VISHAY DG419DY-T1-E3

DG417/418/419
Vishay Siliconix
Precision CMOS Analog Switches
DESCRIPTION
FEATURES
The DG417/418/419 monolithic CMOS analog switches
powered industrial and military applications requiring high
•
•
•
•
•
•
performance and efficient use of board space.
• 44 V Supply Max Rating
were designed to provide high performance switching of
analog signals. Combining low power, low leakages, high
speed, low on-resistance and small physical size, the
DG417 series is ideally suited for portable and battery
To achieve high-voltage ratings and superior switching
performance, the DG417 series is built on Vishay Siliconix’s
high voltage silicon gate (HVSG) process. Break-beforemake is guaranteed for the DG419, which is an SPDT
configuration. An epitaxial layer prevents latchup.
Each switch conducts equally well in both directions when
on, and blocks up to the power supply level when off.
The DG417 and DG418 respond to opposite control logic
levels as shown in the Truth Table.
± 15 V Analog Signal Range
On-Resistance - rDS(on): 20 Ω
Fast Switching Action - tON: 100 ns
Ultra Low Power Requirements - PD: 35 nW
TTL and CMOS Compatible
MiniDIP and SOIC Packaging
Pb-free
Available
RoHS*
COMPLIANT
BENEFITS
•
•
•
•
•
•
Wide Dynamic Range
Low Signal Errors and Distortion
Break-Before-Make Switching Action
Simple Interfacing
Reduced Board Space
Improved Reliability
APPLICATIONS
•
•
•
•
•
•
•
Precision Test Equipment
Precision Instrumentation
Battery Powered Systems
Sample-and-Hold Circuits
Military Radios
Guidance and Control Systems
Hard Disk Drives
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION
DG417
Dual-In-Line and SOIC
TRUTH TABLE
S
1
8
D
NC
2
7
V-
GND
3
6
IN
V+
4
5
VL
Logic
0
1
DG417
ON
OFF
DG418
OFF
ON
Logic "0" ≤ 0.8 V
Logic "1" ≥ 2.4 V
Top View
DG419
Dual-In-Line and SOIC
D
8
1
TRUTH TABLE - DG419
S2
S1
2
7
V-
GND
3
6
IN
V+
4
5
VL
Logic
SW1
SW2
0
ON
OFF
1
OFF
ON
Logic "0" ≤ 0.8 V
Logic "1" ≥ 2.4 V
Top View
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
www.vishay.com
1
DG417/418/419
Vishay Siliconix
ORDERING INFORMATION
Temp Range
DG417/DG418
Package
Part Number
8-Pin Plastic MiniDIP
DG417DJ
DG417DJ-E3
DG418DJ
DG418DJ-E3
DG417DY
DG417DY-E3
DG417DY-T1
DG417DY-T1-E3
- 40 to 85 °C
8-Pin Narrow SOIC
DG418DY
DG418DY-E3
DG418DY-T1
DG418DY-T1-E3
DG419
8-Pin Plastic MiniDIP
DG419DJ
DG419DJ-E3
8-Pin Narrow SOIC
DG419DY
DG419DY-E3
DG419DY-T1
DG419DY-T1-E3
- 40 to 85 °C
ABSOLUTE MAXIMUM RATINGS
Parameter
Voltages Referenced V+ to V-
Limit
44
GND
VL
Unit
25
(GND - 0.3) to (V+) + 0.3
(V-) - 2 to (V+) + 2
or 30 mA, whichever occurs first
30
a
Digital Inputs , VS, VD
Current , (Any Terminal) Continuous
Current, S or D (Pulsed at 1 ms, 10 % duty cycle)
Storage Temperature
100
(AK Suffix)
- 65 to 150
(DJ, DY Suffix)
- 65 to 125
8-Pin Plastic MiniDIPc
b
Power Dissipation (Package)
8-Pin Narrow SOIC
e
d
V
mA
°C
400
400
mW
600
8-Pin CerDIP
Notes:
a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6 mW/°C above 75 °C.
d. Derate 6.5 mW/°C above 75 °C.
e. Derate 12 mW/°C above 75 °C.
www.vishay.com
2
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
DG417/418/419
Vishay Siliconix
SCHEMATIC DIAGRAM (TYPICAL CHANNEL)
V+
S
VL
VLevel
Shift/
Drive
VIN
V+
GND
D
V-
Figure 1.
