TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip Data Manual ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. Literature Number: SPRS689 November 2010 TMS320C6670 Data Manual SPRS689—November 2010 www.ti.com Release History Release Date Chapter/Topic Description/Comments 1.0 November 2010 All Initial Release 2 Release History Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Contents 1 TMS320C6670 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.1 KeyStone Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 1.2 Device Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 1.3 Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2 Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 CPU (DSP Core) Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Memory Map Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Boot Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Boot Modes Supported and PLL Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 2.5.1 Boot Device Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 2.5.2 Device Configuration Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 2.5.3 PLL Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Second-Level Bootloaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.9.1 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.9.2 Device Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 3.1 Device Configuration at Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 3.2 Peripheral Selection After Device Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.3 Device State Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.3.1 Device Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 3.3.2 Device Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.3.3 JTAG ID (JTAGID) Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.3.4 Kicker Mechanism (KICK0 and KICK1) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.3.5 LRESETNMI PIN Status (LRSTNMIPINSTAT) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.3.6 LRESETNMI PIN Status Clear (LRSTNMIPINSTAT_CLR) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.7 Reset Status (RESET_STAT) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.8 Reset Status Clear (RESET_STAT_CLR) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.3.9 Boot Complete (BOOTCOMPLETE) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 3.3.10 Power State Control (PWRSTATECTL) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 3.3.11 NMI Even Generation to CorePac (NMIGRx) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 3.3.12 IPC Generation (IPCGRx) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 3.3.13 IPC Acknowledgement (IPCARx) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 3.3.14 IPC Generation Host (IPCGRH) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 3.3.15 IPC Acknowledgement Host (IPCARH) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 3.3.16 Timer Input Selection Register (TINPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 3.3.17 Timer Output Selection Register (TOUTPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 3.3.18 Reset Mux (RSTMUXx) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 3.4 Pullup/Pulldown Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 4 System Interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 4.1 4.2 4.3 4.4 5 Internal Buses, Bridges, and Switch Fabrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Data Switch Fabric Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Configuration Switch Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Bus Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 C66x CorePac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 5.1 Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 5.1.1 L1P Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 5.1.2 L1D Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 5.1.3 L2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 5.1.4 MSM SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 5.1.5 L3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 5.2 Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Copyright 2010 Texas Instruments Incorporated Contents 3 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 5.3 5.4 5.5 5.6 5.7 6 www.ti.com Bandwidth Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Power-Down Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 CorePac Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 CorePac Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 C66x CorePac Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Device Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 6.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 6.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 6.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7 TMS320C6670 Peripheral Information and Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.1 Parameter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.1.1 1.8-V Signal Transition Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 7.1.2 Timing Parameters and Board Routing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 7.2 Recommended Clock and Control Signal Transition Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.3 Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.3.1 Power-Up Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.3.2 Power-Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3.3 Power Supply Decoupling and Bulk Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3.4 SmartReflex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.4 Enhanced Direct Memory Access (EDMA3) Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.4.1 EDMA3 Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.4.2 EDMA3 Channel Synchronization Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.5.1 Interrupt Sources and Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.5.2 INTC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.5.3 Inter-Processor Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.5.4 NMI and LRESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.5.5 External Interrupts Electrical Data/Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.6 Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.6.1 MPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.6.2 MPU Programmable Range Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.7 Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.7.1 Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.7.2 Hard Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.7.3 Soft Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.7.4 Local Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.7.5 Reset Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.7.6 Reset Controller Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.7.7 Reset Electrical Data/Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.8 Main PLL and the PLL Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.8.1 Main PLL Controller Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.8.2 PLL Controller Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.8.3 Main PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.8.4 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 7.9 DDR3 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.9.1 DDR3 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.9.2 DDR3 PLL Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.9.3 DDR3 PLL Input Clock Electrical Data/Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.10 PASS PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.10.1 PASS PLL Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.10.2 PASS PLL Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.10.3 PASS PLL Input Clock Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.11 DDR3 Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.11.1 DDR3 Memory Controller Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.11.2 DDR3 Memory Controller Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.12 I2C Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.12.1 I2C Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.12.2 I2C Peripheral Register Description(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4 Contents Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2 7.12.3 I C Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.13 SPI Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.13.1 SPI Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.14 HyperLink Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.15 UART Peripheral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16 PCIe Peripheral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.17 Packet Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.18 Security Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.19 Ethernet MAC (EMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.20 Management Data Input/Output (MDIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.21 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.21.1 