PD - 91710 IRG4PF50W INSULATED GATE BIPOLAR TRANSISTOR Features C • Optimized for use in Welding and Switch-Mode Power Supply applications • Industry benchmark switching losses improve efficiency of all power supply topologies • 50% reduction of Eoff parameter • Low IGBT conduction losses • Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability VCES = 900V VCE(on) typ. = 2.25V G @VGE = 15V, IC = 28A E n-channel Benefits • Lower switching losses allow more cost-effective operation and hence efficient replacement of largerdie MOSFETs up to 100kHz • Of particular benefit in single-ended converters and Power Supplies 150W and higher • Reduction in critical Eoff parameter due to minimal minority-carrier recombination coupled with low onstate losses allow maximum flexibility in device application TO-247AC Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current ➀ Clamped Inductive Load Current ➁ Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy ➂ Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds 900 51 28 204 204 ± 20 186 200 78 -55 to + 150 V A V mJ W °C 300 (0.063 in. (1.6mm from case ) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– 0.24 ––– 6 (0.21) 0.64 ––– 40 ––– Units °C/W g (oz) 1 4/15/98 IRG4PF50W Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 900 ––– Emitter-to-Collector Breakdown Voltage ➃ 18 ––– ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ––– 0.295 ––– 2.25 VCE(ON) Collector-to-Emitter Saturation Voltage ––– 2.74 ––– 2.12 VGE(th) Gate Threshold Voltage 3.0 ––– ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ––– -13 gfe Forward Transconductance ➄ 26 39 ––– ––– ICES Zero Gate Voltage Collector Current ––– ––– ––– ––– IGES Gate-to-Emitter Leakage Current ––– ––– V(BR)CES V(BR)ECS Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V VGE = 0V, IC = 1.0A ––– V/°C VGE = 0V, IC = 3.5mA 2.7 IC = 28A VGE = 15V ––– IC = 60A See Fig.2, 5 V ––– IC = 28A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA ––– S VCE ≥ 15V, IC = 28A 500 VGE = 0V, VCE = 900V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 5.0 mA VGE = 0V, VCE = 900V, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 160 19 53 29 26 110 150 0.19 1.06 1.25 28 26 280 90 3.45 13 3300 200 45 Max. Units Conditions 240 IC = 28A 29 nC VCC = 400V See Fig. 8 80 VGE = 15V ––– ––– TJ = 25°C ns 170 IC = 28A, VCC = 720V 220 VGE = 15V, RG = 5.0Ω ––– Energy losses include "tail" ––– mJ See Fig. 10, 11, 13, 14 1.7 ––– TJ = 150°C, ––– IC = 28A, VCC = 720V ns ––– VGE = 15V, RG = 5.0Ω ––– Energy losses include "tail" ––– mJ See Fig. 13, 14 ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω, Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. (See fig. 13a) Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4PF50W 60 For both: 50 Load Current ( A ) Triangular wave: Duty cycle: 50% TJ = 125˚C Tsink= 90˚C Gate drive as specified Power Dissipation = 40W Clamp voltage: 80% of rated 40 Square wave: 30 60% of rated voltage 20 10 Ideal diodes A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) I C , Collector-to-Emitter Current (A) TJ = 25 °C I C , Collector-to-Emitter Current (A) 1000 1000 100 100 TJ = 150 °C 10 V GE = 15V 20µs PULSE WIDTH 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com TJ = 150 °C TJ = 25 °C 10 V CC = 50V 5µs PULSE WIDTH 1 5 6 7 8 9 10 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PF50W 3.0 V CE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 60 50 40 30 20 10 0 25 50 75 100 125 150 VGE = 15V 80 us PULSE WIDTH IC = 56 A 2.5 IC = 28 A 2.0 IC = 14 A 1.5 -60 -40 -20 TC , Case Temperature ( °C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature 1 Thermal Response (Z thJC) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 0.001 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PF50W VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 5000 Cies 4000 3000 2000 Coes 1000 Cres 20 VGE , Gate-to-Emitter Voltage (V) 6000 16 12 8 4 0 0 1 10 0 100 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 4.0 100 Total Switching Losses (mJ) 3.0 2.0 1.0 10 20 30 40 50 RG , Gate Resistance ( Ω ) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 80 120 160 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 720V V GE = 15V TJ = 25 ° C I C = 28A 0 40 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) VCC = 400V I C = 28A 60 5.0 Ω RG = Ohm VGE = 15V VCC = 720V IC = 56 A 10 IC = 28 A IC = 14 A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PF50W Total Switching Losses (mJ) RG TJ VCC 10 VGE 1000 5.0Ω = Ohm = 150 ° C = 720V = 15V I C , Collector Current (A) 12 8 6 4 VGE = 20V T J = 125 oC 100 10 2 SAFE OPERATING AREA 0 0 10 20 30 40 50 I C , Collector Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 60 1 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4PF50W L D .U .T. VC * 50V RL = 0 - 720V 1 00 0V 720V 4 X IC@25°C 480µF 960V * Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax ) * Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor w ill inc rea se to obta in ra ted Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L D river* D .U .T. VC Fig. 14a - Switching Loss Test Circuit 50V 1000V * Driver same type as D.U.T., VC = 720V 9 0% 1 0% VC 90 % Fig. 14b - Switching Loss t d (o ff) 10 % IC 5% Waveforms tf tr t d (o n ) t=5µ s E on E o ff E ts = ( Eo n +E o ff ) www.irf.com 7 IRG4PF50W Case Outline and Dimensions — TO-247AC 3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 (.0 1 0 ) M D B M 1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B- -A5 .5 0 (.2 1 7) 2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 2X 1 2 -D- 5 .3 0 ( .2 0 9 ) 4 .7 0 ( .1 8 5 ) 2 .5 0 (.0 8 9 ) 1 .5 0 (.0 5 9 ) 4 5 .5 0 (.2 17 ) 4 .5 0 (.1 77 ) LEAD 1234- 3 -C- * 1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 ) 2 .4 0 ( .0 9 4 ) 2 .0 0 ( .0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X 4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 3X 1 .4 0 (.0 5 6 ) 1 .0 0 (.0 3 9 ) 0 .2 5 (.0 1 0 ) M 3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 ) N O TE S : 1 D IM E N S IO N S & T O L E R A N C IN G P E R A N S I Y 14 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M ILL IM E T E R S (IN C H E S ). 4 C O N F O R M S T O JE D E C O U T L IN E T O -2 4 7 A C . * A S S IG N M E N T S GATE COLLE CTO R E M IT T E R COLLE CTO R L O N G E R L E A D E D (2 0m m ) V E R S IO N A V A IL A B LE (T O -24 7 A D ) T O O R D E R A D D "-E " S U F F IX T O P A R T N U M B ER 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 ) 3X C A S CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P) D im e n s ion s in M illim e te rs a n d (In c h es ) WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: 171 (K&H Bldg.) 30-4 Nishi-ikebukuro 3-chome, Toshima-ku, Tokyo Japan Tel: 81 33 983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 16907 Tel: 65 221 8371 Data and specifications subject to change without notice. 4/98 8 www.irf.com