SPECIFICATIONSa
Test Conditions
Unless Otherwise Specified
V+ = 15 V, V- = - 15 V
Parameter
Analog Switch
Symbol
Analog Signal Rangee
VANALOG
Drain-Source
On-Resistance
rDS(on)
VL = 5 V, VIN = 2.4 V, 0.8 Vf
Tempb
IS = - 10 mA, VD = ± 12.5 V
V+ = 13.5 V, V- = - 13.5 V
Room
Full
20
Room
Full
Room
Full
Room
Full
Room
Full
Room
Full
- 0.1
Full
IS(off)
V+ = 16.5, V- = - 16.5 V
VD = ± 15.5 V
Switch Off Leakage Current
ID(off)
VS = ± 15.5 V
DG417
DG418
DG419
Channel Off Leakage
Current
ID(on)
Typc
V+ = 16.5 V, V- = - 16.5 V
VS = VD = ± 15.5 V
DG417
DG418
DG419
A Suffix
- 55 to 125 °C
D Suffix
- 40 to 85 °C
Mind
Maxd
Mind
15
- 15
- 15
- 0.1
- 0.1
- 0.4
- 0.4
35
45
Maxd
Unit
15
V
35
45
Ω
nA
- 0.25
- 20
- 0.25
- 20
- 0.75
- 60
- 0.4
- 40
- 0.75
- 60
0.25
20
0.25
20
0.75
60
0.4
40
0.75
60
- 0.25
-5
- 0.25
-5
- 0.75
- 12
- 0.4
- 10
- 0.75
- 12
0.25
5
0.25
5
0.75
12
0.4
10
0.75
12
Digital Control
Input Current VIN Low
IIL
Full
0.005
- 0.5
0.5
- 0.5
0.5
Input Current VIN High
IIH
Full
0.005
- 0.5
0.5
- 0.5
0.5
DG417
DG418
Room
Full
100
175
250
175
250
DG417
DG418
Room
Full
60
145
210
145
210
DG419
Room
Full
175
250
175
250
DG419
Room
13
µA
Dynamic Characteristics
Turn-On Time
tON
Turn-Off Time
tOFF
Transition Time
tTRANS
Break-Before-Make
Time Delay (DG403)
tD
Charge Injection
Q
Source Off Capacitance
CS(off)
Drain Off Capacitance
CD(off)
Channel On Capacitance
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
CD(on)
RL = 300 Ω, CL = 35 pF
VS = ± 10 V
See Switching Time
Test Circuit
RL = 300 Ω, CL = 35 pF
VS1 = ± 10 V, VS2 = ± 10 V
RL = 300 Ω, CL = 35 pF
VS1 = VS2 = ± 10 V
CL = 10 nF, Vgen = 0 V, Rgen = 0 Ω
f = 1 MHz, VS = 0 V
f = 1 MHz, VS = 0 V
DG417
DG418
DG417
DG418
DG419
Room
60
Room
8
Room
8
Room
30
Room
35
5
ns
5
pC
pF
www.vishay.com
3
DG417/418/419
Vishay Siliconix
SPECIFICATIONSa
Test Conditions
Unless Otherwise Specified
V+ = 15 V, V- = - 15 V
Parameter
Power Supplies
Symbol
Positive Supply Current
I+
Negative Supply Current
I-
Logic Supply Current
IL
Ground Current
VL = 5 V, VIN = 2.4 V, 0.8 Vf
Tempb
Typc
0.001
V+ = 16.5 V, V- = - 16.5 V
VIN = 0 or 5 V
Room
Full
Room
Full
Room
Full
Room
Full
IGND
- 0.001
A Suffix
- 55 to 125 °C
D Suffix
- 40 to 85 °C
Mind
Mind
1
5
-1
-5
0.001
- 0.0001
Maxd
Maxd
1
5
-1
-5
1
5
-1
-5
Unit
1
5
µA
-1
-5
SPECIFICATIONS FOR UNIPOLAR SUPPLIESa
Test Conditions
Unless Otherwise Specified
V+ = 12 V, V- = 0 V
Parameter
Analog Switch
Symbol
Analog Signal Rangee
VANALOG
Drain-Source
On-Resistance
rDS(on)
VL = 5 V, VIN = 2.4 V, 0.8 Vf
Tempb
Typc
Full
IS = - 10 mA, VD = 3.8 V
V+ = 10.8 V
Room
40
A Suffix
- 55 to 125 °C
D Suffix
- 40 to 85 °C
Mind
Maxd
Mind
Maxd
Unit
0
12
0
12
V
Ω
Dynamic Characteristics
Turn-On Time
tON
Turn-Off Time
tOFF
Break-Before-Make
Time Delay
tD
Charge Injection
Q
Power Supplies
Positive Supply
Current
Negative Supply
Current
Logic Supply
Current
Ground
Current
RL = 300 Ω, CL = 35 pF, VS = 8 V
See Switching Time Test Circuit
DG419 Only
RL = 300 Ω, CL = 35 pF
