STMICROELECTRONICS L6560

L6560
L6560A

POWER FACTOR CORRECTOR
VERY PRECISE ADJUSTABLE INTERNAL
OUTPUT OVERVOLTAGE PROTECTION
HYSTERETIC START-UP
(ISTART-UP < 0.5mA)
VERY LOW QUIESCENT CURRENT
(< 3.5mA)
INTERNAL START-UP TIMER
TRANSITION MODE OPERATING
TOTEM POLE OUTPUT CURRENT: ±400mA
DIP8/SO8 PACKAGES
DESCRIPTION
The L6560/A is a monolithic integrated circuit in
Minidip and SO8 packages, designed as a controller and driver of a discrete power MOS transistor for the implementation of active power factor
correction, for sinusoidal line current consumption.
Realized in mixed BCD technology, the chip integrates:
- An undervoltage lockout with micropower startup and hysteresis.
- An internal temperature compensated precise
band gap reference.
- A stable error amplifier.
MULTIPOWER BCD TECHNOLOGY
Minidip
SO8
ORDERING NUMBERS:
L6560
L6560D
L6560A
L6560AD
- One quadrant multiplier.
- Current sense comparator.
- An output overvoltage protection circuit.
- A totem-pole output stage able to drive a
POWER MOS or IGBT devices with source
and sink current of 400mA. The chip works in
transition mode and is particularly intended
for lamp ballast applications and for low
power SMPS.
BLOCK DIAGRAM
June 2000
1/11
L6560 - L6560A
ABSOLUTE MAXIMUM RATINGS
Symbol
Pin
IVcc
8
ICC + IZ
Parameter
IGD
7
Output Totem Pole Peak Current (2µs)
INV, COMP
MULT
1, 2, 3
CS
4
Current Sense Input
ZCD
5
Zero Current Detector
Analog Inputs & Outputs
Tj
Tstg
Unit
30
mA
±700
-0.3 to 7
mA
V
-0.3 to 7
V
5 (source)
10 (sink)
mA
mA
1
0.65
W
Junction Temperature Operating Range
-25 to 150
°C
Storage Temperature
-55 to 150
°C
Power Dissipation @Tamb = 50 °C
Ptot
Value
(Minidip)
(SO8)
PIN CONNECTION
THERMAL DATA
Symbol
Parameter
Rth j-amb
Thermal Resistance Junction-ambient
SO 8
MINIDIP
Unit
150
100
°C/W
PIN FUNCTIONS
N.
Name
Function
1
INV
Inverting input of the error amplifier. A resistive divider is connected between output regulated
voltage and this point, to provide the voltage feedback.
2
COMP
Output of error amplifier. A feedback compensation network is placed between this pin and the
INV pin.
3
MULT
Input of the multipler stage. A resistive divider connects to this pin the rectified mains. A
voltage signal, proportional to the rectified mains, appears on this pin.
4
CS
Input to the comparator of the control loop. The current is sensed by a resistor and the
resulting voltage is applied to this pin.
5
ZCD
6
GND
7
GD
Gate driver output. A push pull output stage is able to drive the Power MOS with peak current
of 400mA (source and sink).
8
VCC
Supply voltage of driver and control circuits.
2/11
Zero current detection input.
Ground of the control section.
L6560 - L6560A
ELECTRICAL CHARACTERISTICS (VCC = 14.5V; Tj = 25°C unless otherwise specified)
SUPPLY VOLTAGE SECTION
Symbol
Pin
VCC
8
Operating Range
Parameter
Test Condition
Min.
VCC ON
8
Turn-on Threshold
L6560
L6560A
13.5
11
VCC OFF
8
Turn-off Threshold
L6560
L6560A
Hys
8
Hysteresis
L6560
L6560A
after turn-on
Typ.
11
Max.
Unit
18
V
14.5
12
15.5
13
V
v
9
8.7
10
9.6
11
10.5
V
V
4.3
2.5
4.7
2.8
5.1
3.1
V
V
Min.
SUPPLY CURRENT SECTION
Symbol
Pin
Typ.
Max.
Unit
ISTART-U
8
Start-up Current
before turn-on at:
VCC = 13V (L6560)
VCC = 10.5V (L6560A)
0.3
0.5
mA
ICC
8
Operating Supply Current
CL = 0nF @ 70KHz
2.5
3.5
mA
CL = 1nF @ 70KHz
3.2
4
mA
in OVP condition Vpin1 = 2.7V
0.9
1.3
mA
18
20
22
V
Min.
Typ.
Max.
Unit
2.46
2.5
2.54
V
VZ
8
Parameter
Zener Voltage
Test Condition
ICC = 25mA
ERROR AMPLIFIER SECTION
Symbol
Pin
VINV
1
Parameter
Voltage Feedback Input
Threshold
Test Condition
–25 ≤ TJ ≤ 85°C; 12V < VCC < 18V
TS
Temperature Stability
Tamb = -25 to 85°C
RL
Line Regulation
VCC = 11 to 18V
IINV
1
GV
ICOMP
2
2.43
2.56
0.5
Input Bias Current
%
1
4
mV
0.1
1
µA
Voltage Gain
Open loop
60
80
dB
Source Current (V1 < Vref)
VCOMP = 5V
0.14
0.2
mA
0.5
1
mA
Min.
