PHILIPS 74HCT3G14

INTEGRATED CIRCUITS
DATA SHEET
74HC3G14; 74HCT3G14
Inverting Schmitt-triggers
Product specification
Supersedes data of 2002 Jul 23
2003 Nov 04
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
FEATURES
APPLICATIONS
• Wide supply voltage range from 2.0 to 6.0 V
• Wave and pulse shapers for highly noisy environments
• High noise immunity
• Astable multivibrators
• Low power dissipation
• Monostable multivibrators
• Balanced propagation delays
• Output capability: standard.
• Unlimited input rise and fall times
• Very small 8 pins package
DESCRIPTION
• ESD protection:
HBM EIA/JESD22-A114-A exceeds 2000 V
MM EIA/JESD22-A115-A exceeds 200 V.
The 74HC3G/HCT3G14 is a high-speed Si-gate CMOS
device.
The 74HC3G/HCT3G14 provides three inverting buffers
with Schmitt-trigger action. This device is capable of
transforming slowly changing input signals into sharply
defined, jitter-free output signals.
• Specified from −40 to +85 °C and −40 to +125 °C.
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf ≤ 6.0 ns.
TYPICAL
SYMBOL
PARAMETER
CONDITIONS
UNIT
HC3G14
tPHL/tPLH
propagation delay nA to nY
CI
input capacitance
CPD
power dissipation capacitance per buffer
CL = 50 pF; VCC = 4.5 V 16
notes 1 and 2
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW).
PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in Volts;
N = total switching outputs;
Σ(CL × VCC2 × fo) = sum of the outputs.
2. For HC3G14 the condition is VI = GND to VCC.
For HCT3G14 the condition is VI = GND to VCC − 1.5 V.
2003 Nov 04
2
HCT3G14
21
ns
2
2
pF
10
10
pF
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
FUNCTION TABLE
See note 1.
INPUT
OUTPUT
nA
nY
L
H
H
L
Note
1. H = HIGH voltage level;
L = LOW voltage level.
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
TEMPERATURE
RANGE
PINS
PACKAGE
MATERIAL
CODE
MARKING
74HC3G14DP
−40 to +125 °C
8
TSSOP8
plastic
SOT505-1
H14
74HCT3G14DP
−40 to +125 °C
8
TSSOP8
plastic
SOT505-1
T14
74HC3G14DC
−40 to +125 °C
8
VSSOP8
plastic
SOT765-1
H14
74HCT3G14DC
−40 to +125 °C
8
VSSOP8
plastic
SOT765-1
T14
PINNING
PIN
SYMBOL
DESCRIPTION
1
1A
data input 1A
2
3Y
data output 3Y
3
2A
data input 2A
4
GND
ground (0 V)
5
2Y
data output 2Y
6
3A
data input 3A
7
1Y
data output 1Y
8
VCC
supply voltage
2003 Nov 04
3
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
handbook, halfpage
handbook, halfpage
1A 1
8 VCC
3Y 2
7
1Y
3G14
2A
3
6
3A
GND
4
5
2Y
MNA739
1A
1Y
7
2
3Y
3A
6
3
2A
2Y
5
MNA740
Fig.1 Pin configuration.
handbook, halfpage
1
1
7
6
2
Fig.2 Logic symbol.
handbook, halfpage
A
Y
MNA025
3
5
MNA741
Fig.3 IEC logic symbol.
2003 Nov 04
Fig.4 Logic diagram (one driver).
4
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
RECOMMENDED OPERATING CONDITIONS
74HC3G14
SYMBOL
PARAMETER
74HCT3G14
CONDITIONS
UNIT
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
VCC
supply voltage
2.0
5.0
6.0
4.5
5.0
5.5
V
VI
input voltage
0
−
VCC
0
−
VCC
V
VO
output voltage
0
−
VCC
0
−
VCC
V
Tamb
operating ambient
temperature
+25
+125
−40
+25
+125
°C
see DC and AC
−40
characteristics per
device
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).
SYMBOL
PARAMETER
VCC
supply voltage
IIK
input diode current
CONDITIONS
VI < −0.5 V or VI > VCC + 0.5 V; note 1
MIN.
MAX.
