SONY CXB1456R

CXB1456R
VGA/SVGA/XGA 24-bit Receiver
Description
CXB1456R is the 1 chip deserializer for VGA/SVGA/
XGA 24-bit color digital RGB, and meet to the Gigabit
Video Interface specification.
64 pin LQFP (Plastic)
Features
• 1 chip receiver for serial transmission of 24-bit color
VGA/SVGA/XGA picture
• On chip PLL circuit for data and clock recovery
• On chip panel mode automatically selectable circuit
• TTL compatible I/O
• Support 1 pixel/shiftclock mode with 1 chip and 2
pixel/shiftclock mode with 2 chip
• +3.3V single power supply
• Low power consumption
• 64pin plastic LQFP package with body size 10mm
× 10mm
Absolute Maximum Ratings
• Supply voltage
Vcc
• Storage temperature Tstg
• Allowable power dissipation
PD
4.2
–65 to +150
650
Recommended Operating Condition
• Supply voltage
3.3 ± 0.3
• Operating temperature Topr
0 to +80
Application
Gigabit video interface
V
°C
mW
V
°C
REXT
PANEL0
PANEL1
LOS
TESTDT
CE
REFRQP
SDATAP
SDATAN
REFRQN
TESTEXN
VCCA
VEES
VEEA
LPFA
Block Digagram & Pin out
LPFB
Structure
Bi-CMOS IC
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
CNTL 49
32
CLKPOL
DE 50
31
R0
30
R1
29
GND
VDD 53
28
VDD
VEE 54
27
VEE
VCC 55
26
VCC
HSYNC 56
25
R2
24
R3
23
R4
B6 59
22
R5
GND 60
21
GND
VDD 61
20
VDD
B5 62
19
R6
B4 63
18
R7
VDD 64
17
GND
SFTCLK 51
CDR
PLL
GND 52
Serial
to
Parallel
Converter
VSYNC 57
B7 58
VDD
G0
G1
G2
9 10 11 12 13 14 15 16
G3
8
G4
B1
7
G5
B2
6
GND
B3
5
VDD
4
G6
3
B0
2
G7
1
GND
Decoder
Fig. 1. Block Diagram & Pin out
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E98Y04C9X-PS
CXB1456R
Pin List
Table 1. Power/Ground
Pin number
Pin name
Descriptions
VDD
8, 16, 20, 28, 53, 61, 64
MOS power supply, should be connected to 3.3V ± 0.3V
GND
1, 9, 17, 21, 29, 52, 60
MOS ground, connected to 0V
VCC
26, 55
ECL power supply, connected to 3.3V ± 0.3V
VEE
27, 54
ECL ground, connected to 0V
VCCA
44
Analog power supply, connected to 3.3V ± 0.3V
VEEA
45
Analog ground, connected to 0V
VEES
46
Substrate GND, connected to 0V
Table 2. Digital Signals
Pin name
Pin
number
Type
Descriptions
TTL out
Shift clock, for the
data fetch at falling or
rising edge
SFTCLK
51
RED (7 to 0)
18, 19,
22, 23,
24, 25,
30, 31
6, 7, 10,
TTL out
11, 12,
13, 14, 15
58, 59,
62, 63,
2, 3, 4, 5
Pixel data
HSYNC
56
TTL out
Hsync data
VSYNC
57
TTL out
Vsync data
CNTL
49
TTL out
Control data
DE
50
TTL out
Display enable data
LOS
36
TTL out
Los of signal
PANEL (1, 0) 35, 34
TTL in
Panel mode select
switch
CLKPOL
TTL in
Trigger edge select
switch
GRN (7 to 0)
BLU (7 to 0)
32
Equivalent circuit
VDD
TTL-OUT
GND
VCCA
VDD
TTL-IN
CE
38
TTL in
Chip enable
TESTEXN
TESTDT
43,
37
TTL in
Reversed for TEST
under fabrication
–2–
VEES
GND
CXB1456R
Table 2. Digital Signals (Cont.)
