RICHTEK RT9134PC

RT9134
Preliminary
Rail-to-Rail Quad Operational Amplifier
General Description
Features
The RT9134 consists of low cost, high slew rates, singlesupply rail-to-rail input and output operation amplifiers.
The RT9134 contains four amplifiers in one package.
z
Rail-to-Rail Output Swing
z
Supply Voltage : 4.5V to 15V
Continuous Output Current : 35mA
Peak Output Current : 120mA
High Slew Rate : 12V/μ
μs
Unity-Gain Stable
RoHS Compliant and 100% Lead (Pb)-Free
The RT9134 has high slew rates (12V/μs), 35mA
continuous output current, 120mA peak output current and
offset voltage below 10mV. The RT9134 is ideal for Thin
Film Transistor Liquid Crystal Displays (TFT-LCD).
The RT9134 is available in TSSOP-14 and VQFN-16L 4x4
package and is specified for operation over the full −40°C
to +85°C temperature range.
z
z
z
z
z
Applications
z
z
z
Ordering Information
RT9134
TFT-LCD Gamma / VCOM Buffer
Portable Electronic Product
Communications Product
Pin Configurations
Package Type
QV : VQFN-16L 4x4 (V-Type)
C : TSSOP-14
NC
12
2
11
GND
3
10
17
4
9
`Suitable for use in SnPb or Pb-free soldering processes.
6
7
VINDVIND+
VSVINC+
8
VINC-
ments of IPC/JEDEC J-STD-020.
5
VOUTC
`RoHS compliant and compatible with the current require-
1
VINB-
Richtek Pb-free and Green products are :
16 15 14 13
VINAVINA+
VS+
VINB+
VOUTB
Note :
NC
Operating Temperature Range
P : Pb Free with Commercial Standard
G : Green (Halogen Free with Commercial Standard
VOUTA
VOUTD
(TOP VIEW)
`100% matte tin (Sn) plating.
VQFN-16L 4x4
Function Block Diagram
VOUTA
VINAVINA+
VOUTD
-
-
+
+
VS+
VINB+
VINB-
VINDVIND+
VOUTA
VINAVINA+
VS+
VINB+
VINBVOUTB
2
3
4
5
6
7
14
13
12
11
10
9
8
VOUTD
VINDVIND+
VSVINC+
VINCVOUTC
VS+
+
-
-
VOUTB
DS9134-04 August 2007
VINC+
VINC-
TSSOP-14
VOUTC
www.richtek.com
1
RT9134
Preliminary
Functional Pin Description
Pin No.
Pin Name
Pin Function
RT9134□C
RT9134PQV
1
15
VOUTA
Amplifier A Output.
2
1
VINA-
Amplifier A Inverting Input.
3
2
VINA+
Amplifier A Non-Inverting Input.
4
3
VS+
Positive Power Supply.
5
4
VINB+
Amplifier B Non-Inverting Input.
6
5
VINB-
Amplifier B Inverting Input.
7
6
VOUTB
Amplifier B Output.
8
7
VOUTC
Amplifier C Output.
9
8
VINC-
Amplifier C Inverting Input.
10
9
VINC+
Amplifier C Non-Inverting Input.
11
10
VS-
Negative Power Supply.
12
11
VIND+
Amplifier D Non-Inverting Input.
13
12
VIND-
Amplifier D Inverting Input.
14
14
VOUTD
Amplifier D Output.
--
16,
Exposed Pad (17)
GND
The exposed pad must be soldered to a large PCB and connected
to GND for maximum power dissipation.
Absolute Maximum Ratings
z
z
z
z
z
z
z
z
Supply Voltage --------------------------------------------------------------------------------------------------------- 17V
Power Dissipation, PD @ TA = 25°C
VQFN-16L 4x4 --------------------------------------------------------------------------------------------------------- 2315mW
TSSOP-14 --------------------------------------------------------------------------------------------------------------- 1250mW
Package Thermal Resistance (Note )
VQFN-16L 4x4, θJA --------------------------------------------------------------------------------------------------- 54°C/W
TSSOP-14, θJA --------------------------------------------------------------------------------------------------------- 100°C/W
Input Voltage ------------------------------------------------------------------------------------------------------------ −0.5V to Vs+0.5V
Differential Input Voltage --------------------------------------------------------------------------------------------- VS
Storage Temperature Range ---------------------------------------------------------------------------------------- −65°C to +150°C
Operating Temperature Range -------------------------------------------------------------------------------------- −40°C to +85°C
Junction Temperature Range ---------------------------------------------------------------------------------------- −65°C to +150°C
Note : θJA is measured in the natural convection at TA = 25°C on a high effective thermal conductivity test board (4-Layers,
2S2P) of JEDEC 51-7 thermal measurement standard.