Timers Device-Specific Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.21.2 Timers Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.22 Rake Search Accelerator (RSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.23 Enhanced Viterbi-Decoder Coprocessor (VCP2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.24 Third-Generation Turbo Decoder Coprocessor (TCP3d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.25 Turbo Encoder Coprocessor (TCP3e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.26 Serial RapidIO (SRIO) Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.27 General-Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.27.1 GPIO Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.27.2 GPIO Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.28 Semaphore2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.29 Antenna Interface Subsystem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.30 FFTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.31 Emulation Features and Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.31.1 Advanced Event Triggering (AET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.31.2 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.31.3 IEEE 1149.1 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 180 183 183 186 188 189 189 190 190 191 192 192 192 194 194 194 194 194 195 195 195 195 196 198 198 198 198 199 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 8.1 Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 8.2 Package CYP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Copyright 2010 Texas Instruments Incorporated Contents 5 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com List of Figures Figure 1-1 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5 Figure 2-6 Figure 2-7 Figure 2-8 Figure 2-9 Figure 2-10 Figure 2-11 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 3-5 Figure 3-6 Figure 3-7 Figure 3-8 Figure 3-9 Figure 3-10 Figure 3-11 Figure 3-12 Figure 3-13 Figure 3-14 Figure 3-15 Figure 3-16 Figure 3-17 Figure 4-1 Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 7-1 Figure 7-2 Figure 7-3 Figure 7-4 Figure 7-5 Figure 7-6 Figure 7-7 Figure 7-8 Figure 7-9 Figure 7-10 Figure 7-11 Figure 7-12 Figure 7-13 Figure 7-14 Figure 7-15 Figure 7-16 Figure 7-17 Figure 7-18 6 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 TMS320C6670 CPU (DSP Core) Data Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Boot Mode Pin Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Sleep Configuration Bit Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Ethernet (SGMII) Device Configuration Bit Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Serial Rapid I/O Device Configuration Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 PCI Device Configuration Bit Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 I2C Master Mode Device Configuration Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 I2C Passive Mode Device Configuration Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 SPI Device Configuration Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 HyperLink Boot Device Configuration Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 CYP 841-PIN BGA Package Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Device Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Device Configuration Register (DEVCFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 JTAG ID (JTAGID) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Reset Status Register (RESET_STAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Reset Status Clear Register (RESET_STAT_CLR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Boot Complete Register (BOOTCOMPLETE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Power State Control Register (PWRSTATECTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 NMI Generation Register (NMIGRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 IPC Generation Registers (IPCGRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 IPC Acknowledgement Registers (IPCARx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 IPC Generation Registers (IPCGRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 IPC Acknowledgement Register (IPCARH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Timer Input Selection Register (TINPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Timer Output Selection Register (TOUTPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Reset Mux Register (RSTMUX0 through RSTMUX3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Packed DMA Priority Allocation Register (PKTDMA_PRI_ALLOC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 C66x CorePac Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 TMS320C6670 L1P Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 TMS320C6670 L1D Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 TMS320C6670 L2 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Test Load Circuit for AC Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 Input and Output Voltage Reference Levels for AC Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Rise and Fall Transition Time Voltage Reference Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Board-Level Input/Output Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 POR-Controlled Power Sequencing — Core Before IO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 POR-Controlled Power Sequencing — IO Before Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 RESETFULL-Controlled Device Initialization — Core Before IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 RESETFULL-Controlled Device Initialization — IO Before Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 SmartReflex 4-Pin VID Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 SmartReflex I2C Interface Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 SmartReflex I2C Interface Transmit Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 TMS320C6670 Interrupt Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 NMI and LRESET Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 Programmable Range n Start Address Register (PROGn_MPSAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 Programmable Range n End Address Register (PROGn_MPEAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 POR Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 List of Figures Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 7-19 Figure 7-20 Figure 7-21 Figure 7-22 Figure 7-23 Figure 7-24 Figure 7-25 Figure 7-26 Figure 7-27 Figure 7-28 Figure 7-29 Figure 7-30 Figure 7-31 Figure 7-32 Figure 7-33 Figure 7-34 Figure 7-35 Figure 7-36 Figure 7-37 Figure 7-38 Figure 7-39 Figure 7-40 Figure 7-41 Figure 7-42 Figure 7-43 Figure 7-44 Figure 7-45 Figure 7-46 Figure 7-47 Figure 7-48 Figure 7-49 Figure 7-50 Figure 7-51 Figure 7-52 Figure 7-53 Figure 7-54 Figure 7-55 Figure 7-56 Figure 7-57 Figure 7-58 Figure 7-59 Figure 7-60 Figure 7-61 Figure 7-62 Figure 7-63 Figure 7-64 Figure 7-65 Figure 7-66 Figure 8-1 RESETFULL Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Hard-Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Soft-Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Boot Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 Main PLL and PLL Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 PLL Secondary Control Register (SECCTL)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 PLL Controller Divider Register (PLLDIVn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 PLL Controller Clock Align Control Register (ALNCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 PLLDIV Divider Ratio Change Status Register (DCHANGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 SYSCLK Status Register (SYSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Reset Type Status Register (RSTYPE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Reset Control Register (RSTCTRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 Reset Configuration Register (RSTCFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 Reset Isolation Register (RSISO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 Main PLL Control Register (MAINPLLCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 Main PLL Transition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 DDR3 PLL Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 DDR3 PLL Control Register (DDR3PLLCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 DDR3 PLL DDRCLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 PASS PLL Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 PASS PLL Control Register (PASSPLLCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 PASS PLL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 I2C Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 I2C Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 I2C Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 SPI Master Mode Timing Diagrams — Base Timings for 3-Pin Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 SPI Additional Timings for 4-Pin Master Mode with Chip