IRF IR21303C

Data Sheet No. PD60223 rev.A
IR21303C
3-PHASE BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 11.1 to 20V
Undervoltage lockout for all channels
Over-current shutdown turns off all six drivers
Independent half-bridge drivers
Matched propagation delay for all channels
2.5V logic compatible
Outputs out of phase with inputs
Cross-conduction prevention logic
Product Summary
VOFFSET
600V max.
IO+/-
200 mA / 420 mA
VOUT
11.1 - 20V
ton/off (typ.)
675 & 425 ns
Deadtime (typ.)
600 ns
Description
The IR21303C is a high voltage, high speed power MOSFET and IGBT driver with three independent high and
low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction.
Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip
function which terminates all six outputs is also derived from this resistor. An open drain signal
indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse
current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify
use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in
the high side configuration which operate up to 600 volts.
Typical Connection
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer
to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR21303C
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.
Symbol
V B1,2,3
V S1,2,3
V HO1,2,3
VCC
VSS
V LO1,2,3
VIN
VFLT
VCAO
VCAdVS/dt
TJ
Definition
High Side Floating Supply Voltage
High Side Floating Offset Voltage
High Side Floating Output Voltage
Low Side and Logic Fixed Supply Voltage
Logic Ground
Low Side Output Voltage
Logic Input Voltage ( , & ITRIP)
Output Voltage
Operational Amplifier Output Voltage
Operational Amplifier Inverting Input Voltage
Allowable Offset Supply Voltage Transient
Junction Temperature
Min.
Max.
Units
-0.3
625
VB1,2,3 - 25 VB1,2,3 + 0.3
VS1,2,3 - 0.3 VB1,2,3 + 0.3
-0.3
25
VCC - 25
VCC + 0.3
-0.3
VCC + 0.3
VSS - 0.3
(VSS + 15) or
(VCC + 0.3)
whichever is
lower
VSS - 0.3
VCC + 0.3
VSS - 0.3
VCC + 0.3
VSS - 0.3
VCC + 0.3
—
50
—
150
V
V/ns
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested
with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.
Symbol
V B1,2,3
V S1,2,3
V HO1,2,3
VCC
VSS
VLO1,2,3
VIN
VFLT
VCAO
VCATA
Definition
High Side Floating Supply Voltage
High Side Floating Offset Voltage
High Side Floating Output Voltage
Low Side and Logic Fixed Supply Voltage
Logic Ground
Low Side Output Voltage
Logic Input Voltage ( , & ITRIP)
Output Voltage
Operational Amplifier Output Voltage
Operational Amplifier Inverting Input Voltage
Ambient Temperature
Min.
Max.
Units
VS1,2,3 + 13.3 VS1,2,3 + 20
Note 1
600
V S1,2,3
V B1,2,3
13.3
20
-5
5
0
VCC
VSS
VSS + 5
VSS
VCC
VSS
VSS + 5
VSS
VSS + 5
-40
125
V
°C
Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS).
(Please refer to the Design Tip DT97-3 for more details).
Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.
2
www.irf.com
IR21303C
Dynamic Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic
electrical characteristics are defined in Figures 3 through 5.