www.richtek.com
2
DS9134-04 August 2007
RT9134
Preliminary
Electrical Characteristics
(VS+=+5V, VS- = -5V, RL = 10kΩ and CL = 10pF to 0V, TA =25°C, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
--
2
15
mV
Input Characteristics
Input Offset Voltage
VOS
VCM = 0
Average Offset Voltage Drift
ΔVOS/ΔT -40°C≦TA≦85°C
--
5
--
uV/°C
Input Bias Current
IB
--
2
50
nA
Input Impedance
RIN
--
1
--
GΩ
Input Capacitance
CIN
--
1.35
--
pF
Common-Mode Input Range
CMIR
-5.5
--
+5.5
V
VCM = 0
Common-Mode Rejection Ratio CMRR
For VIN from –5.5V to +5.5V
50
80
--
dB
Open-Loop Gain
AVOL
-4.5V≦VOUT≦+4.5V
75
95
--
dB
Output swing Low
VOL
IL = -5mA
--
-4.92
-4.85
V
Output swing High
VOH
I L = +5mA
4.85
4.92
--
V
IOC
--
±35
--
mA
IPC
--
±120
--
mA
Supply Voltage
VS
4.5
--
15
V
Power Supply Rejection Ratio
PSRR
60
70
--
dB
Supply Current/Amplifier
ISY
No Load
--
500
750
uA
Slew Rate(Note)
SR
-4.0V≦VOUT≦+4.0V, 20% to 80%
--
12
--
V/us
Setting to ±0.1% (AV=+1)
tS
(AV = +1), VOUT = 2V step
--
500
--
ns
-3dB Bandwidth
BW
RL = 10kΩ, CL = 10 pF
--
12
--
MHz
Gain-Bandwidth Product
GBWP
RL = 10kΩ, CL = 10 pF
--
5
--
MHz
Phase Margin
PM
RL = 10kΩ, CL = 10 pF
--
50
--
°
Channel Separation
CS
f = 5MHz
--
75
--
dB
Output Characteristics
Continuous
VCOM Buffer Output current
Peak
VCOM Buffer Output current
Power Supply
VS is moved from ±2.25V to ±7.75V
Dynamic Performance
Note: Slew rate is measured on rising and falling edges.
DS9134-04 August 2007
www.richtek.com
3
RT9134
Preliminary
(VS+ = +2.5V, VS− = −2.5V, RL = 10kΩ and CL = 10pF to 2.5V, TA =25°C, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
Input Characteristics
Input Offset Voltage
VOS
VCM = 2.5V
--
2
15
mV
Average Offset Voltage Drift
ΔVOS/ΔT
-40°C≦TA≦85°C
--
5
--
uV/°C
Input Bias Current
IB
VCM = 2.5V
--
2
50
nA
Input Impedance
RIN
--
1
--
GΩ
Input Capacitance
CIN
--
1.35
--
pF
Common-Mode Input Range
CMIR
-0.5
--
+5.5
V
Common-Mode Rejection Ratio CMRR
For VIN from –0.5V to +5.5V
45
65
--
dB
Open-Loop Gain
AVOL
0.5V≦VOUT≦+4.5V
75
95
--
dB
Output swing Low
VOL
IL = -5mA
--
−2.42
−2.35
V
Output swing High
VOH
IL = +5mA
2.35
2.42
--
V
IOC
--
±35
--
mA
IPC
--
±90
--
mA
50
70
--
dB
Output Characteristics
Continuous
VCOM Buffer Output current
Peak
VCOM Buffer Output current
Power Supply
Power Supply Rejection Ratio
PSRR
VS is moved from ±2.25V to ±7.75V
Supply Current/Amplifier
ISY
No Load
--
500
750
uA
Slew Rate(Note)
SR
-4.0V≦VOUT≦+4.0V, 20% to 80%
--
12
--
V/us
Setting to ±0.1% (AV = +1)
tS
(AV = +1), VOUT = 2V step
--
500
--
ns
-3dB Bandwidth
BW
RL = 10kΩ, CL =10 pF
--
12
--
MHz
Gain-Bandwidth Product
GBWP
RL = 10kΩ, CL =10 pF
--
5
--
MHz
Phase Margin
PM
RL = 10kΩ, CL =10 pF
--
50
--
°
Channel Separation
CS
f = 5MHz
--
75
--
dB
Dynamic Performance
Note: Slew rate is measured on rising and falling edges.