Select Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 HyperLink Station Management Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 HyperLink Station Management Transmit Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 HyperLink Station Management Receive Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 UART Receive Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 UART CTS (Clear-to-Send Input) — Autoflow Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 UART Transmit Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 UART RTS (Request-to-Send Output) – Autoflow Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 MACID1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 MACID2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 MDIO Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 MDIO Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 AIF2 RP1 Frame Synchronization Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 AIF2 RP1 Frame Synchronization Burst Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 AIF2 Physical Layer Synchronization Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 AIF2 Radio Synchronization Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 AIF2 Timer External Frame Event Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 Trace Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 JTAG Test-Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 CYP (S–PBGA–N841) Plastic Ball Grid Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 Copyright 2010 Texas Instruments Incorporated List of Figures 7 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com List of Tables Table 2-1 Table 2-2 Table 2-3 Table 2-4 Table 2-5 Table 2-6 Table 2-7 Table 2-8 Table 2-9 Table 2-10 Table 2-11 Table 2-12 Table 2-13 Table 2-14 Table 2-15 Table 2-16 Table 2-17 Table 2-18 Table 3-1 Table 3-2 Table 3-3 Table 3-4 Table 3-5 Table 3-6 Table 3-7 Table 3-8 Table 3-9 Table 3-10 Table 3-11 Table 3-12 Table 3-13 Table 3-14 Table 3-15 Table 3-16 Table 3-17 Table 3-18 Table 3-19 Table 4-1 Table 4-2 Table 4-3 Table 5-1 Table 5-2 Table 5-3 Table 5-4 Table 6-1 Table 6-2 Table 6-3 Table 7-1 Table 7-2 Table 7-3 Table 7-4 Table 7-5 8 List of Tables Characteristics of the C6670 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 TMS320C6670 Memory Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Boot Mode Pins: Boot Device Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Sleep Configuration Bit Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Ethernet (SGMII) Configuration Bit Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Serial Rapid I/O Configuration Bit Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 PCI Device Configuration Bit Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 BAR Config / PCIe Window Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 I2C Master Mode Device Configuration Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 I2C Passive Mode Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 SPI Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 HyperLink Boot Device Configuration Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 C66x CorePac System PLL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 I/O Functional Symbol Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Terminal Functions — Signals and Control by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Terminal Functions — Power and Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Terminal Functions — By Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Terminal Functions — By Ball Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 TMS320C6670 Device Configuration Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Device State Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Device Status Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Device Configuration Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 JTAG ID Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Reset Status Register (RESET_STAT) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Reset Status Clear Register (RESET_STAT_CLR) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Boot Complete Register (BOOTCOMPLETE) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Power State Control Register (PWRSTATECTL) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 NMI Generation Register (NMIGRx) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 IPC Generation Registers (IPCGRx) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 IPC Acknowledgement Registers (IPCARx) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 IPC Generation Registers (IPCGRH) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 IPC Acknowledgement Register (IPCARH) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Timer Input Selection Field Description (TINPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Timer Output Selection Field Description (TOUTPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Reset Mux Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 CPU/2 Data SCR Connection Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 CPU/3 Data SCR Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Packed DMA Priority Allocation Register (PKTDMA_PRI_ALLOC) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Available Memory Page Protection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 CorePac Reset (Global or Local) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 CorePac Revision ID Register (MM_REVID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 CorePac Revision ID Register (MM_REVID) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Board-Level Timing Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Power Supply Rails on TMS320C6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 POR-Controlled Power Sequencing — Core Before IO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 POR-Controlled Power Sequencing — IO Before Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 RESETFULL-Controlled Device Initialization — Core Before IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-6 Table 7-7 Table 7-8 Table 7-9 Table 7-10 Table 7-11 Table 7-12 Table 7-13 Table 7-14 Table 7-15 Table 7-16 Table 7-17 Table 7-18 Table 7-19 Table 7-20 Table 7-21 Table 7-22 Table 7-23 Table 7-24 Table 7-25 Table 7-26 Table 7-27 Table 7-28 Table 7-29 Table 7-30 Table 7-31 Table 7-32 Table 7-33 Table 7-34 Table 7-35 Table 7-36 Table 7-37 Table 7-38 Table 7-39 Table 7-40 Table 7-41 Table 7-42 Table 7-43 Table 7-44 Table 7-45 Table 7-46 Table 7-47 Table 7-48 Table 7-49 Table 7-50 Table 7-51 Table 7-52 Table 7-53 Table 7-54 Table 7-55 Table 7-56 Table 7-57 Table 7-58 Table 7-59 RESETFULL-Controlled Device Initialization — IO Before Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Clock Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 SmartReflex 4-Pin VID Interface Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 SmartReflex I2C Interface Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 SmartReflex I2C Interface Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 EDMA3 Parameter RAM Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 TPCC0 Events for C6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 TPCC1 Events for C6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 TPCC2 Events for C6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 TMS320C6670 System Event Mapping — C66x CorePac Primary Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 INTC0 Event Inputs — C66x CorePac Secondary Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 INTC1 Event Inputs (Secondary Events for TPCC1 and TPCC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 INTC2 Event Inputs (Secondary Events for TPCC0 and HyperLink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 INTC0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 INTC1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 INTC2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 IPC Generation Registers (IPCGRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 LRESET and NMI Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 NMI and LRESET Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 MPU Default Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 MPU Memory Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 Device Master Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 MPU0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 MPU1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 MPU2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 MPU3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 Configuration Register (CONFIG) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU0) . . . . . . . . . . . . . . . . . . . . . . . .145 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU1) . . . . . . . . . . . . . . . . . . . . . . . .145 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU2) . . . . . . . . . . . . . . . . . . . . . . . .146 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU3) . . . . . . . . . . . . . . . . . . . . . . . .147 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU0). . . . . . . . . . . . . . . . . . . . . . . . .147 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU1) . . . . . . . . . . . . . . . . . . . . . . . .148 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU2). . . . . . . . . . . . . . . . . . . . . . . . .148 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU3) . . . . . . . . . . . . . . . . . . . . . . . .149 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Field Descriptions . . . . . . . . . . . .150 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Reset Values . . . . . . . . . . . . . . . . .151 Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 Reset Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 Reset Switching Characteristics Over Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 Boot Configuration Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 Main PLL Stabilization, Lock, and Reset Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 PLL Controller Registers (Including Reset Controller). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 PLL Secondary Control Register (SECCTL) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 PLL Controller Divider Register (PLLDIVn) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 PLL Controller Clock Align Control Register (ALNCTL) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 PLLDIV Divider Ratio Change Status Register (DCHANGE) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 SYSCLK Status Register (SYSTAT) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Reset Type Status Register (RSTYPE) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 Reset Control Register (RSTCTRL) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 Reset Configuration Register (RSTCFG) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 Reset Isolation Register (RSISO) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Main PLL Control Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 Copyright 2010 Texas Instruments Incorporated List of Tables 9 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-60 Table 7-61 Table 7-62 Table 7-63 Table 7-64 Table 7-65 Table 7-66 Table 7-67 Table 7-68 Table 7-69 Table 7-70 Table 7-71 Table 7-72 Table 7-73 Table 7-74 Table 7-75 Table 7-76 Table 7-77 Table 7-78 Table 7-79 Table 7-80 Table 7-81 Table 7-82 Table 7-83 Table 7-84 Table 7-85 10 www.ti.com DDR3 PLL Control Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 DDR3 PLL DDRREFCLK(N|P) Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 PASS PLL Control Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 PASS PLL Timing Requirments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 I2C Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 I2C Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180 I2C Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 SPI Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 SPI Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 HyperLink Peripheral Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 HyperLink Peripheral Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 UART Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 UART Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 MACID1 Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 MACID2 Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 MDIO Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 MDIO Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 Timer Input Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 Timer Output Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 GPIO Input Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 GPIO Output Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 AIF2 Timer Module Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 AIF2 Timer Module Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 Trace Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 JTAG Test Port Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 JTAG Test Port Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 List of Tables Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 1 TMS320C6670 Features • Multicore Shared Memory Controller (MSMC) – 2048 KB MSM SRAM Memory Shared by Four DSP Cores – Memory Protection Unit for Both MSM SRAM and DDR3_EMIF • Hardware Coprocessors – Two Enhanced Coprocessors for Turbo Decoding › Supports WCDMA/HSPA/HSPA+/TD-SCDMA, LTE, and WiMAX › Supports up to 365 Mbps for LTE and up to 233 Mbps for WCDMA › Low DSP Overhead – HW Interleaver Table Generation and CRC Check – One Enhanced Coprocessor for Turbo Encoding › Supports up to 643 Mbps for LTE and up to 746 Mbps for WCDMA – Four Viterbi Decoders › Supports More Than 38 Mbps @ 40 bit Block Size – Two Fast Fourier Transform Coprocessors › 1365 pt FFT in 4.8 μs • Multicore Navigator – 8192 Multipurpose Hardware Queues with Queue Manager – Packet-Based DMA for Zero-Overhead Transfers • Network Coprocessors – Packet Accelerator Enables Support for › Transport Plane IPsec, GTP-U, SCTP, PDCP › L2 User Plane PDCP (RoHC, Air Ciphering) › 1 Gbps Wire Speed Throughput at 1.5M Packets Per Second – Security Accelerator Engine Enables Support for › IPSec, SRTP, 3GPP and WiMAX Air Interface, and SSL/TLS Security › ECB, CBC, CTR, F8, A5/3, CCM, GCM, HMAC, CMAC, GMAC, AES, DES, 3DES, Kasumi, SNOW 3G, SHA-1, SHA-2 (256-bit Hash), MD5 › Up to 2.8 Gbps Encryption Speed • Four Rake/Search Accelerators (RSA) for – Chip Rate Processing for WCDMA Rel'99, HSDPA, and HSDPA+ – Reed-Muller Decoding • Peripherals – Six Lane SerDes-Based Antenna Interface (AIF2) › Operating at up to 6.144 Gbps › Compliant with OBSAI RP3 and CPRI Standards for 3G / 4G (WCDMA, LTE TDD, LTE FDD, TD-SCDMA, and WiMAX) – Four Lanes of SRIO 2.1 › 5 GBaud Operation Per Lane › Supports Direct I/O, Message Passing – Two Lanes PCIe Gen2 › Supports Up To 5 GBaud – Hyperlink › Supports Connections to Other KeyStone Architecture Devices Providing Resource Scalability › Supports up to 50 Gbaud – Ethernet MAC Subsystem (EMAC) › Two SGMII Ports › IEEE1588 Support – 64-Bit DDR3 Interface – UART Interface – I2C Interface – 16 GPIO pins – SPI Interface – Semaphore Module – Eight 64-Bit Timers – Three On-Chip PLLs • Commercial Temperature: – 0°C to 100°C • Extended Temperature: – - 40°C to 105°C Copyright 2010 Texas Instruments Incorporated ADVANCE INFORMATION • Four TMS320C66x™ DSP Core Subsystems, Each With – 1.2 GHz C66x Fixed/Floating-Point DSP Core › 32 GMacs/Core for Fixed Point @ 1.2 GHz › 16 GFlops/Core for Floating Point @ 1.2 GHz – Memory › 32K Byte L1P Per Core › 32K Byte L1D Per Core › 1024K Byte Local L2 Per Core TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 1.1 KeyStone Architecture TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application specific coprocessors and I/O. KeyStone is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. ADVANCE INFORMATION Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller enables processing cores to access shared memory directly without drawing from TeraNet’s capacity, so packet movement cannot be blocked by memory access. HyperLink provides a 50-Gbps chip-level interconnect that allows SoCs to work in tandem. Its low-protocol overhead and high throughput make Hyperlink an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. 1.2 Device Description The TMS320C6670 Communications Infrastructure KeyStone SoC is a member of the C66xx SoC family based on TI's new KeyStone Multicore SoC Architecture designed specifically for high performance wireless infrastructure applications. The C6670 provides a very high performance macro basestation platform for developing all wireless standards including WCDMA/HSPA/HSPA+, TD-SCDMA, GSM, TDD-LTE, FDD-LTE, and WiMAX. The C6670 also sets a new standard for clock speed with operating frequencies up to 1.2 GHz. TI's SoC architecture provides a programmable platform integrating various subsystems (C66x cores, IP network, radio layers 1 and 2, and transport processing) and uses a queue-based communication system that allows the SoC resources to operate efficiently and seamlessly. This unique SoC architecture also includes a TeraNet Switch that enables the wide mix of system elements, from programmable cores to dedicated coprocessors and high speed IO, to each operate at maximum efficiency with no blocking or stalling. TI's new C66x core launches a new era of DSP technology by combining fixed point and floating point computational capability in the processor without sacrificing speed, size, or power consumption. The raw computational performance is an industry-leading 32 GMACS/core and 16 Gflops/core (@ 1.2 GHz operating frequency). The C66x is also 100% backward compatible with software for C64x+ devices. The C66x core incorporates 90 new instructions targeted for floating point (FPi) and vector math oriented (VPi) processing. These enhancements yield tremendous performance improvements in multi-antenna 4.8G signal processing for algorithms like MIMO and beamforming. The C6670 contains many wireless basestation coprocessors to offload the bulk of the processing demands of layer 1 and layer 2 base station processing. This keeps the cores free for receiver algorithms and other differentiating functions. The SoC contains numerous copies of key coprocessors such as the FFTC and TCP3d. The architectural elements of the SoC (Multicore Navigator) ensure that all the bits are processed without any CPU intervention or overhead, allowing the system to make optimal use of its resources. TI's scalable multicore SoC architecture solutions provide developers with a range of software- and hardware-compatible devices to minimize development time and maximize reuse across all base station platforms from Femto to Macro. 