CONFIDENTIAL CY7C9537B OC-48/STM-16 Framer–POSIC2G™ Features • OC-48/STS-48/STM-16, OC-12/STS-12/STM-4, OC-3/STS3/STM-1 rates, concatenated and non-concatenated — Complies with ITU-Standards G.707/Y.1322 and G.783[1,2] — Complies with Bellcore GR253 rev.1, 1997[3] — Channelized operation: supports 16xSTS-3c/VC4, 4xSTS-12c/VC4-4c, 2xSTS-24c/VC4-8c, and 1xSTS-48c/VC4-16c within OC-48 stream — Supports TUG3 mapping in SDH mode • Full duplex mapping of ATM cells over SONET/SDH — Complies with ITU-Standards I.432.2[4,5,6] • Full duplex mapping of packet-over-SONET/SDH: IETF RFC 1619/1662/2615 (HDLC/PPP)[7,8,9] • Generic Protocol Encapsulator/Decapsulator delineates packets/frames with length-CRC frame construct — Generic Framing Procedure (GFP) per ANSI T1X1.5[10,11,12] — GFP 268r1 — Simple Data Link (SDL) - IETF RFC2823 [13] — Cypress Hybrid Data Transport (HDT) [14] • User-programmable encapsulation • Programmable A1A2 processing bypass in Rx direction with frame sync input • Complete section overhead (SOH), line overhead (LOH), and path overhead (POH) processing • APS extraction, CPU interrupt generation, and programmable insertion of APS byte • Line side APS port interface • Provision for protection switching on SONET/SDH port • Programmable PRBS generator and receiver • Serial port to access line/section data communication channel (DCC) and voice communication channel (VCC) • Full duplex UTOPIA/OIF-SPI (POS-PHY) level 3 interface [15,16] • 16-bit/32-bit host CPU interface bus • JTAG and boundary scan • Glue-less interface with Cypress CYS25G0101DX OC-48 PHY • 0.18-µm CMOS, 504-pin BGA package • +1.8V for core, +3.3V for LVTTL I/O, +1.5V/+3.3V for HSTL/LVPECL I/O supply, and +0.75V/2.0V reference Applications • User-programmable clear channel transport • Multiservice nodes • User-programmable SONET/SDH bypass • ATM switches and routers • Programmable frame tagging engine for packet preclassification enables such features as — MPLS label lookup and tagging — PPP: LCP and NCP tagging • Packet routers • Multi-service routers • SONET/SDH add-drop mux for packet/data applications • SONET/SDH/ATM/POS test equipment — PPP control packets optionally sent to host CPU interface — MAC/layer 3 address look up and tagging Notes: 1. ITU-T Recommendation G.707. “Network Node Interface for the Synchronous Digital Hierarchy.” 1996. 2. ITU-T Recommendation G.783. “Characteristics of Synchronous Digital Hierarchy (SDH) Equipment Functional Blocks.” 2000. 3. Bellcore Publication GR-253-Core. “Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria.” 1997. 4. ITU-T Recommendation I.432.3. “B-ISDN User-Network Interface—Physical Layer Specification: 1544 kbit/s and 2048 kbit/s operation.” 1999. 5. American National Standards Institute. “Synchronous Optical Network (SONET)—Basic Description including Multiplex Structure, Rates and Formats.” ANSI T1.105–1995. 6. American National Standards Institute. “Synchronous Optical Network (SONET)—Payload Mappings.” ANSI T1.105.02–1998. 7. Simpson, W. “PPP Over SONET/SDH.” RFC 1619. May 1994. 8. Simpson, W., ed. “PPP in HDLC-like Framing.” RFC 1662. Daydreamer. July 1994. 9. Malis, A. and Simpson, W. “PPP Over SONET/SDH.” RFC 2615. June 1999. 10. Hernandez-Valencia, E. Lucent Technologies. “A Generic Frame Format for Data Over SONET (DoS).” March 2000. 11. Gorshe, C. and Steven. T1X1.5/99-204, T1 105.02. Draft Text for Mapping IEEE 802.3 Ethernet MAC Frames to SONET Payload. July 1999. 12. Hernandez-Valencia, E. Lucent Technologies. T1X1.5/2000-209. “Generic Framing Procedure (GFP) Specification.” October 9–13, 2000. 13. Carlson, J., P. Langner, E.J. Hernandez-Valencia, and J. Manchester. “PPP over Simple Data Link (SDL) using SONET/SDH with ATM-like Framing.” rfc2823.txt, May 2000. 14. Pankaj, K. “A Hybrid Data Transport Protocol for Optical Networks.” RFC draft-jha-optical-hdt-00.txt. November 2000. Cypress Semiconductor Corporation Document #: 38-02079 Rev. *F • 3901 North First Street • San Jose, CA 95134 • 408-943-2600 Revised May 3, 2005 CONFIDENTIAL LAN & W AN D a ta L in k D e v ic e U T O P IA or P O S -P H Y HBST CBR CY7C9537B E /O CY7C9537B CYS25G 0101DX O C -4 8 P O S IC T ra n s c e iv e r ATM SAR O /E CPU Figure 1. POSIC2G System Application Diagram POSIC2G Logic Block Diagram SONETTX_PAROUT TXCLKI TXCLKOUT TXD[31:0] TXFRAME_PULSE RXCLKs RXD[31:0] LFI RXFRAME RXCLK I _PULSE TX SONET Line Interface RX SONET Line Interface Transmit SONET Text Framer Receive SONET Receiv e De-Framer SONET SONE Receive SONET T Overhead FramingOverhe Processor Bypass ad Pointer Processor Insertio n SONET Transmit SONET Framing Overhead Processor Bypass POHSDIN TOHSDIN TE1STROBE TE2STROBE Pointer Processor TX ATM Encapsulator SONETRXPARIN Clk2MHz Clk16MHz POHSDOUT RPOHSTART TPOHSTART RE1STROBE RE2STROBE TOHSDOUR RX RX RX Generic ATM HDLC Protocol Decapsulator Decapsulator Decapsulator TX TX Generic HDLC Protocol Encapsulator Encapsulator Programmable Frame Tagging Engine TCK TRST TDI TMS TDO General Pins JTAG Interface Transmit UTOPIA/SPI-3 Interface RST_n SYSCLK RSTOUT_n CLKOUT TEST[2:0] MISC[15:0] POSIC_OEN SCAN_ENA Document #: 38-02079 Rev. *F TFCLK TERR TDAT[31:0] TPRTY TADD[3:0] TMOD[1:0] TSOP TEOP STPA PTCA TENB TSX DTCA[3:0] CPU Interface CpuClk CpuTs_n/CpuAds_n CpuSel CpuBlast_n CpuTa_n ChipSel CpuInt CpuClkFail CpuWrRd CpuAD[31:0] Mode Receive UTOPIA/SPI-3 Interface RVAL RENB RFCLK RDAT[31:0] RADD[70] RMOD[1:0] RPRTY RERR REOR RSOP RCA RSX Page 2 of 43 CONFIDENTIAL Overview The CY7C9537B (POSIC2G) is a highly integrated SONET/SDH framer device for transport of ATM and IP packets over SONET/SDH links. It features special functions and architecture to support next-generation optical networking protocols for both SONET/SDH and direct data-over-fiber networks. UTOPIA level 3, OIF-SPI (POS-PHY) level 3 and high-bandwidth synchronous transfer (HBST) interfaces are provided on the system side. POSIC2G performs complete SOH, LOH, and POH processing. Complete access to all overhead bytes is provided through register access via the host CPU interface. Access to selected overhead bytes is also available through the serial port. Optional frame sync input and Transport Overhead (TOH) bypass enables better interface with SPE/VC switched streams. POSIC2G supports packet over SONET/SDH as PPP in HDLC-like frame as per IETF rfc 1619/1662/2615 (PPP). POSIC2G also supports full-duplex ATM over SONET/SDH transport in compliance with ITU I432.2. The Generic Protocol Encapsulator/Decapsulator features wire rate framing, frame delineation and deframing with length-CRC pair header construct. Optional payload scrambling/descrambling and payload FCS are also provided. This enables POSIC2G to support many new-generation protocols like SDL, GFP, and HDT over SONET/SDH. Clear channel mode enables transport of any raw byte streams on selected channels, while the rest of the channels are transporting data through any one of encapsulation/decapsulation engines. The Programmable Frame Tagging Engine enables wire-rate tagging of packets/frames. For new-generation networking features such as MPLS, this engine can be programmed to tag based on existence/lack of specific label/field values, in the first 64 bytes of each packet. This way, packets are tagged for a variety of conditions, all programmable by the user, enabling sorting of packets in the incoming data stream and buffering packets accordingly. In a PPP application, control packets can optionally be sent over the host CPU interface directly. SONET/SDH bypass mode allows use of this device for data transport in non-SONET/SDH point-to-point and mesh optical networks. Transmit In the transmit direction, packets are received from the system side, encapsulated/framed and mapped into the SONET/SDH payload. Finally the TOH is added and SONET/SDH frames are passed onto the fiber side/line side interface on a parallel bus. The system side interface can be programmed either as UTOPIA level 3, or OIF-SPI level 3, or HBST modes. In the UTOPIA mode, ATM cells can be received either in 54- (8-bit interface) or 56- (8-bit and 32-bit interfaces) byte format. The sixth byte carries the channel number of the cell. In case of packets, the interface can be programmed as OIF-SPI level 3 or HBST operations. In these cases, the channel number is always carried in the first data transfer. Document #: 38-02079 Rev. *F CY7C9537B POSIC2G supports three basic types of encapsulation, namely (i) ATM, (ii) HDLC frame, and (iii) frames with length-CRC pair header construct based delineation. SDL, GFP and HDT frames are delineated based on length-CRC pair header construct and they are supported by POSIC2G. Clear channel or transparent mode (no encapsulation) is also supported. While in operation, only one type of encapsulation can be enabled for all channels. Some or all of the channels can be programmed as clear channels. For Clear Channels, the encapsulator engine will bypass the encapsulation and pass the packets without any processing to the next block. Since POSIC2G does not have a packet storage memory on-chip, a channel bandwidth balanced packet flow is expected from the system side. To enable such a balanced transfer, POSIC2G has internal FIFO of 512 bytes per channel. The status of FIFO is provided through pins to the link layer. Finally, the SONET/SDH framer inserts the packet/cells into the SONET/SDH frame. All overhead bytes are added. All alarm bits and status bits are inserted based on the status of incoming frames as well as programming done by the host CPU. The scrambler meets relevant standards and can optionally be disabled. Frames are finally sent out on the fiber side interface. If programmed to do so, the