STMICROELECTRONICS L4971

L4971

1.5A STEP DOWN SWITCHING REGULATOR
UP TO 1.5A STEP DOWN CONVERTER
OPERATING INPUT VOLTAGE FROM 8V TO
55V
PRECISE 3.3V (±1%) INTERNAL REFERENCE VOLTAGE
OUTPUT VOLTAGE ADJUSTABLE FROM
3.3V TO 50V
SWITCHING FREQUENCY ADJUSTABLE UP
TO 500KHz
VOLTAGE FEEDFORWARD
ZERO LOAD CURRENT OPERATION
INTERNAL CURRENT LIMITING (PULSE-BYPULSE AND HICCUP MODE)
INHIBIT FOR ZERO CURRENT CONSUMPTION
PROTECTION AGAINST FEEDBACK DISCONNECTION
THERMAL SHUTDOWN
SOFT START FUNCTION
DESCRIPTION
The L4971 is a step down monolithic power
switching regulator delivering 1.5A at a voltage
between 3.3V and 50V (selected by a simple external divider). Realized in BCD mixed technology, the device uses an internal power D-MOS
transistor (with a typical Rdson of 0.25Ω) to obtain very high efficency and high switching speed.
Minidip
SO16W
ORDERING NUMBERS: L4971 (Minidip)
L4971D (SO16)
A switching frequency up to 500KHz is achievable (the maximum power dissipation of the packages must be observed).
A wide input voltage range between 8V to 55V
and output voltages regulated from 3.3V to 50V
cover the majority of today’s applications.
Features of this new generations of DC-DC converter include pulse-by-pulse current limit, hiccup
mode for short circuit protection, voltage feedforward regulation, soft-start, protection against
feedback loop disconnection, inhibit for zero current consumption and thermal shutdown.
The device is available in plastic dual in line,
MINIDIP 8 for standard assembly, and SO16W
for SMD assembly.
TYPICAL APPLICATION CIRCUIT
Vi=8V to 55V
5
8
R1
20K
L4971
3
C1
220µF
63V
C7
220nF
C2
2.7nF
C5
100nF
2
4
7
1
R2
9.1K
C4
22nF
L1
126µH
(77120)
6
C6
100nF
D1
GI
SB360
VO=3.3V/1.5A
C8
330µF
D97IN748A
May 2000
1/12
L4971
BLOCK DIAGRAM
VCC
5
THERMAL
SHUTDOWN
VOLTAGES
MONITOR
CBOOT
CHARGE
SS_INH
2
INHIBIT
SOFTSTART
3.3V
COMP
FB
INTERNAL
REFERENCE
INTERNAL
SUPPLY
5.1V
7
6
E/A
8
PWM
3.3V
R
Q
S
CBOOT
CHARGE
AT LIGHT
LOADS
DRIVE
OSCILLATOR
1
3
OSC
BOOT
4
GND
OUT
D97IN594
PIN CONNECTIONS
GND
1
8
FB
SS_INH
2
7
COMP
OSC
3
6
BOOT
OUT
4
5
VCC
N.C.
1
16
N.C.
GND
2
15
N.C.
SS_INH
3
14
FB
OSC
4
13
COMP
OUT
5
12
BOOT
OUT
6
11
VCC
N.C.
7
10
N.C.
N.C.
8
9
N.C.
D97IN595
D97IN596
Minidip
SO16W
PIN FUNCTIONS
DIP
1
2
SO (*)
2
3
Name
GND
SS_INH
3
4
OSC
4
5
6
5, 6
11
12
OUT
VCC
BOOT
7
8
13
14
COMP
FB
Function
Ground
A logic signal (active low) disables the device (sleep mode operation).
A capacitor connected between this pin and ground determines the soft start time.
When this pin is grounded disables the device (driven by open collector/drain).
An external resistor connected between the unregulated input voltage and this pin and
a capacitor connected from this pin to ground fix the switching frequency. (Line feed
forward is automatically obtained)
Stepdown regulator output
Unregulated DC input voltage
A capacitor connected between this pin and OUT allows to drive the internal DMOS
Transistor
E/A output to be used for frequency compensation
Stepdown feedback input. Connecting directly to this pin results in an output voltage of
3.3V. An external resistive divider is required for higher output voltages.
(*) Pins 1, 7, 8, 9, 10, 15 and 16 are not internally, electrically connected to the die.
