IRF IRGIB10B60KD1

PD-94576A
IRGIB10B60KD1
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Maximum Junction Temperature Rated at 175°C
Benefits
VCES = 600V
IC = 10A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
VCE(on) typ. = 1.7V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220
Full-Pak
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
16
IC @ TC = 100°C
Continuous Collector Current
10
ICM
32
ILM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
IF @ TC = 25°C
Diode Continuous Forward Current
16
IF @ TC = 100°C
Diode Continuous Forward Current
10
IFM
Diode Maximum Forward Current
VISOL
RMS Isolation Voltage, Terminal to Case, t = 1 min
2500
VGE
Gate-to-Emitter Voltage
±20
PD @ TC = 25°C
Maximum Power Dissipation
44
PD @ TC = 100°C Maximum Power Dissipation
22
c
TJ
Operating Junction and
TSTG
Storage Temperature Range
Soldering Temperature for 10 sec.
A
32
32
V
W
-55 to +175
°C
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf.in (1.1N.m)
Thermal / Mechanical Characteristics
Parameter
Min.
Typ.
Max.
–––
–––
3.4
RθJC
Junction-to-Case- IGBT
RθJC
Junction-to-Case- Diode
–––
–––
5.3
RθCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
RθJA
Junction-to-Ambient, typical socket mount
–––
–––
62
Wt
Weight
–––
2.0
–––
www.irf.com
Units
°C/W
g
1
2/27/04
IRGIB10B60KD1
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
1.50
VCE(on)
Collector-to-Emitter Voltage
—
—
VGE(th)
Gate Threshold Voltage
3.5
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
gfe
Forward Transconductance
—
—
ICES
Zero Gate Voltage Collector Current
—
—
VFM
Diode Forward Voltage Drop
—
—
—
IGES
Gate-to-Emitter Leakage Current
—
—
0.99
1.70
2.05
2.06
4.5
-10
5.0
1.0
90
150
1.80
1.32
1.23
—
Conditions
—
V VGE = 0V, IC = 500µA
—
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 10A, VGE = 15V, TJ = 25°C
2.10
2.35
V IC = 10A, VGE = 15V, TJ = 150°C
IC = 10A, VGE = 15V, TJ = 175°C
2.35
5.5
V VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 1mA (25°C-150°C)
—
S VCE = 50V, IC = 10A, PW = 80µs
VGE = 0V, VCE = 600V
150
250
µA VGE = 0V, VCE = 600V, TJ = 150°C
VGE = 0V, VCE = 600V, TJ = 175°C
400
2.40
V IF = 5.0A, VGE = 0V
IF = 5.0A, VGE = 0V, TJ = 150°C
1.74
IF = 5.0A, VGE = 0V, TJ = 175°C
1.62
±100 nA VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
LE
Cies
Coes
Cres
RBSOA
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operating Area
—
41
62
—
4.6
6.9
—
19
29
—
156
264
—
165
273
—
321
434
—
25
33
—
24
34
—
180
250
—
62
87
—
261
372
—
313
425
—
574
694
—
22
31
—
24
34
—
240
340
—
48
67
—
7.5
—
—
610
915
—
66
99
—
23
35
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
10
—
—
µs
ISC (PEAK)
Erec
trr
Irr
Qrr
Peak Short Circuit Collector Current
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
Diode Reverse Recovery Charge
—
—
—
—
—
100
99
79
14
553
—
128
103
18
719
A
µJ
ns
A
nC
 Vcc =80% (VCES), VGE = 20V, L =100µH, RG = 50Ω.
2
nC
µJ
ns
µJ
ns
nH
pF
Conditions
IC = 10A
VCC = 400V
VGE = 15V
IC = 10A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.07mH
Ls= 150nH, TJ = 25°C
IC = 10A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
Ls= 150nH, TJ = 25°C
d
IC = 10A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.07mH
Ls= 150nH, TJ = 150°C
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.07mH
Ls= 150nH, TJ = 150°C
d
Measured 5 mm from package
VGE = 0V
VCC = 30V
f = 1.0MHz
TJ = 150°C, IC = 32A, Vp = 600V
VCC=500V,VGE = +15V to 0V,RG = 50Ω
TJ = 150°C, Vp = 600V, RG = 50Ω
VCC=360V,VGE = +15V to 0V
TJ = 150°C
VCC = 400V, IF = 10A, L = 1.07mH
VGE = 15V, RG = 50Ω
di/dt = 500A/µs
‚ Energy losses include "tail" and diode reverse recovery.