12 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com The C6670 device has a complete set of development tools that includes: a C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. 1.3 Functional Block Diagram Figure 1-1 shows the functional block diagram of the TMS320C6670 device. Functional Block Diagram C6670 Memory Subsystem 2MB MSM SRAM 64-Bit DDR3 EMIF ADVANCE INFORMATION Figure 1-1 MSMC RSA Debug & Trace RSA ´2 Coprocessors Boot ROM VCP2 Semaphore C66x™ CorePac Power Management PLL 32KB L1 P-Cache ´3 ´4 TCP3d 32KB L1 D-Cache ´2 TCP3e 1024KB L2 Cache EDMA FFTC ´3 4 Cores @ 1.0 GHz / 1.2 GHz ´2 TeraNet HyperLink Multicore Navigator Copyright 2010 Texas Instruments Incorporated Switch Ethernet Switch ´4 SRIO SGMII ´2 ´6 AIF2 SPI UART ´2 PCIe I2C Others Queue Manager Packet DMA Security Accelerator Packet Accelerator Network Coprocessor 13 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2 Device Overview 2.1 Device Characteristics Table 2-1 provides an overview of the TMS320C6670 DSP. The table shows significant features of the C6670 device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin count. 2.2 CPU (DSP Core) Description Table 2-1 Characteristics of the C6670 Processor (Part 1 of 2) HARDWARE FEATURES ADVANCE INFORMATION Peripherals Encoder/Decoder Coprocessors Accelerators 1 EDMA3 (16 independent channels) [CPU/2 clock rate] 1 EDMA3 (64 independent channels) [CPU/3 clock rate] 2 High-speed 1×/2x/4× Serial RapidIO Port (4 lanes) 1 Second generation Antenna Interface (AIF2) 1 2 IC 1 SPI 1 PCIe (2 lanes) 1 UART 1 10/100/1000 Ethernet MAC (EMAC) 2 Management Data Input/Output (MDIO) 1 64-Bit Timers (Configurable) (internal clock source = CPU/6 clock frequency) Eight 64-bit or Sixteen 32-bit General-Purpose Input/Output Port (GPIO) 16 VCP2 (clock source = CPU/3 clock frequency) 4 TCP3d (clock source = CPU/2 clock frequency) 2 TCP3e (clock source = CPU/3 clock frequency) 1 FFTC (clock source = CPU/3 clock frequency) 2 Rake/Search Accelerator 4 Packet Accelerator Security Accelerator On-Chip Memory TMS320C6670 DDR3 Memory Controller (64-bit bus width) [1.5 V I/O] (clock source = DDRREFCLKN|P) 1 (1) 1 Size (Bytes) 6528K Organization 128KB L1 Program Memory Controller [SRAM/Cache] 128KB L1 Data Memory Controller [SRAM/Cache] 4096KB L2 Unified Memory/Cache 2048KB MSM SRAM 128KB L3 ROM C66x CorePac Revision ID CorePac Revision ID Register (address location: 0181 2000h) See Section 5.6 ‘‘CorePac Revision’’ on page 88. JTAG BSDL_ID JTAGID register (address location: 0x02620018) See Section 3.3.3 ‘‘JTAG ID (JTAGID) Register Description’’ on page 65 Frequency MHz 1200 (1.2 GHz) [-1200] Cycle Time ns 0.83 ns [-1200] 1000 (1.0 GHz) [-1000] 1 ns [-1000] Voltage BGA Package 14 Device Overview Core (V) SmartReflex variable supply I/O (V) 1.0 V, 1.5 V, and 1.8 V 24 mm × 24 mm 841-Pin Flip-Chip Plastic BGA (CYP) Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 2-1 Characteristics of the C6670 Processor (Part 2 of 2) HARDWARE FEATURES Process Technology Product Status (2) TMS320C6670 μm 0.040 μm Product Preview (PP), Advance Information (AI), or Production Data (PD) AI End of Table 2-1 The C66x Central Processing Unit (CPU) extends the performance of the C64x+ and C674x CPUs through enhancements and new features. Many of the new features target increased performance for vector processing. The C64x+ and C674x CPUs support 2-way SIMD operations for 16-bit data and 4-way SIMD operations for 8-bit data. On the C66x CPU, the vector processing capability is improved by extending the width of the SIMD instructions. C66x CPUs can execute instructions that operate on 128-bit vectors. For example the QMPY32 instruction is able to perform the element-to-element multiplication between two vectors of four 32-bit data each. The C66x CPU also supports SIMD for floating-point operations. Improved vector processing capability (each instruction can process multiple data in parallel) combined with the natural instruction level parallelism of C6000 architecture (e.g execution of up to 8 instructions per cycle) results in a very high level of parallelism that can be exploited by DSP programmers through the use of TI's optimized C/C++ compiler. The C66x CPU consists of eight functional units, two register files, and two data paths as shown in Figure 2-1. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Multiplies also support 128-bit data. 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). 128-bit data values are stored in register quadruplets, with the 32 LSBs of data placed in a register that is a multiple of 4 and the remaining 96 MSBs in the next 3 upper registers. The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. Each C66x .M unit can perform one of the following fixed-point operations each clock cycle: four 32 × 32 bit multiplies, sixteen 16 × 16 bit multiplies, four 16 × 32 bit multiplies, four 8 × 8 bit multiplies, four 8 × 8 bit multiplies with add operations, and four 16 × 16 multiplies with add/subtract capabilities. There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. Each C66x .M unit can perform one 16 × 16 bit complex multiply with or without rounding capabilities, two 16 × 16 bit complex multiplies with rounding capability, and a 32 × 32 bit complex multiply with rounding capability. The C66x can also perform two 16 × 16 bit and one 32 × 32 bit complex multiply instructions that multiply a complex number with a complex conjugate of another number with rounding capability. Communication signal processing also requires an extensive use of matrix operations. Each C66x .M unit is capable of multiplying a [1 × 2] complex vector by a [2 × 2] complex matrix per cycle with or without rounding capability. A version also exists allowing multiplication of the conjugate of a [1 × 2] vector with a [2 × 2] complex matrix. Each C66x .M unit also includes IEEE floating-point multiplication operations from the C674x CPU. This includes one single-precision multiply each cycle and one double precision multiply every 4 cycles. There is also a mixed-precision multiply that allows multiplication of a single-precision value by a double-precision value and an operation allowing multiplication of two single-precision numbers resulting in a double-precision number. The Copyright 2010 Texas Instruments Incorporated Device Overview 15 ADVANCE INFORMATION 1 The Security Accelerator function is subject to export control and will be enabled only for approved device shipments. 2 ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com C66x CPU improves the performance over the C674x double-precision multiplies by adding a instruction allowing one double-precision multiply per cycle and also reduces the number of delay slots from 10 down to 4. Each C66x .M unit can also perform one the following floating-point operations each clock cycle: one, two, or four single-precision multiplies or a complex single-precision multiply. ADVANCE INFORMATION The .L and .S units can now support up to 64-bit operands. This allows for new versions of many of the arithmetic, logical, and data packing instructions to allow for more parallel operations per cycle. Additional instructions were added yielding performance enhancements of the floating point addition and subtraction instructions, including the ability to perform one double precision addition or subtraction per cycle. Conversion to/from integer and single-precision values can now be done on both .L and .S units on the C66x. Also, by taking advantage of the larger operands, instructions were also added to double the number of these conversions that can be done. The .L unit also has additional instructions for logical AND and OR instructions, as well as, 90 degree or 270 degree rotation of complex numbers (up to two per cycle). Instructions have also been added that allow for the computing the conjugate of a complex number. The MFENCE instruction is a new instruction introduced on the C66x DSP. This instruction will create a CPU stall until the completion of all the CPU-triggered memory transactions, including: • • • • • • Cache line fills Writes from L1D to L2 or from the CorePac to MSMC and/or other system endpoints Victim write backs Block or global coherence operations Cache mode changes Outstanding XMC prefetch requests This is useful as a simple mechanism for