IRF IRF730

PD - 91902A
IRF730A
SMPS MOSFET
HEXFET® Power MOSFET
Applications
l Switch Mode Power Supply (SMPS)
l Uninterruptable Power Supply
l High speed power switching
Benefits
Low Gate Charge Qg results in Simple
Drive Requirement
l Improved Gate, Avalanche and dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche Voltage and Current
l Effective Coss Specified (See AN1001)
VDSS
Rds(on) max
ID
400V
1.0Ω
5.5A
l
TO-220AB
G DS
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torqe, 6-32 or M3 screw
5.5
3.5
22
74
0.6
± 30
4.6
-55 to + 150
Units
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Typical SMPS Topologies:
l
l
Single Transistor Flyback Xfmr. Reset
Single Transistor Forward Xfmr. Reset
(Both US Line input only).
www.irf.com
1
5/8/00
IRF730A
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Drain-to-Source Breakdown Voltage
400
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
–––
RDS(on)
Static Drain-to-Source On-Resistance –––
VGS(th)
Gate Threshold Voltage
2.0
–––
IDSS
Drain-to-Source Leakage Current
–––
Gate-to-Source Forward Leakage
–––
IGSS
Gate-to-Source Reverse Leakage
–––
V(BR)DSS
Typ.
–––
0.5
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
–––
V/°C Reference to 25°C, ID = 1mA
1.0
Ω
VGS = 10V, ID = 3.3A „
4.5
V
VDS = VGS, ID = 250µA
25
VDS = 400V, VGS = 0V
µA
250
VDS = 320V, VGS = 0V, TJ = 125°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
3.1
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
10
22
20
16
600
103
4.0
890
30
45
Max. Units
Conditions
–––
S
VDS = 50V, ID = 3.3A
22
ID = 3.5A
5.8
nC VDS = 320V
9.3
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 200V
–––
ID = 3.5A
ns
–––
RG = 12Ω
–––
RD = 57Ω,See Fig. 10 „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 320V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 320V …
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
290
5.5
7.4
mJ
A
mJ
Typ.
Max.
Units
–––
0.50
–––
1.70
–––
62
°C/W
62
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Diode Characteristics
IS
I SM
VSD
t rr
Q rr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 5.5
showing the
A
G
integral reverse
––– –––
22
S
p-n junction diode.
––– ––– 1.6
V
TJ = 25°C, IS = 5.5A, VGS = 0V „
––– 370 550
ns
TJ = 25°C, IF = 3.5A
––– 1.6 2.4
µC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF730A
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
10
1
0.1
4.5V
10
1
4.5V
0.1
20µs PULSE WIDTH
TJ = 25 °C
0.01
0.1
1
10
20µs PULSE WIDTH
TJ = 150 °C
0.01
0.1
100
1
10
100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.5
10
R DS(on) , Drain-to-Source On Resistance
(Normalized)
100
I D , Drain-to-Source Current (A)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
TOP
TJ = 150 ° C
TJ = 25 ° C
1
0.1
4.0
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
9.0
10.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5.9A
ID = 5.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF730A
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1000
Ciss
Coss
100
10
Crss
1
ID = 5.5
5.9A
16
VDS = 320V
VDS = 200V
VDS = 80V
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
1
10
100
0
1000
5
10
15
20
25
QG , Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
100
OPERATION IN THIS AREA LIMITED
BY RDS(on)
10us
10
TJ = 150 ° C
TJ = 25 ° C
1
0.1
0.4
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
C, Capacitance(pF)
10000
20
VGS, Gate-to-Source Voltage (V)
100000
V GS = 0 V
0.6
0.8
1.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10
100us
1ms
1
10ms
0.1
1.2
TC = 25 °C
TJ = 150 °C
Single Pulse
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF730A
6.0
VGS
5.0
I D , Drain Current (A)
RD
V DS
D.U.T.
RG
+
-V DD
4.0
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
3.0
2.0
Fig 10a. Switching Time Test Circuit
1.0
VDS
90%
0.0
25
50
75
100
125
150
TC , Case Temperature ( °C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
10%
VGS
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
PDM
0.1
0.05
t1
0.02
0.01
0.01
0.00001
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF730A
700
D R IV E R
L
VDS
D .U .T
RG
+
V
- DD
IA S
20V
EAS , Single Pulse Avalanche Energy (mJ)
1 5V
A
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
TOP
600
BOTTOM
ID
2.5A
3.5A
5.5A
500
400
300
200
100
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
IAS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
610
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
600
590
580
570
560
550
540
VGS
0.0
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
V DSav , Avalanche Voltage ( V )
QGS
1.0
2.0
3.0
4.0
5.0
6.0
IAV , Avalanche Current ( A)
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
www.irf.com
IRF730A
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
D=
Period
+
-
V DD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRF730A
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
3.78 (.149)
3.54 (.139)
-A -
-B 4.69 (.185)
4.20 (.165)
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
1.15 (.045)
MIN
1
2
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
3X
LE AD A S SIG NME NT S
1 - GA TE
2 - DR A IN
3 - S OU RCE
4 - DR A IN
3
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
2.54 (.100)
2X
N OT ES :
1 DIMEN S IONING & T OLE R AN CIN G PE R A NS I Y14.5M, 1982.
2 CO NT RO LLING D IMEN S ION : IN CH
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
3 OUT LINE C ONF O RMS T O JED EC O UT LIN E TO -220A B.
4 HE A TS IN K & LE A D ME AS UR E MEN TS D O NO T INC LU DE B U RRS .
Part Marking Information
TO-220AB
E X A M P L E : T H IS IS A N IR F 1 0 1 0
W IT H A S S E M B L Y
LOT CODE 9B1M
A
IN T E R N A T IO N A L
R E C T IF IE R
LOGO
ASSEMBLY
LOT CO DE
PART NUMBER
IR F 1 0 1 0
9246
9B
1M
D ATE C ODE
(Y Y W W )
Y Y = YE A R
W W = W EEK
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 19mH
RG = 25Ω, IAS = 5.5A. (See Figure 12)
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
ƒ ISD ≤ 5.5A, di/dt ≤ 90A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645
8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 5/00
8
www.irf.com