SONET/SDH framer can be bypassed and encapsulated packets/frames can be sent directly to the fiber-side interface. Receive In the receive direction, SONET/SDH frames are received from the fiber side. Data packets/frames are extracted from the payload and passed onto the selected decapsulator engine. If the SONET/SDH framer is bypassed, the incoming data stream is directly passed over to the decapsulator engine. Data packets/frames are then decapsulated and sent to the Programmable Frame Tagging Engine. They are then analyzed and tagged before being sent out to the system side via the UTOPIA, OIF-SPI level 3, or HBST interface. Tagging of frames is optional. SONET/SDH frames entering from the fiber side are synchronized and the frame boundary is identified with A1A2 bytes. Frames can be optionally synchronized with Frame_Sync_Input to identify the boundary. Descrambling is performed to retrieve scrambled frames. Complete processing of all overhead bytes, Section, Line, and Path, is performed and all alarm bits are verified and alarms are raised as programmed. Full access to all overhead bytes is provided through register access. Access to selected overhead bytes is also provided through serial bus. The SONET/SDH deframing can be entirely bypassed. The extracted payload is transferred to the decapsulator. The selected decapsulator engine delineates the payload stream, decapsulates and extracts packets/cells from the stream. Descrambling of packets/cells is optional. The packets/cells are then sent out to the programmable Frame Tagging Engine. The Frame Tagging Engine optionally tags the packet/cell as programmed. The packet/cell is then transferred to the link layer device, through the System Interface (UTOPIA/OIF-SPI level 3, or HBST), with an additional eight bits of information. Four bits specify the channel and the other four bits specify the tag. Page 3 of 43 CONFIDENTIAL CY7C9537B Protocol / Frame Types "Clear Channel Transport" ATM Framer ATM Deframer SONET/ SDH Framer HDLC Framer Frame Tagger HDLC Deframer Generic Protocol Framer SONET/ SDH Framer Generic Protocol Deframer SPI-3/ UTOPIA SPI-3/ UTOPIA "Clear Channel Transport" Note: Only one protocol type can be active Figure 2. Protocol Framers . Generic Frame Encapsulation/Decapsulation POSIC2G supports a variety of protocols/packets/frames to transport over a SONET/SDH link. For clarity of reference, in this document, framing of packets/cells into these protocols is called “encapsulation,” and the engine performing encapsulation is called an “encapsulator.” Similarly, deframing is called “decapsulation,” and the engine performing decapsulation is called a “decapsulator.” Three different encapsulator and decapsulator engines are integrated into POSIC2G. The ATM encapsulator computes and adds the HEC field, scrambles the cells and passes on to the SONET/SDH block. In case of underflow, ATM encapsulator also creates programmable idle cells. The ATM decapsulator checks for HEC and integrity of the cell. It descrambles the cells, isolates and discards idle cells, and passes ATM cells to the Programmable Frame Tagging Engine. The HDLC encapsulator performs Asynchronous Control Character Mapping (ACCM), stuffing, flag sequence insertion, and scrambling. Optionally, up to 16 bytes of header is inserted ahead of the packet while framing the packet. The host CPU can program this 16-byte header through register programming. Such programmable header insertion enables encapsulation of PPP, frame relay, or other protocol. Document #: 38-02079 Rev. *F The HDLC decapsulator descrambles the incoming byte stream and searches the flag sequence. Upon finding the boundary, the decapsulator performs destuffing and ACCM demapping before passing the packets to the Programmable Frame Tagging Engine. The Generic Protocol Encapsulator/Decapsulator supports all the protocols with delineation based on length-CRC pair header construct. In the transmit direction, it computes a 16-bit header CRC based on 2-byte length value received from the link layer device. The length and CRC fields are inserted as header of the frame ahead of the packet. Scrambling of the payload and 32-bit payload CRC computation and insertion are optional. In the receive direction, frames are delineated based on the length-CRC construct pair header, integrity verified, payload extracted, optionally descrambled and sent to the Programmable Frame Tagging Engine. The Generic Protocol Encapsulator/Decapsulator can support many protocols with length-CRC pair header construct as the frame delineation mechanism. For example, Simple Data Link (SDL), Generic Framing Procedure (GFP) in Data Over SONET (DOS) and Cypress Hybrid Data Transport (HDT) have frame structure supporting length-CRC construct based delineation. Any selected channel can be programmed to become a clear channel. The encapsulator and decapsulator remain in transparent mode for the clear channel and data passes through without any modification. This feature can be used to transport any raw data streams on a portion of bandwidth while the rest of the bandwidth is utilized for protocol traffic. Page 4 of 43 CONFIDENTIAL Programmable Frame Tagging Engine The Programmable Frame Tagging Engine provides preclassification of the packets/frames at the wire rate. This helps in utilizing the link layer device more efficiently. The Programmable Frame Tagging Engine enables the user to perform preclassification of all the incoming packets into one of the 16 possible categories. Since each channel can have up to 16 different categories, and up to 16 concatenated channels are possible, this engine supports up to 256 different categories. For classification, two-pass comparison can be specified. For each comparison a field of up to six bytes can be selected within the first 64 bytes of the packet and compared with up to 16 programmed values. The comparison is on a bit by bit basis and any bit comparison can be masked with a user programmable mask register. A four-bit tag is attached to the cell/packet, based on the match. Host CPU can program these parameters through register programming. CY7C9537B The following functions can be achieved with the help of the Programmable Frame Tagging Engine: • Incoming packet analysis to parse packets/frames/cells at wire speed. • User-programmable routing of control packets to CPU for processing. • Incoming frames tagged based on bits (such as congestion) in incoming packets. • User-programmable offset to locate Ethernet and other frames within DOS and other proprietary M.AN networking protocols to allow MPLS processing. SONET/SDH Bypass POSIC2G supports the SONET/SDH framer/deframer bypass mode. Host CPU can program such bypass. In this mode, the data frames/packets, encapsulated by one of the encapsulators, will be transmitted transparently through SONET/SDH blocks to the fiber side and vice versa. System Memory at Host System Tag #0 Tagging enables sorting of packets by Host System Control Packets Data Data POSIC Tag #1 Packets Tag #2 SPI-3 Interface Packets not belonging to this Node ........ Data Tag #n Rx Processing Data SONET/SDH Data TTL-expired and other discard packets Tag #13 Data Errored packets (CRC and Parity) Tag #14 Data Node-sourced packets to be Tag #15 sinked Data Figure 3. Frame Tagging Engine Data Sorting Diagram Document #: 38-02079 Rev. *F Page 5 of 43 CONFIDENTIAL System Interface The system interface is programmable. For an application in an ATM system, the POSIC2G system interface can be programmed to be a PHY side interface as per UTOPIA level 3 specifications. For variable length packets, the POSIC2G system interface can be programmed to be OIF-SPI level 3. ATM cells can also be transferred over a OIF-SPI level 3 bus. The system interface can be programmed in HBST mode. In this case, a separate set of address pins are supported on the system side. This mode supports high-speed burst access. CPU Interface POSIC2G can interface with a 16-bit or 32-bit CPU. The CPU interface can be pin configured to be compatible with a Motorola or Intel bus interface. The CPU interface provides access to all registers of POSIC2G, collates all interrupt generated by various blocks and also supports control packet transfers. CY7C9537B POSIC2G provides APS byte information to the host CPU. The host CPU is expected to take a protection switching decision and provide necessary instructions to both POSIC2G devices. In case of protection switching, in the transmit direction, the main POSIC2G will perform all other operations as programmed, except some of the line and section processing of SONET/SDH framing. The main POSIC2G device will then pass on the SPEs to the standby device through the APS port. The standby device will then perform the rest of the line and section processing and transport SONET/SDH frames over standby fiber. Similarly, in case of protection switched mode, on the receive side, the standby device will process some of the line and section overhead and transfer the frames to main device through the APS port. The main device will perform the rest of the processing in the receive side. RxS RxS RxM PHY STANDBY Line Interface The line interface/fiber side interface is configurable as 8-bit, 16-bit, or 32-bit, depending on the clock frequency and data rate. The options shown in Table 1 are available. POSIC STANDBY TxS TxS Table 1. Configuration Options Bus Width Clock Frequency Line Rate 8 bits 19.44 MHz OC-3/STM-1 8 bits 77.76 MHz OC-12/STM-4 16 bits 38.88 MHz OC-12/STM-4 16 bits 155.52 MHz OC-48/STM-16 32 bits 77.76 MHz OC-48/STM-16 Clock Source The transmit clock can be programmed to be one of the following sources: • Received clock supplied