programs to wait for these requests to reach their endpoint. It also provides ordering guarantees for writes arriving at a single endpoint via multiple paths, multiprocessor algorithms that depend on ordering, and manual coherence operations. For more details on the C66x CPU and its enhancements over the C64x+ and C674x architectures, see the following documents ( ‘‘Related Documentation from Texas Instruments’’ on page 59): • C66x CPU and Instruction Set Reference Guide • C66x DSP Cache User Guide • C66x CorePac User Guide 16 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 2-1 shows the DSP core functional units and data paths. Figure 2-1 TMS320C6670 CPU (DSP Core) Data Paths Note: Default bus width is 64 bits (i.e. a register pair) src1 .L1 Register File A (A0, A1, A2, ...A31) src2 dst ST1 src1 src2 ADVANCE INFORMATION .S1 dst src1 src1_hi Data Path A .M1 src2 src2_hi dst2 dst1 LD1 32 src1 DA1 32 .D1 dst 32 src2 32 32 2´ 1´ src2 DA2 32 .D2 dst src1 Register File B (B0, B1, B2, ...B31) 32 32 32 32 32 LD2 dst1 dst2 src2_hi .M2 src2 src1_hi src1 Data Path B dst .S2 src2 src1 ST2 dst .L2 src2 src1 32 66xx Copyright 2010 Texas Instruments Incorporated Control Register 32 Device Overview 17 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.3 Memory Map Summary Table 2-2 shows the memory map address ranges of the TMS320C6670 device. Table 2-2 TMS320C6670 Memory Map Summary (Part 1 of 9) Logical 32 bit Address Physical 36 bit Address Start End Start End Bytes Description 0000 0000 007F FFFF 0 0000 0000 0 007F FFFF 8M Reserved 0080 0000 008F FFFF 0 0080 0000 0 008F FFFF 1M L2 SRAM 0090 0000 00DF FFFF 0 0090 0000 0 00DF FFFF 5M Reserved ADVANCE INFORMATION 00E00000 00E0 7FFF 0 00E00000 0 00E0 7FFF 32K L1P SRAM 00E08000 00EF FFFF 0 00E08000 0 00EF FFFF 1M-32K Reserved 00F00000 00F0 7FFF 0 00F00000 0 00F0 7FFF 32K L1D SRAM 00F08000 00FF FFFF 0 00F08000 0 00FF FFFF 1M-32K Reserved 0100 0000 01BF FFFF 0 0100 0000 0 01BF FFFF 12 M C66x CorePac Registers 01C0 0000 01CF FFFF 0 01C0 0000 0 01CF FFFF 1M Reserved 01D0 0000 01D0 007F 0 01D0 0000 0 01D0 007F 128 Tracer 0 01D0 0080 01D0 7FFF 0 01D0 0080 0 01D0 7FFF 32K-128 Reserved 01D0 8000 01D0 807F 0 01D0 8000 0 01D0 807F 128 Tracer 1 01D0 8080 01D0 FFFF 0 01D0 8080 0 01D0 FFFF 32K-128 Reserved 01D1 0000 01D1 007F 0 01D1 0000 0 01D1 007F 128 Tracer 2 01D1 0080 01D1 7FFF 0 01D1 0080 0 01D1 7FFF 32K-128 Reserved 01D1 8000 01D1 807F 0 01D1 8000 0 01D1 807F 128 Tracer 3 01D1 8080 01D1 FFFF 0 01D1 8080 0 01D1 FFFF 32K-128 Reserved 01D2 0000 01D2 007F 0 01D2 0000 0 01D2 007F 128 Tracer 4 01D2 0080 01D2 7FFF 0 01D2 0080 0 01D2 7FFF 32K-128 Reserved 01D2 8000 01D2 807F 0 01D2 8000 0 01D2 807F 128 Tracer 5 01D2 8080 01D2 FFFF 0 01D2 8080 0 01D2 FFFF 32K-128 Reserved 01D3 0000 01D3 007F 0 01D3 0000 0 01D3 007F 128 Tracer 6 01D3 0080 01D3 7FFF 0 01D3 0080 0 01D3 7FFF 32K-128 Reserved 01D3 8000 01D3 807F 0 01D3 8000 0 01D3 807F 128 Tracer 7 01D3 8080 01D3 FFFF 0 01D3 8080 0 01D3 FFFF 32K-128 Reserved 01D4 0000 01D4 007F 0 01D4 0000 0 01D4 007F 128 Tracer 8 01D4 0080 01D4 7FFF 0 01D4 0080 0 01D4 7FFF 32K-128 Reserved 01D4 8000 01D4 807F 0 01D4 8000 0 01D4 807F 128 Tracer 9 01D4 8080 01D4 FFFF 0 01D4 8080 0 01D4 FFFF 32K-128 Reserved 01D5 0000 01D5 007F 0 01D5 0000 0 01D5 007F 128 Tracer 10 01D5 0080 01D5 7FFF 0 01D5 0080 0 01D5 7FFF 32K-128 Reserved 01D5 8000 01D5 807F 0 01D5 8000 0 01D5 807F 128 Tracer 11 01D5 8080 01D5 FFFF 0 01D5 8080 0 01D5 FFFF 32K-128 Reserved 01D6 0000 01D6 007F 0 01D6 0000 0 01D6 007F 128 Tracer 12 01D6 0080 01D6 7FFF 0 01D6 0080 0 01D6 7FFF 32K-128 Reserved 01D6 8000 01D6 807F 0 01D6 8000 0 01D6 807F 128 Tracer 13 01D6 8080 01D6 FFFF 0 01D6 8080 0 01D6 FFFF 32K-128 Reserved 01D7 0000 01D7 007F 0 01D7 0000 0 01D7 007F 128 Tracer 14 01D7 0080 01D7 7FFF 0 01D7 0080 0 01D7 7FFF 32K-128 Reserved 01D7 8000 01D7 807F 0 01D7 8000 0 01D7 807F 128 Tracer 15 18 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com TMS320C6670 Memory Map Summary (Part 2 of 9) Logical 32 bit Address Start End Physical 36 bit Address Start End Bytes Description 01D7 8080 01D7 FFFF 0 01D7 8080 0 01D7 FFFF 32K-128 Reserved 01D8 0000 01D8 007F 0 01D8 0000 0 01D8 007F 128 Reserved 01D8 0080 01D8 7FFF 0 01D8 0080 0 01D8 7FFF 32K-128 Reserved 01D8 8000 01DF FFFF 0 01D8 8000 0 01DF FFFF 480K Reserved 01E0 0000 01E3 FFFF 0 01E0 0000 0 01E3 FFFF 256K Reserved 01E4 0000 01E7 FFFF 0 01E4 0000 0 01E7 FFFF 256K Reserved 01E8 0000 01EB FFFF 0 01E8 0000 0 01EB FFFF 256K Reserved 01EC 0000 01EF FFFF 0 01EC 0000 0 01EF FFFF 256K Reserved 01F0 0000 01F7 FFFF 0 01F0 0000 0 01F7 FFFF 512k AIF2 Control 01F80000 01F8FFFF 01F80000 01F8FFFF 64K Reserved 01F90000 01F9FFFF 01F90000 01F9FFFF 64K Reserved 01FA0000 01FBFFFF 01FA0000 01FBFFFF 128K Reserved 01FC0000 01FDFFFF 01FC0000 01FDFFFF 128K Reserved 01FE 0000 01FF FFFF 0 01FE 0000 0 01FF FFFF 128k Reserved 0200 0000 0208 FFFF 0 0200 0000 0 0208 FFFF 576K Packet Accelerator Configuration 0209 0000 020B FFFF 0 0209 0000 0 020B FFFF 192K Ethernet Switch Subsystem Configuration 020C 0000 020F FFFF 0 020C 0000 0 020F FFFF 256K Security Accelerator Subsystem Configuration 02100000 0210FFFF 02100000 0210FFFF 64K Reserved 02110000 0211FFFF 02110000 0211FFFF 64K Reserved 02120000 0213FFFF 02120000 0213FFFF 128K Reserved 02140000 0215FFFF 02140000 0215FFFF 128K Reserved 0216 0000 0217 FFFF 0 0216 0000 0 0217 FFFF 128K Reserved 02180000 02187FFF 02180000 02187FFF 32k Reserved 02188000 0218FFFF 02188000 0218FFFF 32k Reserved 02190000 0219FFFF 02190000 0219FFFF 64k Reserved 021A0000 021AFFFF 021A0000 021AFFFF 64K Reserved 021B 0000 021B FFFF 0 021B 0000 0 021B FFFF 64K Reserved 021C 0000 021C 03FF 0 021C 0000 0 021C 03FF 1K TCP3d-A 021C 0400 021C 7FFF 0 021C 0400 0 021C 7FFF 31K Reserved 021C 8000 021C 83FF 0 021C 8000 0 021C 83FF 1K TCP3d-B 021C 8400 021C FFFF 0 021C 8400 0 021C FFFF 31K Reserved 021D 0000 021D 00FF 0 021D 0000 0 021D 00FF 256 VCP2_A 021D 0100 021D 3FFF 0 021D 0100 0 021D 3FFF 16K Reserved 021D 4000 021D 40FF 0 021D 4000 0 021D 40FF 256 VCP2_B 021D 4100 021D 7FFF 0 021D 4100 0 021D 7FFF 16K Reserved 021D 8000 021D 80FF 0 021D 8000 0 021D 80FF 256 VCP2_C 021D 8100 021D BFFF 0 021D 8100 0 021D BFFF 16K Reserved 021D C000 021D C0FF 0 021D C000 0 021D C0FF 256 VCP2_D 021D C100 021D FFFF 0 021D C100 0 021D FFFF 16K Reserved 021E 0000 021E 0FFF 0 021E 0000 0 021E 0FFF 4K TCP3e 021E 1000 021E FFFF 0 021E 1000 0 021E FFFF 60k Reserved 021F 0000 021F 07FF 0 021F 0000 0 021F 07FF 2K FFTC-A Configuration 021F 0800 021F 3FFF 0 021F 0800 0 021F 3FFF 14K Reserved Copyright 2010 Texas Instruments Incorporated Device Overview ADVANCE INFORMATION Table 2-2 19 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-2 Logical 32 bit Address Start www.ti.com TMS320C6670 Memory Map Summary (Part 3 of 9) End Physical 36 bit Address Start End Bytes Description 021F 4000 021F 47FF 0 021F 4000 0 021F 47FF 2K FFTC-B Configuration 021F 4800 021F FFFF 0 021F 4800 0 021F FFFF 46K Reserved 0220 0000 0220 007F 0 0220 0000 0 0220 007F 128 Timer0 0220 0080 0220 FFFF 0 0220 0080 0 0220 FFFF 64K-128 Reserved 0221 0000 0221 007F 0 0221 0000 0 0221 007F 128 Timer1 0221 0080 0221 FFFF 0 0221 0080 0 0221 FFFF 64K-128 Reserved ADVANCE INFORMATION 0222 0000 0222 007F 0 0222 0000 0 0222 007F 128 Timer2 0222 0080 0222 FFFF 0 0222 0080 0 0222 FFFF 64K-128 Reserved 0223 0000 0223 007F 0 0223 0000 0 0223 007F 128 Timer3 0223 0080 0223 FFFF 0 0223 0080 0 0223 FFFF 64K-128 Reserved 0224 0000 0224 007F 0 0224 0000 0 0224 007F 128 Timer4 0224 0080 0224 FFFF 0 0224 0080 0 0224 FFFF 64K-128 Reserved 0225 0000 0225 007F 0 0225 0000 0 0225 007F 128 Timer5 0225 0080 0225 FFFF 0 0225 0080 0 0225 FFFF 64K-128 Reserved 0226 0000 0226 007F 0 0226 0000 0 0226 007F 128 Timer6 0226 0080 0226 FFFF 0 0226 0080 0 0226 FFFF 64K-128 Reserved 0227 0000 0227 007F 0 0227 0000 0 0227 007F 128 Timer7 0227 0080 0227 FFFF 0 0227 0080 0 0227 FFFF 64K-128 Reserved 0228 0000 0228 007F 0 0228 0000 0 0228 007F 128 Reserved 0228 0080 0228 FFFF 0 0228 0080 0 0228 FFFF 64K-128 Reserved 0229 0000 0229 007F 0 0229 0000 0 0229 007F 128 Reserved 0229 0080 0229 FFFF 0 0229 0080 0 0229 FFFF 64K-128 Reserved 022A 0000 022A 007F 0 022A 0000 0 022A 007F 128 Reserved 022A 0080 022A FFFF 0 022A 0080 0 022A FFFF 64K-128 Reserved 022B 0000 022B 007F 0 022B 0000 0 022B 007F 128 Reserved 022B 0080 022B FFFF 0 022B 0080 0 022B FFFF 64K-128 Reserved 022C 0000 022C 007F 0 022C 0000 0 022C 007F 128 Reserved 022C 0080 022C FFFF 0 022C 0080 0 022C FFFF 64K-128 Reserved 022D 0000 022D 007F 0 022D 0000 0 022D 007F 128 Reserved 022D 0080 022D FFFF 0 022D 0080 0 022D FFFF 64K-128 Reserved 022E 0000 022E 007F 0 022E 0000 0 022E 007F 128 Reserved 022E 0080 022E FFFF 0 022E 0080 0 022E FFFF 64K-128 Reserved 022F 0000 022F 007F 0 022F 0000 0 022F 007F 128 Reserved 022F 0080 022F FFFF 0 022F 0080 0 022F FFFF 64K-128 Reserved 0230 0000 0230 FFFF 0 0230 0000 0 0230 FFFF 64K Reserved 0231 0000 0231 01FF 0 0231 0000 0 0231 01FF 512 PLL Controller 0231 0200 0231 FFFF 0 0231 0200 0 0231 FFFF 64K-512 Reserved 0232 0000 0232 00FF 0 0232 0000 0 0232 00FF 256 GPIO 0232 0100 0232 FFFF 0 0232 0100 0 0232 FFFF 