Symbol
ton
toff
tr
tf
titrip
tbl
tflt
tflt,in
t fltclr
DT
SR+
SR-
Definition
Turn-On Propagation Delay
Turn-Off Propagation Delay
Turn-On Rise Time
Turn-Off Fall Time
ITRIP to Output Shutdown Prop. Delay
ITRIP Blanking Time
ITRIP to Indication Delay
Input Filter Time (All Six Inputs)
& to Clear Time
Deadtime
Operational Amplifier Slew Rate (+)
Operational Amplifier Slew Rate (-)
Figure Min. Typ. Max. Units Test Conditions
11
12
13
14
15
—
16
—
17
—
18
19
450
300
—
—
400
—
335
—
6.0
300
4.4
2.4
675
425
80
35
660
400
590
310
9.0
600
6.2
3.2
850
550
125
55
920
—
845
—
12.0
900
—
—
VIN = 0 & 5V
VS1,2,3 = 0 to 600V
ns
ns
VIN, VITRIP = 0 & 5V
VITRIP = 1V
VIN, VITRIP = 0 & 5V
VIN = 0 & 5V
VIN, VITRIP = 0 & 5V
VIN = 0 & 5V
V/µs
NOTE: For high side PWM, HIN pulse width must be ≥ 1.5µsec
Static Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all six logic input leads: & . The VO and IO parameters
are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
Symbol
VIH
V IL
VIT,TH+
VOH
VOL
ILK
I QBS
IQCC
IIN+
IINIITRIP+
IITRIPVBSUV+
VBSUVVCCUV+
VCCUVRon,FLT
www.irf.com
Definition
Logic “0” Input Voltage (OUT = LO)
Logic “1” Input Voltage (OUT = HI)
ITRIP Input Positive Going Threshold
High Level Output Voltage, VBIAS - VO
Low Level Output Voltage, VO
Offset Supply Leakage Current
Quiescent VBS Supply Current
Quiescent VCC Supply Current
Logic “1” Input Bias Current (OUT = HI)
Logic “0” Input Bias Current (OUT = LO)
“High” ITRIP Bias Current
“Low” ITRIP Bias Current
VBS Supply Undervoltage Positive Going
Threshold
VBS Supply Undervoltage Negative Going
Threshold
VCC Supply Undervoltage Positive Going
Threshold
VCC Supply Undervoltage Negative Going
Threshold
FAULT Low On-Resistance
Figure Min. Typ. Max. Units Test Conditions
20
21
—
22
23
24
25
26
27
28
29
30
—
2.2
—
436.8
—
—
—
—
—
—
—
—
—
10.8
—
—
480
—
—
—
15
3.0
450
225
75
—
12
—
0.8
529.2
100
100
50
30
4.0
650
400
150
100
13.2
—
9
10
11
—
10.8
12
13.2
—
9.0
10
11
31
—
55
75
V
mV
µA
mA
µA
nA
VIN = 0V, IO = 0A
VIN = 5V, IO = 0A
VB = VS = 600V
VIN = 0V or 5V
VIN = 0V or 5V
VIN = 0V
VIN = 5V
ITRIP = 5V
ITRIP = 0V
V
Ω
3
IR21303C
Static Electrical Characteristics -- Continued
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all six logic input leads: & . The VO and IO parameters
are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
IO+
Output High Short Circuit Pulsed Current
32
200
250
—
IO-
Output Low Short Circuit Pulsed Current
33
420
500
—
mA
VOS
ICACMRR
PSRR
Operational Amplifer Input Offset Voltage
CA- Input Bais Current
Op. Amp. Common Mode Rejection Ratio
Op. Amp. Power Supply Rejection Ratio
—
34
35
36
-14
—
60
55
—
—
80
75
14
4.0
—
—
mV
nA
VOH,AMP
VOL,AMP
ISRC,AMP
Op. Amp. High Level Output Voltage
Op. Amp. Low Level Output Voltage
Op. Amp. Output Source Current
37
38
39
5.0
—
2.3
5.2
—
4.0
5.4
20
—
V
mV
I SINK,AMP
Op. Amp. Output Sink Current
40
1.0
2.1
—
Operational Amplifier Output High Short
Circuit Current
Operational Amplifier Output Low Short
Circuit Current
41
—
4.5
6.5
42
—
3.2
5.2
dB
mA
IO+,AMP
IO-,AMP
VO = 0V, VIN = 0V
PW ≤ 10 µs