CL = 10 nF, Vgen = 0 V, Rgen = 0 Ω
I+
IIL
IGND
V+ = 13.2 V, VL = 5.25 V
VIN = 0 or 5 V
Room
110
Room
40
Room
60
Room
5
Room
0.001
Room
- 0.001
Room
0.001
Room
- 0.001
ns
pC
µA
Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room = 25 °C, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
www.vishay.com
4
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
DG417/418/419
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
50
40
ID = - 10 mA
±5V
40
TA = 125 °C
30
r DS(on) (Ω)
r DS(on) (Ω)
±8V
30
± 10 V
± 12 V
± 15 V
20
± 20 V
25 °C
20
- 55 °C
10
10
0
0
- 20
- 15
- 10
-5
0
10
5
15
20
- 15
- 10
-5
VD – Drain Voltage (V)
0
5
10
VD – Drain Voltage (V)
rDS(on) vs. VD and Supply Voltage
rDS(on) vs. Temperature
30
200
V+ = 15 V
V- = - 15 V
VL = 5 V
20
CL = 10 nF
V+ = 16.5 V
V- = - 16.5 V
VL = 5 V
VIN = 0 V
150
1 nF
DG417/418: I D(off), IS(off)
DG419: I S(off)
10
500 pF
Q (pC)
100
I (pA)
15
0
100 pF
50
DG417/418: I D(on)
DG419: I D(off), ID(on)
- 10
0
- 20
- 30
- 50
- 15
- 10
-5
0
5
10
15
- 15
-5
- 10
0
5
10
VD or V S – Drain or Source Voltage (V)
VS – Source Voltage (V)
Leakage Currents vs. Analog Voltage
Drain Charge Injection
15
3.5
3.0
V TH (V)
2.5
VL = 7 V
2.0
1.5
VL = 5 V
1.0
0.5
0
(V+)
5
10
15
20
25
30
35
40
Input Switching Threshold vs. Supply Voltages
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
www.vishay.com
5
DG417/418/419
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
140
120
V+ = 15 V, V- = - 15 V
VL = 5 V, V IN = 3 V Pulse
100
tON
120
DG417/418/419
Source 2
DG419
Source 1
80
tOFF
(dB)
t ON , t OFF (ns)
100
80
60
60
40
40
20
V+ = 15 V
V- = - 15 V
VL = 5 V
20
0
0
- 55 - 40 - 20
0
20
40
60
80
100
100
120
1k
10 k
100 k
10 M
1M
100 M
Temperature (°C)
f – Frequency (Hz)
Switching Time vs. Temperature
Crosstalk and Off Isolation vs. Frequency
130
80
120
110
100
tON
V- = 0 V
VL = 5 V
VIN = 3 V
t ON , t OFF (ns)
t ON , t OFF (ns)
70
60
tON
90
V- = 0 V
VL = 5 V
VIN = 3 V
80
70
60
50
50
tOFF
tOFF
40
40
± 10
30
± 11
± 12
± 13
± 14
± 15
10
± 16
11
12
13
14
15
Supply Voltage (V)
V+ Supply Voltage (V)
Switching Time vs. Supply Voltages
Switching Time vs. V+
10 mA
16
1 µA
V+ = 15 V, V- = - 15 V
VL = 5 V, V IN = 5 V, 50 % D Cycle
100 nA
V+ = 16.5 V, V- = - 16.5 V
VL = 5 V, V IN = 0 V
1 mA
I SUPPLY
I SUPPLY
10 nA
100 µA
I+, I10 µA
I+, I-
1 nA
100 pA
IL
IGND
10 pA
1 µA
1 pA
100 nA
100
1k
10 k
100 k
1M
10 M
0.1 pA
- 55 - 40
- 20
0
20
40
60
80
100
f – Frequency (Hz)
Temperature (°C)
Power Supply Currents vs. Switching Frequency
Supply Current vs. Temperature
www.vishay.com
6
120
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
DG417/418/419
Vishay Siliconix
TEST CIRCUITS
VO is the steady state output with the switch on.
+5V
+ 15 V
3V
Logic
Input
VL
V+
0V
D
S
± 10 V
tr < 20 ns
tf < 20 ns
50 %
VO
tOFF
IN
GND
RL
300 Ω
V-
CL
35 pF
- 15 V
CL (includes fixture and stray capacitance)
Switch
Input
VS
Switch
Output
0V
Note:
RL
VO = V S
VO
90 %
tON
Logic input waveform is inverted for switches that have the
opposite logic sense.
