PD- 94853 IRFP460APbF SMPS MOSFET HEXFET® Power MOSFET Applications Switch Mode Power Supply ( SMPS ) l Uninterruptable Power Supply l High speed power switching l Lead-Free l Benefits Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current l Effective Coss specified ( See AN1001) VDSS Rds(on) max ID 500V 0.27Ω 20A l TO-247AC G D S Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw Max. 20 13 80 280 2.2 ± 30 3.8 -55 to + 150 Units A W W/°C V V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Typical SMPS Topologies: l l Full Bridge PFC Boost Notes through are on page 8 www.irf.com 1 11/18/03 IRFP460APbF Static @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units Conditions 500 ––– ––– V VGS = 0V, ID = 250µA ––– 0.61 ––– V/°C Reference to 25°C, ID = 1mA ––– ––– 0.27 Ω VGS = 10V, ID = 12A 2.0 ––– 4.0 V VDS = VGS, ID = 250µA ––– ––– 25 VDS = 500V, VGS = 0V µA ––– ––– 250 VDS = 400V, VGS = 0V, TJ = 125°C ––– ––– 100 VGS = 30V nA ––– ––– -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 11 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 18 55 45 39 3100 480 18 4430 130 140 Max. Units Conditions ––– S VDS = 50V, ID = 12A 105 ID = 20A 26 nC VDS = 400V 42 VGS = 10V, See Fig. 6 and 13 ––– VDD = 250V ––– ID = 20A ns ––– R G = 4.3Ω ––– R D = 13Ω,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 400V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 960 20 28 mJ A mJ Typ. Max. Units ––– 0.24 ––– 0.45 ––– 40 °C/W Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Diode Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 20 ––– ––– showing the A G integral reverse ––– ––– 80 S p-n junction diode. ––– ––– 1.8 V TJ = 25°C, IS = 20A, VGS = 0V ––– 480 710 ns TJ = 25°C, IF = 20A ––– 5.0 7.5 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFP460APbF 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 4.5V 20µs PULSE WIDTH TJ = 25 °C 0.1 0.1 1 10 10 4.5V 20µs PULSE WIDTH TJ = 150 ° C 1 100 1 Fig 1. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 3.0 TJ = 150 ° C 10 TJ = 25 ° C 1 V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 100 Fig 2. Typical Output Characteristics 100 0.1 4.0 10 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 9.0 20A ID = 19A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFP460APbF 100000 VGS , Gate-to-Source Voltage (V) 10000 C, Capacitance (pF) 20 V GS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = C gd Coss = Cds + C gd Ciss 1000 Coss 100 Crss 10 1 1 10 100 1000 20A ID = 19A VDS = 400V VDS = 250V VDS = 100V 16 12 8 4 0 A FOR TEST CIRCUIT SEE FIGURE 13 0 20 100 80 100 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) TJ = 150 ° C I D , Drain Current (A) ISD , Reverse Drain Current (A) 60 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 100 TJ = 25 ° C 1 10us 100us 10 1ms 0.1 0.2 V GS = 0 V 0.4 0.6 0.8 1.0 1.2 1.4 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 40 QG , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 1.6 1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFP460APbF 20 VGS ID , Drain Current (A) RD V DS 15 RG 10 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -VDD 10V Fig 10a. Switching Time Test Circuit 5 VDS 90% 0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 0.001 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP460APbF EAS , Single Pulse Avalanche Energy (mJ) 2400 15V TOP 2000 DRIVER L VDS BOTTOM ID 8.9A 13A 20A 1600 D.U.T RG + V - DD IAS 20V 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A 1200 800 400 0 25 50 75 100 125 150 Starting TJ , Junction Temperature( °C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS 620 QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF 600 580 560 .3µF D.U.T. + V - DS 540 0 VGS 4 8 12 16 20 I av , Avalanche Current (A) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 V DSav , Avalanche Voltage (V) 10 V Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current www.irf.com A IRFP460APbF Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + RG • • • • Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period D= - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS www.irf.com 7 IRFP460APbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) -D- 3.65 (.143) 3.55 (.140) 15.90 (.626) 15.30 (.602) -B- 0.25 (.010) M D B M -A- 2.50 (.089) 1.50 (.059) 4 5.50 (.217) 20.30 (.800) 19.70 (.775) 2X 1 2 5.30 (.209) 4.70 (.185) NOTES: 5.50 (.217) 4.50 (.177) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-247-AC. 3 -C- 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2X 5.45 (.215) 2X 4.30 (.170) 3.70 (.145) 0.80 (.031) 3X 0.40 (.016) 1.40 (.056) 3X 1.00 (.039) 0.25 (.010) M 2.60 (.102) 2.20 (.087) C A S 3.40 (.133) 3.00 (.118) LEAD ASSIGNMENTS Hexfet IGBT 1 -LEAD GateASSIGNMENTS 1 - Gate 1 - GATE2 - Collector 2 - Drain 2 - DRAIN 3 - Source 3 - Emitter 3 - SOURCE 4 - Drain 4 - DRAIN4 - Collector TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WIT H ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECT IFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H Notes: Repetitive rating; pulse width limited by Pulse width ≤ 300µs; duty cycle ≤ 2%. Starting TJ = 25°C, L = 4.3mH Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. ( See fig. 11 ) RG = 25Ω, IAS = 20A. (See Figure 12) as Coss while VDS is rising from 0 to 80% VDSS ISD ≤ 20A, di/dt ≤ 125A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/03 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/