2/12
L4971
THERMAL DATA
Symbol
Parameter
Thermal Resistance Junction to ambient
R th(j-amb)
Max.
Minidip
SO16
Unit
90 (*)
110 (*)
°C/W
(*) Package mounted on board.
ABSOLUTE MAXIMUM RATINGS
Symbol
Minidip
S016
V5
V11
V4
V5,V6
Parameter
Value
Unit
Input voltage
58
V
Output DC voltage
Output peak voltage at t = 0.1µs f=200KHz
-1
-5
V
V
I4
I5,I6
V6-V5
V12-V11
V6
V12
Bootstrap voltage
70
V
V7
V13
Analogs input voltage (VCC = 24V)
12
V
V2
V3
Analogs input voltage (VCC = 24V)
13
V
V8
V14
(VCC = 20V)
6
-0.3
V
V
Minidip
1
W
SO16
0.8
W
-40 to 150
°C
Ptot
Tj,Tstg
Maximum output current
int. limit.
14
Power dissipation a Tamb ≤ 60°C
Junction and storage temperature
V
ELECTRICAL CHARACTERISTICS (Tj = 25°C, Cosc = 2.7nF, Rosc = 20kΩ, VCC = 24V, unless otherwise specified.) * Specification Refered to Tj from 0 to 125°C
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
55
3.39
3.427
3.5
0.55
0.88
3
V
V
V
V
V
V
A
%
KHz
dB
DYNAMIC CHARACTERISTIC
VI
Vo
Vd
Il
fs
SVRR
Operating input voltage range
Output voltage
Dropout voltage
Maximum limiting current
Efficiency
Switching frequency
Supply voltage ripple rejection
Voltage stability of switching
frequency
Temp. stability of switching
frequency
Vo = 3.3 to 50V; Io = 1.5A
Io = 0.5A
Io = 0.2 to 1.5A
Vcc = 8 to 55V
Vcc = 10V; Io = 1.5A
Vcc = 8 to 55V
Vo = 3.3V; Io = 1.5A
*
*
8
3.33
3.292
3.22
*
*
2
*
Vi = Vcc+2VRMS; Vo = Vref;
Io = 1.5A; f ripple = 100Hz
Vcc = 8 to 55V
90
60
3.36
3.36
3.36
0.44
2.5
85
100
3
Tj = 0 to 125°C
110
6
4
%
%
Soft Start
Soft start charge current
Soft start discharge current
30
6
40
10
50
14
µA
µA
5
0.9
15
V
µA
Inhibit
VLL
IsLL
Low level voltage
Isource Low level
*
*
3/12
L4971
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
4
6
mA
2.5
100
150
3.5
200
300
mA
µA
µA
3.36
5
0.4
3.39
10
V
mV
mV/°C
DC Characteristics
Iqop
Iq
Iqst-by
Total operating quiescent
current
Quiescent current
Total stand-by quiescent
current
Duty Cycle = 0; VFB = 3.8V
Vinh <0.9V
Vcc = 55V; Vinh <0.9V
Error Amplifier
VFB
RL
VoH
VoL
Io source
Io sink
Ib
SVRR E/A
gm
Voltage Feedback Input
Line regulation
Ref. voltage stability vs
temperature
High level output voltage
Low level output voltage
Source output current
Sink output current
Source bias current
Supply voltage ripple rejection
DC open loop gain
Transconductance
3.33
Vcc = 8 to 55V
*
VFB = 2.5V
VFB = 3.8V
Vcomp = 6V; V FB = 2.5V
Vcomp = 6V; V FB = 3.8V
Vcomp = Vfb; Vcc = 8 to 55V
RL = ∞
Icomp = -0.1 to 0.1mA
Vcomp = 6V
10.3
0.65
200
200
60
50
300
300
2
80
57
2.5
3
V
V
µA
µA
µA
dB
dB
ms
Oscillator Section
Ramp Valley
Ramp peak
Maximum duty cycle
Maximum Frequency
4/12
Vcc = 8V
Vcc = 55V
Duty Cycle = 0%
Rosc = 13kΩ, Cosc = 820pF
0.78
2
9
95
0.85
2.15
9.6
97
0.92
2.3
10.2
500
V
V
V
%
kHz
L4971
Typical Performance (Using Evaluation Board) fsw = 100kHz
Output
Voltage
Output
Ripple
Efficiency
VCC =35V IO = 1.5A
Line Regulation
Io = 1.5A VCC = 8 to 55V
Load Regulation
VCC =35V IO = 0.5 to 1.5A
3.3V
10mV
84 (%)
3mV
6mV
5.1V
10mV
86 (%)
3mV
6mV
12V
12mV
93 (%)
3mV (VCC =15 to 55V)
4mV
Figure 1. Test and valuation board circuit.
