Data Sheet No. PD60223 rev.A IR21303C 3-PHASE BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 11.1 to 20V Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent half-bridge drivers Matched propagation delay for all channels 2.5V logic compatible Outputs out of phase with inputs Cross-conduction prevention logic Product Summary VOFFSET 600V max. IO+/- 200 mA / 420 mA VOUT 11.1 - 20V ton/off (typ.) 675 & 425 ns Deadtime (typ.) 600 ns Description The IR21303C is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. An open drain signal indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts. Typical Connection (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR21303C Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 50 through 53. Symbol V B1,2,3 V S1,2,3 V HO1,2,3 VCC VSS V LO1,2,3 VIN VFLT VCAO VCAdVS/dt TJ Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage ( , & ITRIP) Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Allowable Offset Supply Voltage Transient Junction Temperature Min. Max. Units -0.3 625 VB1,2,3 - 25 VB1,2,3 + 0.3 VS1,2,3 - 0.3 VB1,2,3 + 0.3 -0.3 25 VCC - 25 VCC + 0.3 -0.3 VCC + 0.3 VSS - 0.3 (VSS + 15) or (VCC + 0.3) whichever is lower VSS - 0.3 VCC + 0.3 VSS - 0.3 VCC + 0.3 VSS - 0.3 VCC + 0.3 — 50 — 150 V V/ns °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54. Symbol V B1,2,3 V S1,2,3 V HO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCATA Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage ( , & ITRIP) Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Ambient Temperature Min. Max. Units VS1,2,3 + 13.3 VS1,2,3 + 20 Note 1 600 V S1,2,3 V B1,2,3 13.3 20 -5 5 0 VCC VSS VSS + 5 VSS VCC VSS VSS + 5 VSS VSS + 5 -40 125 V °C Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS). (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode. 2 www.irf.com IR21303C Dynamic Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 3 through 5. Symbol ton toff tr tf titrip tbl tflt tflt,in t fltclr DT SR+ SR- Definition Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time ITRIP to Output Shutdown Prop. Delay ITRIP Blanking Time ITRIP to Indication Delay Input Filter Time (All Six Inputs) & to Clear Time Deadtime Operational Amplifier Slew Rate (+) Operational Amplifier Slew Rate (-) Figure Min. Typ. Max. Units Test Conditions 11 12 13 14 15 — 16 — 17 — 18 19 450 300 — — 400 — 335 — 6.0 300 4.4 2.4 675 425 80 35 660 400 590 310 9.0 600 6.2 3.2 850 550 125 55 920 — 845 — 12.0 900 — — VIN = 0 & 5V VS1,2,3 = 0 to 600V ns ns VIN, VITRIP = 0 & 5V VITRIP = 1V VIN, VITRIP = 0 & 5V VIN = 0 & 5V VIN, VITRIP = 0 & 5V VIN = 0 & 5V V/µs NOTE: For high side PWM, HIN pulse width must be ≥ 1.5µsec Static Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: & . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3. Symbol VIH V IL VIT,TH+ VOH VOL ILK I QBS IQCC IIN+ IINIITRIP+ IITRIPVBSUV+ VBSUVVCCUV+ VCCUVRon,FLT www.irf.com Definition Logic “0” Input Voltage (OUT = LO) Logic “1” Input Voltage (OUT = HI) ITRIP Input Positive Going Threshold High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic “1” Input Bias Current (OUT = HI) Logic “0” Input Bias Current (OUT = LO) “High” ITRIP Bias Current “Low” ITRIP Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold FAULT Low On-Resistance Figure Min. Typ. Max. Units Test Conditions 20 21 — 22 23 24 25 26 27 28 29 30 — 2.2 — 436.8 — — — — — — — — — 10.8 — — 480 — — — 15 3.0 450 225 75 — 12 — 0.8 529.2 100 100 50 30 4.0 650 400 150 100 13.2 — 9 10 11 — 10.8 12 13.2 — 9.0 10 11 31 — 55 75 V mV µA mA µA nA VIN = 0V, IO = 0A VIN = 5V, IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 0V VIN = 5V ITRIP = 5V ITRIP = 0V V Ω 3 IR21303C Static Electrical Characteristics -- Continued VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: & . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3. Symbol Definition Figure Min. Typ. Max. Units Test Conditions IO+ Output High Short Circuit Pulsed Current 32 200 250 — IO- Output Low Short Circuit Pulsed Current 33 420 500 — mA VOS ICACMRR PSRR Operational Amplifer Input Offset Voltage CA- Input Bais Current Op. Amp. Common Mode Rejection Ratio Op. Amp. Power Supply Rejection Ratio — 34 35 36 -14 — 60 55 — — 80 75 14 4.0 — — mV nA VOH,AMP VOL,AMP ISRC,AMP Op. Amp. High Level Output Voltage Op. Amp. Low Level Output Voltage Op. Amp. Output Source Current 37 38 39 5.0 — 2.3 5.2 — 4.0 5.4 20 — V mV I SINK,AMP Op. Amp. Output Sink Current 40 1.0 2.1 — Operational Amplifier Output High Short Circuit Current Operational Amplifier Output Low Short Circuit Current 41 — 4.5 6.5 42 — 3.2 5.2 dB mA IO+,AMP IO-,AMP VO = 0V, VIN = 0V PW ≤ 10 µs VO = 15V, VIN = 5V PW ≤ 10 µs VS0 = VCA- = 0.2V VCA- = 2.5V VS0=VCA-=0.1V & 5V VS0 = VCA- = 0.2V VCC = 14V & 20V VCA- = 0V, VS0 = 1V VCA- = 1V, VS0 = 0V VCA- = 0V, VS0 = 1V VCAO = 4V VCA- = 1V, VS0 = 0V VCAO = 2V VCA- = 0V, VS0 = 5V VCAO = 0V VCA- = 5V, VS0 = 0V VCAO = 5V Lead Definitions Symbol Description HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase LIN1,2,3 Logic inputs for low side gate driver output (LO1,2,3), out of phase FAULT Indicates over-current or undervoltage lockout (low side) has occurred, negative logic VCC Low side and logic fixed supply ITRIP Input for over-current shutdown CAO Output of current amplifier CA- Negative input of current amplifier VSS Logic ground VB1,2,3 High side floating supplies HO1,2,3 High side gate drive outputs VS1,2,3 High side floating supply returns LO1,2,3 Low side gate drive outputs VS0 Low side return and positive input of current amplifier 4 www.irf.com IR21303C Pad Assignments Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 www.irf.com Vcc1 HIN 1 HIN 2 HIN 3 LIN 1 LIN 2 LIN 3 FAULT ITRIP CAO CAVSS VS0 Pin # 14 15 16 18 19 20 22 23 24 26 27 28 LO 3 LO 2 LO 1 VS 3 HO 3 VB 3 VS 2 HO 2 VB 2 VS 1 HO 1 VB 1 5 IR21303C Functional Block Diagram CLEAR 6 www.irf.com IR21303C ITRIP <50 V/ns HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit 50% 50% 50% 50% ton tr toff tf LO1,2,3 90% 50% HO1,2,3 HO1,2,3 LO1,2,3 DT 10% 10% DT Figure 3. Deadtime Waveform Definitions www.irf.com 90% 50% Figure 4. Input/Output Switching Time Waveform Definitions 7 IR21303C 50% 50% ITRIP 50% 50% LO1,2,3 50% tflt tfltclr titrip Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions HIN/LIN on off t in,fil on off U t in,fil on off high HO/LO low Figure 5.5 Input Filter Function VCC VS0 + CA- - CAO VSS VSS Figure 6. Diagnostic Feedback Operational Amplifier Circuit 8 www.irf.com IR21303C 15V VCC 3V CA- 0V VS0 15V VS0 + CAO - VSS CA- 50 pF 0.2V ∆T2 3V CAO VSS + ∆T1 VCC + 20k 1k 90% ∆V 10% 0V ∆V SR+ = SR- = ∆T1 ∆V VOS = ∆T2 Figure 7. Operational Amplifier Slew Rate Measurement VCAO 21 - 0.2V Figure 8. Operational Amplifier Input Offset Voltage Measurement VCC VS0 15V VCC CAVS0 CA- - VSS + VSS 0.2V Measure VCAO1 at VS0 = 0.1V VCAO2 at VS0 = 5V (VCAO1-0.1V) - (VCAO2-5V) 4.9V (dB) Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements www.irf.com CAO - CAO + CMRR = -20*LOG + 20k 1k Measure VCAO1 at VCC = 10V VCAO2 at VCC = 20V PSRR = -20*LOG VCAO1 - VCAO2 (10V) (21) Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements 9 1.50 1.50 