by the PHY. • External transmit clock source. APS Port POSIC2G provides a 16-bit APS port for 1+1 protection. The support of a main and standby PHY interface connectivity allows several different APS implementation options using POSIC2G. Multi-Framer APS Implementation Two POSIC2G devices can be connected to two different transceivers, optics and fibers. POSIC2G enables protection switching with only one device being main and connected to link layer. The standby POSIC2G device is connected to the main POSIC2G device and it is controlled by host CPU. Document #: 38-02079 Rev. *F RxS RxM RxM PHY MAIN POSIC MAIN LINK LAYER DEVICE TxS TxM TxM Working Channel Protection Figure 4. POSIC2G APS Implementation using Two POSIC Devices Single Framer APS Implementation A main and slave PHY device can be interfaced directly to the main and APS ports of a single POSIC2G device. In this case, the main PHY is connected to the main line interface and the standby PHY is connected to the APS port. In the POSIC2G transmit path, SONET/SDH data is bridged across the main and APS ports (per linear 1+1 APS requirements). When protection switching, POSIC2G can be programmed to switch line inputs from the main receive port to the APS receive port, or vice versa. This APS scheme provides solely optical/PHY link level protection. Page 6 of 43 CONFIDENTIAL CY7C9537B OSC LVPECL 155.52MHz Main OC-48 PHY REFCLK TXCLKI M TXCLKO TXCLKO TXCLKI TXD[15:0] TXD [15:0] RXD[15:0] SFF Optical Module RXD[15:0] RXCLK RXCLK LFI LFI M POSIC2G Standby PHY REFCLK TXCLKO LFI TXCLKI TXD[31:16] TXD [15:0] RXD[31:16] RXD[15:0] RXCLKS SFF Optical Module RXCLK Figure 5. POSIC2G APS Implementation Using a Single POSIC Device Document #: 38-02079 Rev. *F Page 7 of 43 CONFIDENTIAL CY7C9537B Pin Configuration 29 28 27 26 25 A VSS1 VSS1 VSS2 VCC1 VSS2 B VSS1 VCC3 VSS1 VCC3 VSS1 VCC3 24 VCC3 23 VSS2 22 VCC2 21 VCC2 20 VSS2 19 18 17 VCC3 16 VSS2 15 VCC3 VSS1 14 VSS2 11 10 VCC2 9 VSS2 8 VCC3 7 VCC2 VSS2 6 5 4 3 2 1 VSS2 VCC3 VSS1 VCC3 VSS1 VSS1 A VSS2 VCC1 VCC2 VCC1 VSS2 VSS1 B VSS2 VCC1 VCC1 VSS1 C VSS2 VCC2 D VSS2 VSS1 E VCC1 VCC2 F VSS2 VSS1 RXFRAME _PULSE G VCC1 VCC2 VREF H VCC1 RXD<1> RXD<0> RXCLKS SONETRx_ PARIN LFI RDAT <6> RDAT <7> RDAT <8> VCC3 RDAT <9> VCC3 H J VSS1 RXD<6> RXD<5> RXD<4> RXD<3> RDAT <10> RDAT <14> VSS2 J K RXD<10> RXD<9> VSS1 RXD<8> RXD<7> VCC1 VCC1 VCC1 VCC3 VCC3 VSS2 VCC1 RXD<2> M VSS1 RXD<17> RXD<16> RXD<15> VREF N RXD<21> RXCLK P VSS1 RXD<24> RXD<23> VREF R VSS2 RXD<27> TXCLKIN RXD<26> RXD<25> T VCC5 TXD<30> TXD<31> RXD<29> RXD<28> U TXD<28> TXD<29> VREF V VCC5 TXD<24> TXD<25> TXD<26> TXD<27> W VSS2 TXCLKOU T TXD<21> TXD<22> TXD<23> Y TXD<18> TXD<19> TXD<20> VCC5 RDAT <11> RXD<20> RXD<19> RXD<18> CY7C9537B (POSIC) Ball Assignment (Bottom View) RXD<22> RXD<31> RXD<30> C D VCC3 E F RDAT <4> RDAT <5> VSS2 G RDAT <13> RDAT <15> RDAT <16> RDAT <17> RDAT <18> VCC3 K RDAT <19> RDAT <20> RDAT <21> RDAT <22> RDAT <23> L RDAT <28> M RDAT <24> RDAT <25> RDAT <26> RDAT <27> RDAT <29> RDAT <30> RDAT <31> RADD<0> RADD<1> N RADD<2> RADD<3> RADD<4> RADD<5> VSS2 P RADD<6> RADD<7> RMOD<1> RMOD <0> VCC3 R RPRTY RERR RSOP/RSO C REOP VSS2 T RSX RCA TDAT <0> RENB RVAL U TDAT <2> TDAT <1> V TDAT <9> TDAT <8> TDAT <7> TDAT <6> TDAT <5> W TDAT <13> TDAT <12> TDAT <11> TDAT <10> VCC3 Y TDAT <18> TDAT <17> TDAT <16> TDAT <15> TDAT <14> VSS2 AA TXD<10> TXD<11> TXD<12> TDAT <22> VCC2 TDAT <21> TDAT <20> TDAT <19> VCC3 AB TXD<4> TXD<5> TXD<6> TDAT <27> TDAT <26> TDAT <25> TDAT <24> TDAT <23> VSS2 AC TXD<2> SONETTx _PAROUT TDAT <30> TDAT <29> VSS1 TDAT <28> VCC2 AD TENB VCC2 TDAT TADD<1> TADD<0> <31> VSS1 AE VSS2 VCC5 TXD<13> TXD<14> TXD<15> TXD<16> TXD<17> AB VCC5 TXD<8> TXD<9> AC VSS2 TXD<3> AD VCC5 TXD<0> TXD<1> AE VSS2 VCC1 TXFRAME POHSDOU _PULSE T VCC5 AF VSS2 VSS1 VSS2 VCC1 TXD<7> RPOHSTA RT TDO CLK16MH z VSS2 AG VCC3 VCC5 VCC3 AH VSS2 VSS2 VCC1 VSS1 VSS2 TOHSDIN VCC3 26 VCC3 25 STPA SYSCLK TEST<0> POSIC_OE N MODE TCK CPUCLK CHIPSEL CPUAD <30> VCC2 TDI CPUAD CPUWRD <31> SCAN _ENA VSS1 TEST<2> RSTOUT_ N POHSDIN TEST<1> TPOHSTA TE1STRO RT BE VSS1 VCC1 27 TMS RE1STRO TE2STRO BE CLK2MHz BE TRST TOHSDOU RE2STRO T BE VSS1 28 RDAT <12> VCC3 VCC1 RDAT <0> RDAT <1> VCC3 TDAT <4> TDAT <3> RFCLK AA VSS1 VSS2 RDAT <2> RDAT <3> VSS2 RXD<14> RXD<13> RXD<12> RXD<11> 29 VCC3 VCC3 VCC1 VSS1 CLK_OUT VCC1 VCC3 L AJ VSS1 12 VSS2 VCC3 VCC1 13 VCC2 VCC2 VSS2 24 Document #: 38-02079 Rev. *F VSS1 VSS2 23 VSS2 22 VCC3 21 VSS1 20 CPUAD <26> CPUAD <22> CPUAD <27> CPUAD <23> CPUSEL CPUAD <24> CPUAD <25> CPURST_ CPUBLAS CPUAD N T_N <28> VSS1 19 CPUAD <29> CPUTS_N VSS2 18 17 CPUAD <19> VCC3 16 15 CPUAD <14> CPUAD <11> CPUAD <20> CPUAD <15> CPUAD <12> CPUAD <21> CPUAD <16> VSS1 VSS1 CPUAD <17> CPUAD <13> VSS2 CPUAD <18> VSS2 14 13 CPUAD <6> 12 TMOD<1> TEOP CPUAD <2> CPUTA_N DTCA<1> TFCLK CPUAD <7> CPUAD <3> CPUINT VSS2 TMOD<0> TSOP TERR VCC1 VCC1 AF CPUAD <8> CPUAD <4> CPUAD <0> PTCA DTCA<2> TSX TPRTY TADD<3> VCC2 VCC1 VCC2 AG CPUAD <9> CPUAD <5> CPUAD <1> CPUCLKF AIL DTCA<3> DTCA<0> VSS1 VSS1 VCC1 VCC2 VCC2 AH CPUAD <10> VCC3 VSS2 VCC3 VSS1 VSS2 VSS1 VSS1 11 10 9 VSS2 8 VCC3 7 VCC1 6 5 TADD<2> VCC2 4 3 2 AJ 1 Page 8 of 43 CONFIDENTIAL CY7C9537B Pin Description Signal Name I/O Pad Type Pins JTAG Description Line Interface Signals RXFRAME_PULSE I HSTL/LVTTL /LVPECL TXFRAME_PULSE O HSTL/LVTTL RXD[31:0] I HSTL/LVTTL /LVPECL RXCLK I HSTL/LVTTL /LVPECL RXCLKs I N Optional Frame pulse input for line interface. Active HIGH. 1 N Frame pulse output for line interface. Active HIGH. 32 N 32-bit single ended receive data bus for SONET/SDH link. This bus can be configured as two 16-bit buses in APS operation. 1 N Receive clock input from the PHY device for line interface. HSTL/LVTTL /LVPECL 1 N Receive clock input from the Slave PHY device for SONET/SDH link to support APS. TXCLKOUT O HSTL/LVTTL 1 N Transmit Clock to physical layer device for line interface. This will be RXCLK or the TXCLKI based on the clock selection in the SONET Tx block register. During loopback this is same as the RXCLK. TXCLKI I 1 N Input transmit clock from physical layer device for line interface. TXD[31:0] O HSTL/LVTTL 32 N 32-bit single ended transmit data bus for line interface. This bus can be configured as two 16-bit buses in APS operation. SONETTX_PAROU T O HSTL/LVTTL 1 N SONET Tx Parity Output. Can be ODD/EVEN parity, as programmed in the SONET/SDH Tx block register. SONETRX_PARIN I HSTL/LVTTL /LVPECL 1 N SONET Rx Parity Input. Can be ODD/EVEN parity, as programmed in the SONET/SDH Rx block register. LFI_n I LVTTL 1 N Line fault indicator. When LOW, this signal indicates that the PHY has detected Loss of Optical signal on the SONET link. HSTL/LVTTL /LVPECL 1 Overhead Bytes Access – Serial Ports Clk2MHz O LVTTL 1 N TOH Serial Port Clock Output. TOHDout is clocked out on the rising edge of this clock and TOHDin is latched-in with the falling edge of this clock. The frequency is 2.048 MHz, derived from SysClk. Clk16MHz O LVTTL 1 N POH Serial Port Clock Output. POHDout is clocked out on rising edge of this clock and POHDin is latched-in with falling edge of this clock. The frequency is 16.625 MHz, derived from SysClk TE1STROBE O LVTTL 1 N Transmit E1 Strobe. Transmit TOH serial port data start indication. Active HIGH pulse generated once in every 125 ms. Indicates the first bit of E1 Byte. TE2STROBE O LVTTL 1 N Transmit E2 Strobe. Active HIGH pulse generated once in every 125 ms. Indicates the first bit of E2 Byte. TPOHSTART O LVTTL 1 N Transmit POH Serial Port Data Start Indication. Active HIGH pulse generated once in every 125 ms. TOHSDIN I LVTTL 1 N Transport over head serial port data input. POHSDIN I LVTTL 1 N Path over head serial port data input. RE1STROBE O LVTTL 1 N Receive E1 Strobe. Receive TOH serial port data start indication. Active HIGH pulse generated once in every 125 ms. Indicates that the POSIC2G expects the first bit of the first byte of E1 should accompany the next clock edge. MSB is transmitted first. RE2STROBE O LVTTL 1 N Receive E2 Strobe. Active HIGH pulse generated once in every 125 ms. Indicates that the POSIC2G expects the first bit of the first byte of E2 should accompany the next clock edge. MSB is transmitted first. RPOHSTART O LVTTL 1 N Receive POH Serial Port Data Start Indication. Active HIGH pulse generated once in every 125 ms. Indicates that the POSIC2G expects the first bit of the first byte of RPOH should accompany the next clock edge. TOHSDOUT O LVTTL 1 N Transport over head serial port data output. POHSDOUT O LVTTL 1 N Path over head serial port data output. Document #: 38-02079 Rev. *F Page 9 of 43 CONFIDENTIAL CY7C9537B Pin Description (continued) Signal Name I/O Pad Type Pins JTAG Description System Interface (OIF-SPI level 3/UTOPIA level 3/HBST) signals (in this section, POS = OIF-SPI Level 3, ATM = Utopia level 3 mode) RVAL O LVTTL 1 N POS: Receive Data Valid (RVAL) signal. RVAL indicates the validity of receive data signals. RVAL will transition LOW when receive FIFO is empty or at the end of a packet. When RVAL is HIGH, the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, and RERR signals are valid. When RVAL is LOW, the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, and RERR signals are invalid and must be disregarded. HBST: Receive Data Valid (RDVAL) signal. The RDATA, RBVAL, RSOP, REOP, RERR, and RADDR are valid when this signal is active. RENB I LVTTL 1 N POS: Receive Read Enable (RENB) signal. The RENB signal is used to control the flow of data from the receive FIFOs. During data transfer, RVAL must be monitored as it will indicate if the RDAT[31:0], RPRTY, MOD[1:0], RSOP, REOP, RERR and RSX are valid. The system may deassert RENB at anytime if it is unable to accept data from POSIC2G. When