UNIT
−0.5
+7.0
V
−
±20
mA
IOK
output diode current
VO < −0.5 V or VO > VCC + 0.5 V; note 1
−
±20
mA
IO
output source or sink current
−0.5 V < VO < VCC + 0.5 V; note 1
−
25
mA
ICC
VCC or GND current
note 1
−
50
mA
Tstg
storage temperature
−65
+150
°C
PD
power dissipation
−
300
mW
Tamb = −40 to +125 °C; note 2
Notes
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. Above 110 °C the value of PD derates linearly with 8 mW/K.
2003 Nov 04
5
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
DC CHARACTERISTICS
Type 74HC3G14
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = 25 °C
VOH
VOL
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
IO = −20 µA
2.0
1.9
2.0
−
V
IO = −20 µA
4.5
4.4
4.5
−
V
IO = −20 µA
6.0
5.9
6.0
−
V
IO = −4.0 mA
4.5
4.18
4.32
−
V
IO = −5.2 mA
6.0
5.68
5.81
−
V
IO = 20 µA
2.0
−
0
0.1
V
IO = 20 µA
4.5
−
0
0.1
V
IO = 20 µA
6.0
−
0
0.1
V
IO = 4.0 mA
4.5
−
0.15
0.26
V
VI = VIH or VIL
IO = 5.2 mA
6.0
−
0.16
0.26
V
ILI
input leakage current
VI = VCC or GND
6.0
−
−
±0.1
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
6.0
−
−
1.0
µA
IO = −20 µA
2.0
1.9
−
−
V
IO = −20 µA
4.5
4.4
−
−
V
IO = −20 µA
6.0
5.9
−
−
V
IO = −4.0 mA
4.5
4.13
−
−
V
IO = −5.2 mA
6.0
5.63
−
−
V
IO = 20 µA
2.0
−
−
0.1
V
IO = 20 µA
4.5
−
−
0.1
V
IO = 20 µA
6.0
−
−
0.1
V
IO = 4.0 mA
4.5
−
−
0.33
V
IO = 5.2 mA
6.0
−
−
0.33
V
Tamb = −40 to +85 °C
VOH
VOL
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
ILI
input leakage current
VI = VCC or GND
6.0
−
−
±1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
6.0
−
−
10
µA
2003 Nov 04
6
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = −40 to +125 °C
VOH
VOL
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
IO = −20 µA
2.0
1.9
−
−
V
IO = −20 µA
4.5
4.4
−
−
V
IO = −20 µA
6.0
5.9
−
−
V
IO = −4.0 mA
4.5
3.7
−
−
V
IO = −5.2 mA
6.0
5.2
−
−
V
IO = 20 µA
2.0
−
−
0.1
V
IO = 20 µA
4.5
−
−
0.1
V
IO = 20 µA
6.0
−
−
0.1
V
IO = 4.0 mA
4.5
−
−
0.4
V
VI = VIH or VIL
IO = 5.2 mA
6.0
−
−
0.4
V
ILI
input leakage current
VI = VCC or GND
6.0
−
−
±1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
6.0
−
−
20
µA
2003 Nov 04
7
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
Type 74HCT3G14
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = 25 °C
VOH
VOL
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
IO = −20 µA
4.5
4.4
4.5
−
V
IO = −4.0 mA
4.5
4.18
4.32
−
V
IO = 20 µA
4.5
−
0
0.1
V
IO = 4.0 mA
4.5
−
0.15
0.26
V
VI = VIH or VIL
ILI
input leakage current
VI = VCC or GND
5.5
−
−
±0.1
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
5.5
−
−
1.0
µA
∆ICC
additional supply current
per input
VI = VCC − 2.1 V;
IO = 0
4.5 to 5.5
−
−
300
µA
IO = −20 µA
4.5
4.4
−
−
V
IO = −4.0 mA
4.5
4.13
−
−
V
IO = 20 µA
4.5
−
−
0.1
V
IO = 4.0 mA
4.5
−
−
0.33
V
Tamb = −40 to +85 °C
VOH
VOL
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
ILI
input leakage current
VI = VCC or GND
5.5
−
−
±1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
5.5
−
−
10
µA
∆ICC
additional supply current
per input
VI = VCC − 2.1 V;
IO = 0
4.5 to 5.5
−
−
375
µA
IO = −20 µA
4.5
4.4
−
−
V
IO = −4.0 mA
4.5
3.7
−
−
V
4.5
−
−
0.1
V
Tamb = −40 to +125 °C
VOH
VOL
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
IO = 20 µA
IO = 4.0 mA
4.5
−
−
0.4
V
ILI
input leakage current
VI = VCC or GND
5.5
−
−
±1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
5.5
−
−
20
µA
∆ICC
additional supply current
per input
VI = VCC − 2.1 V;
IO = 0
4.5 to 5.5
−
−
410
µA
2003 Nov 04
8
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
TRANSFER CHARACTERISTICS
Type 74HC3G14
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
WAVEFORMS
TYP.