Pin name
Pin
number
Type
Descriptions
Equivalent circuit
VCCA
SDATAP/N
40, 41
Rx
Serial input
SDATAP/N
REFRQP/N
VDD
REFRQP/N
39, 42
Rx
Refclk request
VEEA
GND
Table 3. Special
Pin name
Pin
number
Descriptions
Equivalent circuit
VCC
REXT
33
REXT
External Register
VDD
VEE
GND
VCCA
LPFA
LPFB
LPFA/B
47, 48
External loop
filter
VDD
VEEA
GND
–3–
CXB1456R
Electrical characteristics
Table 4. Absolute Maximum Rating
Description
Symbol
Min.
Typ.
Max.
Unit
Power supply voltage
VCC
–0.3
4.2
V
TTL DC input voltage
VI_T
–0.5
4.6
V
TTL output current (High)
IOH_T
–10
0
TTL output current (Low)
IOL_T
0
10
mA
'
mA
Serial input pin voltage
Vsdin
–0.5
VCC + 0.5
V
REFREQ output pin voltage
VRQout
0.5
VCC + 0.5
V
Storage temperature
Tstg
–65
150
°C
Comments
Table 5. Recommended Operating Conditions
Description
Symbol
Min.
Typ.
Max.
Unit
3.3
3.6
V
80
°C
Power supply voltage
VCC
3.0
Ambient temperature
Ta
0
Comments
Table 6. DC Characteristics (Under the recommended conditons. See Tab. 5)
Description
Symbol
Min.
Typ.
Max.
Unit
Conditions
Input HIGH voltage (TTL)
VIH_T
2
VCC
V
Input LOW voltage (TTL)
VIL_T
0
0.8
V
Input HIGH current (TTL)
IIH_T
10
µA
VIN = VCC
Input LOW current (TTL)
IIL_T
–10
µA
VIN = 0
Output HIGH voltage (TTL)
VOH_T
2.4
V
IOH = –3mA
Output LOW voltage (TTL)
VOL_T
0.4
V
IOL = 3mA
+0.1
mA
0
Output HIGH current (REFREQ) IOH_RQ
–0.1
Output LOW current (REFREQ)
IOL_RQ
7.8
11
mA
Input dynamic range (SDATA)
VIM_SD
VCC – 0.4
VCC + 0.2
V
Common mode voltage
Input dynamic range (SDATA)
VID_SD
–0.5
+0.5
V
Differential voltage
138
173
mA
77
104
mA
Worst Case
Supply current
16 Grayscale
ICC
–4–
See Fig. 3, 4
REXT = 5.6kΩ
CL = 8pF, f = 65MHz
See Fig. 9, 10
CXB1456R
VDD/VCC/VCCA
CXB1456R
VCC
37 TESTDT
50Ω
50Ω
A
A
REFRQP 39
150Ω
38 CE
43 TESTEXN
REFRQN 42
150Ω
GND/VEE/VEEA
Fig. 3. IOH_RQ and IOL_RQ DC measurement
TESTDT
CE
TESTEXN
Fig. 4. IOH_RQ and IOL_RQ DC measurement setting
–5–
CXB1456R
Table 7. AC Characteristics (Under the recommended conditons. See Tab. 5)
Description
Symbol
Minimum SFTCLK frequency
Maximum SFTCLK frequency
Fsftclk
SFTCLK duty factor
Dsftclk
Pixel/Sync/Cntl/DE setup to
SFTCLK
Tsetup
Min.
Typ.
Max.
