IRF IRFP450APBF

PD -95054
SMPS MOSFET
IRFP450APbF
HEXFET® Power MOSFET
Applications
l Switch Mode Power Supply ( SMPS )
l Uninterruptable Power Supply
l High speed power switching
l Lead-Free
Benefits
l Low Gate Charge Qg results in Simple
Drive Requirement
l Improved Gate, Avalanche and Dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche Voltage and Current
l Effective Coss Specified ( See AN 1001)
VDSS
Rds(on) max
ID
500V
0.40Ω
14A
TO-247AC
G DS
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torqe, 6-32 or M3 screw
14
8.7
56
190
1.5
± 30
4.1
-55 to + 150
Units
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Typical SMPS Topologies:
l
l
l
Two Transistor Forward
Half Bridge, Full Bridge
PFC Boost
Notes 
through … are on page 8
www.irf.com
1
2/26/04
IRFP450APbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
500
–––
–––
2.0
–––
–––
–––
–––
Typ.
–––
0.58
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA†
0.40
Ω
VGS = 10V, ID = 8.4A „
4.0
V
VDS = VGS, ID = 250µA
25
VDS = 500V, VGS = 0V
µA
250
VDS = 400V, VGS = 0V, TJ = 125°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
7.8
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
15
36
35
29
2038
307
10
2859
81
96
Max. Units
Conditions
–––
S
VDS = 50V, ID = 8.4A
64
ID = 14A
16
nC VDS = 400V
26
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 250V
–––
I
D = 14A
ns
–––
RG = 6.2Ω
–––
R D = 17Ω,See Fig. 10 „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 400V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 400V …
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
760
14
19
mJ
A
mJ
Typ.
Max.
Units
–––
0.24
0.65
–––
40
°C/W
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Diode Characteristics
IS
I SM
VSD
trr
Q rr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
14
––– –––
showing the
A
G
integral reverse
––– –––
56
S
p-n junction diode.
––– ––– 1.4
V
TJ = 25°C, IS = 14A, VGS = 0V „
––– 487 731
ns
TJ = 25°C, IF = 14A
––– 3.9 5.8
µC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFP450APbF
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
I D, Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
10
1
4.5V
0.1
20µs PULSE WIDTH
TJ = 25 °C
0.01
0.1
1
10
10
4.5V
1
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.0
TJ = 150 ° C
10
TJ = 25 ° C
1
V DS = 50V
20µs PULSE WIDTH
7.0
8.0
9.0
10.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
100
Fig 2. Typical Output Characteristics
100
6.0
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
5.0
20µs PULSE WIDTH
TJ = 150 °C
0.1
0.1
100
VDS , Drain-to-Source Voltage (V)
0.1
4.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
TOP
14A
ID = 13A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFP450APbF
100000
VGS , Gate-to-Source Voltage (V)
10000
C, Capacitance (pF)
20
V GS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + C gd
Ciss
1000
Coss
100
10
Crss
1
1
10
100
1000
ID = 14A
13A
16
VDS = 400V
VDS = 250V
VDS = 100V
12
8
4
A
0
FOR TEST CIRCUIT
SEE FIGURE 13
0
15
30
45
60
75
QG , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
100
100
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
10us
I D , Drain Current (A)
TJ = 150 ° C
10
TJ = 25 ° C
1
0.1
0.2
V GS = 0 V
0.4
0.6
0.8
1.0
1.2
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1.4
100us
10
1ms
1
TC = 25 °C
TJ = 150 ° C
Single Pulse
10
10ms
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFP450APbF
14
RD
VDS
ID , Drain Current (A)
12
VGS
10
8
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
6
Fig 10a. Switching Time Test Circuit
4
VDS
2
0
D.U.T.
RG
90%
25
50
75
100
125
150
TC , Case Temperature ( °C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
10%
VGS
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.00001
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP450APbF
DRIVER
L
VDS
+
V
- DD
IAS
20V
0.01Ω
tp
TOP
BOTTOM
1200
D.U.T
RG
EAS , Single Pulse Avalanche Energy (mJ)
1600
15V
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
A
ID
6.3A
8.9A
14A
800
400
0
25
50
75
100
125
150
Starting TJ , Junction Temperature( ° C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
640
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
V DSav , Avalanche Voltage (V)
10 V
620
600
580
560
+
V
- DS
540
0
VGS
4
6
8
10
12
14
I av , Avalanche Current (A)
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
2
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
www.irf.com
A
IRFP450APbF
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

RG
•
•
•
•
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D=
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFP450APbF
TO-247AC Package Outline
-D-
3.65 (.143)
3.55 (.140)
15.90 (.626)
15.30 (.602)
-B-
0.25 (.010) M D B M
-A-
5.50 (.217)
20.30 (.800)
19.70 (.775)
2X
1
2
5.30 (.209)
4.70 (.185)
2.50 (.089)
1.50 (.059)
4
NOTES:
5.50 (.217)
4.50 (.177)
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE
TO-247-AC.
3
-C-
14.80 (.583)
14.20 (.559)
4.30 (.170)
3.70 (.145)
2.40 (.094)
2.00 (.079)
2X
5.45 (.215)
0.80 (.031)
3X 0.40 (.016)
1.40 (.056)
3X 1.00 (.039)
0.25 (.010) M
2.60 (.102)
2.20 (.087)
C A S
3.40 (.133)
3.00 (.118)
2X
LEAD ASSIGNMENTS
IGBT
Hexfet
1 - Gate
1 -LEAD
GateASSIGNMENTS
1 - GATE2 - Collector
2 - Drain
2 - DRAIN
3 - Emitter
3 - Source
3 - SOURCE
4 - Drain
4 - DRAIN4 - Collector
TO-247AC Part Marking InformaEXAMPLE: THIS IS AN IRFPE30
WIT H AS SEMBLY
LOT CODE 5657
ASS EMBLED ON WW 35, 2000
IN T HE ASS EMBLY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
INTERNATIONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
IRFPE30
56
035H
57
DAT E CODE
YEAR 0 = 2000
WEEK 35
LINE H
Notes:
 Repetitive rating; pulse width limited by
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
‚ Starting TJ = 25°C, L =7.8mH
… Coss eff. is a fixed capacitance that gives the same charging time
max. junction temperature. ( See fig. 11 )
RG = 25Ω, IAS = 14A. (See Figure 12)
as Coss while VDS is rising from 0 to 80% VDSS
ƒ ISD ≤ 14A, di/dt ≤ 130A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/04
8
www.irf.com