Typ.
Sink Current
(V1 > Vref)
MULTIPLIER SECTION
Symbol
Pin
VMULT
3
∆VCS
∆Vmult
K
Parameter
Test Condition
Operating Voltage
Max.
0 to 2.5 0 to 4.2
Unit
V
Output Max. Slope
VMULT = from 0V to 1V
VCOMP = 6V
0.9
1.25
1.6
Gain
VMULT = 1V VCOMP = 5V
0.45
0.65
0.85
1/V
Min.
Typ.
Max.
Unit
1.9
V
5
µA
400
ns
CURRENT SENSE COMPARATOR
Symbol
Pin
VCS
4
Voltage Threshold
Parameter
ICS
4
Input Bias Current
td (H-L)
4
Delay to Output
Test Condition
VMULT = 2.5V VCOMP = 6V
1.6
200
3/11
L6560 - L6560A
ELECTRICAL CHARACTERISTICS (continued)
ZERO CURRENT DETECTOR
Symbol
Pin
Parameter
VZCD
5
Input Threshold Voltage Rising
Edge
Test Condition
Min.
Typ.
0.3
0.5
0.7
V
VZCD
5
Clamp Voltage
IZCD = 3mA
5
5.7
6.4
V
VZCD
5
Clamp Voltage
IZCD = –3mA
0.4
0.7
1
V
Min.
Unit
1.8
Hysteresis
Max.
Unit
2.3
V
OUTPUT SECTION
Symbol
Pin
VGD
7
Parameter
Dropout Voltage
Typ.
Max.
IGDsource = 200mA
Test Condition
1.2
2
V
IGDsource = 20mA
0.7
1
V
IGDsink = 200mA
1.5
V
IGDsink = 20mA
0.3
V
tr
7
Output Voltage Rise Time
CL = 1nF
50
120
ns
tf
7
Output Voltage Fall Time
CL = 1nF
40
100
ns
Min.
Typ.
Max.
Unit
36
40
44
µA
Min.
Typ.
Max.
Unit
45
60
OUTPUT OVERVOLTAGE SECTION
Symbol
Pin
IOVP
2
Parameter
Test Condition
OVP Triggering Current
RESTART TIMER
Symbol
tSTART
Pin
Parameter
OVER VOLTAGE PROTECTION OVP
The output voltage is expected to be kept by the
operation of the PFC circuits close to its reference
value that is set by the ratio of the two external resistors R1 and R2 (see fig. 2), taking into consideration that the non inverting input of the error
amplifier is biased inside the L6560 at 2.5V.
In steady state conditions, the current through R1
and R2 is:
∆Voutsc − 2.5
R1
2.5
or ISC =
R2
ISC =
and, if the external compensation network is
made only with a capacitor C, the current through
C is equal zero.
When the output voltage increases abruptly the
current through R1 becomes:
IR1 =
4/11
Test Condition
Start Timer
Vout − 2.5
R1
IR1 =
µs
Voutsc + ∆VOUT − 2.5
= Isc + ∆I.
R1
Since the current through R2 doesn’t change, the
∆I current must flow through the capacitor C and
enter in the error amplifier.
This current is mirrored inside the L6560, and
compared with a precise internal reference of
40µA. Whenever such 40µA limit is exceed, the
OVP protection is triggered (Dynamic OVP), and
the external power transistor is switched off, until
the overvoltage situation disappears. However if
the overvoltage persists, before that the transient
condition of dynamic circuit exhausts, an internal
comparator (Static OVP) latches the OVP condition keeping the external power switch turned off
(see fig. 1).
The OVP value is threfore set by the equation
OVP = ∆Vout = R1 ⋅ 40µA.
Typical values for R1, R2 and C are reported in
the application circuit. The overvoltage can be set
independently from the average output voltage.
The precision in setting the overvoltage threshold
is 7% of the overvoltage value (for instance ∆V =
60V ± 4.2V).
L6560 - L6560A
Figure 1.
OVER VOLTAGE
VOUT nominal
40µA
ISC
E/A OUTPUT
3.1V
DYNAMIC OVP
STATIC OVP
D95IN219A
Figure 2: Overvoltage Protection Circuit
Ccomp.
