IRF IRG4BC30WS

PD - 91790
IRG4BC30W-S
INSULATED GATE BIPOLAR TRANSISTOR
Features
C
• Designed expressly for Switch-Mode Power
Supply and PFC (power factor correction)
applications
• Industry-benchmark switching losses improve
efficiency of all power supply topologies
• 50% reduction of Eoff parameter
• Low IGBT conduction losses
• Latest-generation IGBT design and construction offers
tighter parameters distribution, exceptional reliability
VCES = 600V
VCE(on) typ. = 2.10V
G
@VGE = 15V, IC = 12A
E
n-channel
Benefits
• Lower switching losses allow more cost-effective
operation than power MOSFETs up to 150 kHz
("hard switched" mode)
• Of particular benefit to single-ended converters and
boost PFC topologies 150W and higher
• Low conduction losses and minimal minority-carrier
recombination make these an excellent option for
resonant mode switching as well (up to >>300 kHz)
D 2 Pak
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
600
23
12
92
92
± 20
180
100
42
-55 to + 150
V
A
V
mJ
W
°C
300 (0.063 in. (1.6mm from case )
Thermal Resistance
Parameter
RθJC
RθJA
Junction-to-Case
Junction-to-Ambient, ( PCB Mounted,steady-state)*
Typ.
Max.
Units
–––
–––
1.2
40
°C/W
* When mounted on 1" square PCB (FR-4 or G-10 Material ). For recommended footprint and soldering
techniques refer to application note #AN-994.
www.irf.com
1
8/13/98
IRG4BC30W-S
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
VCE(ON)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
IGES
Parameter
Min. Typ. Max. Units
Conditions
Collector-to-Emitter Breakdown Voltage
600
—
—
V
VGE = 0V, IC = 250µA
Emitter-to-Collector Breakdown Voltage „ 18
—
—
V
VGE = 0V, IC = 1.0A
Temperature Coeff. of Breakdown Voltage — 0.34 —
V/°C VGE = 0V, IC = 1.0mA
—
2.1
2.7
IC = 12A
VGE = 15V
Collector-to-Emitter Saturation Voltage
— 2.45 —
IC = 23A
See Fig.2, 5
V
— 1.95 —
IC = 12A , TJ = 150°C
Gate Threshold Voltage
3.0
—
6.0
VCE = VGE, IC = 250µA
Temperature Coeff. of Threshold Voltage
—
-11
— mV/°C VCE = VGE, IC = 250µA
Forward Transconductance …
11
16
—
S
VCE = 100 V, IC = 12A
—
—
250
VGE = 0V, VCE = 600V
Zero Gate Voltage Collector Current
µA
—
—
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
—
— 1000
VGE = 0V, VCE = 600V, TJ = 150°C
Gate-to-Emitter Leakage Current
—
— ±100
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
51
7.6
18
25
16
99
67
0.13
0.13
0.26
24
17
150
150
0.55
7.5
980
71
18
Max. Units
Conditions
76
IC = 12A
11
nC
VCC = 400V
See Fig.8
27
VGE = 15V
—
—
TJ = 25°C
ns
150
IC = 12A, VCC = 480V
100
VGE = 15V, RG = 23Ω
—
Energy losses include "tail"
—
mJ See Fig. 9, 10, 13, 14
0.35
—
TJ = 150°C,
—
IC = 12A, VCC = 480V
ns
—
VGE = 15V, RG = 23Ω
—
Energy losses include "tail"
—
mJ See Fig. 11,13, 14
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
(See fig. 13a)
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
… Pulse width 5.0µs, single shot.
ƒ Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4BC30W-S
5.0
For both:
4.0
Load C u rren t (A )
Triangular wave:
Duty cycle: 50%
T J = 125°C
T sink= 90°C
Gate drive as specified
Power Dissipation = 1.75W
Clamp voltage:
80% of rated
3.0
Square wave:
60% of rated
voltage
2.0
1.0
Ideal diodes
A
0.0
0.1
1
10
100
1000
f, F req uen cy (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I RMS of fundamental; for triangular wave, I=IPK)
100
TJ = 150 °C
10
TJ = 25 °C
V GE = 15V
20µs PULSE WIDTH
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 °C
10
TJ = 25 °C
1
0.1
5.0
V CC = 50V
5µs PULSE WIDTH
6.0
7.0
8.0
9.0
10.0
11.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
M a xim u m D C C o lle c to r C u rre n t (A
IRG4BC30W-S
25
3.0
VCE , Collector-to-Emitter Voltage(V)
V GE = 15V
20
15
10
5
A
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
I C = 24 A
2.5
I C = 12 A
2.0
1.5
-60 -40 -20
0
20
40
60
6A
80 100 120 140 160
TJ , Junction Temperature ( °C)
TC , C a s e Te m p e ra tu re (°C )
Fig. 4 - Maximum Collector Current vs.
Temperature
IC =
Case
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Thermal Response (Z thJC)
10
1
D = 0.50
0.20
PDM
0.10
0.1
0.01
0.00001
0.05
0.02
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30W-S
2000
20
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
1500
Cies
1000
Coes
500
Cres
16
12
8
4
0
0
1
10
0
100
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
10
Total Switching Losses (mJ)
V CC = 480V
V GE = 15V
TJ = 25 ° C
0.4 I C = 12A
0.3
0.2
0.1
0.0
10
20
30
40
RGR,G,Gate
GateResistance
Resistance(Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
20
30
40
50
60
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
0.5
0
10
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
VCC = 400V
I C = 12A
50
23Ω
RG = Ohm
VGE = 15V
VCC = 480V
IC = 24 A
1
IC = 12 A
IC =
6A
0.1
0.01
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC30W-S
RG
TJ
VCC
VGE
1000
23Ω
= Ohm
= 150 °C
= 480V
= 15V
I C , C ollector-to-E m itter C urrent (A )
Total Switching Losses (mJ)
1.5
1.0
0.5
100
S A FE O P E R A TIN G A R E A
10
1
0 .1
0.0
0
5
10
15
20
25
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
VGGE E= 2 0V
T J = 12 5 °C
30
1
10
100
1000
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4BC30W-S
L
D .U .T.
VC *
50V
RL =
0 - 480V
1 00 0V
480V
4 X IC@25°C
480µF
960V

