IRF IRGIB6B60KDPBF

PD-95321
IRGIB6B60KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Lead-Free.
VCES = 600V
IC = 6.0A, TC=90°C
G
tsc > 10µs, TJ=175°C
E
n-channel
VCE(on) typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220
Full-Pak
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
11
IC @ TC = 100°C
Continuous Collector Current
7.0
ICM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current 22
ILM
IF @ TC = 25°C
Diode Continuous Forward Current
9.0
IF @ TC = 100°C
Diode Continuous Forward Current
6.0
IFM
Diode Maximum Forward Current
VISOL
RMS Isolation Voltage, Terminal to Case, t = 1 min
2500
VGE
Gate-to-Emitter Voltage
±20
PD @ TC = 25°C
Maximum Power Dissipation
38
PD @ TC = 100°C Maximum Power Dissipation
Operating Junction and
TJ
19
TSTG
A
22
18
V
W
-55 to +175
Storage Temperature Range
Soldering Temperature for 10 sec.
°C
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf.in (1.1N.m)
Thermal / Mechanical Characteristics
Parameter
Min.
Typ.
Max.
–––
–––
3.9
RθJC
Junction-to-Case- IGBT
RθJC
Junction-to-Case- Diode
–––
–––
6.0
RθCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
RθJA
Junction-to-Ambient, typical socket mount
–––
–––
62
Wt
Weight
–––
2.0
–––
www.irf.com
Units
°C/W
g
1
05/25/04
IRGIB6B60KDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
VCE(on)
Collector-to-Emitter Voltage
1.50
—
—
VGE(th)
Gate Threshold Voltage
3.5
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
gfe
Forward Transconductance
—
ICES
Zero Gate Voltage Collector Current
—
—
—
VFM
Diode Forward Voltage Drop
—
—
—
IGES
Gate-to-Emitter Leakage Current
—
—
0.30
1.80
2.20
2.30
4.5
-10
3.0
1.0
200
720
1.25
1.20
1.15
—
Conditions
Ref.Fig.
—
V VGE = 0V, IC = 500µA
—
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
2.20
V IC = 5A, VGE = 15V, TJ = 25°C
IC = 5A, VGE = 15V, TJ = 150°C
2.50
IC = 5A, VGE = 15V, TJ = 175°C
2.60
5.5
V VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 1mA (25°C-150°C)
—
S VCE = 50V, IC = 5.0A, PW = 80µs
150
µA VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
500
VGE = 0V, VCE = 600V, TJ = 175°C
1100
1.45
V IF = 5.0A, VGE = 0V
IF = 5.0A, VGE = 0V, TJ = 150°C
1.40
IF = 5.0A, VGE = 0V, TJ = 175°C
1.35
±100 nA VGE = ±20V, VCE = 0V
5,6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
LE
Cies
Coes
Cres
RBSOA
SCSOA
ISC (PEAK)
Erec
trr
Irr
Qrr
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operating Area
Short Circuit Safe Operating Area
Peak Short Circuit Collector Current
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
Diode Reverse Recovery Charge
Min. Typ. Max. Units
—
18.2 27.3
—
1.9
2.85
—
9.2
13.8
—
110
210
—
135
245
—
245
455
—
25
34
—
17
26
—
215
230
—
13.2
22
—
150
260
—
190
300
—
340
560
—
28
37
—
17
26
—
240
255
—
18
27
—
7.5
—
—
290
435
—
34
51
—
10
15
FULL SQUARE
10
—
—
—
—
—
—
50
90
70
10
350
—
—
175
91
13
455
nC
µJ
ns
µJ
ns
Conditions
Ref.Fig.
IC = 5.0A
VCC = 400V
VGE = 15V
IC = 5.0A, VCC = 400V
VGE = 15V, RG = 100Ω, L = 1.4mH
Ls= 150nH, TJ = 25°C IC = 5.0A, VCC = 400V
VGE = 15V, RG = 100Ω, L = 1.4mH
Ls= 150nH, TJ = 25°C
IC = 5.0A, VCC = 400V
VGE = 15V, RG = 100Ω, L = 1.4mH
Ls= 150nH, TJ = 150°C IC = 5.0A, VCC = 400V
VGE = 15V, RG = 100Ω, L = 1.4mH
Ls= 150nH, TJ = 150°C
23
CT1
CT4
CT4
CT4
13,15
WF1,WF2
14,16
CT4
WF1
WF2
nH
pF
µs
A
µJ
ns
A
nC
Measured 5 mm from package
VGE = 0V
VCC = 30V
f = 1.0MHz
TJ = 150°C, IC = 18A, Vp = 600V
22
4
VCC=500V,VGE = +15V to 0V,RG = 100Ω
CT2
TJ = 150°C, Vp = 600V, RG = 100Ω
VCC=360V,VGE = +15V to 0V
WF4
CT3
WF4
TJ = 150°C
VCC = 400V, IF = 5.0A, L = 1.4mH
VGE = 15V, RG = 100Ω, Ls= 150nH
di/dt = 400A/µs
17,18,19
20,21
CT4,WF3
Vcc =80% (VCES), VGE = 20V, L =100µH, RG = 50Ω.
Energy losses include "tail" and diode reverse recovery.