MAX.
UNIT
VCC (V)
Tamb = 25 °C
VT+
VT-
VH
positive going threshold
voltage
negative going threshold
voltage
hysteresis voltage
(VT+ − VT-)
see Figs. 5 and 6
see Figs. 5 and 6
see Figs. 5 and 6
2.0
1.0
1.18
1.5
V
4.5
2.3
2.6
3.15
V
6.0
3.0
3.46
4.2
V
2.0
0.3
0.6
0.9
V
4.5
1.13
1.47
2.0
V
6.0
1.5
2.06
2.6
V
2.0
0.3
0.6
1.0
V
4.5
0.6
1.13
1.4
V
6.0
0.8
1.40
1.7
V
2.0
1.0
−
1.5
V
4.5
2.3
−
3.15
V
6.0
3.0
−
4.2
V
2.0
0.3
−
0.9
V
4.5
1.13
−
2.0
V
6.0
1.5
−
2.6
V
2.0
0.3
−
1.0
V
4.5
0.6
−
1.4
V
6.0
0.8
−
1.7
V
2.0
1.0
−
1.5
V
4.5
2.3
−
3.15
V
6.0
3.0
−
4.2
V
2.0
0.3
−
0.9
V
4.5
1.13
−
2.0
V
6.0
1.5
−
2.6
V
2.0
0.3
−
1.0
V
4.5
0.6
−
1.4
V
6.0
0.8
−
1.7
V
Tamb = −40 to +85 °C
VT+
VT-
VH
positive going threshold
voltage
negative going threshold
voltage
hysteresis voltage
(VT+ − VT-)
see Figs. 5 and 6
see Figs. 5 and 6
see Figs. 5 and 6
Tamb = −40 to +125 °C
VT+
VT-
VH
2003 Nov 04
positive going threshold
voltage
negative going threshold
voltage
hysteresis voltage
(VT+ − VT-)
see Figs. 5 and 6
see Figs. 5 and 6
see Figs. 5 and 6
9
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
Type 74HCT3G14
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
MIN.
TYP.
MAX.
PARAMETER
UNIT
VCC (V)
OTHER
Tamb = 25 °C
positive going threshold
voltage
see Figs. 5 and 6
VT-
negative going threshold
voltage
see Figs. 5 and 6
VH
hysteresis voltage
(VT+ − VT-)
see Figs. 5 and 6
VT+
4.5
1.2
1.58
1.9
V
5.5
1.4
1.78
2.1
V
4.5
0.5
0.87
1.2
V
5.5
0.6
1.11
1.4
V
4.5
0.4
0.71
−
V
5.5
0.4
0.67
−
V
4.5
1.2
−
1.9
V
5.5
1.4
−
2.1
V
Tamb = −40 to +85 °C
VT+
VTVH
positive going threshold
voltage
see Figs. 5 and 6
negative going threshold
voltage
see Figs. 5 and 6
hysteresis voltage
(VT+ − VT-)
see Figs. 5 and 6
4.5
0.5
−
1.2
V
5.5
0.6
−
1.4
V
4.5
0.4
−
−
V
5.5
0.4
−
−
V
4.5
1.2
−
1.9
V
5.5
1.4
−
2.1
V
Tamb = −40 to +125 °C
VT+
VTVH
2003 Nov 04
positive going threshold
voltage
see Figs. 5 and 6
negative going threshold
voltage
see Figs. 5 and 6
hysteresis voltage
(VT+ − VT-)
see Figs. 5 and 6
10
4.5
0.5
−
1.2
V
5.5
0.6
−
1.4
V
4.5
0.4
−
−
V
5.5
0.4
−
−
V
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
TRANSFER CHARACTERISTIC WAVEFORMS
handbook, halfpage
handbook, halfpage
VO
VI
VT+
VH
VT−
VO
MNA027
VH
VT−
VI
VT+
MNA026
VT+ and VT- are between limits of 20% and 70%.
Fig.5 Transfer characteristic.
Fig.6 The definitions of VT+, VT− and VH.