1.20 1.20 Turn-On Delay Time (µs) Turn-On Delay Time (µs) IR21303C Max. 0.90 Typ. 0.60 Min. 0.30 0.90 Max. Typ. 0.60 Min. 0.30 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 14 Temperature (°C) 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-On Time vs. Temperature Figure 11B. Turn-On Time vs. Supply Voltage 1.50 1.00 Max 1.20 0.80 Turn-Off Delay Time (µs) Typ. Turn-On Time (µs) 0.90 0.60 0.30 0.60 0.40 Max. Typ. Min. 0.20 0.00 0.00 0 1 2 3 4 5 6 -50 -25 0 1.00 1.50 0.80 1.20 Max. Typ. 0.40 Min. 75 100 125 0.90 Max 0.60 Typ 0.30 0.20 Min. 0.00 0.00 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 12B. Turn-Off Time vs. Supply Voltage 10 50 Figure 12A. Turn-Off Time vs. Temperature Turn-Off Time (µs) Turn-Off Delay Time (µs) Figure 11C. Turn-On Time vs. Voltage 0.60 25 Temperature (°C) Input Voltage (V) 20 0 1 2 3 4 5 6 Input Voltage (V) Figure 12C. Turn-Off Time vs. Input Voltage www.irf.com 250 250 200 200 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IR21303C 150 Max. 100 Typ. 50 Max. 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 125 10 12 125 125 100 100 75 50 Max. Typ. 18 20 75 Max. 50 Typ. 25 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Temperature (°C) Figure 14A. Turn-Off Fall Time vs. Temperature Figure 14B. Turn-Off Fall Time vs. Voltage 1.50 1.50 ITRIP to Output Shutdown Delay Time (µs) ITRIP to Output Shutdown Delay Time (µs) 16 Figure 13B. Turn-On Rise Time vs. Voltage Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) Figure 13A. Turn-On Rise Time vs. Temperature 25 14 VBIAS Supply Voltage (V) Temperature (°C) 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 15A. ITRIP to Output Shutdown Time vs. Temperature www.irf.com 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 15B. ITRIP to Output Shutdown Time vs. Voltage 11 IR21303C 1.50 ITRIP to FAULT Indication Delay Time (µs) ITRIP to FAULT Indication Delay Time (µs) 1.50 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 1.20 0.90 Max. Typ. 0.60 Min. 0.30 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 25.0 25.0 20.0 20.0 15.0 Max. Typ. Min. 5.0 20 Max. 10.0 Typ. Min. 5.0 0.0 -50 -25 0 25 50 75 100 10 125 12 14 16 18 20 VCC Supply Voltage (V) Temperature (°C) Figure 17B. , to Clear Time vs. Voltage Figure 17A. & to Clear Time vs. Temperature 10.0 10.0 8.0 8.0 Amplifier Slew Rate + (V/µs) Amplifier Slew Rate + (V/µs) 18 15.0 0.0 Typ. 6.0 Min. 4.0 2.0 Typ. 6.0 Min. 4.0 2.0 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 18A. Amplifier Slew Rate (+) vs. Temperature 12 16 Figure 16B. ITRIP to Indication Time vs. Voltage LIN1,2,3 to FAULT Clear Time (µs) LIN1,2,3 to FAULT Clear Time (µs) Figure 16A. ITRIP to Indication Time vs. Temperature 10.0 14 VCC Supply Voltage (V) 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 18B. Amplifier Slew Rate (+) vs. Voltage www.irf.com IR21303C 5.00 5.00 4.00 Typ. Amplifier Slew Rate - (V/µs) Amplifier Slew Rate - (V/µs) 4.00 3.00 Min. 2.00 Typ. 3.00 Min. 2.00 1.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 10 125 12 16 18 20 Figure 19B. Amplifier Slew Rate (-) vs. Voltage 5.00 5.00 4.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) Figure 19A. Amplifier Slew Rate (-) vs. Temperature 3.00 Min. 2.00 3.00 Min. 2.00 1.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 20B. Logic “0” Input Threshold vs. Voltage 5.00 4.00 4.00 Logic "1" Input Threshold (V) 5.00 3.00 2.00 1.00 14 VCC Supply Voltage (V) Figure 20A. Logic “0” Input Threshold vs. Temperature Logic "1" Input Threshold (V) 14 VCC Supply Voltage (V) Temperature (°C) 3.00 2.00 1.00 Max. 0.