+Vo
∆I
R1
1
2
-
X
E/A
+
R2
PWM
DRIVER
2.5V
3.1V
+
∆I
40µA
D93IN035B
5/11
L6560 - L6560A
Figure 3: Typical Application Circuit (100W)
D1 BYT03-400
R3
D3 1N4150
68K 5%
BRIDGE
+ 4 x BY255
FUSE 4A/250V
100 5%
D2
1N5248B
C1
1µF
250V
R2
C6
R7
1.5M
1%
10nF
Vo=240V
Po=100W
C3 330nF
5
8
2
1
L6560
Vac
(85V to 135V)
3
C2
22µF
25V
+
R1 68K 5%
R9
1.5M
1%
R10
16K
1%
T
7
6
R5 10
MOS
IRF740
C5
150µF
315V
4
R4 330
C7
10nF
R6
0.33
1W
C4
1nF
R8
16K
1%
-
D94IN050B
TRANSFORMER
T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT
primary 90T of Litz wire 10 x 0.2mm
secondary 11T of #27 AWG (0.15mm)
gap 1.9mm for a total primary inductance of 0.6mH
Figure 4: Typical Application Circuit (120W)
D1 BYT13-600
R3
D3 1N4150
220K 5%
BRIDGE
+ 4 x BY255
FUSE 4A/250V
100 5%
D2
1N5248B
C1
1µF
400V
R2
C6
R7
1M
1%
4.7nF
2
1
L6560
Vac
(175V to 265V)
3
7
6
R5 10
MOS
STP8NA50
C5
47µF
450V
4
R4 330
C7
10nF
C4
1nF
TRANSFORMER
T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT
primary 90T of Litz wire 10 x 0.2mm
secondary 7T of #27 AWG (0.15mm)
gap 1.25mm for a total primary inductance of 0.8mH
6/11
Vo=400V
Po=120W
C3 1µF
5
8
C2
22µF
25V
+
R1 68K 5%
R9
1.8M
1%
R10
6.2K
1%
T
R6
0.4
1W
R8
6.34K
1%
D94IN049A
-
L6560 - L6560A
Figure 5: P.C. Board and Component Layout of the Figg. 3 and 4 (1:1.25 scale)
Figure 6: OVPCurrent Threshold vs. Temperature
D94IN047
IOVP
(mA)
Figure 7: Undervoltage Lockout Threshold vs.
Temperature
VCC-TH-ON
(V)
D94IN044
14
42
13
41
12
VCC-TH-OFF
(V)
10
40
9
-25
39
-50
-25
0
25
50
75
100 125 T (°C)
0
25
50
T (°C)
75
100
125
7/11
L6560 - L6560A
Figure 9: Voltage Feedback Input Threshold vs.
Temperature
Figure 8: Supply Current vs. Supply Voltage
ICC
(mA)
VREF
(V)
D94IN045
D94IN048
CL = 1nF
f = 70KHz
TA = 25°C
4
2.50
3
2
2.48
1
0
2.46
-5
0
5
10
15
20 VCC(V)
Figure 10: Output Saturation Voltage vs. Sink
Current
VPIN7
(V)
50
T (°C)
100
Figure 11: Output Saturation Voltage vs. Source
Current
D94IN053
VCC = 14.5V
SINK
2.0
VCC -0.5
1.5
VCC -1.0
1.0
VCC -1.5
0.5
VCC -2.0
0
SOURCE
0
0
100
200
300
400 IGD (mA)
Figure 12: Multiplier Characteristics Family
D94IN042
VCS(pin4)
(V)
1.8
0
100
200
300
400 IGD (mA)
Figure 13: Multiplier Characteristics Family
VCOMP(pin2)
(V)
5.7
5.1
4.7
4.3
4.1
1.6
VCS (pin4)
(mV)
550
VCOMP
D94IN043
5.7
500
450
1.4
5.1
400
1.2
3.9
350
4.7
1.0
300
0.8
250
4.3
200
4.1
3.7
0.6
150
0.4
3.6
0.2
3.9
100
3.7
3.6
50
0
0.0
-1.0
8/11
0
VPIN7
(V)
D94IN046
VCC = 14.5V
-50
0.0
1.0
2.0
3.0
VMULT(pin3) (V)
4.0
5.0
-200
-100
0
100
200
VMULT (pin3) (mV)
300
400
L6560 - L6560A
mm
DIM.
MIN.
A
TYP.
inch
MAX.
MIN.
3.32
TYP.
MAX.
0.131
a1
0.51
B
1.15
1.65
0.045
0.065
b
0.356
0.55
0.014
0.022
b1
0.204
0.304
0.008
0.012
0.020
D
E
10.92
7.95
9.75
0.430
0.313
0.384
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
6.6
0.260
I
5.08
0.200
L
Z
3.18
OUTLINE AND
MECHANICAL DATA
3.81
1.52
0.125
0.150
Minidip
0.060
9/11
L6560 - L6560A
mm
DIM.
MIN.
TYP.
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.25
a2
MAX.
0.069
0.004
0.010
1.65
0.065
a3
0.65
0.85
0.026
0.033
b
0.35
0.48
0.014
0.019
b1
0.19
0.25
0.007
0.010
C
0.25
0.5
0.010
0.020
c1
45° (typ.)
D (1)
4.8
5.0
0.189
0.197
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
3.81
0.150
F (1)
3.8
4.0
0.15
0.157
L
0.4
1.27
0.016
0.050
M
S
0.6
0.024
8 ° (max.)
(1) D and F do not include mold flash or protrusions. Mold flash or
potrusions shall not exceed 0.15mm (.006inch).
10/11
OUTLINE AND
MECHANICAL DATA
SO8
L6560 - L6560A
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
11/11