Unit
25.0
MHz
MHz
65
%
Vth = 1.4V, CL = 8pF
17
9
4.5
ns
ns
ns
Vth = 1.4V, CL = 8pF
25MHz
40MHz
65MHz
16
9
4.5
ns
ns
ns
Vth = 1.4V, CL = 8pF
25MHz
40MHz
65MHz
65.0
35
Conditions
Pixel/Sync/Cntl/DE hold to
SFTCLK
Thold
SFTCLK rise time
Torc
5
ns
0.8V to 2.0V, CL = 8pF
SFTCLK fall time
Tofc
3
ns
2.0V to 0.8V, CL = 8pF
Pixel/Sync/Cntl/DE rise time
Tord
5
ns
0.8V to 2.0V, CL = 8pF
Pixel/Sync/Cntl/DE fall time
Tord
3
ns
2.0V to 0.8V, CL = 8pF
CLOCK mode assert time
TAclk
0.5
µs
CLOCK mode deassert time
TDclk
20
µs
LOS signal assert time
TAlos
0.5
µs
LOS signal deassert time
TDlos
0.15
µs
VDD/VCC/VCCA
VCC
TTLout
Cprobe
CXB1456R
CL'
oscilloscope
GND/VEE/VEEA
CL' + Cprobe = 8pF
Fig. 5. Pixel/Sync/Cntl/DE waveform measurement
–6–
CXB1456R
Timing Chart
1/Fsftclk
2.0V
SFTCLK
Vth
0.8V
Torc
Setup/hold time is referred from
rising edge in CLKPOL = GND
falling edge in CLKPOL = VDD
Dsftclk/Fsftclk
Tofc
Tsetup
Thold
Tord
REDxx
GRNxx
BLUxx
H/Vsync
CNTL
DE
2.0V
0.8V
Tofd
Fig. 6. TTL output timing
Pixel
Sync/Cntl/DE
error
Indefinite
SftClk
TAclk
REFRQP
REFRQN
Indefinite
TDclk
SDATAP
SDATAN
Fig. 7. Refclk request timing
SDATAP
SDATAN
NRZ data
TAlos
TDlos
LOS
Fig. 8. Idle mode timing
–7–
CXB1456R
SFTCLK
f
RGB
<7, 5, 3, 1>
f/2
RGB
<6, 4, 2, 0>
f/2
Fig. 9. Worst case test pattern
f
SFTCLK
RGB <7>
f/16
RGB <6>
f/8
RGB <5>
f/4
RGB <4>
f/2
RGB <3>
Fix Low
RGB <2>
Fix Low
RGB <1>
Fix Low
RGB <0>
Fix Low
Fig. 10. 16 Grayscale test pattern
–8–
CXB1456R
CLKPOL Pin Control
The CLKPOL pin is used to select the SFTCLK trigger edge. (See Table 8.)
The CLKPOL pin is open High-impedance TTL input, and this should not be left open for use. (See Fig. 12.
Recommended application circuit.)
Table 8. SFTCLK Polarity
CLKPOL
Receiver operation trigger
L
Rising edge
H
Falling edge
PANEL1 and 0 Pin Control
The PANEL1 and 0 pins are used to select the panel mode. (See Table 9.)
For the normal use, the all frequencies of SFTCLK (25MHz to 65MHz) can be covered by fixing both PANEL1
and 0 to High.
The PANEL1 and 0 pins are open High-impedance TTL inputs, and they should not be left open for use. (See
Fig. 12. Recommended application circuit.)
Table 9. Panel Mode
PANEL1
PANEL0
L
L
L
Supporting panel size
Shift Clock
Serial rate
VGA (640 × 480)
25MHz
750Mbps
H
SVGA (800 × 600)
40MHz
1200Mbps
H
L
XGA (1024 × 768)
65MHz
1950Mbps
H
H
VGA to XGA
25MHz to 65MHz
750Mbps to 1950Mbps
CE Pin Control
The CE pin is used to select the standby mode. (See Table 10.)
The CE pin is open High-impedance TTL input, and this should not be left open for use. (See Fig. 12.
Recommended application circuit.)
Table 10
CE
Operation mode
L
Standby mode, all TTL outputs fixed to Low (excluding LOS)
H
Normal mode
Test Pin Control
The TESTEXN and TESTDT pins are for test only. Select normal mode. (See Table 11.)
The TESTEXN and TESTDT pins are open High-impedance TTL inputs, and they should not be left open for use.
Table 11. Test mode
TESTEXN
TESTDT
Operation mode
L
X
Test mode
H
X
Normal mode
LOS Pin Output
The LOS pin shows the absence of proper level of SDATA signal. The LOS pin is High when the connector is
disconnected or the transmitter is idle.
The LOS pin is TTL output.
–9–
CXB1456R
Applications
CXB1456R GVIF receiver is applied to the digital RGB signal transmission for
P/C with LCD monitor
Video on demand system
Monitoring system
Graphical controller
Projector
Digital TV monitor
Car navigation system
with GVIF transmitter, CXB1455R.