‚
* Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax )
* Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor
w ill inc rea se to obta in ra ted Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
D river*
D .U .T.
VC
Fig. 14a - Switching Loss
Test Circuit
50V
1000V
* Driver same type
as D.U.T., VC = 480V

‚
ƒ

‚
9 0%
1 0%
ƒ
VC
90 %
Fig. 14b - Switching Loss
t d (o ff)
10 %
IC 5%
Waveforms
tf
tr
t d (o n )
t=5µ s
E on
E o ff
E ts = ( Eo n +E o ff )
www.irf.com
7
IRG4BC30W-S
D2Pak Package Outline
1 0 .5 4 (.4 1 5 )
1 0 .2 9 (.4 0 5 )
1 .4 0 (.0 55 )
M A X.
-A -
1 .3 2 (.0 5 2 )
1 .2 2 (.0 4 8 )
2
1 .7 8 (.0 7 0 )
1 .2 7 (.0 5 0 )
1
1 0 .1 6 (.4 0 0 )
REF .
-B -
4 .6 9 (.1 8 5 )
4 .2 0 (.1 6 5 )
6 .4 7 (.2 5 5 )
6 .1 8 (.2 4 3 )
1 5 .4 9 (.6 1 0 )
1 4 .7 3 (.5 8 0 )
3
2 .7 9 (.1 1 0 )
2 .2 9 (.0 9 0 )
2 .6 1 (.1 0 3 )
2 .3 2 (.0 9 1 )
5 .2 8 (.2 0 8 )
4 .7 8 (.1 8 8 )
3X
1 .4 0 (.0 5 5 )
1 .1 4 (.0 4 5 )
3X
5 .0 8 (.2 0 0 )
0 .5 5 (.0 2 2 )
0 .4 6 (.0 1 8 )
0 .9 3 (.0 3 7 )
0 .6 9 (.0 2 7 )
0 .2 5 (.0 1 0 )
M
8 .8 9 (.3 5 0 )
REF.
1 .3 9 (.0 5 5 )
1 .1 4 (.0 4 5 )
B A M
M IN IM U M R E C O M M E N D E D F O O T P R IN T
1 1 .43 (.4 5 0 )
NOTES:
1 D IM E N S IO N S A F T E R S O L D E R D IP .
2 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 .
3 C O N T R O L L IN G D IM E N S IO N : IN C H .
4 H E A T S IN K & L E A D D IM E N S IO N S D O N O T IN C L U D E B U R R S .
L E A D A S S IG N M E N T S
1 - GATE
2 - D R A IN
3 - SOURCE
8 .8 9 (.3 5 0 )
1 7 .7 8 (.7 0 0 )
3 .8 1 (.1 5 0 )
2 .0 8 (.0 8 2 )
2X
2 .5 4 (.1 0 0 )
2X
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/ Data and specifications subject to change without notice.8/98
8
www.irf.com