VO = 15V, VIN = 5V
PW ≤ 10 µs
VS0 = VCA- = 0.2V
VCA- = 2.5V
VS0=VCA-=0.1V & 5V
VS0 = VCA- = 0.2V
VCC = 14V & 20V
VCA- = 0V, VS0 = 1V
VCA- = 1V, VS0 = 0V
VCA- = 0V, VS0 = 1V
VCAO = 4V
VCA- = 1V, VS0 = 0V
VCAO = 2V
VCA- = 0V, VS0 = 5V
VCAO = 0V
VCA- = 5V, VS0 = 0V
VCAO = 5V
Lead Definitions
Symbol
Description
HIN1,2,3
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase
LIN1,2,3
Logic inputs for low side gate driver output (LO1,2,3), out of phase
FAULT
Indicates over-current or undervoltage lockout (low side) has occurred, negative logic
VCC
Low side and logic fixed supply
ITRIP
Input for over-current shutdown
CAO
Output of current amplifier
CA-
Negative input of current amplifier
VSS
Logic ground
VB1,2,3
High side floating supplies
HO1,2,3
High side gate drive outputs
VS1,2,3
High side floating supply returns
LO1,2,3
Low side gate drive outputs
VS0
Low side return and positive input of current amplifier
4
www.irf.com
IR21303C
Pad Assignments
Pin #
1
2
3
4
5
6
7
8
9
10
11
12
13
www.irf.com
Vcc1
HIN 1
HIN 2
HIN 3
LIN 1
LIN 2
LIN 3
FAULT
ITRIP
CAO
CAVSS
VS0
Pin #
14
15
16
18
19
20
22
23
24
26
27
28
LO 3
LO 2
LO 1
VS 3
HO 3
VB 3
VS 2
HO 2
VB 2
VS 1
HO 1
VB 1
5
IR21303C
Functional Block Diagram
CLEAR
6
www.irf.com
IR21303C
ITRIP
<50 V/ns
HO1,2,3
LO1,2,3
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test
Circuit
50%
50%
50%
50%
ton
tr
toff
tf
LO1,2,3
90%
50%
HO1,2,3
HO1,2,3
LO1,2,3
DT
10%
10%
DT
Figure 3. Deadtime Waveform Definitions
www.irf.com
90%
50%
Figure 4. Input/Output Switching Time Waveform
Definitions
7
IR21303C
50%
50%
ITRIP
50%
50%
LO1,2,3
50%
tflt
tfltclr
titrip
Figure 5. Overcurrent Shutdown Switching Time
Waveform Definitions
HIN/LIN
on off
t in,fil
on
off
U
t in,fil
on off
high
HO/LO
low
Figure 5.5 Input Filter Function
VCC
VS0
+
CA-
-
CAO
VSS
VSS
Figure 6. Diagnostic Feedback Operational Amplifier Circuit
8
www.irf.com
IR21303C
15V
VCC
3V
CA-
0V
VS0
15V
VS0
+
CAO
-
VSS
CA-
50 pF
0.2V
∆T2
3V
CAO
VSS
+
∆T1
VCC
+
20k
1k
90%
∆V
10%
0V
∆V
SR+ =
SR- =
∆T1
∆V
VOS =
∆T2
Figure 7. Operational Amplifier Slew Rate
Measurement
VCAO
21
- 0.2V
Figure 8. Operational Amplifier Input Offset Voltage
Measurement
VCC
VS0
15V
VCC
CAVS0
CA-
-
VSS
+
VSS
0.2V
Measure VCAO1 at VS0 = 0.1V
VCAO2 at VS0 = 5V
(VCAO1-0.1V) - (VCAO2-5V)
4.9V
(dB)
Figure 9. Operational Amplifier Common Mode
Rejection Ratio Measurements
www.irf.com
CAO
-
CAO
+
CMRR = -20*LOG
+
20k
1k
Measure VCAO1 at VCC = 10V
VCAO2 at VCC = 20V
PSRR = -20*LOG
VCAO1 - VCAO2
(10V) (21)
Figure 10. Operational Amplifier Power Supply
Rejection Ratio Measurements
9
1.50
1.50
1.20
1.20
Turn-On Delay Time (µs)
Turn-On Delay Time (µs)
IR21303C
Max.
0.90
Typ.
0.60
Min.
0.30
0.90
Max.
Typ.
0.60
Min.
0.30
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
14
Temperature (°C)
16
18
20
VBIAS Supply Voltage (V)
Figure 11A. Turn-On Time vs. Temperature
Figure 11B. Turn-On Time vs. Supply Voltage
1.50
1.00
Max
1.20
0.80
Turn-Off Delay Time (µs)
Typ.
Turn-On Time (µs)
0.90
0.60
0.30
0.60
0.40
Max.
Typ.
Min.
0.20
0.00
0.00
0
1
2
3
4
5
6
-50
-25
0
1.00
1.50
0.80
1.20
Max.