8
8
8
4
Parallel
to
Serial
Converter
SHIFTCLOCK
Cable
Driver
PLL
STP or Twin axial
Serial
to
Parallel
Converter
PLL
Decoder
RED (7 to 0)
GRN (7 to 0)
BLU (7 to 0)
SYNC/
DE/CNTL
Encoder
CXB1455R GVIF Transmitter
8
8
8
RED (7 to 0)
GRN (7 to 0)
BLU (7 to 0)
SYNC/
DE/CNTL
SHIFTCLOCK
CXB1456R GVIF Receiver
Fig. 11. Block Diagram of GVIF transceiver chip set
– 10 –
CXB1456R
Application Cicuit
Differential cable
(1) CHIP RESISTOR (1%)
(2) CHIP CAPACITOR
(3) FORMED BY THE PRINTED CIRCUIT PATTERN
(L = 0.5 to 1.0mm/W = 0.5 to 1.0mm)
VCC
0.1 to 0.4n (3)
Connector
E
0.1 to 0.4n (3)
0.1 to 0.4n (3)
36
35
34
33
PANEL0
REXT
37
LOS
REFRQN
VEES
50 DE
38
PANEL1
VCCA
45
5.6k (1)
CE
43
TESTEXN
46
VEEA
49 CNTL
47
LPFA
LPFB
48
47p
(2)
40 39
TESTDT
44
47p
(2)
42 41
47 (1)
150
(1)
100
(1)
SDATAP
330
47 (1)
470p (2)
150
(1)
REFRQP
0.1µ (2)
SDATAN
33µ
16V
330
VCC
330
32
CLKPOL
R0 31
51 SFTCLK
0.1µ
(2)
VCC
0.1µ
(2)
E
SW1
H: FALLING EDGE TRIGGER
L: RISING EDGE TRIGGER
R1 30
52 GND
GND 29
53 VDD
VDD 28
54 VEE
VEE 27
55 VCC
VCC 26
56 HSYNC
VCC
E
0.1µ
(2)
0.1µ
(2)
R2 25
CXB1456R
57 VSYNC
R3 24
58 B7
R4 23
59 B6
0.1µ
(2)
R5 22
60 GND
GND 21
61 VDD
VDD 20
62 B5
R6 19
VCC
VCC
63 B4
0.1µ (2)
R7 18
B2
B1
B0
G7
G6
VDD
GND
G5
G4
G3
G2
G1
G0
VDD
GND 17
B3
64 VDD
GND
VCC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VCC
0.1µ (2)
VCC
CNTL
SFTCLK
HSYNC
VSYNC
DE
0.1µ (2)
7 6 5 4 3 2 1 0
MSB
LSB
BLUE DATA
0.1µ
(2)
7 6 5 4 3 2 1 0
MSB
LSB
GREEN DATA
7 6 5 4 3 2 1 0
MSB
LSB
RED DATA
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
Fig. 12. Recommended application circuit
– 11 –
CXB1456R
,
,,
,
Recommended Printed Circuit Board Structure
L1 : Cu plate (18µm) + solder coat
l1 : Fiber-glass epoxy core (0.3mm)
L2 : Cu plate (36µm)
l2 : Fiber-glass epoxy core (0.8mm)
L3 : Cu plate (36µm)
l3 : Fiber-glass epoxy core (0.3mm)
L4 : Cu plate (18µm) + solder coat
Fig. 13. Recommended Printed Circuit Board Structure
Recommended Printed Circuit Board Pattern
POWER and special signal routing example
0.5mm
G
Through hole to the GND plane (L2)
E
Through hole to the VCC plane (L3)
D
Through hole to the VDD plane (L3)
Chip capacitor
Chip resistor
49
G
G
REXT
33
PANEL0
PANEL1
LOS
TESTDT
CE
REFRQP
SDATAP
SDATAN
REFRQN
VCCA
TESTEXN
VEEA
VEES
LPFB
48
LPFA
L2 doesn't have plane
in this area
CNTL
CLKPOL
DE
R0
SFTCLK
R1
GND
GND
VDD
VDD
VEE
VEE
VCC
VCC
32
G
G
G
E
HSYNC
R2
VSYNC
R3
B7
R4
B6
R5
GND
D
D
D
E
GND
D
VDD
G
VDD
G
D
B5
D
D
D
R6
B4
R7
VDD
VDD
G0
G1
G2
G3
G4
G5
GND
G6
VDD
G7
B0
B1
B2
B3
GND
GND
64
17
G
G
1
16
G
Fig. 14. Recommended Printed Circuit Board Pattern
– 12 –
CXB1456R
Micro Strip Line
For maximum performance, the impedance between the pins SDDATAP/N of the LSI and the footprint of the
connector should be 50Ω using a micro strip line. 50Ω impedance can be reached when using 0.5mm width
pattern lines on L1 using this circuit board structure. The length of the lines should be identical and throughhole should not be used. L2 is recommended as the large ground plane.