RENB is sampled LOW by POSIC2G, a read is performed from the receive FIFO and the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, RERR, RSX and RVAL signals are updated on the following rising edge of RFCLK. When RENB is sampled HIGH by POSIC2G, a read is not performed and the RDAT[31:0], RPRTY, RMOD[1:0], RSOP, REOP, RERR, RSX and RVAL signals will not be updated. ATM: Enable Data Transfers (RxENb*) signal Enables port selection. HBST: Receive Data Ready (RREADY_n) signal Active LOW signal, indicates ready to accept data. The device will send valid data 2 clocks after the assertion of this signal. RFCLK I LVTTL 1 N POS: Receive FIFO Write Clock (RFCLK). RFCLK is used to synchronize data transfer transactions between the LINK Layer device and the POSIC2G. RFCLK may cycle at a rate up to 100 MHz. ATM: Transfer/interface clock (RxClk) HBST: Receive Clock (RCLK). Max 104-MHz Receive Clock for level-3 operation. All signals are latched out on the rising edge of this clock. Document #: 38-02079 Rev. *F Page 10 of 43 CONFIDENTIAL CY7C9537B Pin Description (continued) Signal Name I/O Pad Type Pins JTAG Description RDAT[31:0] O LVTTL 32 N POS: Receive Packet Data Bus (RDAT[31:0]) The RDAT[31:0] bus carries the packet octets that are read from the receive FIFO and the in-band port address of the selected receive FIFO. RDAT[31:0] is considered valid only when RVAL is asserted. Given the defined data structure, bit 31 is received first and bit 0 is received last. ATM: Receive Cell Data Bus (RxData[31:0]) The RDAT[31:0] bus carries the cell octets that are read from the receive FIFO. RDAT[31:0] is considered valid only when RENB is asserted. Given the defined data structure, bit 31 is received first and bit 0 is received last RDAT[31:0] is updated on the rising edge of RCLK. This bus is big-endian in format. HBST: Receive Data Bus (RDATA[31:0]) 32-bit Data Bus, the data is valid when RDVAL signal is active. RADD[7:0] O LVTTL 8 N HBST: Receive Port Address (RADDR[7:0]). When RDVAL signal is active, this address on this bus indicates port address in RADDR[3:0] and tag value in RADDR[7:4]. In single-channel mode all 8 bits will contain the tag value. RADDR is considered valid only when RDVAL is asserted RMOD[1:0] O LVTTL 2 N POS: Receive Word Modulo (RMOD[1:0]) signal. RMOD[1:0] indicates the number of valid bytes of data in RDAT[31:0]. The RMOD bus should always be all zero, except during the last double-word transfer of a packet on RDAT[31:0]. When REOP is asserted, the number of valid packet data bytes on RDAT[31:0] is specified by RMOD[1:0] RMOD[1:0] = “00” RDAT[31:0] valid RMOD[1:0] = “01” RDAT[31:8] valid RMOD[1:0] = “10” RDAT[31:16] valid RMOD[1:0] = “11” RDAT[31:24] valid RMOD[1:0] is considered valid only when RVAL is asserted. HBST: Receive Data Byte Valid (RBVAL[1:0]) signals. This indicates the number of bytes data bytes valid on the RDATA bus, 00 = 4 bytes valid, 11 = 1 byte valid. RPRTY O LVTTL 1 N POS: Receive Parity (RPRTY) signal. The receive parity (RPRTY) signal indicates the parity calculated over the RDAT bus. RPRTY supports both odd and even parity. ATM: Receive Parity (RxPrty) signal. Data bus odd parity. HBST: Receive Bus Parity (RPARITY) signal. Receive bus parity, Even/Odd parity calculated on the data bus alone or on all the bus signals (RDATA, RADDR, RDVAL, RBVAL, RSOP, REOP, RERR). Document #: 38-02079 Rev. *F Page 11 of 43 CONFIDENTIAL CY7C9537B Pin Description (continued) Signal Name I/O Pad Type Pins JTAG Description RERR O LVTTL 1 N POS: Receive Error Indicator (RERR) signal. RERR is used to indicate that the current packet is aborted and should be discarded. RERR shall only be asserted when REOP is asserted. Conditions that can cause RERR to be set may be, but are not limited to, FIFO overflow, abort sequence detection, and FCS error. RERR is considered valid only when RVAL is asserted. HBST: Receive Error Indicator (RERR) signal. A HIGH indicates the current packet or cell has error. REOP O LVTTL 1 N POS: Receive End Of Packet (REOP) signal. REOP is used to delineate the packet boundaries on the RDAT bus. When REOP is HIGH, the end of the packet is present on the RDAT bus. REOP is required to be present at the end of every packet and is considered valid only when RVAL is asserted. HBST: End of Packet/Cell (REOP) signal. A HIGH indicates the end of packet or cell. RSOP/RSOC O LVTTL 1 N POS: Receive Start of Packet (RSOP) signal. RSOP is used to delineate the packet boundaries on the RDAT bus. When RSOP is HIGH, the start of the packet is present on the RDAT bus. RSOP is required to be present at the start of every packet and is considered valid when RVAL is asserted. ATM: Receive Start of Cell (RxSOC). This signal marks the start of a cell structure on the RxData bus. The first word of the cell structure is present on the RxData[31:0] bus when RxSOC is HIGH. RxSOC is updated on the rising edge of RxClk. HBST: Receive Start of Packet/Cell (RSOP) signal. A HIGH indicates start of packet or start of cell. RCA O LVTTL 1 N ATM: UTOPIA Receive Cell Available (RxClav). RxClav will be asserted, whenever a minimum of 1 cell of data is available in the Receive FIFO. HBST: Receive FIFO Available (RSTFA) signal. RSTFA indicates when data is available in the receive FIFO. RSTFA will be asserted, whenever receive FIFO has at least predefined number of bytes to be read (the number of bytes is user programmable). RSTFA is updated on the rising edge of RCLK. RSX O LVTTL 1 N POS: Receive Start of Transfer signal. RSX indicates when the in-band port address is present on the RDAT bus. When RSX is HIGH and RVAL is LOW, the value of RDAT[7:0] is the address of the receive FIFO to be selected by POSIC2G. Subsequent data transfers on the RDAT bus will be from the port as specified by the in-band address. Document #: 38-02079 Rev. *F Page 12 of 43 CONFIDENTIAL CY7C9537B Pin Description (continued) Signal Name I/O Pad Type Pins JTAG Description TFCLK I LVTTL 1 N POS: Transmit FIFO Write Clock (TFCLK). TFCLK is used to synchronize data transfer transactions between the LINK Layer device and POSIC2G. TFCLK may cycle at a rate up to 100 MHz. ATM: Transfer/Interface Clock (TxClk). HBST: Transmit Clock (TCLK). Max. 104-MHz Transmit Clock for level-3 operation. All transmit signals are sampled on rising edge of the clock. TERR I LVTTL 1 N POS: Transmit Error Indicator (TERR) signal. TERR is used to indicate that the current packet should be aborted. When TERR is set HIGH, the current packet is aborted. TERR should only be asserted when TEOP is asserted. HBST: Transmit Error Indicator (TERR) signal. A HIGH indicates the current packet or cell has error. TENB I LVTTL 1 N POS: Transmit Write Enable (TENB) signal. The TENB signal is used to control the flow of data to the transmit FIFOs. When TENB is HIGH, the TDAT, TMOD, TSOP, TEOP, and TERR signals are invalid and are ignored by POSIC2G. The TSX signal is valid and is processed by POSIC2G when TENB is HIGH. When TENB is LOW, the TDAT, TMOD, TSOP, TEOP and TERR signals are valid and are processed by POSIC2G. Also, the TSX signal is ignored by POSIC2G when TENB is LOW. ATM: Transmit Write Enable (TxEnb*). This signal is an active LOW input which is used to initiate writes to the transmit FIFOs. When TxEnb* is sampled HIGH, the information sampled on the TxData, TxPrty, and TxSOC signals are invalid. When TxEnb* is sampled LOW, the information sampled on the TxData, TxPrty, and TxSOC signals are valid and are written into the transmit FIFO. TxEnb* is sampled on the rising edge of TxClk. HBST: Transmit Data Valid (TDVAL_n) signal. The TDVAL_n signal is used to control the flow of data to the transmit FIFOs. When TDVAL_n is HIGH, the TDATA, TBVAL, TSOP, TADDR, TSOP, TEOP, and TERR signals are valid and are processed by POSIC2G. Document #: 38-02079 Rev. *F Page 13 of 43 CONFIDENTIAL CY7C9537B Pin Description (continued) Signal Name I/O TDAT[31:0] I TPRTY I TADD[3:0] I Pad Type Pins JTAG Description 32 N POS: Transmit Packet Data Bus (TDAT) bus. This bus carries the packet octets that are written to the selected transmit FIFO and the in-band port address to select the desired transmit FIFO. The TDAT bus is considered valid only when TENB is simultaneously asserted. Data is transmitted in big endian order on TDAT[31:0]. Given the defined data structure, bit 31 is transmitted first and bit 0 is transmitted last. ATM: Transmit Data Bus (TxData) bus. This data bus carries the ATM cell. Data on this bus is valid only if TxEnb* is HIGH. TxData[31:0] is three-stated if TxEnb* is LOW. TxData[31:0] is updated on the rising edge of TxClk. HBST: Transmit Data Bus (TDATA) bus. 32-bit Data bus. The data is valid when TDVAL_n signal is active. LVTTL 1 N POS: Transmit Bus Parity (TPRTY) signal. The transmit parity (TPRTY) signal indicates the parity calculated over the TDAT bus. TPRTY is considered valid only when TENB is asserted. TPRTY is supported for both even and odd parity. ATM: Transmit Bus Parity (TxPrty). This signal indicates the parity on the TxData bus. A parity error is indicated by a status bit and a maskable interrupt. TxPrty is considered valid only when TxEnb* is simultaneously asserted. TxPrty is sampled on the rising edge of TxClk. HBST: Transmit Bus Parity (TPARITY) signal. Even/Odd parity calculated on the data bus alone or on all the bus signals (TDATA, TADDR, TDVAL_n, TBVAL, TSOP, TEOP, and TERR). LVTTL 4 N POS: Transmit Address Bus (PTADR) bus. Address driven by Link layer to poll and select the appropriate POSIC2G channel (port). The value for the Transmit and Receive portions of a channel should be identical. Address 31 indicates a null port. ATM: Transmit Address Bus (TxAddr) bus. Address