Vi=8V to 55V
5
8
R1
20K
L4971
3
C1
220µF
63V
C7
220nF
C2
2.7nF
7
2
C5
100nF
VO=3.3V/1.5A
4
1
R2
9.1K
L1
126µH
(77120)
6
C6
100nF
C4
22nF
D1
GI
SB360
R3
C8
330µF
R4
D97IN749A
C1=220µF/63V EKE
C2=2.7nF
C5=100nF
C6=100nF
C7=220nF/63V
C8=330µF/35V CG Sanyo
L1=126µH KoolMu 77120 - 65 Turns - 0.5mm
R1=20K
R2=9.1K
D1=GI SB360
L4971
VO(V)
R3(KΩ)
3.3
0
R4(KΩ)
5.1
2.7
4.7
12
12
4.7
15
16
4.7
18
20
4.7
24
30
4.7
Figure 2. PCB and component layout of the figure 1.
5/12
L4971
Figure 3. Quiescent drain current vs. input
voltage.
Iq
(mA)
D97IN724
200KHz
R 1=22K
C 2=1.2nF
5
Figure 4. Quiescent current vs. junction
temperature
D97IN731
Iq
(mA)
200KHz
R1=22K
C2=1.2nF
5
4
100KHz
R 1=20K
C 2=2.7nF
4
3
0Hz
3
100KHz
R1 =20K
C2 =2.7nF
0Hz
VCC=35V
0% DC
2
2
Tamb=25°C
0% DC
1
1
0
5 10 15 20 25 30 35 40 45 50
Figure 5. Stand-by drain current vs. input
voltage
Ibias
(µA)
D97IN732
VO
(V)
D97IN733
Tj=125°C
Tj=25°C
140
Figure 6. Line Regulation
3.377
Vss=GND
150
-50 -30 -10 10 30 50 70 90 110 Tj(°C)
Vcc(V)
3.376
130
3.375
120
Tj=25°C
3.374
110
3.373
Tj=125°C
100
90
3.372
80
3.371
70
60
3.370
0
0 5 10 15 20 25 30 35 40 45 50 VCC(V)
Figure 8. Switching frquency vs. R1 and C2
Figure 7. Load regulation
VO
(V)
3.378
5 10 15 20 25 30 35 40 45 50 VCC(V)
D97IN734
V CC=35V
fsw
(KHz)
D97IN784
500
Tamb=25°C
3.376
0.8
2nF
200
3.374
Tj=25°C
3.372
1.2
nF
100
3.370
2.2
nF
Tj=125°C
50
3.368
3.3n
F
3.366
4.7n
F
20
5.6n
3.364
F
10
3.362
3.360
5
0
6/12
0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
0
20
40
60
80
R1(KΩ)
L4971
Figure 9. Switching Frequency vs. input
voltage.
fsw
(KHz)
D97IN735
Figure 10. Switching frequency vs. junction
temperature.
fsw
(KHz)
D97IN785
107.5
105.0
105
102.5
Tj=25°C
100.0
100
97.5
95.0
95
92.5
90.0
0
5 10 15 20 25 30 35 40 45 50 VCC(V)
Figure 11. Dropout voltage between pin 5
and 4.
∆V
(V)
D97IN736
Tj=125°C
0.5
90
-50
0
50
C
5°
=2
Tj
Tj(°C)
Figure 12. Efficiency vs output voltage.
η
(%)
D97IN737
100KHz
96
94
0.4
100
200KHz
92
90
0.3
Tj=-25°C
0.2
VCC=35V
IO=1.5A
88
86
0.1
84
82
0.0
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
Figure 13. Efficiencyvs. output current.
η
(%)
D97IN738
VCC=8V
VCC=12V
90
15
η
(%)
20
25
VO(V)
D97IN739
VCC=8V
85
VCC =12V
VCC=24V
VCC=24V
80
80
70
10
Figure 14. Efficiencyvs. output current.