Terminators
Terminators (100Ω resistor) should be located as close to the LSI as possible.
Filter Devices and Reference Registors
Capacitors and resistors which are connected to LPFA/B and REXT are filters and reference resistors. The
region of Layer 2 (L2) is under the device and conductive patterns. The ground plane should be taken off in
order to reduce parasitic capacitors.
Bypass Capacitors
Bypass capacitors (0.1µF SMD type) should be located as close to the pins as possible. Refer to the
recommendation.
– 13 –
CXB1456R
Recommendation for Cable and Connector Characteristics
The GVIF system uses terminators at both ends (transmitter and receiver), a cable equalizer and a small
amplitude differential signal. In order to solve the problems of high speed data transmission such as signal
reflection, reduce the signal level and EMI. In order to achieve the best solution, note the following:
Tx
termination
50Ω
Tx
termination
100Ω
Tx
LSI
Rx
LSI
Microstrip
line
(50Ω)
Foot
print
Connector
Cable
(diff. 100Ω)
Connector
Foot
print
Microstrip
line
(50Ω)
It is important to note the following issues for a good data transmission system:
• Good impedance matching
Differential impedance should be fit to the recommended template on the next page.
• Cable loss should be small and the loss curve should be smooth.
Maximum loss should be less than 6dB at 1GHz.
See the next page.
• Skew of POS/NEG (differential signal) should be small
Less than 12% of 1-bit time or 160ps@VGA, 100ps@SVGA, 60ps@XGA.
• Good EMI performance cable and connectors.
In order to satisfy these issues, the recommendations are as follows:
• Use the differential cable which provides good controlled impedance, low loss and good skew matching.
A shielded twisted pair (STP) cable is recommended.
• Use a low reflectance connector.
• To minimize interference from other signals, high speed signal lengths should be identical.
• Use double shielded cable.
– 14 –
CXB1456R
Recommended Transmission Path : Differential impedance template
Zo
(Ω)
150
110
106
94
90
75
< 500ps
Microstrip
line
Foot
print
< 500ps
Connector
Connector
Foot
print
Microstrip
line
Recommended Transmission Path : Attennation Characteristics
Loss
< 6dB
2dB
Measured curve
Fitting curve
Frequency
1GHz
– 15 –
CXB1456R
TTL output waveform with CL = 8pF
SFTCLK
65MHz
TTL output
B0
T 65Mbps
TTL output
1.00V/div
1.00V/div
5ns/div
SFTCLK Power spectrum
ATTEN 10dB
RL 0dBm
10dB/
CENTER
65.00MHz
D
CENTER 65.00MHz
RBW 100kHz
VBW 100kHz
– 16 –
SPAN 10.00MHz
SWP 50.0ms
CXB1456R
Package Outline
Unit: mm
64PIN LQFP (PLASTIC)
12.0 ± 0.2
∗
10.0 ± 0.1
48
33
32
64
17
(0.22)
0.5 ± 0.2
(11.0)
49
A
1
0.5
+ 0.08
0.18 – 0.03
16
0.13 M
+ 0.2
1.5 – 0.1
+ 0.05
0.127 – 0.02
0.1
0° to 10°
0.5 ± 0.2
0.1 ± 0.1
NOTE: Dimension “∗” does not include mold protrusion.
DETAIL A
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
LQFP-64P-L01
LEAD TREATMENT
SOLDER/PALLADIUM
PLATING
EIAJ CODE
LQFP064-P-1010
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
0.3g
JEDEC CODE
NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
– 17 –