Typ.
0.40
Min.
75
100
125
0.90
Max
0.60
Typ
0.30
0.20
Min.
0.00
0.00
10
12
14
16
18
VBIAS Supply Voltage (V)
Figure 12B. Turn-Off Time vs. Supply Voltage
10
50
Figure 12A. Turn-Off Time vs. Temperature
Turn-Off Time (µs)
Turn-Off Delay Time (µs)
Figure 11C. Turn-On Time vs. Voltage
0.60
25
Temperature (°C)
Input Voltage (V)
20
0
1
2
3
4
5
6
Input Voltage (V)
Figure 12C. Turn-Off Time vs. Input Voltage
www.irf.com
250
250
200
200
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
IR21303C
150
Max.
100
Typ.
50
Max.
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
125
10
12
125
125
100
100
75
50
Max.
Typ.
18
20
75
Max.
50
Typ.
25
0
0
-50
-25
0
25
50
75
100
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Temperature (°C)
Figure 14A. Turn-Off Fall Time vs. Temperature
Figure 14B. Turn-Off Fall Time vs. Voltage
1.50
1.50
ITRIP to Output Shutdown Delay Time (µs)
ITRIP to Output Shutdown Delay Time (µs)
16
Figure 13B. Turn-On Rise Time vs. Voltage
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
Figure 13A. Turn-On Rise Time vs. Temperature
25
14
VBIAS Supply Voltage (V)
Temperature (°C)
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
0.00
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 15A. ITRIP to Output Shutdown Time vs.
Temperature
www.irf.com
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 15B. ITRIP to Output Shutdown Time vs.
Voltage
11
IR21303C
1.50
ITRIP to FAULT Indication Delay Time (µs)
ITRIP to FAULT Indication Delay Time (µs)
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
0.00
1.20
0.90
Max.
Typ.
0.60
Min.
0.30
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
25.0
25.0
20.0
20.0
15.0
Max.
Typ.
Min.
5.0
20
Max.
10.0
Typ.
Min.
5.0
0.0
-50
-25
0
25
50
75
100
10
125
12
14
16
18
20
VCC Supply Voltage (V)
Temperature (°C)
Figure 17B. , to Clear
Time vs. Voltage
Figure 17A. & to Clear Time
vs. Temperature
10.0
10.0
8.0
8.0
Amplifier Slew Rate + (V/µs)
Amplifier Slew Rate + (V/µs)
18
15.0
0.0
Typ.
6.0
Min.
4.0
2.0
Typ.
6.0
Min.
4.0
2.0
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 18A. Amplifier Slew Rate (+) vs. Temperature
12
16
Figure 16B. ITRIP to Indication Time vs.
Voltage
LIN1,2,3 to FAULT Clear Time (µs)
LIN1,2,3 to FAULT Clear Time (µs)
Figure 16A. ITRIP to Indication Time vs.
Temperature
10.0
14
VCC Supply Voltage (V)
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 18B. Amplifier Slew Rate (+) vs. Voltage
www.irf.com
IR21303C
5.00
5.00
4.00
Typ.
Amplifier Slew Rate - (V/µs)
Amplifier Slew Rate - (V/µs)
4.00
3.00
Min.
2.00
Typ.
3.00
Min.
2.00
1.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
10
125
12
16
18
20
Figure 19B. Amplifier Slew Rate (-) vs. Voltage
5.00
5.00
4.00
4.00
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
Figure 19A. Amplifier Slew Rate (-) vs. Temperature
3.00
Min.
2.00
3.00
Min.
2.00
1.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 20B. Logic “0” Input Threshold vs. Voltage
5.00
4.00
4.00
Logic "1" Input Threshold (V)
5.00
3.00
2.00
1.00
14
VCC Supply Voltage (V)
Figure 20A. Logic “0” Input Threshold vs. Temperature
Logic "1" Input Threshold (V)
14
VCC Supply Voltage (V)
Temperature (°C)
3.00
2.00
1.00
Max.
0.00
Max.