90
85
75
5
VCC=48V
VCC=48V
75
fsw=100KHz
VO=5.1V
70
65
65
60
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
60
fsw=100KHz
VO=3.36V
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
7/12
L4971
Figure 15. Efficiencyvs. output current.
D97IN740
η
(%)
V CC=8V
90
η
(%)
D97IN741
VCC=8V
90
VCC=12V
85
VCC=24V
85
Figure 16. Efficiencyvs. output current.
VCC=12V
80
80
VCC=48V
VCC=24V
75
75
70
VCC=48V
70
fsw=200KHz
VO=5.1V
65
60
65
fsw=200KHz
VO=3.36V
60
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
Figure 17. Efficiencyvs. Vcc.
55
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
Figure 18. Power dissipation vs. Vcc.
η
(%)
D97IN742
Pdiss
(mW)
D97IN743
V0 =5
.1V-f
SW =1
V0 =
85
VO=5.1V
fsw=100KHz
00KH
z
800
5.1
V-f
SW =
20
V0 =
0K
Hz
80
IO=1A
V-f
SW =
V
0 =3
.36
100
KHz
V-
fS
W=
400
IO=0.5A
12
0
0K
75
70
IO=1.5A
600
3.36
Hz
IO=1.5A
0
10
20
30
40
200
50 VCC(V)
0
0
10
20
30
40
50
VCC(V)
Figure 20. Pulse by pulse limiting current vs.
junction temperature.
Figure 19. Efficiencyvs. Vo.
Pdiss
(mW)
D97IN744
VCC=35V
fsw=100KHz
Ilim
(A)
D97IN747
fsw=100KHz
VCC=35V
2.9
800
2.8
IO=1.5A
600
2.7
IO=1A
400
IO=0.5A
2.6
2.5
200
2.4
0
8/12
0
5
10
15
20
25
30 V0(V)
2.3
-50 -25
0
25
50
75 100 125 Tj(°C)
L4971
Figure 22. Line transient.
Figure 21. Load transient.
VCC
(V)
D97IN786
30
20
10
VO
(mV)
1
IO = 1A
fsw = 100KHz
100
2
0
-100
1ms/DIV
Figure 23. Soft start capacitor selection Vs inductor and Vccmax.
L
(µH)
D97IN745
L
(µH)
Figure 24. Soft start capacitor selection vs. Inductor and Vccmax.
680nF
D97IN746
fsw=200KHz
470nF
fsw=100KHz
400
56nF
300
47nF
200
33nF
330nF
300
220nF
200
22nF
100
100
100nF
0
15
20 25
30
35 40
45
50 VCCmax(V)
0
15 20
25 30
35 40
45 50 VCCmax(V)
Figure 25. Open loop frequency and phase of error amplifier
GAIN
(dB)
D97IN787
Phase
50
GAIN
0
0
-50
45
90
-100
Phase
135
-150
-200
10
10 2 103 104 105 106 10 7 108 f(Hz)
9/12
L4971
mm
DIM.
MIN.
A
TYP.
inch
MAX.
MIN.
3.32
TYP.
MAX.
0.131
a1
0.51
B
1.15
1.65
0.045
0.065
b
0.356
0.55
0.014
0.022
b1
0.204
0.304
0.008
0.012
0.020
D
E
10.92
7.95
9.75
0.430
0.313
0.384
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
6.6
0.260
I
5.08
0.200
L
Z
10/12
3.18
OUTLINE AND
MECHANICAL DATA
3.81
1.52
0.125
0.150
0.060
Minidip
L4971
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
2.35
2.65
0.093
0.104
A1
0.1
0.3
0.004
0.012
B
0.33
0.51
0.013
0.020
C
0.23
0.32
0.009
0.013
D
10.1
10.5
0.398
0.413
E
7.4
7.6
0.291
0.299
e
1.27
0.050
H
10
10.65
0.394
0.419
h
0.25
0.75
0.010
0.030
L
0.4
1.27
0.016
0.050
K
OUTLINE AND
MECHANICAL DATA
SO16 Wide
0° (min.)8° (max.)
L
h x 45
A
B
e
K
A1
C
H
D
16
9
E
1
8
11/12
L4971
Information furnished is believed to be accurate and reliable. However, STMicroelectroni cs assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
12/12