64K-256 Reserved 0233 0000 0233 03FF 0 0233 0000 0 0233 03FF 1K SmartReflex 0233 0400 0233 FFFF 0 0233 0400 0 0233 FFFF 63K Reserved 0234 0000 0234 FFFF 0 0234 0000 0 0234 FFFF 64K Reserved 0235 0000 0235 0FFF 0 0235 0000 0 0235 0FFF 4K Power Sleep Controller 20 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com TMS320C6670 Memory Map Summary (Part 4 of 9) Logical 32 bit Address Physical 36 bit Address Start End Start End Bytes Description 0235 1000 0235 FFFF 0 0235 1000 0 0235 FFFF 64K-4K Reserved 0236 0000 0236 03FF 0 0236 0000 0 0236 03FF 1K Memory Protection Unit (MPU) 0 0236 0400 0236 7FFF 0 0236 0400 0 0236 7FFF 31K Reserved 0236 8000 0236 83FF 0 0236 8000 0 0236 83FF 1K Memory Protection Unit (MPU) 1 0236 8400 0236 FFFF 0 0236 8400 0 0236 FFFF 31K Reserved 0237 0000 0237 03FF 0 0237 0000 0 0237 03FF 1K Memory Protection Unit (MPU) 2 0237 0400 0237 7FFF 0 0237 0400 0 0237 7FFF 31K Reserved 0237 8000 0237 83FF 0 0237 8000 0 0237 83FF 1K Memory Protection Unit (MPU) 3 0237 8400 0237 FFFF 0 0237 8400 0 0237 FFFF 31K Reserved 0238 0000 0238 03FF 0 0238 0000 0 0238 03FF 1K Reserved 0238 0400 023F FFFF 0 0238 0400 0 023F FFFF 511K Reserved 0240 0000 0243 FFFF 0 0240 0000 0 0243 FFFF 256K Reserved 0244 0000 0244 3FFF 0 0244 0000 0 0244 3FFF 16K DSP Trace Formatter 0 0244 4000 0244 FFFF 0 0244 4000 0 0244 FFFF 48K Reserved 0245 0000 0245 3FFF 0 0245 0000 0 0245 3FFF 16K DSP Trace Formatter 1 0245 4000 0245 FFFF 0 0245 4000 0 0245 FFFF 48K Reserved 0246 0000 0246 3FFF 0 0246 0000 0 0246 3FFF 16K DSP Trace Formatter 2 0246 4000 0246 FFFF 0 0246 4000 0 0246 FFFF 48K Reserved 0247 0000 0247 3FFF 0 0247 0000 0 0247 3FFF 16K DSP Trace Formatter 3 0247 4000 0247 FFFF 0 0247 4000 0 0247 FFFF 48K Reserved 0248 0000 0248 3FFF 0 0248 0000 0 0248 3FFF 16K Reserved 0248 4000 0248 FFFF 0 0248 4000 0 0248 FFFF 48K Reserved 0249 0000 0249 3FFF 0 0249 0000 0 0249 3FFF 16K Reserved 0249 4000 0249 FFFF 0 0249 4000 0 0249 FFFF 48K Reserved 024A 0000 024A 3FFF 0 024A 0000 0 024A 3FFF 16K Reserved 024A 4000 024A FFFF 0 024A 4000 0 024A FFFF 48K Reserved 024B 0000 024B 3FFF 0 024B 0000 0 024B 3FFF 16K Reserved 024B 4000 024B FFFF 0 024B 4000 0 024B FFFF 48K Reserved 024C 0000 024C 01FF 0 024C 0000 0 024C 01FF 512 Reserved 024C 0200 024C 03FF 0 024C 0200 0 024C 03FF 1K-512 Reserved 024C 0400 024C 07FF 0 024C 0400 0 024C 07FF 1K Reserved 024C 0800 024C FFFF 0 024C 0800 0 024C FFFF 62K Reserved 024D 0000 024F FFFF 0 024D 0000 0 024F FFFF 192K Reserved 0250 0000 0250 007F 0 0250 0000 0 0250 007F 128 Reserved 0250 0080 0250 7FFF 0 0250 0080 0 0250 7FFF 32K-128 Reserved 0250 8000 0250 FFFF 0 0250 8000 0 0250 FFFF 32K Reserved 0251 0000 0251 FFFF 0 0251 0000 0 0251 FFFF 64K Reserved 0252 0000 0252 03FF 0 0252 0000 0 0252 03FF 1K Reserved 0252 0400 0252 FFFF 0 0252 0400 0 0252 FFFF 64K-1K Reserved 0253 0000 0253 007F 0 0253 0000 0 0253 007F 128 I2C Data & Control 0253 0080 0253 FFFF 0 0253 0080 0 0253 FFFF 64K-128 Reserved 0254 0000 0254 003F 0 0254 0000 0 0254 003F 64 UART 02540 400 0254 FFFF 0 02540 400 0 0254 FFFF 64K-64 Reserved Copyright 2010 Texas Instruments Incorporated ADVANCE INFORMATION Table 2-2 Device Overview 21 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-2 www.ti.com TMS320C6670 Memory Map Summary (Part 5 of 9) Logical 32 bit Address Start End 0255 0000 0258 0000 Physical 36 bit Address Start End ADVANCE INFORMATION Bytes Description 0257 FFFF 0 0255 0000 025B FFFF 0 0258 0000 0 0257 FFFF 192K Reserved 0 025B FFFF 256K Reserved 025C 0000 025F FFFF 0260 0000 0260 1FFF 0 025C 0000 0 025F FFFF 256K Reserved 0 0260 0000 0 0260 1FFF 8K Secondary Interrupt Contoller (INTC) 0 0260 2000 0260 4000 0260 3FFF 0 0260 2000 0 0260 3FFF 8K Reserved 0260 5FFF 0 0260 4000 0 0260 5FFF 8K Secondary Interrupt Contoller (INTC) 1 0260 6000 0260 7FFF 0 0260 6000 0 0260 7FFF 8K Reserved 0260 8000 0260 9FFF 0 0260 8000 0 0260 9FFF 8K Secondary Interrupt Contoller (INTC) 2 0260 A000 0260 BFFF 0 0260 A000 0 0260 BFFF 8K Reserved 0260 C000 0260 DFFF 0 0260 C000 0 0260 DFFF 8K Reserved 0260 E000 0260 FFFF 0 0260 E000 0 0260 FFFF 8K Reserved 0261 0000 0261 FFFF 0 0261 0000 0 0261 FFFF 64K Reserved 0262 0000 0262 03FF 0 0262 0000 0 0262 03FF 1K Chip-Level Registers 0262 0400 0262 FFFF 0 0262 0400 0 0262 FFFF 63K Reserved 0263 0000 0263 FFFF 0 0263 0000 0 0263 FFFF 64K Reserved 0264 0000 0264 07FF 0 0264 0000 0 0264 07FF 2K Semaphore 0264 0800 0264 FFFF 0 0264 0800 0 0264 FFFF 64K-2K Reserved 0265 0000 026F FFFF 0 0265 0000 0 026F FFFF 704K Reserved 0270 0000 0270 7FFF 0 0270 0000 0 0270 7FFF 32K EDMA Channel Controller (TPCC) 0 0270 8000 0271 FFFF 0 0270 8000 0 0271 FFFF 96K Reserved 0272 0000 0272 7FFF 0 0272 0000 0 0272 7FFF 32K EDMA Channel Controller (TPCC) 1 0272 8000 0273 FFFF 0 0272 8000 0 0273 FFFF 96K Reserved 02740000 0274 7FFF 0 02740000 0 0274 7FFF 32K EDMA Channel Controller (TPCC) 2 0274 8000 0275 FFFF 0 0274 8000 0 0275 FFFF 96K Reserved 0276 0000 0276 03FF 0 0276 0000 0 0276 03FF 1K EDMA TPCC0 Transfer Controller (TPTC) 0 0276 0400 0276 7FFF 0 0276 0400 0 0276 7FFF 31K Reserved 0276 8000 0276 83FF 0 0276 8000 0 0276 83FF 1K EDMA TPCC0 Transfer Controller (TPTC) 1 0276 8400 0276 FFFF 0 0276 8400 0 0276 FFFF 31K Reserved 0277 0000 0277 03FF 0 0277 0000 0 0277 03FF 1K EDMA TPCC1 Transfer Controller (TPTC) 0 0277 0400 0277 7FFF 0 0277 0400 0 0277 7FFF 31K Reserved 0277 8000 0277 83FF 0 0277 8000 0 0277 83FF 1K EDMA TPCC1 Transfer Controller (TPTC) 1 0278 0400 0277 FFFF 0 0278 0400 0 0277 FFFF 31K Reserved 0278 0000 0278 03FF 0 0278 0000 0 0278 03FF 1K EDMA TPCC1 Transfer Controller (TPTC) 2 0278 0400 0278 7FFF 0 0278 0400 0 0278 7FFF 31K Reserved 0278 8000 0278 83FF 0 0278 8000 0 0278 83FF 1K EDMA TPCC1 Transfer Controller (TPTC) 3 0278 8400 0278 FFFF 0 0278 8400 0 0278 FFFF 31K Reserved 0279 0000 0279 03FF 0 0279 0000 0 0279 03FF 1K EDMA TPCC2 Transfer Controller (TPTC) 0 0279 0400 0279 7FFF 0 0279 0400 0 0279 7FFF 31K Reserved 0279 8000 0279 83FF 0 0279 8000 0 0279 83FF 1K EDMA TPCC2 Transfer Controller (TPTC) 1 0279 8400 0279 FFFF 0 0279 8400 0 0279 FFFF 31K Reserved 027A 0000 027A 03FF 0 027A 0000 0 027A 03FF 1K EDMA TPCC2 Transfer Controller (TPTC) 2 027A 0400 027A 7FFF 0 027A 0400 0 027A 7FFF 31K Reserved 027A 8000 027A 83FF 0 027A 8000 0 027A 83FF 1K EDMA TPCC2 Transfer Controller (TPTC) 3 22 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com TMS320C6670 Memory Map Summary (Part 6 of 9) Logical 32 bit Address Start End Physical 36 bit Address Start End Bytes Description 027A 8400 027A FFFF 0 027A 8400 0 027A FFFF 31K Reserved 027B 0000 027B FFFF 0 027B 0000 0 027B FFFF 64K Reserved 027C 0000 027C FFFF 0 027C 0000 0 027C FFFF 64k Reserved 027D 0000 027D 3FFF 0 027D 0000 0 027D 3FFF 16k TI Embedded Trace Buffer (TETB) - Core 0 027D 4000 027D FFFF 0 027D 4000 0 027D FFFF 48k Reserved 027E 0000 027E 3FFF 0 027E 0000 0 027E 3FFF 16k TI Embedded Trace Buffer (TETB) - Core 1 027E 4000 027E FFFF 0 027E 4000 0 027E FFFF 48k Reserved 027F 0000 027F 3FFF 0 027F 0000 0 027F 3FFF 16k TI Embedded Trace Buffer (TETB) - Core 2 027F 4000 027F FFFF 0 027F 4000 0 027F FFFF 48k Reserved 0280 0000 0280 3FFF 0 0280 0000 0 0280 3FFF 16k TI Embedded Trace Buffer (TETB) - Core 3 0280 4000 0280 FFFF 0 0280 4000 0 0280 FFFF 48k Reserved 0281 0000 0281 3FFF 0 0281 0000 0 0281 3FFF 16k Reserved 0281 4000 0281 FFFF 0 0281 4000 0 0281 FFFF 48k Reserved 0282 0000 0282 3FFF 0 0282 0000 0 0282 3FFF 16k Reserved 0282 4000 0282 FFFF 0 0282 4000 0 0282 FFFF 48k Reserved 0283 0000 0283 3FFF 0 0283 0000 0 0283 3FFF 16k Reserved 0283 4000 0283 FFFF 0 0283 4000 0 0283 FFFF 48k Reserved 0284 0000 0284 3FFF 0 0284 0000 0 0284 3FFF 16k Reserved 0284 4000 0284 FFFF 0 0284 4000 0 0284 FFFF 48k Reserved 0285 0000 0285 7FFF 0 0285 0000 0 0285 7FFF 32k TI Embedded Trace Buffer (TETB) - System 0285 8000 0285 FFFF 0 0285 8000 0 0285 FFFF 32k Reserved 0286 0000 028F FFFF 0 0286 0000 0 028F FFFF 640K Reserved 0290 0000 0290 7FFF 0 0290 0000 0 0290 7FFF 32K Serial RapidIO Configuration 0290 8000 029F FFFF 0 0290 8000 0 029F FFFF 1M-32k Reserved 02A0 0000 02AF FFFF 0 02A0 0000 0 02AF FFFF 1M Queue Manager Subsystem Configuration 02B0 0000 02BF FFFF 0 02B0 0000 0 02BF FFFF 1M Reserved 02C0 0000 02FF FFFF 0 02C0 0000 0 02FF FFFF 4M Reserved 03000 000 07FF FFFF 0 03000 000 0 07FF FFFF 80M Reserved 0800 0000 0800 FFFF 0 0800 0000 0 0800 FFFF 64k Extended Memory Controller (XMC) Configuration 0801 0000 0BBF FFFF 0 0801 0000 0 0BBF FFFF 60M-64k Reserved 0BC0 0000 0BCF FFFF 0 0BC0 0000 0 0BCF FFFF 1M Multicore Shared Memory Controller (MSMC) Config 0BD0 0000 0BFF FFFF 0 0BD0 0000 0 0BFF FFFF 3M Reserved 0C00 0000 0C1F FFFF 0 0C00 0000 0 0C1F FFFF 2M Multicore Shared Memory (MSM) 0C20 0000 0C3F FFFF 0 0C20 0000 0 0C3F FFFF 2M Reserved 0C40 0000 0FFF FFFF 0 0C40 0000 0 0FFF FFFF 60 M Reserved 1000 0000 107F FFFF 0 1000 0000 0 107F FFFF 8M Reserved 1080 0000 108F FFFF 0 1080 0000 0 108F FFFF 1M Core 0 L2 SRAM 1090 0000 10DF FFFF 0 1090 0000 0 10DF FFFF 5M Reserved 10E0 0000 10E0 7FFF 0 10E0 0000 0 10E0 7FFF 32k Core 0 L1P SRAM 10E0 8000 10EF FFFF 0 10E0 8000 0 10EF FFFF 1M-32K Reserved 10F0 0000 10F0 7FFF 0 10F0 