PD-94576A IRGIB10B60KD1 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Maximum Junction Temperature Rated at 175°C Benefits VCES = 600V IC = 10A, TC=100°C G tsc > 10µs, TJ=150°C E n-channel VCE(on) typ. = 1.7V • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220 Full-Pak Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 16 IC @ TC = 100°C Continuous Collector Current 10 ICM 32 ILM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current IF @ TC = 25°C Diode Continuous Forward Current 16 IF @ TC = 100°C Diode Continuous Forward Current 10 IFM Diode Maximum Forward Current VISOL RMS Isolation Voltage, Terminal to Case, t = 1 min 2500 VGE Gate-to-Emitter Voltage ±20 PD @ TC = 25°C Maximum Power Dissipation 44 PD @ TC = 100°C Maximum Power Dissipation 22 c TJ Operating Junction and TSTG Storage Temperature Range Soldering Temperature for 10 sec. A 32 32 V W -55 to +175 °C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf.in (1.1N.m) Thermal / Mechanical Characteristics Parameter Min. Typ. Max. ––– ––– 3.4 RθJC Junction-to-Case- IGBT RθJC Junction-to-Case- Diode ––– ––– 5.3 RθCS Case-to-Sink, flat, greased surface ––– 0.50 ––– RθJA Junction-to-Ambient, typical socket mount ––– ––– 62 Wt Weight ––– 2.0 ––– www.irf.com Units °C/W g 1 2/27/04 IRGIB10B60KD1 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.50 VCE(on) Collector-to-Emitter Voltage — — VGE(th) Gate Threshold Voltage 3.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — gfe Forward Transconductance — — ICES Zero Gate Voltage Collector Current — — VFM Diode Forward Voltage Drop — — — IGES Gate-to-Emitter Leakage Current — — 0.99 1.70 2.05 2.06 4.5 -10 5.0 1.0 90 150 1.80 1.32 1.23 — Conditions — V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 10A, VGE = 15V, TJ = 25°C 2.10 2.35 V IC = 10A, VGE = 15V, TJ = 150°C IC = 10A, VGE = 15V, TJ = 175°C 2.35 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA (25°C-150°C) — S VCE = 50V, IC = 10A, PW = 80µs VGE = 0V, VCE = 600V 150 250 µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C 400 2.40 V IF = 5.0A, VGE = 0V IF = 5.0A, VGE = 0V, TJ = 150°C 1.74 IF = 5.0A, VGE = 0V, TJ = 175°C 1.62 ±100 nA VGE = ±20V, VCE = 0V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area — 41 62 — 4.6 6.9 — 19 29 — 156 264 — 165 273 — 321 434 — 25 33 — 24 34 — 180 250 — 62 87 — 261 372 — 313 425 — 574 694 — 22 31 — 24 34 — 240 340 — 48 67 — 7.5 — — 610 915 — 66 99 — 23 35 FULL SQUARE SCSOA Short Circuit Safe Operating Area 10 — — µs ISC (PEAK) Erec trr Irr Qrr Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge — — — — — 100 99 79 14 553 — 128 103 18 719 A µJ ns A nC Vcc =80% (VCES), VGE = 20V, L =100µH, RG = 50Ω. 2 nC µJ ns µJ ns nH pF Conditions IC = 10A VCC = 400V VGE = 15V IC = 10A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.07mH Ls= 150nH, TJ = 25°C IC = 10A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH Ls= 150nH, TJ = 25°C d IC = 10A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.07mH Ls= 150nH, TJ = 150°C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.07mH Ls= 150nH, TJ = 150°C d Measured 5 mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 32A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 50Ω TJ = 150°C, Vp = 600V, RG = 50Ω VCC=360V,VGE = +15V to 0V TJ = 150°C VCC = 400V, IF = 10A, L = 1.07mH VGE = 15V, RG = 50Ω di/dt = 500A/µs Energy losses include "tail" and diode reverse recovery. www.irf.com IRGIB10B60KD1 20 50 45 16 40 35 IC (A) Ptot (W) 12 8 30 25 20 15 4 10 5 0 0 0 20 40 60 80 100 120 140 160 180 0 T C (°C) 20 40 60 80 100 120 140 160 180 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 µs 10 IC A) IC (A) 100 µs 1 10 1ms 0.1 DC 0.01 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 175°C www.irf.com 10000 1 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGIB10B60KD1 20 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 18 16 16 14 12 ICE (A) ICE (A) 14 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 18 10 8 12 10 8 6 6 4 4 2 2 0 0 0 2 4 6 0 2 VCE (V) 6 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 20 40 18 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 14 -40°C 25°C 150°C 35 30 25 IF (A) 12 ICE (A) 4 10 8 20 15 6 10 4 5 2 0 0 0 2 4 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 