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21A. Logic “1” Input Threshold vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 21B. Logic “1” Input Threshold vs. Voltage 13 1.00 1.00 0.80 0.80 High Level Output Voltage (V) High Level Output Voltage (V) IR21303C 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 16 18 20 Figure 22B. High Level Output vs. Voltage 1.00 1.00 0.80 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) Figure 22A. High Level Output vs. Temperature 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Temperature (°C) Figure 23A. Low Level Output vs. Temperature Figure 23B. Low Level Output vs. Voltage 500 500 400 400 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) 14 VBIAS Supply Voltage (V) Temperature (°C) 300 200 100 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 24A. Offset Supply Leakage Current vs. Temperature 14 125 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 24B. Offset Supply Leakage Current vs. Voltage www.irf.com 100 100 80 80 VBS Supply Current (µA) VBS Supply Current (µA) IR21303C 60 40 60 40 Max. 20 20 Max. Typ. 0 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 10.0 10.0 8.0 8.0 6.0 4.0 Max. Typ. 18 20 6.0 4.0 Max. 2.0 0.0 Typ. 0.0 -50 -25 0 25 50 75 100 125 10 12 Figure 26A. VCC Supply Current vs. Temperature 16 18 20 Figure 26B. VCC Supply Current vs. Voltage 1.25 1.00 1.00 Logic "1" Input Bias Current (mA) 1.25 0.75 0.50 14 VCC Supply Voltage (V) Temperature (°C) Logic "1" Input Bias Current (mA) 16 Figure 25B. VBS Supply Current vs. Voltage VCC Supply Current (mA) VCC Supply Current (mA) Figure 25A. VBS Supply Current vs. Temperature 2.0 14 VBS Floating Supply Voltage (V) Temperature (°C) Max. Typ. 0.25 0.00 0.75 0.50 Max. Typ. 0.25 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 27A. Logic “1” Input Current vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 27A. Logic “1” Input Current vs. Voltage 15 1.25 1.25 1.00 1.00 Logic "0" Input Bias Current (mA) Logic "0" Input Bias Current (mA) IR21303C 0.75 0.50 Max. 0.25 0.75 0.50 Max. 0.25 Typ. Typ. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 500 500 400 400 300 Max. 100 20 200 Max. Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Supply Voltage (V) Figure 29A. “High” ITRIP Current vs. Temperature Figure 29B. “High” ITRIP Current vs. Voltage 250 500 200 400 "Low" ITRIP Bias Current (µA) "Low" ITRIP Bias Current (nA) 18 300 100 Typ. 0 150 100 Max. 50 300 200 100 0 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 30A. “Low” ITRIP Current vs. Temperature 16 16 Figure 28B. Logic “0” Input Current vs. Voltage "High" ITRIP Bias Current (µA) "High" ITRIP Bias Current (µA) Figure 28A. Logic “0” Input Current vs. Temperature 200 14 VCC Supply Voltage (V) Temperature (°C) 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 30B. “Low” ITRIP Current vs. Voltage www.irf.com 250 250 200 200 FAULT- Low On Resistance (ohms) FAULT- Low On Resistance (ohms) IR21303C 150 100 Max. 50 150 100 Max. Typ. 50 Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 500 500 400 400 Typ. Min. 200 20 200 Typ. Min. 0 0 -50 -25 0 25 50 75 100 10 125 12 14 16 18 20 VBIAS Supply Voltage (V) Temperature (°C) Figure 32A. Output Source Current vs. Temperature Figure 32B. Output Source Current vs. Voltage 750 750 625 Typ. Output Sink Current (mA) Output Sink Current (mA) 18 300 100 100 600 16 Figure 31B. Low On Resistance vs. Voltage Output Source Current (mA) Output Source Current (mA) Figure 31A. Low On Resistance vs. Temperature 300 14 VCC Supply Voltage (V) Temperature (°C) Min. 