www.irf.com
IRGIB10B60KD1
20
50
45
16
40
35
IC (A)
Ptot (W)
12
8
30
25
20
15
4
10
5
0
0
0
20
40
60
80 100 120 140 160 180
0
T C (°C)
20
40
60
80 100 120 140 160 180
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10 µs
10
IC A)
IC (A)
100 µs
1
10
1ms
0.1
DC
0.01
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 175°C
www.irf.com
10000
1
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGIB10B60KD1
20
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
18
16
16
14
12
ICE (A)
ICE (A)
14
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
18
10
8
12
10
8
6
6
4
4
2
2
0
0
0
2
4
6
0
2
VCE (V)
6
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
20
40
18
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
16
14
-40°C
25°C
150°C
35
30
25
IF (A)
12
ICE (A)
4
10
8
20
15
6
10
4
5
2
0
0
0
2
4
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 5.0A
10
ICE = 10A
8
ICE = 20A
VCE (V)
VCE (V)
IRGIB10B60KD1
12
ICE = 5.0A
10
ICE = 10A
8
ICE = 20A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
100
18
90
T J = 25°C
16
80
T J = 150°C
14
70
12
ICE = 5.0A
10
ICE = 10A
8
ICE = 20A
ICE (A)
VCE (V)
15
60
50
40
6
30
4
20
2
10
0
T J = 150°C
T J = 25°C
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGIB10B60KD1
700
1000
600
tdOFF
Energy (µJ)
400
Swiching Time (ns)
EOFF
500
EON
300
200
100
tF
tdON
tR
10
100
0
0
5
10
15
1
20
0
IC (A)
10
15
20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.07mH; VCE= 400V
RG= 50Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.07mH; VCE= 400V
RG= 50Ω; VGE= 15V
10000
1000
EOFF
800
Swiching Time (ns)
EON
Energy (µJ)
5
600
400
1000
tdOFF
100
tF
tR
200
tdON
10
0
0
100
200
300
400
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.07mH; VCE= 400V
ICE= 10A; VGE= 15V
6
500
0
100
200
300
400
500
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.07mH; VCE= 400V
ICE= 10A; VGE= 15V
www.irf.com
IRGIB10B60KD1
15
16
RG = 50 Ω
14
12
RG = 150 Ω
10
IRR (A)
IRR (A)
10
RG = 270 Ω
8
6
5
RG = 470 Ω
4
2
0
0
0
5
10
15
20
0
100
200
IF (A)
300
400
500
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 10A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
1000
16
50Ω
150Ω
14
800
20A
270 Ω
12
10A
470Ω
Q RR (nC)
IRR (A)
10
8
600
400
5.0A
6
4
200
2
0
0
0
0
200
400
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 10A; TJ = 150°C
www.irf.com
600
100
200
300
400
500
600
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGIB10B60KD1
200
Energy (µJ)
160
120
470 Ω
270 Ω
80
150 Ω
50 Ω
40
0
5
10
15
20
25
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
1000
14
Cies
300V
400V
Capacitance (pF)
12
VGE (V)
10
100
8
6
Coes
4
2
Cres
0
10
1
10
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
10
20
30
40
50
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 10A; L = 2500µH
www.irf.com
IRGIB10B60KD1
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
R1
R1
0.05
0.1
τJ
0.02
0.01
τJ
τ1
R2
R2
τ2
τ1
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.01
τi (sec)
0.3628
0.00018
0.2582
0.000695
1.1008
0.075305
1.6973
1.781
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
D = 0.50
0.20
1
R1
R1
0.10
τJ
0.05
0.02
0.1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τC
τ
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.01
Ri (°C/W)
R4
R4
τi (sec)
0.9004
0.000103
1.3642
0.000693
1.4540
0.033978
1.5805
1.6699
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGIB10B60KD1
L
L
VCC
DUT
+
-
80 V
0
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGIB10B60KD1
600
15
600
30
tf
500
12.5
500
Vce
400
Ice
10
400
90% Ice
20
90% Ice
Ice
Ice(A)
(A)
200
5
5% Ice
100
10% Ice
300
15
200
Ice (A)
7.5
5% Vce
Vce (V)
300
Vce (V)
25
Vce
tr
10
2.5
Ice
100
0
5
0
5% Vce
Eoff Loss
-100
0
-2.5
-200
-100
0.05
-5
0.4
0.6
0.8
1
0
Eon
Loss
1.2
-5
0.15
0.25
0.35
Time (uS)
Time (uS)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
100
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
15
400
200
300
150
200
100
100
50
QRR
10
-200
0
If (A)
Vf (V)
5
-300
Vce (V)
tRR
-100
Ice (A)
0
-5
Peak
IRR
10% Peak
IRR
-400
-10
-500
-15
-600
0.20
0.30
0.40
0.50
-20
0.60
0
0.00
10.00
20.00
30.00
40.00
0
50.00
Tim e (uS)
Time (uS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
Fig. WF4- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
11
IRGIB10B60KD1
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
10.60 (.417)
10.40 (.409)
ø
3.40 (.133)
3.10 (.123)
4.80 (.189)
4.60 (.181)
-A3.70 (.145)
3.20 (.126)
16.00 (.630)
15.80 (.622)
2.80 (.110)
2.60 (.102)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
7.10 (.280)
6.70 (.263)
1.15 (.045)
MIN.
NOTES:
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982
1
2
3
2 CONTROLLING DIMENSION: INCH.
3.30 (.130)
3.10 (.122)
-B-
13.70 (.540)
13.50 (.530)
C
A
3X
1.40 (.055)
1.05 (.042)
0.90 (.035)
3X 0.70 (.028)
0.25 (.010)
3X
M A M
0.48 (.019)
0.44 (.017)
2.85 (.112)
2.65 (.104)
B
2.54 (.100)
2X
D
B
MINIMUM CREEPAGE
DISTANCE BETWEEN
A-B-C-D = 4.80 (.189)
TO-220 Full-Pak Part Marking Information
EXAMPLE: THIS IS AN IRFI840G
WITH AS SEMBLY
LOT CODE 3432
AS S EMBLED ON WW 24 1999
IN THE AS S EMBLY LINE "K"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFI840G
924K
34
AS S EMBLY
LOT CODE
32
DAT E CODE
YEAR 9 = 1999
WEEK 24
LINE K
TO-220 Full-Pak package is not recommended for Surface Mount Application
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.2/04
12
www.irf.com