www.richtek.com
4
DS9134-04 August 2007
RT9134
Preliminary
Typical Operating Characteristics
Quescent Current vs. Supply Voltage
Quisient current vs. Temperature
0.52
0.56
VS = ±5V
0.54
0.5
Quisient current (mA)
Quescent Current (mA)
TA = 25°C
0.48
0.46
0.44
0.52
0.5
0.48
0.46
0.44
0.42
0.42
0.4
0.4
4
5
6
7
8
9
10
11
12
13
14
15
-50
-30
-10
Output High Voltage vs. Temperature
4.94
4.92
4.9
4.88
4.86
4.84
4.82
90
110 130 150
VS = ±5V
IOUT = −5mA
-4.885
-4.89
-4.895
-4.9
-4.905
-4.91
-4.915
-4.92
-4.925
4.8
-4.93
-50
-30
-10
10
30
50
70
90
110 130 150
-50
-30
-10
Temperature (°C)
Magnitude (Normalized) (dB)
12
11.5
11
10.5
10
9.5
9
-30
-10
10
30
50
70
Temperature (°C)
DS9134-04 August 2007
30
50
70
90
110 130 150
Frequency Response for Various RL
5
VS = ±5V
-50
10
Temperature (°C)
Slew Rate vs. Temperature
Slew Rate (V/us)
70
Output Low Voltage vs. Temperature
Output Low Voltage (V)
Output High Voltage (V)
4.96
12.5
50
-4.88
VS = ±5V
IOUT = 5mA
4.98
30
Temperature (°C)
Supply Voltage (V)
5
10
90
110 130 150
VS = ±5V
CL = 10pF
AV = 1
RL = 10kΩ
0
RL = 1kΩ
RL = 560Ω
-5
RL = 150Ω
-10
-15
100k
100000
1M
1000000
10M
10000000
100M
100000000
Frequency (Hz)
www.richtek.com
5
RT9134
Preliminary
Frequency Response for Various RL
10
PSRR vs. Frequency
80
VS = ±5V
RL = 10kΩ
AV = 1
PSRR+
60
PSRRCL = 12pF
0
CL = 50pF
CL = 1000pF
CL = 100pF
-10
-20
PSRR (dB)
Magnitude (Normalized) (dB)
20
40
20
0
-20
-30
100k
100000
VS = ±5V
TA = 25°C
-40
1M
1000000
10M
10000000
100M
100000000
100
1000
1k
10000
10k
100000
100k
1000000
1M
Frequency (Hz)
Frequency (Hz)
Slew Transient Response
Slew Transient Response
VS : ±5V
AV : 1
VS : ±5V
AV : 1
(1V/Div)
(2V/Div)
VOUT
V+
(1V/Div)
VOUT
(2V/Div)
V+
Time (250ns/Div)
Time (250ns/Div)
Small Signal Transient Response
Large Signal Transient Response
VS : ±5V
AV : 1
VS : ±7V
AV : 1
V+
V+
(100mV/Div)
(2V/Div)
(2V/Div)
VOUT
VOUT
(100mV/Div)
Time (1μs/Div)
www.richtek.com
6
Time (250ns/Div)
DS9134-04 August 2007
RT9134
Preliminary
Channel Separation vs. Frequency Response
CMRR vs. Frequency
-40
80
70
Channel Separation
-50
60
CMRR
50
40
30
20
10
1k
1000
10k
10000
100k
100000
Frequency (Hz)
DS9134-04 August 2007
-60
-70
-80
-90
VS = ±5V
TA = 25°C
0
100
100
Quad measured channel A to C.
VS : ±5V
AV : 1
1M
10M
1000000
10000000
-100
1000
10000
10k
100000
100k
1000000
1M
10000000
10M
Frequency Response (Hz)
www.richtek.com
7
RT9134
Preliminary
Applications Information
The RT9134 packaged in quad operational amplifiers has
high performance to drive large load for different application.
High slew rates, rail-to-rail input and output capability and
low power consumption are the features to make the
RT9134 ideal for LCD applications. The RT9134 also has
wide bandwidth and phase margin to drive a load of 10kΩ
and 10pF.
Power Dissipation
The maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junction to ambient. The maximum power dissipation can
be calculated by following formula :
PD(MAX) = ( TJ(MAX) - TA ) /θJA
Operating Voltage
Where
The RT9134 is specified with single supply voltage from
5V to 15V. According to the electrical characteristics, the
total supply voltage range is guaranteed from 4.5V to 15V.
To refer the typical operational curves can get stable
specifications in wide range of temperature and operating
voltage.
The output swing of the RT9134 typically extends to within
80mV of positive/negative supply rails with 5mA load
current source/sink. Decreasing the load current will get
output swing even closer to the supply rails. Figure 1
shows the rail-to-rail input and output waveforms in the
unit gain configuration without load current. The supply
rails are +/-5V. Applying an input 10Vp_p sinusoidal
waveform results in a 9.8Vp_p output voltage as shown in
Figure 1.