2
www.irf.com
IRGIB6B60KDPbF
12
40
35
10
30
25
Ptot (W)
IC (A)
8
6
20
15
4
10
2
5
0
0
0
20
40
60
80 100 120 140 160 180
T C (°C)
0
20
40
60
80 100 120 140 160 180
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
10
IC (A)
IC A)
100
10
10 µs
1
100 µs
1ms
1
0.1
10
DC
100
1000
VCE (V)
0.01
1
10
100
1000
10000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 175°C
www.irf.com
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =15V
3
IRGIB6B60KDPbF
20
20
18
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
16
14
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
16
14
ICE (A)
ICE (A)
12
18
10
8
12
10
8
6
6
4
4
2
2
0
0
0
2
4
6
0
2
4
6
VCE (V)
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
30
25
20
18
14
12
IF (A)
16
ICE (A)
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
10
10
5
8
6
0
4
0.0
2
0
0
2
4
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
15
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
10
ICE = 3.0A
ICE = 5.0A
8
ICE = 10A
VCE (V)
VCE (V)
IRGIB6B60KDPbF
12
10
ICE = 3.0A
ICE = 5.0A
8
ICE = 10A
6
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
40
18
35
16
T J = 25°C
T J = 150°C
30
12
10
ICE = 3.0A
ICE = 5.0A
8
ICE = 10A
25
ICE (A)
VCE (V)
14
20
15
6
10
T J = 150°C
4
5
2
T J = 25°C
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGIB6B60KDPbF
700
1000
600
tdOFF
EON
Swiching Time (ns)
Energy (µJ)
500
400
EOFF
300
200
100
tF
tdON
tR
10
100
0
0
5
10
15
1
20
0
IC (A)
5
10
15
20
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.4mH; VCE= 400V
RG= 100Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.4mH; VCE= 400V
RG= 100Ω; VGE= 15V
1000
250
EOFF
tdOFF
150
Swiching Time (ns)
Energy (µJ)
200
EON
100
100
tdON
tR
tF
10
50
1
0
0
50
100
150
R G (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.4mH; VCE= 400V
ICE= 5.0A; VGE= 15V
6
200
0
50
100
150
200
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.4mH; VCE= 400V
ICE= 5.0A; VGE= 15V
www.irf.com
IRGIB6B60KDPbF
25
20
18
RG = 22 Ω
20
16
14
15
IRR (A)
IRR (A)
RG = 47 Ω
RG = 100 Ω
10
RG = 150 Ω
12
10
8
6
5
4
2
0
0
0
5
10
15
20
0
50
100
IF (A)
150
200
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 5.0A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
1200
20
18
14
12
10
8
10A
47Ω
800
Q RR (nC)
IRR (A)
22Ω
1000
16
100 Ω
150Ω
600
5.0A
3.0A
400
6
4
200
2
0
0
0
200
400
600
800
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 5.0A; TJ = 150°C
www.irf.com
1000
0
200
400
600
800
1000
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGIB6B60KDPbF
300
22 Ω
Energy (µJ)
250
200
47 Ω
150
100 Ω
100
150 Ω
50
0
5
10
15
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
1000
14
Cies
300V
Capacitance (pF)
12
100
400V
VGE (V)
10
Coes
Cres
8
6
10
4
2
0
1
0
1
10
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
5
10
15
20
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 5.0A; L = 600µH
www.irf.com
IRGIB6B60KDPbF
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci= i/Ri
0.01
Ri (°C/W) τi (sec)
1.157
0.000607
1.134
0.107781
1.608
1.9249
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
0.20
1
0.10
0.05
τJ
0.02
0.01
0.1
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
2.530
0.001
1.354
0.068689
2.114
Ci= τi/Ri
Ci= i/Ri
0.01
2.758
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGIB6B60KDPbF
L
L
VCC
DUT
80 V
+
-
0
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGIB6B60KDPbF
9
400
8
350
7
90% ICE
300
6
25
400
20
300
15
TEST CURRENT
4
150
3
5% V CE
100
50
1
0
0
Eof f Loss
0.30
200
100
2
5% ICE
-50
-0.20
VCE (V)
tf
200
I CE (A)
5
VCE (V)
250
500
10
90% test current
tr
I CE (A)
450
5
10% test current
5% V CE
0
-1
-100
16.00
0.80
0
Eon Loss
16.10
time(µs)
16.20
16.30
-5
16.40
time (µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
50
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
8
0
500
50
400
40
6
QRR
4
2
-150
0
-200
-250
-2
Peak
IRR
10%
Peak
IRR
-300
-400
-10
-12
0.14
0.24
time (µS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
30
200
20
100
10
-6
-8
0.04
ICE
300
-4
-350
-450
-0.06
V CE
I CE (A)
-100
V CE (V)
t RR
I F (A)
VF (V)
-50
0
-5.00
0.00
5.00
10.00
0
15.00
time (µS)
Fig. WF4- Typ. S.C Waveform
@ TJ = 150°C using Fig. CT.3
11
IRGIB6B60KDPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
10.60 (.417)
10.40 (.409)
ø
3.40 (.133)
3.10 (.123)
4.80 (.189)
4.60 (.181)
-A3.70 (.145)
3.20 (.126)
16.00 (.630)
15.80 (.622)
2.80 (.110)
2.60 (.102)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
7.10 (.280)
6.70 (.263)
1.15 (.045)
MIN.
NOTES:
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982
1
2
3
2 CONTROLLING DIMENSION: INCH.
3.30 (.130)
3.10 (.122)
-B-
13.70 (.540)
13.50 (.530)
C
A
3X
1.40 (.055)
1.05 (.042)
0.90 (.035)
3X
0.70 (.028)
0.25 (.010)
3X
M A M
B
2.54 (.100)
2X
0.48 (.019)
0.44 (.017)
2.85 (.112)
2.65 (.104)
D
B
MINIMUM CREEPAGE
DISTANCE BETWEEN
A-B-C-D = 4.80 (.189)
EXAM PLE:
TO-220 Full-Pak Part Marking Information
T
W
L
A
IN
N
p
TO-220 Full-Pak package is not recommended for Surface Mount Application
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/04
12
www.irf.com