5.0A 10 ICE = 10A 8 ICE = 20A VCE (V) VCE (V) IRGIB10B60KD1 12 ICE = 5.0A 10 ICE = 10A 8 ICE = 20A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 100 18 90 T J = 25°C 16 80 T J = 150°C 14 70 12 ICE = 5.0A 10 ICE = 10A 8 ICE = 20A ICE (A) VCE (V) 15 60 50 40 6 30 4 20 2 10 0 T J = 150°C T J = 25°C 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRGIB10B60KD1 700 1000 600 tdOFF Energy (µJ) 400 Swiching Time (ns) EOFF 500 EON 300 200 100 tF tdON tR 10 100 0 0 5 10 15 1 20 0 IC (A) 10 15 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.07mH; VCE= 400V RG= 50Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.07mH; VCE= 400V RG= 50Ω; VGE= 15V 10000 1000 EOFF 800 Swiching Time (ns) EON Energy (µJ) 5 600 400 1000 tdOFF 100 tF tR 200 tdON 10 0 0 100 200 300 400 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.07mH; VCE= 400V ICE= 10A; VGE= 15V 6 500 0 100 200 300 400 500 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.07mH; VCE= 400V ICE= 10A; VGE= 15V www.irf.com IRGIB10B60KD1 15 16 RG = 50 Ω 14 12 RG = 150 Ω 10 IRR (A) IRR (A) 10 RG = 270 Ω 8 6 5 RG = 470 Ω 4 2 0 0 0 5 10 15 20 0 100 200 IF (A) 300 400 500 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 10A Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C 1000 16 50Ω 150Ω 14 800 20A 270 Ω 12 10A 470Ω Q RR (nC) IRR (A) 10 8 600 400 5.0A 6 4 200 2 0 0 0 0 200 400 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 150°C www.irf.com 600 100 200 300 400 500 600 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRGIB10B60KD1 200 Energy (µJ) 160 120 470 Ω 270 Ω 80 150 Ω 50 Ω 40 0 5 10 15 20 25 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 16 1000 14 Cies 300V 400V Capacitance (pF) 12 VGE (V) 10 100 8 6 Coes 4 2 Cres 0 10 1 10 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 10 20 30 40 50 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 10A; L = 2500µH www.irf.com IRGIB10B60KD1 Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 R1 R1 0.05 0.1 τJ 0.02 0.01 τJ τ1 R2 R2 τ2 τ1 R3 R3 Ri (°C/W) R4 R4 τC τ τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 τi (sec) 0.3628 0.00018 0.2582 0.000695 1.1008 0.075305 1.6973 1.781 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 0.20 1 R1 R1 0.10 τJ 0.05 0.02 0.1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 Ri (°C/W) R4 R4 τi (sec) 0.9004 0.000103 1.3642 0.000693 1.4540 0.033978 1.5805 1.6699 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGIB10B60KD1 L L VCC DUT + - 80 V 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGIB10B60KD1 600 15 600 30 tf 500 12.5 500 Vce 400 Ice 10 400 90% Ice 20 90% Ice Ice Ice(A) (A) 200 5 5% Ice 100 10% Ice 300 15 200 Ice (A) 7.5 5% Vce Vce (V) 300 Vce (V) 25 Vce tr 10 2.5 Ice 100 0 5 0 5% Vce Eoff Loss -100 0 -2.5 -200 -100 0.05 -5 0.4 0.6 0.8 1 0 Eon Loss 1.2 -5 0.15 0.25 0.35 Time (uS) Time (uS) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 100 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 15 400 200 300 150 200 100 100 50 QRR 10 -200 0 If (A) Vf (V) 5 -300 Vce (V) tRR -100 Ice (A) 0 -5 Peak IRR 10% Peak IRR -400 -10 -500 -15 -600 0.20 0.30 0.40 0.50 -20 0.60 0 0.00 10.00 20.00 30.00 40.00 0 50.00 Tim e (uS) Time (uS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 11 IRGIB10B60KD1 TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) 10.60 (.417) 10.40 (.409) ø 3.40 (.133) 3.10 (.123) 4.80 (.189) 4.60 (.181) -A3.70 (.145) 3.20 (.126) 16.00 (.630) 15.80 (.622) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 7.10 (.280) 6.70 (.263) 1.15 (.045) MIN. NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 1 2 3 2 CONTROLLING DIMENSION: INCH. 3.30 (.130) 3.10 (.122) -B- 13.70 (.540) 13.50 (.530) C A 3X 1.40 (.055) 1.05 (.042) 0.90 (.035) 3X 0.70 (.028) 0.25 (.010) 3X M A M 0.48 (.019) 0.44 (.017) 2.85 (.112) 2.65 (.104) B 2.54 (.100) 2X D B MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189) TO-220 Full-Pak Part Marking Information EXAMPLE: THIS IS AN IRFI840G WITH AS SEMBLY LOT CODE 3432 AS S EMBLED ON WW 24 1999 IN THE AS S EMBLY LINE "K" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFI840G 924K 34 AS S EMBLY LOT CODE 32 DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K TO-220 Full-Pak package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/04 12 www.irf.com