " Note: "P" in assembly line position indicates "Lead-Free" IN T E R N AT IONAL R E CT IF IE R L OGO P AR T N U MB E R IR F I8 40G 924 K 34 AS S E MB L Y L OT CODE 32 DAT E CODE YE AR 9 = 1999 WE E K 24 L INE K TO-220 Full-Pak package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/04 12 www.irf.com