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 21A. Logic “1” Input Threshold vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 21B. Logic “1” Input Threshold vs. Voltage
13
1.00
1.00
0.80
0.80
High Level Output Voltage (V)
High Level Output Voltage (V)
IR21303C
0.60
0.40
0.20
0.60
0.40
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
16
18
20
Figure 22B. High Level Output vs. Voltage
1.00
1.00
0.80
0.80
Low Level Output Voltage (V)
Low Level Output Voltage (V)
Figure 22A. High Level Output vs. Temperature
0.60
0.40
0.20
0.60
0.40
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Temperature (°C)
Figure 23A. Low Level Output vs. Temperature
Figure 23B. Low Level Output vs. Voltage
500
500
400
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
14
VBIAS Supply Voltage (V)
Temperature (°C)
300
200
100
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 24A. Offset Supply Leakage Current
vs. Temperature
14
125
0
100
200
300
400
500
600
VB Boost Voltage (V)
Figure 24B. Offset Supply Leakage Current vs.
Voltage
www.irf.com
100
100
80
80
VBS Supply Current (µA)
VBS Supply Current (µA)
IR21303C
60
40
60
40
Max.
20
20
Max.
Typ.
0
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
10.0
10.0
8.0
8.0
6.0
4.0
Max.
Typ.
18
20
6.0
4.0
Max.
2.0
0.0
Typ.
0.0
-50
-25
0
25
50
75
100
125
10
12
Figure 26A. VCC Supply Current vs. Temperature
16
18
20
Figure 26B. VCC Supply Current vs. Voltage
1.25
1.00
1.00
Logic "1" Input Bias Current (mA)
1.25
0.75
0.50
14
VCC Supply Voltage (V)
Temperature (°C)
Logic "1" Input Bias Current (mA)
16
Figure 25B. VBS Supply Current vs. Voltage
VCC Supply Current (mA)
VCC Supply Current (mA)
Figure 25A. VBS Supply Current vs. Temperature
2.0
14
VBS Floating Supply Voltage (V)
Temperature (°C)
Max.
Typ.
0.25
0.00
0.75
0.50
Max.
Typ.
0.25
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 27A. Logic “1” Input Current vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 27A. Logic “1” Input Current vs. Voltage
15
1.25
1.25
1.00
1.00
Logic "0" Input Bias Current (mA)
Logic "0" Input Bias Current (mA)
IR21303C
0.75
0.50
Max.
0.25
0.75
0.50
Max.
0.25
Typ.
Typ.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
500
500
400
400
300
Max.
100
20
200
Max.
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Supply Voltage (V)
Figure 29A. “High” ITRIP Current vs. Temperature
Figure 29B. “High” ITRIP Current vs. Voltage
250
500
200
400
"Low" ITRIP Bias Current (µA)
"Low" ITRIP Bias Current (nA)
18
300
100
Typ.
0
150
100
Max.
50
300
200
100
0
Max.
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 30A. “Low” ITRIP Current vs. Temperature
16
16
Figure 28B. Logic “0” Input Current vs. Voltage
"High" ITRIP Bias Current (µA)
"High" ITRIP Bias Current (µA)
Figure 28A. Logic “0” Input Current vs. Temperature
200
14
VCC Supply Voltage (V)
Temperature (°C)
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 30B. “Low” ITRIP Current vs. Voltage
www.irf.com
250
250
200
200
FAULT- Low On Resistance (ohms)
FAULT- Low On Resistance (ohms)
IR21303C
150
100
Max.
50
150
100
Max.
Typ.
50
Typ.
0
0
-50
-25
0
25
50
75
100
125
10
12
500
500
400
400
Typ.
Min.
200
20
200
Typ.
Min.
0
0
-50
-25
0
25
50
75
100
10
125
12
14
16
18
20
VBIAS Supply Voltage (V)
Temperature (°C)
Figure 32A. Output Source Current vs. Temperature
Figure 32B. Output Source Current vs. Voltage
750
750
625
Typ.
Output Sink Current (mA)
Output Sink Current (mA)
18
300
100
100
600
16
Figure 31B. Low On Resistance vs. Voltage
Output Source Current (mA)
Output Source Current (mA)
Figure 31A. Low On Resistance vs.
Temperature
300
14
VCC Supply Voltage (V)
Temperature (°C)
Min.