450 300 150 500 375 Typ. 250 Min. 125 0 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 33A. Output Sink Current vs. Temperature www.irf.com 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 33B. Output Sink Current vs. Voltage 17 10.0 10.0 8.0 8.0 CA- Input Bias Current (nA) CA- Input Bias Current (nA) IR21303C 6.0 Max. 4.0 2.0 6.0 Max. 4.0 2.0 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Figure 34A. CA- Input Current vs. Temperature 80 Typ. 60 Min. 80 Amplifier CMRR (dB) Amplifier CMRR (dB) 18 20 100 40 20 60 Typ. Min. 40 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Supply Voltage (V) Figure 35A. Amplifier CMRR vs. Temperature Figure 35B. Amplifier CMRR vs. Voltage 100 100 80 80 Typ. 60 Min. Amplifier PSRR (dB) Typ. Amplifier PSRR (dB) 16 Figure 34B. CA- Input Current vs. Voltage 100 60 Min. 40 20 40 20 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 36A. Amplifier PSRR vs. Temperature 18 14 VCC Supply Voltage (V) Temperature (°C) 125 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 36B. Amplifier PSRR vs. Voltage www.irf.com IR21303C 6.00 Amplifier High Level Output Voltage (V) Amplifier High Level Output Voltage (V) 6.00 5.70 5.40 Max. Typ. 5.10 Min. 4.80 4.50 5.70 5.40 Max. Typ. 5.10 Min. 4.80 4.50 -50 -25 0 25 50 75 100 125 10 12 Figure 37A. Amplifier High Level Output vs. Temperature 18 20 100 Amplifier Low Level Output Voltage (mV) Amplifier Low Level Output Voltage (mV) 16 Figure 37B. Amplifier High Level Output vs. Voltage 100 80 60 40 Max. 20 80 60 40 Max. 20 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VCC Supply Voltage (V) Temperature (°C) Figure 38A. Amplifier Low Level Output vs. Temperature Figure 38B. Amplifier Low Level Output vs. Voltage 10.0 10.0 8.0 Amplifier Output Source Current (mA) Amplifier Output Source Current (mA) 14 VCC Supply Voltage (V) Temperature (°C) 6.0 Typ. 4.0 Min. 2.0 8.0 6.0 4.0 2.0 Typ. Min. 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 39A. Amplifier Output Source Current vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 39B. Amplifier Output Source Current vs. Voltage 19 5.00 5.00 4.00 4.00 Amplifier Output Sink Current (mA) Amplifier Output Sink Current (mA) IR21303C 3.00 Typ. 2.00 Min. 1.00 3.00 2.00 Typ. Min. 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Figure 40A. Amplifier Output Sink Current vs. Temperature 18 20 15.0 Output High Short Circuit Current (mA) Output High Short Circuit Current (mA) 16 Figure 40B. Amplifier Output Sink Current vs. Voltage 15.0 12.0 9.0 Max. 6.0 14 VCC Supply Voltage (V) Temperature (°C) Typ. 3.0 12.0 9.0 6.0 Max. 3.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Figure 41A. Amplifier Output High Short Circuit Current vs. Temperature 18 20 15.0 Output Low Short Circuit Current (mA) Output Low Short Circuit Current (mA) 16 Figure 41B. Amplifier Output High Short Circuit Current vs. Voltage 15.0 12.0 9.0 6.0 14 VCC Supply Voltage (V) Temperature (°C) Max. Typ. 3.0 12.0 9.0 6.0 Max. 3.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 42A. Amplifier Output Low Short Circuit Current vs. Temperature 20 125 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 42B. Amplifier Output Low Short Circuit Current vs. Voltage www.irf.com IR21303C 0.0 VS Offset Supply Voltage (V) -3.0 Typ. -6.0 -9.0 -12.0 -15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 4-3. Maximum VS Negative Offset vs. VBS Supply Voltage WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web Site http://www.irf.com Data and specifications subject to change without notice. 10/5/2004 www.irf.com 21