PD - 95700 SMPS MOSFET IRFBC30APbF HEXFET® Power MOSFET Applications Switch Mode Power Supply (SMPS) l Uninterruptable Power Supply l High speed power switching l Lead-Free l Benefits Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current l Effective Coss specified (See AN 1001) VDSS Rds(on) max ID 600V 2.2Ω 3.6A l TO-220AB G DS Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw 3.6 2.3 14 74 0.69 ± 30 7.0 -55 to + 150 Units A W W/°C V V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Typical SMPS Topology: l Single transistor Flyback Notes through are on page 8 www.irf.com 1 9/10/04 IRFBC30APbF Static @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 600 ––– ––– 2.0 ––– ––– ––– ––– Typ. ––– 0.67 ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 2.2 Ω VGS = 10V, ID = 2.2A 4.5 V VDS = VGS, ID = 250µA 25 VDS = 600V, VGS = 0V µA 250 VDS = 480V, VGS = 0V, TJ = 125°C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 2.1 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 9.8 13 19 12 510 70 3.5 730 19 31 Max. Units Conditions ––– S VDS = 50V, ID = 2.2A 23 ID = 3.6A 5.4 nC VDS = 480V 11 VGS = 10V, See Fig. 6 and 13 ––– VDD = 300V ––– ID = 3.6A ns ––– RG = 12Ω ––– R D = 82Ω,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 480V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 480V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 290 3.6 7.4 mJ A mJ Typ. Max. Units ––– 0.50 ––– 1.7 ––– 62 °C/W Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Diode Characteristics IS ISM V SD t rr Q rr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 3.6 showing the A G integral reverse ––– ––– 14 S p-n junction diode. ––– ––– 1.6 V TJ = 25°C, IS = 3.6A, VGS = 0V ––– 400 600 ns TJ = 25°C, IF = 3.6A ––– 1.1 1.7 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFBC30APbF 100 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 TOP 1 0.1 4.5V 20µs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 4.5V 0.1 0.1 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 100 10 TJ = 150 ° C 1 TJ = 25 ° C 0.1 V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics VGS , Gate-to-Source Voltage (V) 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 0.01 4.0 20µs PULSE WIDTH TJ = 150 ° C 9.0 ID = 3.6A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFBC30APbF VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance(pF) 1000 Ciss 100 Coss 10 Crss 20 VGS , Gate-to-Source Voltage (V) 10000 10 100 VDS = 480V VDS = 300V VDS = 120V 16 12 8 4 1 1 ID = 3.6A 0 1000 FOR TEST CIRCUIT SEE FIGURE 13 0 4 16 20 24 100 100 OPERATION IN THIS AREA LIMITED BY RDS(on) ID , Drain Current (A) ISD , Reverse Drain Current (A) 12 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 TJ = 150° C TJ = 25 ° C 1 0.1 0.4 V GS = 0 V 0.6 0.8 1.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 8 QG , Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 1.2 10us 10 100us 1 0.1 1ms 10ms TC = 25 ° C TJ = 150 ° C Single Pulse 10 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFBC30APbF 4.0 RD V DS ID , Drain Current (A) VGS 3.0 RG 2.0 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -VDD 10V Fig 10a. Switching Time Test Circuit 1.0 VDS 90% 0.0 25 50 75 100 125 TC , Case Temperature ( ° C) 150 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 PDM 0.05 0.02 0.01 0.01 0.00001 t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A EAS , Single Pulse Avalanche Energy (mJ) IRFBC30APbF 700 TOP 600 BOTTOM ID 1.6A 2.3A 3.6A 500 400 300 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature( ° C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS V DSav , Avalanche Voltage ( V ) 740 720 700 680 660 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 640 0.012d. Typical 1.0 2.0 3.0 Voltage 4.0 Fig Drain-to-Source IAVAvalanche , Avalanche Current ( A) Vs. Current www.irf.com IRFBC30APbF Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + RG • • • • Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period D= - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS www.irf.com 7 IRFBC30APbF TO-220AB Package Outline 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) L E A D A S S IG N M E N T S 1.15 (.045) MIN 1 2 4- D R A IN 14.09 (.555) 13.47 (.530) 4- C O LLEC TO R 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IG B T s, C oP A C K 1 - GATE 1 - G A T2E- DRAIN 1- G A TE - SOURCE 2 - C O L L E C T O R 2 - D R A3I N 3 - S O U4R- CDRAIN E 3 - E M IT T E R HEXFET 3 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E X AM P L E : T H I S I S A N IR F 1 0 1 0 L OT COD E 1789 AS S E MB L E D O N W W 19, 1 997 I N T H E A S S E M B L Y L I N E "C " N o te : " P " in a s s e m b ly lin e p o s it io n in d ic a te s " L e a d -F re e " IN T E R N A T I O N A L R E C T IF IE R LOGO AS S E M B L Y LOT CODE P AR T N U MB E R D AT E C O D E YE AR 7 = 1997 W E E K 19 L IN E C Notes: Repetitive rating; pulse width limited by Pulse width ≤ 300µs; duty cycle ≤ 2%. Starting TJ = 25°C, L = 41mH Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. ( See fig. 11 ) RG = 25Ω, IAS = 3.6A. (See Figure 12) as Coss while VDS is rising from 0 to 80% VDSS ISD ≤ 3.6A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04 8 www.irf.com