of POSIC2G channel being selected. HBST: Port Address (TADDR) bus. Address driven by the Link Layer to indicate the port address of current data transfer. Document #: 38-02079 Rev. *F Page 14 of 43 CONFIDENTIAL CY7C9537B Pin Description (continued) Signal Name I/O Pad Type Pins JTAG Description TMOD[1:0] I LVTTL 2 N POS: Transmit Word Modulo (TMOD[1:0]) signal. TMOD[1:0] indicates the number of valid bytes of data in TDAT[31:0]. The TMOD bus should always be all zero, except during the last double-word transfer of a packet on TDAT[31:0]. When TEOP is asserted, the number of valid packet data bytes on TDAT[31:0] is specified by TMOD[1:0]. TMOD[1:0] = “00” TDAT[31:0] valid TMOD[1:0] = “01” TDAT[31:8] valid TMOD[1:0] = “10” TDAT[31:16] valid TMOD[1:0] = “11” TDAT[31:24] valid In 16-bit mode, only TMOD[0] is valid. TMOD[0] = “1” TDAT[15:8] valid (16-bit mode) TMOD[0] = “0” TDAT[15:0] valid (16-bit mode) HBST: Transmit Byte Valid (TBVAL[1:0]) signals. This indicates the number of bytes data bytes on the TDATA bus, 00 = 4 bytes valid, 11 = 1 byte valid. TSOP I LVTTL 1 N POS: Transmit Start of Packet (TSOP) signal. TSOP is used to delineate the packet boundaries on the TDAT bus. When TSOP is HIGH, the start of the packet is present on the TDAT bus. TSOP is required to be present at the beginning of every packet and is considered valid only when TENB is asserted. ATM: Transmit Start of Cell (TxSOC) signal. This signal marks the start of a cell structure on the TxData bus. TxSOC must be present for each cell. TxSOC is considered valid only when TxEnb* is simultaneously asserted. TxSOC is sampled on the rising edge of TxClk. HBST: Transmit Start of Packet (TSOP) signal. A high indicates the start of packet or start of cell. TEOP I LVTTL 1 N POS: Transmit End of Packet (TEOP) signal. TEOP is used to delineate the packet boundaries on the TDAT bus. When TEOP is HIGH, the end of the packet is present on the TDAT bus. TEOP is required to be present at the end of every packet and is considered valid only when TENB is asserted. HBST: Transmit End of Packet (TEOP) signal. A HIGH indicates the end of packet or end of cell. DTCA[3:0] O LVTTL 4 N POS: Transmit Packet Available (DTPA) bus. This signal provides direct status indication of the fill status of the transmit FIFO. Note that, regardless of what fill level TPA is set to indicate “full” at, the transmit packet processor can store 256 bytes of data. When DTPA transitions HIGH, it indicates that the transmit FIFO has enough room to store a configurable number of data bytes. This transition level is selected in the CPU programmable registers. When TPA transitions LOW, it indicates that the transmit FIFO is either full or near full as specified by the CPU programmable registers. DTPA is updated on the rising edge of TFCLK. HBST: Polled FIFO Available Status (TFAST) bus. When the signal TSOFST is active, the status of channels 0,4,8,12 is given first followed by 1,5,9,13 and 2,6,10,14 and the last 3,7,11,15. Document #: 38-02079 Rev. *F Page 15 of 43 CONFIDENTIAL CY7C9537B Pin Description (continued) Signal Name I/O Pad Type Pins JTAG Description STPA O LVTTL 1 N POS: Selected Channel Transmit Packet Available (STPA) signal. STPA transitions HIGH when a predefined minimum number of bytes are available in the selected transmit FIFO. Once HIGH, STPA indicates that transmit FIFO is not full. When STPA transitions LOW, it optionally indicates that transmit FIFO is full or near full (user programmable). STPA always provides status indication for the selected channel in order to avoid FIFO overflows while polling is performed. STPA is three-stated when TENB is deasserted in the previous cycle. STPA is also deasserted when either the null-port address (0x1F) or an address not matching the POSIC2G address is presented on the TADR[3:0] signals when TENB is sampled HIGH (has been deasserted during the previous clock cycle). STPA is mandatory only if packet-level transfer mode is supported. It is not be driven in byte-level mode. ATM: There is no corresponding pin definition in ATM mode, however, this pin will output the same signal as STPA in POS mode HBST: FIFO Available Status (TSTFA) signal. FIFO available status of the selected port is reflected on this pin two clocks after detecting the port address when the TDVAL signal is active. PTCA O LVTTL 1 N POS: Polled-Port Transmit Packet Available (PTPA) signal. PTPA transitions HIGH when a predefined (user-programmable) minimum number of bytes are available in the polled transmit FIFO. Once HIGH, PTPA indicates that the transmit FIFO is not full. When PTPA transitions LOW, it optionally indicates that transmit FIFO is full or near full (user-programmable). PTPA allows polling the POSIC2G channel selected by TADR[3:0] when TENB is asserted. PTPA is driven by a POSIC2G when its address is polled by TADR[3:0]. POSIC2G will three-state PTPA when either the null-port address (0x1F) or an address not matching POSIC2G is provided on TADR[3:0]. PTPA is mandatory only if in packet-level transfer mode. It will not be driven in byte-level mode. ATM: UTOPIA Transmit Cell Available (TxClav) The TxClav signal indicates when a cell is available in the transmit FIFO for the port polled by TxAddr[3:0] when TxEnb* is asserted. When HIGH, TxClav indicates that the corresponding transmit FIFO is not full and a complete cell may be written. When TxClav goes LOW, it can be configured to indicate either that the corresponding transmit FIFO is near full or that the corresponding transmit FIFO is full. TxClav is three-stated when either the null-Port address (0x1F) or an address not matching the address space set is latched from the TxAddr[4:0] inputs when TxEnb* is HIGH. TxClav is updated on the rising edge of TxClk. HBST: FIFO Available status on TFAST bus (TSOFST) signal. Active HIGH pulse indicates the start of FIFO available status on TFAST bus. This signal is repeated once in every four clocks. TSX I 1 N POS: Transmit Start of Transfer (TSX) signal. TSX indicates inband port address on the TDAT bus. When TENB is HIGH and TSX is asserted (HIGH), the value of TADR[3:0] is the address of transmit FIFO selected. TSX is valid only when TENB is deasserted. LVTTL Document #: 38-02079 Rev. *F Page 16 of 43 CONFIDENTIAL CY7C9537B Pin Description (continued) Signal Name I/O Pad Type Pins JTAG Description CPU Interface Signals CpuClk I LVTTL 1 N CPU Clock. CpuSel I LVTTL 1 Y Used to select between Intel and Motorola CPU. ‘0’ = Motorola, ‘1’ = Intel. CpuTs_n/CpuAds_n I LVTTL 1 Y Transfer Start. Active LOW. CpuWrRd I LVTTL 1 Y Write/Read Signal. In Intel mode, this signal is active HIGH during write operation. In Motorola mode, this signal is active LOW during write operation. CpuTa_n O LVTTL 1 Y Transfer Acknowledge/Data Ready. Active LOW. Open Drain Output CpuBlast_n/ CpuBdip_n I 1 Y Used with Burst Transaction. Active LOW. LVTTL CpuInt/ O LVTTL 1 Y Interrupt to CPU. Active LOW. CpuClkFail O LVTTL 1 Y CPU Clock fail signal. When LOW indicates failure of CPU clock. CpuAD[31:0] I/O LVTTL 32 Y Address/Data Bus. ChipSel I LVTTL 1 Y The chip select signal for POSIC2G. Active Low Mode I LVTTL 1 Y 32/16 bit mode select. ‘0’ = 32-bit mode, ‘1’ otherwise JTAG Interface Signals TCK I LVTTL 1 JTAG Mode: Test clock TRST I LVTTL 1 JTAG Mode: Test reset TDI I LVTTL 1 JTAG Mode: Test input TMS I LVTTL 1 JTAG Mode: Test mode Select. Pull-down to GND during POSIC2G normal operation. TDO O LVTTL 1 JTAG Mode: Test Output Miscellaneous Signals VREF I VREF 4 N Reference Voltage for HSTL and LVPECL inputs. Set to GND during LVTTL mode of operation. RST_n I LVTTL 1 N Active LOW asynchronous reset input. SYSCLK I LVTTL 1 N 133-MHz System Clock. CLKOUT O LVTTL 1 N SYSCLK Out. RSTOUT O LVTTL 1 Y Reset Out. This pin will go LOW when writing a “1” to the Device Reset Register (Block Addr = 0x00, Reg Addr = 0xb) to deactivate the chip from the reset condition. TEST[2:0] I LVTTL 3 Y Test Mode selection signals. Pull-up to ‘1’ during POSIC2G normal operation. SCAN_ENA I LVTTL 1 Y SCAN ENABLE pin. Active HIGH. During POSIC2G normal operation this signal should be LOW. POSIC_OEN I LVTTL 1 N The POSIC2G Output Enable (POSIC_OEN) signal. When set to logic one, all POSIC2G outputs (except CpuTa_n) are held three-state. When POSIC_OEN is set to logic zero, all interfaces are enabled. Pull-down to ‘0’ for normal operation. Total IO Pins 336 Power: VCC Pad+Core P 85 Power: GND Pad+Core P 83 TOTAL Document #: 38-02079 Rev. *F 504 I/Os: 336; Power: 168 Page 17 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Pin assignment is tentative. Please check with Cypress for final information. Pin Assignment Table Signal Ball Pin Type RDAT<0> F3 LVTTL_OUT RDAT<1> F2 LVTTL_OUT RDAT<10> J6 LVTTL_OUT RDAT<11> J5 LVTTL_OUT RDAT<12> J4 LVTTL_OUT RDAT<13> J3 LVTTL_OUT RDAT<14> J2 LVTTL_OUT RDAT<15> K5 LVTTL_OUT RDAT<16> K4 LVTTL_OUT RDAT<17> K3 LVTTL_OUT RDAT<18> K2 LVTTL_OUT RDAT<19> L5 LVTTL_OUT RDAT<2> G6 LVTTL_OUT RDAT<20> L4 LVTTL_OUT RDAT<21> L3 LVTTL_OUT RDAT<22> L2 LVTTL_OUT RDAT<23> L1 LVTTL_OUT RDAT<24> M5 LVTTL_OUT RDAT<25> M4 LVTTL_OUT RDAT<26> M3 LVTTL_OUT RDAT<27> M2 LVTTL_OUT RDAT<28> M1 LVTTL_OUT RDAT<29> N5 LVTTL_OUT RDAT<3> G5 LVTTL_OUT RDAT<30> N4 LVTTL_OUT RDAT<31> N3 LVTTL_OUT RDAT<4> G3 LVTTL_OUT RDAT<5> G2 LVTTL_OUT RDAT<6> H6 LVTTL_OUT RDAT<7> H5 LVTTL_OUT RDAT<8> H4 LVTTL_OUT RDAT<9> H2 LVTTL_OUT RADD<0> N2 LVTTL_OUT RADD<1> N1 LVTTL_OUT RADD<2> P5 LVTTL_OUT RADD<3> P4 LVTTL_OUT RADD<4> P3 LVTTL_OUT RADD<5> P2 LVTTL_OUT RADD<6> R5 LVTTL_OUT RADD<7> R4 LVTTL_OUT RERR T4 LVTTL_OUT Document #: 38-02079 Rev. *F Page 18 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Table (continued) Signal Ball Pin Type