RL + rDS(on)
Figure 2. Switching Time (DG417/418)
+5V
+ 15 V
Logic
Input
VL
VS1
VS2
V+
S1
3V
tr < 20 ns
tf < 20 ns
0V
D
VO
S2
RL
300 Ω
IN
Switch
Output
V-
GND
VS1 = VS2
VO
CL
35 pF
90 %
0V
tD
tD
CL (includes fixture and stray capacitance)
- 15 V
Figure 3. Break-Before-Make (DG419)
+5V
VL
VS1
VS2
+ 15 V
V+
S1
D
VO
Logic
Input
3V
0V
S2
RL
300 Ω
IN
GND
tr < 20 ns
tf < 20 ns
50 %
tTRANS
CL
35 pF
tTRANS
VS1
V01
V-
- 15 V
90 %
Switch
Output
VS2
V02
10 %
CL (includes fixture and stray capacitance)
VO = VS
RL
RL + rDS(on)
Figure 4. Transition Time (DG419)
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
www.vishay.com
7
DG417/418/419
Vishay Siliconix
TEST CIRCUITS
Rg
+5V
- 15 V
VL
V+
S
ΔVO
VO
D
VO
IN
INX
OFF
CL
10 nF
3V
ON
V-
GND
OFF
Q = ΔVO x CL
- 15 V
Figure 5. Charge Injection
+ 15 V
+5V
C
+5V
C
+ 15 V
C
VL
S1
VS
VL
D
Rg = 50 Ω
V+
S
VS
VO
D
Rg = 50 Ω
50 Ω
VO
C
V+
S2
RL
IN
0 V, 2.4 V
RL
GND
IN
V-
C
0.8 V
GND
C
V-
- 15 V
- 15 V
XTA LK Isolation = 20 log
C = RF bypass
Off Isolation = 20 log
VS
VO
VS
VO
Figure 7. Off Isolation
Figure 6. Crosstalk (DG419)
+5V
+ 15 V
C
C
VL
V+
S
VS
D
VO
Rg = 50 Ω
RL
IN
0 V, 2.4 V
GND
V-
C
- 15 V
Figure 8. Insertion Loss
www.vishay.com
8
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
DG417/418/419
Vishay Siliconix
TEST CIRCUITS
+5V
+ 15 V
+ 15 V
C
C
VL
V+
S
V+ S2
DG417/418
IN
V-
0 V, 2.4 V
HP4192A
Impedance
Analyzer
or Equivalent
D
GND
Meter
HP4192A
Impedance
Analyzer
or Equivalent
IN
D2
D1
GND
f = 1 MHz
C
S1
DG419
Meter
0 V, 2.4 V
NC
C
VC
f = 1 MHz
- 15 V
- 15 V
Figure 9. Source/Drain Capacitances
APPLICATIONS
Switched Signal Powers Analog Switch
The analog switch in Figure 10 derives power from its input
signal, provided the input signal amplitude exceeds 4 V and
its frequency exceeds 1 kHz.
A positive input pulse turns on the clamping diode D1 and
charges C1. The charge stored on C1 is used to power the
chip; operation is satisfactory because the switch requires
less than 1 µA of stand-by supply current. Loading of the
signal source is imperceptible. The DG419’s on-resistance is
a low 100 Ω for a 5 V input signal.
This circuit is useful when signals have to be routed to either
of two remote loads. Only three conductors are required: one
for the signal to be switched, one for the control signal and a
common return.
D1
C1
0.01 µF
VL
V+
S1
D
VOUT
Input
S2
RL2
10 kΩ
IN
Control
DG419
GND
V-
RL1
10 kΩ
Figure 10. Switched Signal Powers Remote SPDT Analog Switch
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
www.vishay.com
9
DG417/418/419
Vishay Siliconix
APPLICATIONS
Micropower UPS Transfer Switch
Programmable Gain Amplifier
When VCC drops to 3.3 V, the DG417 changes states,
closing SW1 and connecting the backup cell, as shown in
Figure 10. D1 prevents current from leaking back towards the
rest of the circuit. Current consumption by the CMOS analog
switch is around 100 pA; this ensures that most of the power
available is applied to the memory, where it is really needed.
In the stand-by mode, hundreds of A are sufficient to retain
memory data.
The DG419, as shown in Figure 11, allows accurate gain
selection in a small package. Switching into virtual ground
reduces distortion caused by rDS(on) variation as a function of
analog signal amplitude.
When the 5 V supply comes back up, the resistor divider
senses the presence of at least 3.5 V, and causes a new
change of state in the analog switch, restoring normal
operation.
GaAs FET Driver
The DG419, as shown in Figure 12 may be used as a GaAs
FET driver. It translates a TTL control signal into - 8 V, 0 V
level outputs to drive the gate.
V+
D1
SW1
VL
D
VCC
(5 V)
R1
VSENSE
453 kΩ
S
+
DG417
Memory
3 V Li Cell
–
IN
GND
R2
383 kΩ
V-
Figure 11. Micropower UPS Circuit
+5V
DG419
S1
S2
R1
VL
R2
GaAs FET
V+
S1
S2
IN
D
VOUT
D
DG419
5V
VIN
GND
-
V-
VOUT
+
-8V
Figure 12. Programmable Gain Amplifier
Figure 13. GaAs FET Driver
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?70051.
www.vishay.com
10
Document Number: 70051
S-71241–Rev. F, 25-Jun-07
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1