450
300
150
500
375
Typ.
250
Min.
125
0
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 33A. Output Sink Current vs. Temperature
www.irf.com
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 33B. Output Sink Current vs. Voltage
17
10.0
10.0
8.0
8.0
CA- Input Bias Current (nA)
CA- Input Bias Current (nA)
IR21303C
6.0
Max.
4.0
2.0
6.0
Max.
4.0
2.0
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
Figure 34A. CA- Input Current vs. Temperature
80
Typ.
60
Min.
80
Amplifier CMRR (dB)
Amplifier CMRR (dB)
18
20
100
40
20
60
Typ.
Min.
40
20
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Supply Voltage (V)
Figure 35A. Amplifier CMRR vs. Temperature
Figure 35B. Amplifier CMRR vs. Voltage
100
100
80
80
Typ.
60
Min.
Amplifier PSRR (dB)
Typ.
Amplifier PSRR (dB)
16
Figure 34B. CA- Input Current vs. Voltage
100
60
Min.
40
20
40
20
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 36A. Amplifier PSRR vs. Temperature
18
14
VCC Supply Voltage (V)
Temperature (°C)
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 36B. Amplifier PSRR vs. Voltage
www.irf.com
IR21303C
6.00
Amplifier High Level Output Voltage (V)
Amplifier High Level Output Voltage (V)
6.00
5.70
5.40
Max.
Typ.
5.10
Min.
4.80
4.50
5.70
5.40
Max.
Typ.
5.10
Min.
4.80
4.50
-50
-25
0
25
50
75
100
125
10
12
Figure 37A. Amplifier High Level Output vs.
Temperature
18
20
100
Amplifier Low Level Output Voltage (mV)
Amplifier Low Level Output Voltage (mV)
16
Figure 37B. Amplifier High Level Output vs. Voltage
100
80
60
40
Max.
20
80
60
40
Max.
20
0
0
-50
-25
0
25
50
75
100
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Temperature (°C)
Figure 38A. Amplifier Low Level Output vs.
Temperature
Figure 38B. Amplifier Low Level Output vs. Voltage
10.0
10.0
8.0
Amplifier Output Source Current (mA)
Amplifier Output Source Current (mA)
14
VCC Supply Voltage (V)
Temperature (°C)
6.0
Typ.
4.0
Min.
2.0
8.0
6.0
4.0
2.0
Typ.
Min.
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 39A. Amplifier Output Source Current vs.
Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 39B. Amplifier Output Source Current vs.
Voltage
19
5.00
5.00
4.00
4.00
Amplifier Output Sink Current (mA)
Amplifier Output Sink Current (mA)
IR21303C
3.00
Typ.
2.00
Min.
1.00
3.00
2.00
Typ.
Min.
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Figure 40A. Amplifier Output Sink Current vs.
Temperature
18
20
15.0
Output High Short Circuit Current (mA)
Output High Short Circuit Current (mA)
16
Figure 40B. Amplifier Output Sink Current vs.
Voltage
15.0
12.0
9.0
Max.
6.0
14
VCC Supply Voltage (V)
Temperature (°C)
Typ.
3.0
12.0
9.0
6.0
Max.
3.0
Typ.
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
Figure 41A. Amplifier Output High Short Circuit
Current vs. Temperature
18
20
15.0
Output Low Short Circuit Current (mA)
Output Low Short Circuit Current (mA)
16
Figure 41B. Amplifier Output High Short Circuit
Current vs. Voltage
15.0
12.0
9.0
6.0
14
VCC Supply Voltage (V)
Temperature (°C)
Max.
Typ.
3.0
12.0
9.0
6.0
Max.
3.0
Typ.
0.0
0.0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 42A. Amplifier Output Low Short Circuit
Current vs. Temperature
20
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 42B. Amplifier Output Low Short Circuit
Current vs. Voltage
www.irf.com
IR21303C
0.0
VS Offset Supply Voltage (V)
-3.0
Typ.
-6.0
-9.0
-12.0
-15.0
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 4-3. Maximum VS Negative Offset vs. VBS Supply Voltage
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
10/5/2004
www.irf.com
21