RMOD<0> R2 LVTTL_OUT RMOD<1> R3 LVTTL_OUT RPRTY T5 LVTTL_OUT REOP T2 LVTTL_OUT RCA U4 LVTTL_OUT RSOP/RSOC T3 LVTTL_OUT RSX U5 LVTTL_OUT RVAL U1 LVTTL_OUT RFCLK V3 LVTTL_IN RENB U2 LVTTL_IN TADD<0> AE3 LVTTL_IN TADD<1> AE4 LVTTL_IN TADD<2> AF3 LVTTL_IN TADD<3> AG4 LVTTL_IN TDAT<0> U3 LVTTL_IN TDAT<1> V1 LVTTL_IN TDAT<10> Y2 LVTTL_IN TDAT<11> Y3 LVTTL_IN TDAT<12> Y4 LVTTL_IN TDAT<13> Y5 LVTTL_IN TDAT<14> AA2 LVTTL_IN TDAT<15> AA3 LVTTL_IN TDAT<16> AA4 LVTTL_IN TDAT<17> AA5 LVTTL_IN TDAT<18> AA6 LVTTL_IN TDAT<19> AB2 LVTTL_IN TDAT<2> V2 LVTTL_IN TDAT<20> AB3 LVTTL_IN TDAT<21> AB4 LVTTL_IN TDAT<22> AB6 LVTTL_IN TDAT<23> AC2 LVTTL_IN TDAT<24> AC3 LVTTL_IN TDAT<25> AC4 LVTTL_IN TDAT<26> AC5 LVTTL_IN TDAT<27> AC6 LVTTL_IN TDAT<28> AD2 LVTTL_IN TDAT<29> AD4 LVTTL_IN TDAT<3> V4 LVTTL_IN TDAT<30> AD5 LVTTL_IN TDAT<31> AE2 LVTTL_IN TDAT<4> V5 LVTTL_IN TDAT<5> W1 LVTTL_IN TDAT<6> W2 LVTTL_IN TDAT<7> W3 LVTTL_IN Document #: 38-02079 Rev. *F Page 19 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Table (continued) Signal Ball Pin Type TDAT<8> W4 LVTTL_IN TDAT<9> W5 LVTTL_IN TERR AF5 LVTTL_IN TENB AE6 LVTTL_IN TPRTY AG5 LVTTL_IN TSOP AF6 LVTTL_IN TEOP AD7 LVTTL_IN TSX AG6 LVTTL_IN TFCLK AE7 LVTTL_IN TMOD<0> AF7 LVTTL_IN TMOD<1> AD8 LVTTL_IN DTCA<0> AH6 LVTTL_OUT DTCA<1> AE8 LVTTL_OUT DTCA<2> AG7 LVTTL_OUT DTCA<3> AH7 LVTTL_OUT STPA AD9 LVTTL_OUT PTCA AG8 LVTTL_OUT CPUTA_N AE9 Open Drain Output CPUCLKFAIL AH8 LVTTL_OUT CPUINT AF9 LVTTL_OUT CPUAD<0> AG9 LVTTL_IO CPUAD<1> AH9 LVTTL_IO CPUAD<10> AJ11 LVTTL_IO CPUAD<11> AE12 LVTTL_IO CPUAD<12> AF12 LVTTL_IO CPUAD<13> AH12 LVTTL_IO CPUAD<14> AE13 LVTTL_IO CPUAD<15> AF13 LVTTL_IO CPUAD<16> AG13 LVTTL_IO CPUAD<17> AH13 LVTTL_IO CPUAD<18> AJ13 LVTTL_IO CPUAD<19> AE14 LVTTL_IO CPUAD<2> AE10 LVTTL_IO CPUAD<20> AF14 LVTTL_IO CPUAD<21> AG14 LVTTL_IO CPUAD<22> AE15 LVTTL_IO CPUAD<23> AF15 LVTTL_IO CPUAD<24> AG15 LVTTL_IO CPUAD<25> AH15 LVTTL_IO CPUAD<26> AE16 LVTTL_IO CPUAD<27> AF16 LVTTL_IO CPUAD<28> AH16 LVTTL_IO CPUAD<29> AE17 LVTTL_IO CPUAD<3> AF10 LVTTL_IO Document #: 38-02079 Rev. *F Page 20 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Table (continued) Signal Ball Pin Type CPUAD<30> AF18 LVTTL_IO CPUAD<31> AG18 LVTTL_IO CPUAD<4> AG10 LVTTL_IO CPUAD<5> AH10 LVTTL_IO CPUAD<6> AE11 LVTTL_IO CPUAD<7> AF11 LVTTL_IO CPUAD<8> AG11 LVTTL_IO CPUAD<9> AH11 LVTTL_IO CPUSEL AG16 LVTTL_IN MODE AE18 LVTTL_IN CPUTS_N AJ17 LVTTL_IN CPUWRD AG19 LVTTL_IN CPUBLAST_N AH17 LVTTL_IN CHIPSEL AF19 LVTTL_IN SCAN_ENA AG17 LVTTL_IN POSIC_OEN AE19 LVTTL_IN CPUCLK AF20 LVTTL_IN RST_N AH18 LVTTL_IN TEST<0> AE20 LVTTL_IN TEST<1> AG21 LVTTL_IN TEST<2> AH19 LVTTL_IN TCK AF21 LVTTL_IN SYSCLK AE21 LVTTL_IN TDI AG20 LVTTL_IN TMS AD21 LVTTL_IN TRST AF22 LVTTL_IN TDO AD22 LVTTL_OUT RSTOUT AG23 LVTTL_OUT CLKOUT C16 LVTTL_OUT TOHSDIN AE22 LVTTL_IN POHSDIN AG22 LVTTL_IN TE1STROBE AH24 LVTTL_OUT TE2STROBE AF23 LVTTL_OUT TPOHSTART AH25 LVTTL_OUT RPOHSTART AD23 LVTTL_OUT CLK2MHz AF24 LVTTL_OUT CLK16MHz AE24 LVTTL_OUT RE1STROBE AF25 LVTTL_OUT RE2STROBE AG25 LVTTL_OUT POHSDOUT AE26 LVTTL_OUT TOHSDOUT AG26 LVTTL_OUT TXFRAME_PULSE AE27 HSTL/LVTTL_OUT SONETTx_PAROUT AD25 HSTL/LVTTL_OUT TXD<0> AD28 HSTL/LVTTL_OUT Document #: 38-02079 Rev. *F Page 21 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Table (continued) Signal Ball Pin Type TXD<1> AD27 HSTL/LVTTL_OUT TXD<10> AB26 HSTL/LVTTL_OUT TXD<11> AB25 HSTL/LVTTL_OUT TXD<12> AB24 HSTL/LVTTL_OUT TXD<13> AA28 HSTL/LVTTL_OUT TXD<14> AA27 HSTL/LVTTL_OUT TXD<15> AA26 HSTL/LVTTL_OUT TXD<16> AA25 HSTL/LVTTL_OUT TXD<17> AA24 HSTL/LVTTL_OUT TXD<18> Y29 HSTL/LVTTL_OUT TXD<19> Y28 HSTL/LVTTL_OUT TXD<2> AD26 HSTL/LVTTL_OUT TXD<20> Y27 HSTL/LVTTL_OUT TXD<21> W27 HSTL/LVTTL_OUT TXD<22> W26 HSTL/LVTTL_OUT TXD<23> W25 HSTL/LVTTL_OUT TXD<24> V28 HSTL/LVTTL_OUT TXD<25> V27 HSTL/LVTTL_OUT TXD<26> V26 HSTL/LVTTL_OUT TXD<27> V25 HSTL/LVTTL_OUT TXD<28> U29 HSTL/LVTTL_OUT TXD<29> U28 HSTL/LVTTL_OUT TXD<3> AC28 HSTL/LVTTL_OUT TXD<30> T28 HSTL/LVTTL_OUT TXD<31> T27 HSTL/LVTTL_OUT TXD<4> AC27 HSTL/LVTTL_OUT TXD<5> AC26 HSTL/LVTTL_OUT TXD<6> AC25 HSTL/LVTTL_OUT TXD<7> AC24 HSTL/LVTTL_OUT TXD<8> AB28 HSTL/LVTTL_OUT TXD<9> AB27 HSTL/LVTTL_OUT TXCLKOUT W28 HSTL/LVTTL_OUT TXCLKI R27 HSTL/LVTTLLVPECL_IN VREF U27 0.75V/2.0V INPUT VREF P26 0.75V/2.0V INPUT VREF M25 0.75V/2.0V INPUT VREF G27 0.75V/2.0V INPUT RXCLK N28 HSTL/LVTT/LLVPECL_IN RXCLKS H26 HSTL/LVTTL/LVPECL_IN RXD<0> H27 HSTL/LVTTL/LVPECL_IN RXD<1> H28 HSTL/LVTTL/LVPECL_IN RXD<10> K29 HSTL/LVTTL/LVPECL_IN RXD<11> L25 HSTL/LVTTL/LVPECL_IN RXD<12> L26 HSTL/LVTTL/LVPECL_IN Document #: 38-02079 Rev. *F Page 22 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Table (continued) Signal Ball Pin Type RXD<13> L27 HSTL/LVTTL/LVPECL_IN RXD<14> L28 HSTL/LVTTL/LVPECL_IN RXD<15> M26 HSTL/LVTTL/LVPECL_IN RXD<16> M27 HSTL/LVTTL/LVPECL_IN RXD<17> M28 HSTL/LVTTL/LVPECL_IN RXD<18> N25 HSTL/LVTTL/LVPECL_IN RXD<19> N26 HSTL/LVTTL/LVPECL_IN RXD<2> J24 HSTL/LVTTL/LVPECL_IN RXD<20> N27 HSTL/LVTTL/LVPECL_IN RXD<21> N29 HSTL/LVTTL/LVPECL_IN RXD<22> P25 HSTL/LVTTL/LVPECL_IN RXD<23> P27 HSTL/LVTTL/LVPECL_IN RXD<24> P28 HSTL/LVTTL/LVPECL_IN RXD<25> R25 HSTL/LVTTL/LVPECL_IN RXD<26> R26 HSTL/LVTTL/LVPECL_IN RXD<27> R28 HSTL/LVTTL/LVPECL_IN RXD<28> T25 HSTL/LVTTL/LVPECL_IN RXD<29> T26 HSTL/LVTTL/LVPECL_IN RXD<3> J25 HSTL/LVTTL/LVPECL_IN RXD<30> U25 HSTL/LVTTL/LVPECL_IN RXD<31> U26 HSTL/LVTTL/LVPECL_IN RXD<4> J26 HSTL/LVTTL/LVPECL_IN RXD<5> J27 HSTL/LVTTL/LVPECL_IN RXD<6> J28 HSTL/LVTTL/LVPECL_IN RXD<7> K25 HSTL/LVTTL/LVPECL_IN RXD<8> K26 HSTL/LVTTL/LVPECL_IN RXD<9> K28 HSTL/LVTTL/LVPECL_IN SONETRx_PARIN H25 HSTL/LVTTL/LVPECL_IN LFI_n H24 LVTTL_IN RXFRAME_PULSE F27 HSTL/LVTTL/LVPECL_IN NC E27 Do not use NC D27 Do not use NC D24 Do not use NC C24 Do not use NC B24 Do not use NC F23 Do not use NC D23 Do not use NC C23 Do not use NC B23 Do not use NC F22 Do not use NC E22 Do not use NC C22 Do not use NC G26 Do not use NC F21 Do not use Document #: 38-02079 Rev. *F Page 23 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Table (continued) Signal Ball Pin Type NC E21 Do not use NC D21 Do not use NC C21 Do not use NC B21 Do not use NC E20 Do not use NC C20 Do not use NC B20 Do not use NC E19 Do not use NC B19 Do not use NC F26 Do not use NC B18 Do not use NC A18 Do not use NC E26 Do not use NC F25 Do not use NC D25 Do not use NC C25 Do not use NC G24 Do not use NC E24 Do not use NC B17 Do not use NC D19 Do not use NC A17 Do not use NC B16 Do not use NC D18 Do not use NC C15 Do not use NC D17 Do not use NC C17 Do not use NC D13 Do not use NC C13 Do not use NC A13 Do not use NC D12 Do not use NC C12 Do not use NC B12 Do not use NC A12 Do not use NC C11 Do not use NC B11 Do not use NC E16 Do not use NC D16 Do not use NC E15 Do not use NC D15 Do not use NC E14 Do not use NC C14 Do not use NC B14 Do not use NC E13 Do not use NC E12 Do not use Document #: 38-02079 Rev. *F Page 24 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Table (continued) Signal Ball Pin Type NC E11 Do not use NC C9 Do not use NC B9 Do not use NC F8 Do not use NC E8 Do not use NC C8 Do not use NC B8 Do not use NC F7 Do not use NC E7 Do not use NC D7 Do not use NC C7 Do not use NC D11 Do not use NC B7 Do not use NC E6 Do not use NC D6 Do not use NC C6 Do not use NC F5 Do not use NC D5 Do not use NC C5 Do not use NC F4 Do not use NC C4 Do not use NC E3 Do not use NC E10 Do not use NC E2 Do not use NC D2 Do not use NC D10 Do not use NC C10 Do not use NC B10 Do not use NC F9 Do not use NC E9 Do not use NC D9 Do not use VSS1 A1, B1, AE1, AJ1, AJ2, AG12, A2, D3, AD3, AH4, AJ4, A4, AH5, AH14, C18, AJ18, AJ19, AH20, AH21, B22, AH23, AG24, B25, AH26, B27, K27, AJ28, AF28, A28, D28, F28, A29, B29, J29, M29, P29, AJ29 Core + Input Pin GND VSS2 G1, J1, P1, T1, AA1, AC1, B2, C3, AJ3, E4, G4, A6, B6, AJ7, AF8, A9, AJ9, A11, AJ12, B13, AJ14, A16, AJ16, E17, C19, A20, AJ21, AJ22, A23, AE23, AJ23, A25, A27, AF27, AJ27, AH28, C29, D29, F29, R29, W29, AC29, AE29, AF29, AH29, Y25 Output Pin GND VCC1 D1, AF1, AG2, C2, B3, AH3, D4, AF4, B5, E5, AJ5, D20, D22, E25, A26, C26, D26, AF26, AJ26, AH27, AE28, E29, G29, H29, L29 Core Voltage, 1.8V VCC2 AD1, AG1, AH1, AF2, AH2, AG3, B4, AB5, AE5, A7, A10, A14, AF17, A21, A22, AH22, C28, E28, G28 Document #: 38-02079 Rev. *F LVTTL Input Pin Power Supply, 3.3V Page 25 of 43 CONFIDENTIAL CY7C9537B Pin Assignment Table (continued) Signal Ball Pin Type VCC3 C1, E1, F1, H1, K1, R1, Y1, AB1, A3, H3, A5, AJ6, A8, D8, AJ8, AJ10, D14, A15, B15, AJ15, E18, A19, AJ20, E23, A24, AJ24, G25, AJ25, B26, C27, AG27, B28, AG29 LVTTL Output Pin Power Supply, 3.3V VCC5 AE25, AG28, T29, V29, AA29, AB29, AD29, Y26 HSTL Output Pin Power Supply, 1.5V/3.3V Document #: 38-02079 Rev. *F Page 26 of 43 CONFIDENTIAL CY7C9537B Maximum Ratings (Above which the useful life may be impaired. For user guide-lines, not tested.) Operating range specifies temperature and voltage boundary conditions for safe operation of the device. Operation outside these boundary may affect the performance and life of the device. Table 2. Absolute Maximum Ratings Parameter Value Unit –40 to 85 °C Storage Temperature 150 °C Absolute Maximum Junction Temperature 125 °C Lead Temperature 220 °C Supply Voltage VCC1 for Core 2.43 V Case Temperature Supply Voltage VCC2 for LVTTL Inputs 4.785 V Supply Voltage VCC3 for LVTTL Outputs 4.785 V Supply Voltage VCC5 for HSTL/LVTTL Outputs 4.785 V VREF VCC + 0.3 V All Inputs Values VCC + 0.3 V Static Discharge Voltage (ESD) >2000 V Latch-up Current >200 mA Maximum output short circuit current for all I/O configurations (VOUT = 0V)[17] –100 mA Operating Range Table 3. Operating Range Range Ambient Temperature VCC1 VCC5(HSTL) VCC2, VCC3, VCC5 Commercial 0°C to +70°C 1.71V to 1.89V 1.425V to 1.575V 3.135V to 3.465V Industrial –40°C to +85°C 1.71V to 1.89V 1.425V to 1.575V 3.135V to 3.465V DC Specifications Table 4. DC Specifications Parameter Description Test Conditions Min. Max. Unit VCC1 Power Supply for Core 1.71 1.89 V VCC2 Power Supply for LVTTL Inputs 3.135 3.465 V VCC3 Power Supply for LVTTL Outputs 3.135 3.465 V VCC5 Power Supply for HSTL/LVTTL Outputs VREF(HSTL) Reference Voltage for HSTL Inputs VREF(LVPECL) Reference Voltage for LVPECL Inputs 1.425/3.135 1.575/3.465 V 0.68 0.9 V VCC2 – 1.4 VCC2 – 1.2 V ICC1 VCC1 Supply Current – 1 A ICC2 VCC2 Supply Current – 0.1 A ICC3 VCC3 Supply Current 20-pF capacitive load – 0.75 A ICC5 VCC5 Supply Current 20-pF capacitive load – 0.28 A PW Total Chip Power 20 pF capacitive load – 4.57 Watt IOS[17] Output Short Circuit Current for all I/O configurations VOUT = 0V –20 –100 mA Note: 17. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. Tested initially and after any design or process changes that may affect these parameters. Document #: 38-02079 Rev. *F Page 27 of 43 CONFIDENTIAL CY7C9537B Table 4. DC Specifications (continued) Parameter Description Test Conditions Min. Max. Unit LVTTL I/Os VOHT Output HIGH Voltage All VCC = Min. IOH = –8.0 mA 2.4 – V VOLT Output LOW Voltage All VCC = Min. IOL = 8.0 mA – 0.4 V VIHT Input HIGH Voltage 2.0 VCC2 + 0.3 V VILT Input LOW Voltage –0.3 0.8 V IIHT Input HIGH Current All VCC = Max., VIN = VCC2 – 10 µA IILT Input LOW Current All VCC = Max., VIN = 0V – –10 µA HSTL I/Os VREF Reference Voltage 0.68 0.9 VOH(DC) Output HIGH Voltage All VCC = Min. IOH = –8.0 mA VCC5 – 0.4 – V VOL(DC) Output LOW Voltage All VCC = Min. IOL = 8.0 mA – 0.4 V VOH(AC) Output HIGH Voltage VCC5 – 0.5 V VOL(AC) Output LOW Voltage – 0.5 V VIH(DC) Input HIGH Voltage VREF + 0.1 – V – VREF – 0.1 VIL(DC) Input LOW Voltage VIH(AC) Input HIGH Voltage VCC1 = 1.71V VREF + 0.2 V V VIL(AC) Input LOW Voltage VCC1 = 1.89V – VREF – 0.2 V IIHH Input HIGH Current All VCC= Max. VIN = VCC1 – 10 µA IILH Input LOW Current All VCC= Max. VIN = 0V – –10 µA LVPECL Inputs VREF Reference Voltage VCC2 – 1.4 VCC2 – 1.2 V VIH(DC) Input HIGH Voltage VCC2 – 1.1 – V VIL(DC) Input LOW Voltage – VCC2 – 1.5 V VIH(AC) Input HIGH Voltage VCC2 – 1.0 VIL(AC) Input LOW Voltage – VCC2 – 1.6 V IIHH Input HIGH Current All VCC= Max. VIN = VCC2 – 10 µA IILH Input LOW Current All VCC= Max. VIN = 0V – –10 µA V Reset Requirements Power-up Requirements Asserting the RST_n signal will asynchronously reset all sequential elements of POSIC2G. Even though the reset is treated as asynchronous signal, it is recommended that a minimum of 1-ms-wide active LOW RST_n is applied after all power supplies have stabilized. When HSTL I/O is used, VCC1, VCC2, and VCC3 need to be powered up first at least 300 ms before VCC5 supply. There is no particular power-up sequence requirements among VCC1, VCC2, and VCC3 in this case. Document #: 38-02079 Rev. *F There is no particular power-up sequence requirements among VCC1, VCC2, VCC3, and VCC5 if HSTL I/O is not used. RST_n needs to be activated until all the power supplies have stabilized. Page 28 of 43 CONFIDENTIAL CY7C9537B AC Test Loads and Waveform 1.4V 3.0V Vth= 1.4V GND 2.0V 2.0V 0.8V 0.8V Vth= 1.4V Output CL < 1ns < 1ns (a) LvTTL Input Test Waveform . R1 R1=125 ohm CL < 20pF Test Point (a) LVTTL AC Test Load 1.5V VIHH Vth= 0.75V VIHL 80% 80% 20% 20% Vth= 0.75V Output 50 ohm T-line CL < 1ns < 1ns (b) HSTL Input Test Waveform . R1 Test Point R2 R1=100 ohm R2=100 ohm CL < 12pF (b) HSTL AC Test Load 3.3V VIH Vth= 2.0V VIL 80% 80% 20% 20% Vth= 2.0V < 1ns < 1ns 50 ohm T-line R1 Output R2 R3 Test Point R1=125 ohm R2=79 ohm R3=138 ohm CL C = 7pf L (c) LVPECL Input Test Waveform (c) LVPECL-compliant Termination AC and Timing Specifications The POSIC2G device interfaces to industry standard peripheral devices or buses. Hence the POSIC2G pin timing parameters are governed by the interface requirements of the peripherals or the relevant standards. Table 5 details the timing requirements. Table 5. POSIC2G Pin Timing Requirements Peripheral Device/ Bus Standard POSIC2G Pin Group Line Interface Compatible/ Suggested Part Number 16 bits/8 bits HSTL/Single-ended CYS25G0101DX LVPECL interface Reference/Remarks Refer to PHY data sheet Overhead Bytes Access LVTTL – Serial Ports – Described in this document System Interface UTOPIA Level 3 / OIF-SPI Level3 HBST – ATM Forum: BTD-PHY-UL3-01.05 Saturn Group: PMC-980495 Issue Described in this document Host CPU Interface 16-/32-bit CPU Interface LVTTL Compatible to Intel/Motorola CPUs Document #: 38-02079 Rev. *F Page 29 of 43 CONFIDENTIAL CY7C9537B AC Specifications Table 6. Line Interface Timing Parameter Values Description Min. Max. Unit fTS[18] Parameter TXCLKOUT, TXCLKI Frequency (must be frequency coherent to RXCLK when used as the transmit PLL clock source). fTS nominal (fTSN) can be 155.52 MHz, 77.76 MHz, 38.88 MHz, 19.44 MHz—depends on the Bus Width and Line Rate used. fTSN * (1 – 0.65%) fTSN * (1 + 0.65%) MHz tTXCLKIP[18] TXCLKI Period 1/(fTS max.) 1/(fTS min.) ns tTXCLKID TXCLKI Duty Cycle 43 57 % tTXCLKP[18] TXCLKOUT Period 1/(fTS max.) 1/(fTS min.) ns tTXCLKD[18] TXCLKOUT Duty Cycle 40 60 % tTXCLKR[19] TXCLKOUT Rise Time 0.3 1.5 ns tTXCLKF[19] TXCLKOUT Fall Time 0.3 1.5 ns tTXDO TXD Output Delay after ↑ of TXCLKOUT 0.5 4.5 ns tTXFPO TXFRAME_PULSE Output Delay after ↑ of TXCLKOUT 0.5 4.5 ns tPAROUTO SONETTX_PAROUT Output Delay after ↑ of TXCLKOUT 0.5 4.5 ns tTXFPPW TXFRAME_PULSE Width 6 55 ns fRS[18] RXCLK Frequency. fRS nominal (fRSN) can be 155.52 MHz, 77.76 MHz, 38.88 MHz, 19.44 MHz depends on the Bus Width and Line Rate used fRSN * (1 – 0.65%) fRSN * (1 + 0.65%) MHz tRXCLKP[18] RXCLK Period 1/(fRS max.) 1/(fRS min.) ns tRXCLKOD[18] RXCLK Duty Cycle 43 57 % tRXCLKR[19] tRXCLKF[19] RXCLK Rise Time – 1.5 ns RXCLK Fall Time – 1.5 ns tRXDS Recovered Data Set-up to ↑ of RXCLK 1.5 – ns tRXDH Recovered Data Hold from ↑ of RXCLK 1.25 – ns tRXFPS RXFRAME_PULSE Set-up to ↑ of RXCLK 1.5 – ns tRXFPH RXFRAME_PULSE Hold from ↑ of RXCLK 1.25 – ns tPARINS SONETRX_PARIN Set-up to ↑ of RXCLK 1.5 – ns tPARINH SONETRX_PARIN Hold from ↑ of RXCLK 1.25 – ns Table 7. OIF-SPI Level 3 Transmit System Interface Timing Parameter Values Min. Max. Unit fTFCLK[18] Parameter TFCLK Frequency Description - 104 MHz tTFCLKD[18] TFCLK Duty Cycle 40 60 % tTENBS TENB Set-up time to TFCLK[20] 2 – ns tTENBH TENB Hold time to TFCLK[21] tTDATS TDAT[31:0] Set-up time to TFCLK[20] tTDATH TDAT[31:0] Hold time to TFCLK[21] tTPRTYS TPRTY Set-up time to TFCLK[20] tTPRTYH tTSOPS 0.5 – ns 2 – ns 0.5 – ns 2 – ns TPRTY Hold time to TFCLK[21] 0.5 – ns TSOP Set-up time to TFCLK[20] 2 – ns TFCLK[21] tTSOPH TSOP Hold time to 0.5 – ns Notes: 18. The parameter is guaranteed by design and is not tested during production. 19. The parameter is guaranteed by characterization and is not tested during production. 20. When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4V point of the input to the 1.4V point of the clock. 21. When a hold time is specified between an input and a clock, the hold time is the time in the nanoseconds from the 1.4V point of the clock to the 1.4V point of the input. Document #: 38-02079 Rev. *F Page 30 of 43 CONFIDENTIAL CY7C9537B Table 7. OIF-SPI Level 3 Transmit System Interface Timing Parameter Values (continued) Parameter tTEOPS Description TEOP Set-up time to TFCLK[20] [21] Min. Max. Unit 2 – ns tTEOPH TEOP Hold time to TFCLK tTERRS TERR Set-up time to TFCLK[20] tTERRH TERR Hold time to TFCLK[21] 0.5 – ns tTSXS TSX Set-up time to TFCLK[20] 2 – ns tTSXH TSX Hold time to TFCLK[21] tTMODS TMOD Set-up time to TFCLK[20] tTMODH TMOD Hold time to TFCLK[21] tPTADRS PTADR Set-up time to TFCLK[20] tPTADRH PTADR Hold time to TFCLK[21] 0.5 – ns tDTPAO TFCLK HIGH to DTPA Valid[22, 23] 1.5 6 ns tSTPAO TFCLK HIGH to STPA Valid[22, 23] 1.5 6 ns tPTCAO TFCLK HIGH to PTCA Valid[22, 23] 1.5 6 ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns Table 8. OIF-SPI Level 3 Receive System Interface Timing Parameter Values Min. Max. Unit fRFCLK[18] Parameter RFCLK Frequency Description – 104 MHz tRFCLKD[18] RFCLK Duty Cycle 40 60 % tRENBS RENB Set-up time to RFCLK[20] 2 – ns tRENBH RENB Hold time to RFCLK [21] 0.5 – ns tRDATD RFCLK HIGH to RDAT[31:0] Valid [22, 23] 1.5 6 ns Valid[22, 23] tRPRTYD RFCLK HIGH to RPRTY 1.5 6 ns tRSOPD RFCLK HIGH to RSOP Valid[22, 23] 1.5 6 ns tREOPD RFCLK HIGH to REOP Valid[22, 23] 1.5 6 ns tRERRD RFCLK HIGH to RERR Valid[22, 23] 1.2 6 ns 1.5 6 ns 1.5 6 ns Min. Max. Unit Valid[22, 23] tRMODD RFCLK HIGH to RMOD[1:0] tRSXD RFCLK HIGH to RSX Valid[22, 23] Table 9. UTOPIA Level 3 Receive System Interface Timing Parameter Values Parameter [18] Description RxClk Frequency – 104 MHz tRxClkD[18] RxClk Duty Cycle 40 60 % tRxEnbS RxEnb Set-up Time to RxClk tRxEnbH RxEnb Hold Time to RxClk tRxDataO tRxSocO fRxClk 2 – ns 0.5 – ns RxClk HIGH to RxData [31:0] Valid – 6 ns RxClk HIGH to RxSoc Valid – 6 ns tRxPrtyO RxClk HIGH to RxPrty Valid – 6 ns tPxClavO RxClk HIGH to RxClav Valid – 6 ns Notes: 22. Output propagation delay time is in nanoseconds from the 1.4V point of the reference signal to the 1.4V point of the output. 