MNA028
100
MNA029
1.0
handbook, halfpage
handbook, halfpage
ICC
(mA)
ICC
(µA)
0.8
0.6
50
0.4
0.2
0
0
0
1.0
VI (V)
2.0
0
VCC = 2.0 V.
VI (V)
5.0
VCC = 4.5 V.
Fig.7 Typical HC3G transfer characteristics.
2003 Nov 04
2.5
Fig.8 Typical HC3G transfer characteristics.
11
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
MNA030
1.6
MNA031
2.0
handbook, halfpage
handbook, halfpage
ICC
(mA)
ICC
(mA)
1.0
0.8
0
0
0
3.0
VI (V)
6.0
0
VCC = 6.0 V.
5.0
Fig.10 Typical HCT3G transfer characteristics.
MNA032
3.0
handbook, halfpage
ICC
(mA)
2.0
1.0
0
3.0
VI (V)
6.0
VCC = 5.5 V.
Fig.11 Typical HCT3G transfer characteristics.
2003 Nov 04
VI (V)
VCC = 4.5 V.
Fig.9 Typical HC3G transfer characteristics.
0
2.5
12
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
AC CHARACTERISTICS
Type 74HC3G14
GND = 0 V; tr = tf ≤ 6.0 ns; CL = 50 pF.
TEST CONDITIONS
SYMBOL
PARAMETER
WAVEFORMS
MIN.
TYP.
MAX.
UNIT
2.0
−
53
125
ns
4.5
−
16
25
ns
6.0
−
13
21
ns
2.0
−
20
75
ns
4.5
−
7
15
ns
6.0
−
5
13
ns
2.0
−
−
155
ns
VCC (V)
Tamb = 125 °C
tPHL/tPLH
tTHL/tTLH
propagation delay nA to nY see Figs 12 and 13
output transition time
see Figs 12 and 13
Tamb = −40 to +85 °C
tPHL/tPLH
tTHL/tTLH
propagation delay nA to nY see Figs 12 and 13
output transition time
see Figs 12 and 13
4.5
−
−
31
ns
6.0
−
−
26
ns
2.0
−
−
95
ns
4.5
−
−
19
ns
6.0
−
−
16
ns
2.0
−
−
190
ns
Tamb = −40 to +125 °C
tPHL/tPLH
tTHL/tTLH
2003 Nov 04
propagation delay nA to nY see Figs 12 and 13
output transition time
see Figs 12 and 13
13
4.5
−
−
38
ns
6.0
−
−
32
ns
2.0
−
−
110
ns
4.5
−
−
22
ns
6.0
−
−
19
ns
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
Type 74HCT3G14
GND = 0 V; tr = tf ≤ 6.0 ns; CL = 50 pF.
TEST CONDITIONS
SYMBOL
PARAMETER
WAVEFORMS
MIN.
TYP.
MAX.
UNIT
VCC (V)
Tamb = 25 °C
tPHL/tPLH
propagation delay nA to nY see Figs 12 and 13
4.5
−
21
32
ns
tTHL/tTLH
output transition time
see Figs 12 and 13
4.5
−
6
15
ns
tPHL/tPLH
propagation delay nA to nY see Figs 12 and 13
4.5
−
−
40
ns
tTHL/tTLH
output transition time
see Figs 12 and 13
4.5
−
−
19
ns
tPHL/tPLH
propagation delay nA to nY see Figs 12 and 13
4.5
−
−
48
ns
tTHL/tTLH
output transition time
4.5
−
−
22
ns
Tamb = −40 to +85 °C
Tamb = −40 to +125 °C
see Figs 12 and 13
AC WAVEFORMS
VI
handbook, halfpage
nA input
VM
VM
GND
t PHL
t PLH
VOH
nY output
90%
VM
VM
10%
VOL
t THL
t TLH
MNA722
For HC3G: VM = 50%; VI = GND to VCC.
For HCT3G: VM = 1.3 V; VI = GND to 3.0 V.
Fig.12 The input (nA) to output (nY) propagation delays and output transition times.
2003 Nov 04
14
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
S1
handbook, full pagewidth
VCC
PULSE
GENERATOR
RL =
VI
VCC
open
GND
1 kΩ
VO
D.U.T.
CL =
50 pF
RT
MNA742
TEST
S1
tPLH/tPHL
open
tPLZ/tPZL
VCC
tPHZ/tPZH
GND
Definitions for test circuit:
CL = Load capacitance including jig and probe capacitance.
RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.
Fig.13 Load circuitry for switching times.
2003 Nov 04
15
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
APPLICATION INFORMATION
Power dissipation
The slow input rise and fall times cause additional power
dissipation. This can be calculated using the following
formula:
MNA036
200
handbook, halfpage
ICC(AV)
(µA)
Pad = fi × (tr × ICC(AV) + tf × ICC(AV)) × VCC
150
Where:
positive-going
edge
Pad = additional power dissipation (µW)
100
fi = input frequency (MHz)
tr = input rise time between 10% and 90% (ns);
tf = input fall time between 90% and 10% (ns);
50
ICC(AV) = average additional supply current (µA).
Average ICC(AV) differs with positive or negative input
transitions, as shown in Fig.14 and Fig.15.
negative-going
edge
0
0
2.0
4.0
Relaxation oscillator
VCC (V)
6.0
A relaxation oscillator circuit using the HC3G14/HCT3G14
is shown in Fig.16.
Remark to the application information
Linear change of VI between 0.1VCC to 0.9VCC.
All values given are typical unless otherwise specified.
Fig.14 Average ICC for HC Schmitt-trigger devices.
MNA058
200
handbook, halfpage
ICC(AV)
(µA)
R
handbook, halfpage
150
positive-going
edge
C
100
MNA035
negative-going
edge
50
0
0
2
4
VCC (V)
6
1
1
For HC3G: f = --- ≈ ----------------------T 0.8 × RC
Linear change of VI between 0.1VCC to 0.9VCC.
1
1
For HCT3G: f = --- ≈ --------------------------T 0.67 × RC
Fig.15 Average ICC for HCT Schmitt-trigger
devices.
Fig.16 Relaxation oscillator using the
HC3G/HCT3G14.
2003 Nov 04
16
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
PACKAGE OUTLINES
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm
D
E
A
SOT505-2
X
c
HE
y
v M A
Z
5
8
A
A2
(A3)
A1
pin 1 index
θ
Lp
L
1
4
e
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D(1)
E(1)
e
HE
L
Lp
v
w
y
Z(1)
θ
mm
1.1
0.15
0.00
0.95
0.75
0.25
0.38
0.22
0.18
0.08
3.1
2.9
3.1
2.9
0.65
4.1
3.9
0.5
0.47
0.33
0.2
0.13
0.1
0.70
0.35
8°
0°
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
OUTLINE
VERSION
SOT505-2
2003 Nov 04
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
02-01-16
---
17
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm
D
E
SOT765-1
A
X
c
y
HE
v M A
Z
5
8
Q
A
A2
A1
pin 1 index
(A3)
θ
Lp
1
4
e
L
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D(1)
E(2)
e
HE
L
Lp
Q
v
w
y
Z(1)
θ
mm
1
0.15
0.00
0.85
0.60
0.12
0.27
0.17
0.23
0.08
2.1
1.9
2.4
2.2
0.5
3.2
3.0
0.4
0.40
0.15
0.21
0.19
0.2
0.13
0.1
0.4
0.1
8°
0°
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
SOT765-1
2003 Nov 04
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
02-06-07
MO-187
18
Philips Semiconductors
Product specification
Inverting Schmitt-triggers
74HC3G14; 74HCT3G14
DATA SHEET STATUS
LEVEL
DATA SHEET
STATUS(1)
PRODUCT
STATUS(2)(3)
Development
DEFINITION
I
Objective data
II
Preliminary data Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product.
III
Product data
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in order
to improve the design, manufacturing and supply. Relevant changes will
be communicated via a Customer Product/Process Change Notification
(CPCN).
Production
This data sheet contains data from the objective specification for product
development. Philips Semiconductors reserves the right to change the
specification in any manner without notice.
Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
DEFINITIONS
DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design
and/or performance. When the product is in full production
(status ‘Production’), relevant changes will be
communicated via a Customer Product/Process Change
Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these
products, conveys no licence or title under any patent,
copyright, or mask work right to these products, and
makes no representations or warranties that these
products are free from patent, copyright, or mask work
right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2003 Nov 04
19
Philips Semiconductors – a worldwide company
Contact information
For additional information please visit http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to: [email protected].
SCA75
© Koninklijke Philips Electronics N.V. 2003
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
613508/02/pp20
Date of release: 2003
Nov 04
Document order number:
9397 750 10569