TJ(MAX): The maximum operation junction temperature
150°C
TA : The ambient temperature.
θJA : The junction to ambient thermal resistance.
The recommended operating condition of the RT9134 is
below 150°C the maximum junction temperature of the
die. The junction to ambient thermal resistance (θJA is
layout dependent) for VQFN-16L 4x4 package is 54°C/W
and TSSOP-14 package is 100°C /W on the standard
JEDEC 51-7 4-layers thermal test board. The maximum
power dissipation at TA = 25°C can be calculated by
following formula :
PD(MAX) = ( 150°C - 25°C ) / 54 = 2.315W fo rV QFN-16L
4x4 package
Input Voltage
(5V/Div)
PD(MAX) = ( 150°C - 25°C ) / 100 = 1.250W for TSSOP-14
package
For continuous operation, do not exceed absolute
maximum operation junction temperature 150°C. The
power dissipation definition for the RT9134 is as following:
Output Voltage
(5V/Div)
PD = (VS - VOUT) x ILoad
VS : the supply voltage
VOUT : the output voltage
ILoad : the output load current
Time (250μs/Div)
Figure 1. Operation with Rail-to-Rail Input and Output
www.richtek.com
8
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA. Figure 2 shows the power dissipation
derating curves of the RT9134 with different packages.
As the ambient temperature increases, the maximum
power dissipation decreases linearly to keep the junction
temperature below 150°C.
DS9134-04 August 2007
RT9134
Preliminary
Maximum Power Dissipation (mW)
2400
300k
4-Layers Board
2200
2000
8V
1800
3k
VQFN-16L 4x4
1600
1400
4V +
1200
1000
800
10
Measure
Current
10
10
10
10nF
10nF
10nF
10nF
TSSOP-14
600
400
10
200
0
0
15
30
45
60
75
90
VIN 0V to 8V
Square Wave
105 120 135 150
Ambient Temperature (°C)
Figure 3. V-com Test Circuit
An internal short-circuit protection circuit is implemented
to protect the device from output short circuit. The RT9134
limits the short circuit current to ±120mA if the output is
directly shorted to positive/negative supply rails. For
maximum reliability, the maximum continuous output
current more than ±35mA is not recommended.
Unused Amplifier
It is recommended to connect the unused amplifier as a
unit gain circuit. The negative input is directly connected
to the output and the positive input should be connected
to the ground.
Measure Current
(100mA/Div)
Short Circuit Condition
Input Square
(5V/Div)
Figure 2. Derating Curves for the RT9134 Package
Time (2.5μs/Div)
Figure 4. Scope Photo of the V-com Peak Current
LCD Panel Applications
The RT9134 is mainly designed for LCD gamma and
V-com buffer. OP Amplifier-C has 120mA instantaneous
source/sink peak current. To test the performance of the
RT9134 for LCD driving capability, the test circuit is to
simulate the V-com driver as shown Figure 3. Series
capacitors and resistors connected to the output of the
OP simulate the load of LCD panel. The 300Ω and 3kΩ
feedback resistors are used to improve the settling time.
This circuit is the worst case for a V-com buffer. Figure 4
shows the waveforms of the output peak current capability.
DS9134-04 August 2007
www.richtek.com
9
RT9134
Preliminary
Outline Dimension
D
SEE DETAIL A
D2
L
1
E
E2
e
b
A
A1
1
1
2
2
DETAIL A
Pin #1 ID and Tie Bar Mark Options
A3
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.800
1.000
0.031
0.039
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.250
0.380
0.010
0.015
D
3.950
4.050
0.156
0.159
D2
2.000
2.450
0.079
0.096
E
3.950
4.050
0.156
0.159
E2
2.000
2.450
0.079
0.096
e
L
0.650
0.500
0.026
0.600
0.020
0.024
V-Type 16L QFN 4x4 Package
www.richtek.com
10
DS9134-04 August 2007
RT9134
Preliminary
D
L
E1
E
e
A2
A
A1
b
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
1.000
1.200
0.039
0.047
A1
0.050
0.150
0.002
0.006
A2
0.800
1.060
0.031
0.042
b
0.190
0.300
0.007
0.012
D
4.900
5.100
0.193
0.201
e
0.650
0.026
E
6.200
6.600
0.244
0.260
E1
4.300
4.500
0.169
0.177
L
0.450
0.750
0.018
0.030
14-Lead TSSOP Plastic Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
8F, No. 137, Lane 235, Paochiao Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)89191466 Fax: (8862)89191465
Email: [email protected]
DS9134-04 August 2007
www.richtek.com
11