23. Maximum output propagation delays are measured with 30-pF load on the inputs. Document #: 38-02079 Rev. *F Page 31 of 43 CONFIDENTIAL CY7C9537B Table 10.UTOPIA Level 3 Transmit System Interface Timing Parameter Values Parameter fTxClk [18] Description Min. Max. Unit TxClk Frequency – 104 MHz tTxClkD[18] TxClk Duty Cycle 40 60 % tTxEnbS TxEnb Set-up Time to TxClk tTxEnbH TxEnb Hold Time to TxClk tTxAddrS TxAddr Set-up Time to TxClk tTxxAddrH TxAddr Hold Time to TxClk tTxDataS TxData [31:0] Set-up Time to TfClk tTxDataH TxData [31:0] Hold Time to TfClk tTxPrtyS TxPrty Set-up Time to TfClk tTxPrtyH TxPrty Hold Time to TfClk tTxSocS TxSoc Set-up Time to TfClk 2 – ns tTxSocH TxSoc Hold Time to TfClk 0.5 – ns tPTCAO TfClk HIGH to PTCA Valid – 6 ns Min. Max. Unit 104 MHz 60 % 2 – ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns 0.5 – ns Table 11.HBST Transmit System Interface Timing Parameter Values Parameter Description fTCLK[18] tTCLKD[18] TCLK Frequency tTADDRS TADDR[3:0] Set-up Time to TCLK tTADDRH TADDR[3:0] Hold Time to TCLK tTDATAS TDATA [31:0] Set-up Time to TCLK tTDATAH TDATA [31:0] Hold Time to TCLK tTPARITYS TPARITY Set-up Time to TCLK tTPARITYH TPARITY Hold Time to TCLK tTBVALS TBVAL[2:0] Set-up Time to TCLK tTBVALH TBVAL[2:0] Hold Time to TCLK tTDVALS TDVAL_n Set-up Time to TCLK tTDVALH TDVAL_n Hold Time to TCLK tTSOPS TSOP Set-up Time to TCLK tTSOPH TSOP Hold Time to TCLK tTEOPS TEOP Set-up Time to TCLK tTEOPH TEOP Hold Time to TCLK tTERRS TERR Set-up Time to TCLK 2 – ns tTERRH TERR Hold Time to TCLK 0.5 – ns tTSTFAO TCLK HIGH to TSTFA Valid 1.5 6 ns tTSOFSTO TCLK HIGH to TSOFST Valid 1.5 6 ns tTFASTO TCLK HIGH to TFAST[3:0] Valid 1.5 6 ns TCLK Duty Cycle Document #: 38-02079 Rev. *F 40 2 – ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns 0.5 – ns 2 – ns 0.5 – ns Page 32 of 43 CONFIDENTIAL CY7C9537B Table 12.HBST Receive System Interface Timing Parameter Values Parameter fRCLK [18] Description Min. Max. Unit RCLK Frequency – 104 MHz tRCLKD[18] RCLK Duty Cycle 40 60 % tRREADYS RREADY_n Set-up Time to RCLK tRREADYD RREADY_n Hold Time to RCLK tRDATAO tRADDRO 2 – ns 0.5 – ns RCLK HIGH to RDATA[31:0] Valid 1.5 6 ns RCLK HIGH to RADDR[7:0] Valid 1.5 6 ns tRPARITYO RCLK HIGH to RPARITY Valid 1.5 6 ns tRSOPO RCLK HIGH to RSOP Valid 1.5 6 ns tREOPO RCLK HIGH to REOP Valid 1.5 6 ns tRERRO RCLK HIGH to RERR Valid 1.2 6 ns tRBVALO RCLK HIGH to RBVAL[2:0] Valid 1.5 6 ns tRDVALO RCLK HIGH to RDVAL Valid 1.5 6 ns tRSTFAO RCLK HIGH to RSTFA Valid 1.5 6 ns Min. Max. Unit Table 13.CPU System Interface Timing Parameter Values Parameter Description fSYSCLK[18] tSYSCLKD[18] fCpuClk[18] SYSCLK Frequency 133 133.33 MHz SYSCLK Duty Cycle 45 55 % CpuClk Freq. – 66 MHz tCpuAdsS CpuAds_n Set-up Time to CpuClk 7 – ns tCpuAdsH CpuAds_n Hold Time to CpuClk 2 – ns tCpuADS CpuAD Set-up Time to CpuClk 7 – ns tCpuADH CpuAD Hold Time to CpuClk 2 – ns tCpuADZ[18] CpuAD Float - 14 ns tCpuADO CpuAD Output Delay after CpuClk Rise - 10.1 ns tCpuWrRdS CpuWrRd Set-up Time to CpuClk 7 – ns tCpuWrRdH CpuWrRd Hold Time to CpuClk 2 – ns tCpuTaO CpuTa_n Valid Delay – 10.1 ns tCpuBlastS CpuBlast_n Set-up to CpuClk 7 – ns tCpuBlastH CpuBlast_n Hold to CpuClk 2 – ns tCpuSelS CpuSel Set-up to CpuClk 7 – ns tCpuSelH CpuSel Hold to CpuClk 2 – ns tCpuIntO CpuInt Valid Delay – 10.1 ns Table 14.TOH Serial Interface Receive Timing Parameter Values Min. Max. Unit tClk2MHzH[18] Parameter Clk2MHz High Period Description 31 34 SYSCLK cycles tClk2MHzL[18] Clk2MHz Low Period 31 34 SYSCLK cycles tClk2MHzR[19] Clk2MHz Rise Time – 6 ns tClk2MHzF[19] Clk2MHz Fall Time – 6 ns tREPW RE1STROBE or RE2STROBE Pulse Width 62 67 SYSCLK cycles tREO RE1STROBE or RE2STROBE Output Delay after Clk2MHZ Rising Edge – 8 ns tTOHSDOUTO TOHSDOUT Output Delay after Clk2MHZ Rising Edge – 8 ns Document #: 38-02079 Rev. *F Page 33 of 43 CONFIDENTIAL CY7C9537B Table 15.POH Serial Interface Receive Timing Parameter Values Parameter Description Min. Max. Unit tClk16MHzH[18] tClk16MHzL[18] tClk16MHzR[19] tClk16MHzF[19] tRPOHPW[19] Clk16MHz High Period 3 5 SYSCLK cycles Clk16MHz Low Period 3 5 SYSCLK cycles Clk16MHz Rise Time – 6 ns Clk16MHz Fall Time – 6 ns RPOHSTART Pulse Width 7 9 SYSCLK cycles tRPOHO RPOHSTART Output Delay after Clk16MHZ Rising Edge – 8 ns tPOHSDOUTO POHSDOUT Output Delay after Clk16MHZ Rising Edge – 8 ns Min. Max. Unit Clk2MHz High Period 31 34 SYSCLK cycles Clk2MHz Low Period 31 34 SYSCLK cycles Table 16.TOH Serial Interface Transmit Timing Parameter Values Parameter tClk2MHzH [18] tClk2MHzL[18] tClk2MHzR [19] Description Clk2MHz Rise Time – 6 ns tClk2MHzF[19] Clk2MHz Fall Time – 6 ns tTEPW[19] TE1STROBE or TE2STROBE Pulse Width 62 67 SYSCLK cycles tTEO TE1STROBE or TE2STROBE Output Delay after Clk2MHz Rising Edge – 8 ns tTOHSDINS Set-up Time of TOHSDIN before the Falling Edge of Clk2 MHz 50 – ns tTOHSDINH Hold Time of TOHSDIN after the Falling Edge of Clk2 MHz 50 – ns Table 17.POH Serial Interface Transmit Timing Min. Max. Unit tClk16MHzH[18] Parameter Clk16MHz High Period Description 3 5 SYSCLK cycles tClk16MHzL[18] Clk16MHz Low Period 3 5 SYSCLK cycles tClk16MHzR[19] Clk16MHz Rise Time – 6 ns tClk16MHzF[19] tTPOHPW[19] Clk16MHz Fall Time – 6 ns TPOHSTART Pulse Width 7 9 SYSCLK cycles tTPOHO TPOHSTART Output Delay after Rising Edge of Clk16MHz – 8 ns tPOHSDINS Set-up Time of POHSDIN before Falling Edge of Clk16MHz 20 – ns tPOHSDINH Hold Time of POHSDIN after Falling Edge of Clk16MHz 20 – ns Document #: 38-02079 Rev. *F Page 34 of 43 CONFIDENTIAL CY7C9537B Switching Waveforms Line Transmit and Receive Interface Timing t RXCLKH t RXCLKP t RXCLKL RXCLK t RXDS tRXDH RXD[31:0] tRXFPS t RXFPH RXFRAME_PULSE tPARINS t PARINH SONETRX_PARIN t TXCLKR t TXCLKF TXCLKOUT t TXCLKP t TXDO TXD[31:0] tTXFPO TXFRAME_PULSE t TXFPPW SONETTX_PAROUT t t PAROUTO TXCLKIP TXCLKI Document #: 38-02079 Rev. *F Page 35 of 43 CONFIDENTIAL CY7C9537B Switching Waveforms (continued) Transmit OIF-SPI Level 3 System Interface Timing TFCLK tTENBS tTENBH TENB tTDATS tTDATH tTPRTYS tTPRTYH tTSOPS tTSOPH tTEOPS tTEOPH tTERRS tTERRH tTSXS tTSXH tPTADRS tPTADRH TDAT[31:0] TPRTY TSOP TEOP TERR TSX PTADR[3:0] tTMODS tTMODH TMOD[1:0] tDTPAO DTPA[3:0] tSTPAO STPA tPTCAO PTCA Document #: 38-02079 Rev. *F Page 36 of 43 CONFIDENTIAL CY7C9537B Switching Waveforms (continued) Receive OIF-SPI Level 3 System Interface Timing RFCLK tRENBS tRENBH RENB tRDATO RDAT[31:0] tRPRTYO RPRTY tRSOPO RSOP tREOPO REOP tRERRO RERR tRVALO RVAL tRMODO RMOD[1:0] tRSXO RSX Transmit UTOPIA Level 3 System Interface Timing TxClk tTxEnbS tTxEnbH tTxAddrS tTxAddrH tTxDataS tTxDataH tTxPrtyS tTxPrtySH tTxSocS tTxSocH TxEnb TxAddr[4:0] TxData[31:0] TxPrty TxSoc tPTCAO PTCA Document #: 38-02079 Rev. *F Page 37 of 43 CONFIDENTIAL CY7C9537B Switching Waveforms (continued) Receive UTOPIA Level 3 System Interface Timing RxClk tRxEnbS tRxEnbH RxEnb tRxDataO RxData[31:0] tRxPrtyO RxPrty tRxSocO RxSoc tRxClavO RxClav Transmit HBST System Interface Timing TCLK tTADDRS tTADDRH tTDATAS tTDATAH tTBVALS tTBVALH tTDVALS tTDVALH tTSOPS tTSOPH tTEOPS tTEOPH tTERRS tTERRH TADDR[3:0] TDATA[31:0] TBVAL[1:0] TDVAL_n TSOP TEOP TERR tTPARITYS tTPARITYH TPARITY tTSTFAO TSTFA tTSOFSTO TSOFST tTFASTO TFAST[3:0] Document #: 38-02079 Rev. *F Page 38 of 43 CONFIDENTIAL CY7C9537B Switching Waveforms (continued) Receive HBST System Interface Timing RCLK tRREADYS tRREADYH RREADY_n tRADDRO RADDR[7:0] tRDATAO RDATA[31:0] tRBVALO RBVAL[1:0] tRDVALO RDVAL tRSOPO RSOP tREOPO REOP tRERRO RERR tRSTFAO RSTFA tRPARITYO RPARITY Document #: 38-02079 Rev. *F Page 39 of 43 CONFIDENTIAL CY7C9537B Switching Waveforms (continued) CPU System Interface Timing CpuClk tCpuAdsH CpuTs_n / CpuAds_n tCpuAdsS tCpuADZ tCpuADS CpuAD[31:0] (Input) tCpuADH CpuAD[31:0] (Output) tCpuADO tCpuWrRdH CpuWrRd tCpuWrRdS CpuTa_n tCpuBlastH tCpuTaO CpuBlast_n / CpuBdip_n tCpuBlastS ChipSel tCpuSelS tCpuIntO tCpuSelH CpuInt Document #: 38-02079 Rev. *F Page 40 of 43 CONFIDENTIAL CY7C9537B Switching Waveforms (continued) TOH Serial Interface Timing tClk2MHzP Clk2MHz tClk2MHzR tClk2MHzF RE1STROBE RE2 STROBE tREPW tREO tREO TOHSDOUT tTOHSDOUTO TE1STROBE TE2 STROBE tTEPW tTEO tTEO TOHSDIN tTOHDINS tTOHDINH POH Serial Interface Timing tClk16MHzP Clk16MHz tClk16MHzR tClk16MHzF RPOHSTART tRPOHPW tRPOHO tRPOHSDOUTO POHSDOUT tRPOHO TPOHSTART tTPOHPW tTPOHO tTPOHO POHSDIN tPOHSDINS Document #: 38-02079 Rev. *F tPOHSDINH Page 41 of 43 CONFIDENTIAL CY7C9537B Ordering Information Speed Ordering Code Package Name Package Type Operating Range Standard CY7C9537B-BLC BL504 504-pin BGA Commercial Standard CY7C9537B-BLI BL504 504-pin BGA Industrial Package Diagram 504-Lead L2 Ball Grid Array (37.50 x 37.50 x 1.57 mm) BL504 51-85147-*C Please see Device Manual and errata document for further details on functional description. POSIC2G is a trademark of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders. Document #: 38-02079 Rev. *F Page 42 of 43 © Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. CONFIDENTIAL CY7C9537B Document History Page Document Title: OC-48/STM-16 Framer–POSIC2G™ Document Number: 38-02079 REV. ECN NO. Issue Date Orig. of Change Description of Change ** 127208 07/03/03 QJL New Data Sheet *A 129315 10/17/03 CFK Added specification references section Added Single POSIC2G APS implementation scheme description Removed statement that pin assignment is tentative Improved readability of pin diagram Added 16-bit mode operation pin description for TMOD and RMOD Clarified that POSIC_OEn signal three-states all POSIC2G outputs Changed CLK_OUT to CLKOUT in pin assignment table Corrected notes for parameters guaranteed by design/char Changed tRERRD/tRERRO parameter minimum from 1.5 ns to 1.2 ns Changed fSYSCLK to max 133.33 MHz Removed errata section (reference separate errata document) Changed POSIC2GB to POSIC2G *B 131096 12/04/03 CFK Clarified supported channelized operation modes in Features section Changed from Preliminary to Final data sheet *C 132896 01/26/04 CFK Minor Change: MPN uploaded to CAS. *D 215296 See ECN PIR No content change. Post to web under NDA. *E 317619 See ECN QJL Updated Icc3 to 0.75A. Updated Icc5 to 0.28A. Updated max Ios from TBD to -100mA. Updated Icc1 to 1A. Post to web under NDA. *F 359676 See ECN QJL Note that NC pins are “do not use.” Document #: 38-02079 Rev. *F Page 43 of 43