IRF IRG4PC50WPBF

PD - 94858
IRG4PC50WPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Designed expressly for Switch-Mode Power
Supply and PFC (power factor correction)
applications
• Industry-benchmark switching losses improve
efficiency of all power supply topologies
• 50% reduction of Eoff parameter
• Low IGBT conduction losses
• Latest-generation IGBT design and construction
offers tighter parameters distribution, exceptional
reliability
• Lead-Free
C
VCES = 600V
VCE(on) max. = 2.30V
G
@VGE = 15V, IC = 27A
E
n-channel
Benefits
• Lower switching losses allow more cost-effective
operation than power MOSFETs up to 150 kHz
("hard switched" mode)
• Of particular benefit to single-ended converters and
boost PFC topologies 150W and higher
• Low conduction losses and minimal minority-carrier
recombination make these an excellent option for
resonant mode switching as well (up to >300 kHz)
TO-247AC
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
600
55
27
220
220
± 20
170
200
78
-55 to + 150
V
A
V
mJ
W
300 (0.063 in. (1.6mm from case )
10 lbf•in (1.1N•m)
°C
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
0.24
–––
6 (0.21)
0.64
–––
40
–––
Units
°C/W
g (oz)
1
11/26/03
IRG4PC50WPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
V(BR)CES
∆V(BR)CES/∆TJ
VCE(ON)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
IGES
Parameter
Min. Typ. Max. Units
Conditions
Collector-to-Emitter Breakdown Voltage
600
—
—
V
VGE = 0V, IC = 250µA
Emitter-to-Collector Breakdown Voltage „ 18
—
—
V
VGE = 0V, IC = 1.0A
Temperature Coeff. of Breakdown Voltage — 0.41 —
V/°C VGE = 0V, IC = 5.0mA
— 1.93 2.3
IC = 27A
VGE = 15V
Collector-to-Emitter Saturation Voltage
— 2.25 —
IC = 55A
See Fig.2, 5
V
— 1.71 —
IC = 27A , TJ = 150°C
Gate Threshold Voltage
3.0
—
6.0
VCE = VGE, IC = 250µA
Temperature Coeff. of Threshold Voltage
—
-11
— mV/°C VCE = VGE, IC = 1.0mA
Forward Transconductance …
27
41
—
S
VCE = 100 V, IC = 27A
—
—
250
VGE = 0V, VCE = 600V
Zero Gate Voltage Collector Current
µA
—
—
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
—
— 5000
VGE = 0V, VCE = 600V, TJ = 150°C
Gate-to-Emitter Leakage Current
—
— ±100
nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
t d(on)
tr
td(off)
tf
Eon
Eoff
Ets
t d(on)
tr
t d(off)
tf
E ts
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
180 270
IC = 27A
24
36
nC
VCC = 400V
See Fig.8
63
95
VGE = 15V
46
—
33
—
TJ = 25°C
ns
120 180
IC = 27A, VCC = 480V
57
86
VGE = 15V, RG = 5.0Ω
0.08 —
Energy losses include "tail"
0.32 —
mJ See Fig. 9, 10, 14
0.40 0.5
31
—
TJ = 150°C,
43
—
IC = 27A, VCC = 480V
ns
210 —
VGE = 15V, RG = 5.0Ω
62
—
Energy losses include "tail"
1.14 —
mJ See Fig. 10,11, 14
13
—
nH
Measured 5mm from package
3700 —
VGE = 0V
260 —
pF
VCC = 30V
See Fig. 7
68
—
ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω,
(See fig. 13a)
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
… Pulse width 5.0µs, single shot.
ƒ Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4PC50WPbF
100
For both:
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
80
Load Current ( A )
Power Dissipation = 40W
Clamp voltage:
80% of rated
60
Square wave:
60% of rated
voltage
40
20
Ideal diodes
A
0
0.1
1
10
100
1000
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 °C
TJ = 25 °C
10
1
V GE = 15V
20µs PULSE WIDTH
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C, Collector-to-Emitter Current (A)
1000
1000
100
TJ = 150 °C
TJ = 25 °C
10
1
V CC = 50V
5µs PULSE WIDTH
5
6
7
8
9
10
11
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PC50WPbF
3.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
60
50
40
30
20
10
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
IC = 54 A
2.0
IC = 27 A
IC =13.5 A
1.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
TC , Case Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PC50WPbF
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
8000
6000
Cies
4000
Coes
2000
Cres
0
1
10
16
12
8
4
0
100
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
V CC = 480V
V GE = 15V
TJ = 25 °C
I C = 27A
1.0
0
10
20
30
40
GateResistance
Resistance ((Ohm)
Ω)
RGRG, ,Gate
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
80
120
160
200
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
2.0
0.0
0
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
3.0
VCC = 400V
I C = 27A
50
RG = Ohm
5.0Ω
VGE = 15V
VCC = 480V
IC = 54 A
IC = 27 A
1
IC = 13.5 A
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PC50WPbF
RG
TJ
VCC
VGE
1000
= Ohm
5.0Ω
= 150 ° C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
3.0
2.0
100
1.0
0.0
0
10
20
30
40
50
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
VGE = 20V
T J = 125 oC
60
10
1
SAFE OPERATING AREA
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4PC50WPbF
L
D.U.T.
VC *
50V
RL =
0 - 480V
1000V
c
480V
4 X I C@25°C
480µF
960V
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
D.U.T.
VC
Test Circuit
50V
1000V
c
Fig. 14a - Switching Loss
d
e
* Driver same type
as D.U.T., VC = 480V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
I C 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4PC50WPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
-D-
3.65 (.143)
3.55 (.140)
15.90 (.626)
15.30 (.602)
-B-
-A-
0.25 (.010) M D B M
2.50 (.089)
1.50 (.059)
4
5.50 (.217)
20.30 (.800)
19.70 (.775)
2X
1
2
5.30 (.209)
4.70 (.185)
NOTES:
5.50 (.217)
4.50 (.177)
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE
TO-247-AC.
3
-C-
14.80 (.583)
14.20 (.559)
2.40 (.094)
2.00 (.079)
2X
5.45 (.215)
2X
4.30 (.170)
3.70 (.145)
0.80 (.031)
3X 0.40 (.016)
1.40 (.056)
3X 1.00 (.039)
0.25 (.010) M
2.60 (.102)
2.20 (.087)
C A S
3.40 (.133)
3.00 (.118)
LEAD ASSIGNMENTS
Hexfet
IGBT
1 -LEAD
GateASSIGNMENTS
1 - Gate
1
GATE
2 - Drain
2 - Collector
2 - DRAIN
3 - Source
3 - Emitter
3 - SOURCE
4 - Drain
4 - DRAIN4 - Collector
TO-247AC Part Marking Information
EXAMPLE: T HIS IS AN IRFPE30
WIT H ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2000
IN THE AS SEMBLY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
INT ERNATIONAL
RECT IFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
IRFPE30
56
035H
57
DAT E CODE
YEAR 0 = 2000
WEEK 35
LINE H
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/03
8
www.irf.com