0000 0 10F0 7FFF 32k Core 0 L1D SRAM 10F0 8000 117F FFFF 0 10F0 8000 0 117F FFFF 9M-32k Reserved 1180 0000 118F FFFF 0 1180 0000 0 118F FFFF 1M Core 1 L2 SRAM Copyright 2010 Texas Instruments Incorporated Device Overview ADVANCE INFORMATION Table 2-2 23 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-2 www.ti.com TMS320C6670 Memory Map Summary (Part 7 of 9) Logical 32 bit Address Physical 36 bit Address Start End Start End Bytes Description 1190 0000 11DF FFFF 0 1190 0000 0 11DF FFFF 5M Reserved 11E0 0000 11E0 7FFF 0 11E0 0000 0 11E0 7FFF 32k Core 1 L1P SRAM 11E0 8000 11EF FFFF 0 11E0 8000 0 11EF FFFF 1M-32K Reserved 11F0 0000 11F0 7FFF 0 11F0 0000 0 11F0 7FFF 32k Core 1 L1D SRAM ADVANCE INFORMATION 11F0 8000 127F FFFF 0 11F0 8000 0 127F FFFF 9M-32k Reserved 1280 0000 128F FFFF 0 1280 0000 0 128F FFFF 1M Core 2 L2 SRAM 1290 0000 12DF FFFF 0 1290 0000 0 12DF FFFF 5M Reserved 12E0 0000 12E0 7FFF 0 12E0 0000 0 12E0 7FFF 32k Core 2 L1P SRAM 12E0 8000 12EF FFFF 0 12E0 8000 0 12EF FFFF 1M-32K Reserved 12F0 0000 12F0 7FFF 0 12F0 0000 0 12F0 7FFF 32k Core 2 L1D SRAM 12F0 8000 137F FFFF 0 12F0 8000 0 137F FFFF 9M-32k Reserved 1380 0000 1388 FFFF 0 1380 0000 0 1388 FFFF 1M Core 3 L2 SRAM 1390 0000 13DF FFFF 0 1390 0000 0 13DF FFFF 5M Reserved 13E0 0000 13E0 7FFF 0 13E0 0000 0 13E0 7FFF 32k Core 3 L1P SRAM 13E0 8000 13EF FFFF 0 13E0 8000 0 13EF FFFF 1M-32K Reserved 13F0 0000 13F0 7FFF 0 13F0 0000 0 13F0 7FFF 32k Core 3 L1D SRAM 13F0 8000 147F FFFF 0 13F0 8000 0 147F FFFF 9M-32k Reserved 1480 0000 1487 FFFF 0 1480 0000 0 1487 FFFF 512K Reserved 1488 0000 148F FFFF 0 1488 0000 0 148F FFFF 512K Reserved 1490 0000 14DF FFFF 0 1490 0000 0 14DF FFFF 5M Reserved 14E0 0000 14E0 7FFF 0 14E0 0000 0 14E0 7FFF 32k Reserved 14E0 8000 14EF FFFF 0 14E0 8000 0 14EF FFFF 1M-32K Reserved 14F0 0000 14F0 7FFF 0 14F0 0000 0 14F0 7FFF 32k Reserved 14F0 8000 157F FFFF 0 14F0 8000 0 157F FFFF 9M-32k Reserved 1580 0000 1587 FFFF 0 1580 0000 0 1587 FFFF 512K Reserved 1588 0000 158F FFFF 0 1588 0000 0 158F FFFF 512K Reserved 1590 0000 15DF FFFF 0 1590 0000 0 15DF FFFF 5M Reserved 15E0 0000 15E0 7FFF 0 15E0 0000 0 15E0 7FFF 32k Reserved 15E0 8000 15EF FFFF 0 15E0 8000 0 15EF FFFF 1M-32K Reserved 15F0 0000 15F0 7FFF 0 15F0 0000 0 15F0 7FFF 32k Reserved 15F0 8000 167F FFFF 0 15F0 8000 0 167F FFFF 9M-32k Reserved 1680 0000 1687 FFFF 0 1680 0000 0 1687 FFFF 512K Reserved 1688 0000 168F FFFF 0 1688 0000 0 168F FFFF 512K Reserved 1690 0000 16DF FFFF 0 1690 0000 0 16DF FFFF 5M Reserved 16E0 0000 16E0 7FFF 0 16E0 0000 0 16E0 7FFF 32k Reserved 16E0 8000 16EF FFFF 0 16E0 8000 0 16EF FFFF 1M-32K Reserved 16F0 0000 16F0 7FFF 0 16F0 0000 0 16F0 7FFF 32k Reserved 16F0 8000 177F FFFF 0 16F0 8000 0 177F FFFF 9M-32k Reserved 1780 0000 1787 FFFF 0 1780 0000 0 1787 FFFF 512K Reserved 1788 0000 178F FFFF 0 1788 0000 0 178F FFFF 512K Reserved 1790 0000 17DF FFFF 0 1790 0000 0 17DF FFFF 5M Reserved 17E0 0000 17E0 7FFF 0 17E0 0000 0 17E0 7FFF 32k Reserved 17E0 8000 17EF FFFF 0 17E0 8000 0 17EF FFFF 1M-32K Reserved 24 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com TMS320C6670 Memory Map Summary (Part 8 of 9) Logical 32 bit Address Physical 36 bit Address Start End Start End Bytes Description 17F0 0000 17F0 7FFF 17F0 8000 1FFF FFFF 0 17F0 0000 0 17F0 7FFF 32k Reserved 0 17F0 8000 0 1FFF FFFF 129M-32k Reserved 2000 0000 200F FFFF 2010 0000 201F FFFF 0 2000 0000 0 200F FFFF 1M System Trace Manager (STM) Configuration 0 2010 0000 0 201F FFFF 1M Reserved 20200000 205FFFFF 20200000 205FFFFF 4M Reserved 2060 0000 206F FFFF 0 2060 0000 0 206F FFFF 1M TCP3d-B Data 2070 0000 207F FFFF 0 2070 0000 0 207F FFFF 1M Reserved 2080 0000 208F FFFF 0 2080 0000 0 208F FFFF 1M TCP3d-A Data 2090 0000 2090 1FFF 0 2090 0000 0 2090 1FFF 8K TCP3e Data Write Port 2090 2000 2090 3FFF 0 2090 2000 0 2090 3FFF 8K TCP3e Data Read Port 2090 4000 209F FFFF 0 2090 4000 0 209F FFFF 1M-16K Reserved 20A0 0000 20A3 FFFF 0 20A0 0000 0 20A3 FFFF 256K Reserved 20A4 0000 20A4 FFFF 0 20A4 0000 0 20A4 FFFF 64K Reserved 20A5 0000 20AF FFFF 0 20A5 0000 0 20AF FFFF 704k Reserved 20B0 0000 20B1 FFFF 0 20B0 0000 0 20B1 FFFF 128k Boot ROM 20B2 0000 20BE FFFF 0 20B2 0000 0 20BE FFFF 832k Reserved 20BF 0000 20BF 03FF 0 20BF 0000 0 20BF 03FF 1k SPI 20BF 0400 20BF FFFF 0 20BF 0400 0 20BF FFFF 63k Reserved 20C0 0000 20C0 00FF 0 20C0 0000 0 20C0 00FF 256 Reserved 20C0 0100 20FF FFFF 0 20C0 0100 0 20FF FFFF 4M-256 Reserved 2100 0000 2100 00FF 0 2100 0000 0 2100 00FF 256 DDR3 EMIF Configuration 2100 0100 213F FFFF 0 2100 0100 0 213F FFFF 4M-256 Reserved 2140 0000 2140 03FF 0 2140 0000 0 2140 03FF 1K HyperLink Config 2140 0400 217F FFFF 0 2140 0400 0 217F FFFF 4M-1K Reserved 2180 0000 2180 7FFF 0 2180 0000 0 2180 7FFF 32K PCIe Config 2180 8000 21BF FFFF 0 2180 8000 0 21BF FFFF 4M-32K Reserved 21C0 0000 21FF FFFF 0 21C0 0000 0 21FF FFFF 4M Reserved 2200 0000 229F FFFF 0 2200 0000 0 229F FFFF 10M Reserved 22A0 0000 22A0 FFFF 0 22A0 0000 0 22A0 FFFF 64K VCP2_A 22A1 0000 22AF FFFF 0 22A1 0000 0 22AF FFFF 1M-64K Reserved 22B0 0000 22B0 FFFF 0 22B0 0000 0 22B0 FFFF 64K VCP2_B 22B1 0000 22BF FFFF 0 22B1 0000 0 22BF FFFF 1M-64K Reserved 22C0 0000 22C0 FFFF 0 22C0 0000 0 22C0 FFFF 64K VCP2_C 22C1 0000 22CF FFFF 0 22C1 0000 0 22CF FFFF 1M-64K Reserved 22D0 0000 22D0 FFFF 0 22D0 0000 0 22D0 FFFF 64K VCP2_D 22D1 0000 22DF FFFF 0 22D1 0000 0 22DF FFFF 1M-64K Reserved 22E0 0000 23FF FFFF 0 22E0 0000 0 23FF FFFF 18M Reserved 2400 0000 2FFF FFFF 0 2400 0000 0 2FFF FFFF 192M Reserved 3000 0000 331F FFFF 0 3000 0000 0 331F FFFF 50M Reserved 33200000 335FFFFF 33200000 335FFFFF 4M Reserved 3360 0000 33FF FFFF 0 3360 0000 0 33FF FFFF 10M Reserved 3400 0000 341F FFFF 0 3400 0000 0 341F FFFF 2M Queue Manager Subsystem Data 3420 0000 342F FFFF 0 3420 0000 0 342F FFFF 1M Reserved Copyright 2010 Texas Instruments Incorporated ADVANCE INFORMATION Table 2-2 Device Overview 25 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-2 Logical 32 bit Address Start www.ti.com TMS320C6670 Memory Map Summary (Part 9 of 9) End Physical 36 bit Address Start End Bytes Description 3430 0000 3439 FFFF 0 3430 0000 0 3439 FFFF 640K Reserved 343A 0000 343F FFFF 0 343A 0000 0 343F FFFF 384K Reserved 3440 0000 347F FFFF 0 3440 0000 0 347F FFFF 4M Reserved 3480 0000 34BF FFFF 0 3480 0000 0 34BF FFFF 4M Reserved ADVANCE INFORMATION 34C00000 34C2FFFF 34C00000 34C2FFFF 192K Reserved 34C3 0000 34FF FFFF 0 34C3 0000 0 34FF FFFF 4M-192K Reserved 3500 0000 37FF FFFF 0 3500 0000 0 37FF FFFF 48M Reserved 3800 0000 3FFF FFFF 0 3800 0000 0 3FFF FFFF 128M Reserved 4000 0000 4FFF FFFF 0 4000 0000 0 4FFF FFFF 256M HyperLink Data 5000 0000 5FFF FFFF 0 5000 0000 0 5FFF FFFF 256M Reserved 6000 0000 6FFF FFFF 0 6000 0000 0 6FFF FFFF 256M PCIe Data 7000 0000 73FF FFFF 0 7000 0000 0 73FF FFFF 64M Reserved 7400 0000 77FF FFFF 0 7400 0000 0 77FF FFFF 64M Reserved 7800 0000 7BFF FFFF 0 7800 0000 0 7BFF FFFF 64M Reserved 7C00 0000 7FFF FFFF 0 7C00 0000 0 7FFF FFFF 64M Reserved 8000 0000 FFFF FFFF 8 8000 0000 8 FFFF FFFF 2G DDR3 EMIF Data End of Table 2-2 26 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.4 Boot Sequence The C6670 supports several boot processes that begins execution at the ROM base address, which contains the bootloader code necessary to support various device boot modes. The boot processes are software-driven and use the BOOTMODE[12:0] device configuration inputs to determine the software configuration that must be completed. For more details on Boot Sequence see the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 2.5 Boot Modes Supported and PLL Settings The device supports several boot processes, which leverage the internal boot ROM. Most boot processes are software driven, using the BOOTMODE[3:0] device configuration inputs to determine the software configuration that must be completed. From a hardware perspective, there are two possible boot modes: • Public ROM Boot - C66x CorePac is released from reset and begins executing from the L3 ROM base address. 2 After performing the boot process (e.g., from I C ROM, Ethernet, or RapidIO), the C66x CorePac then begins execution from the L2 RAM base address. • Secure ROM Boot - On secure devices, the C66x CorePac is released from reset and begin executing from secure ROM. Software in the secure ROM will free up internal RAM pages, after which the C66x CorePac initiates the boot process. The C66x CorePac performs any authentication and decryption required on the bootloaded image prior to beginning execution. The boot process performed by the C66x CorePac in public ROM boot and secure ROM boot are determined by the BOOTMODE[12:0] value in the DEVSTAT register. The C66x CorePac reads this value, and then executes the associated boot process in software. Figure 2-2 shows the bits associated with BOOTMODE[12:0]. The PLL settings is shown at the end of this section, and the PLL setup details can be found in Section 7.8 ‘‘Main PLL and the PLL Controller’’ on page 160 Figure 2-2 Boot Mode Pin Decoding Boot Mode Pins 12 11 10 9 2 PLL Mult I C /SPI Ext Dev Cfg Copyright 2010 Texas Instruments Incorporated 8 7 Device Configuration 6 5 4 3 Reserved 2 1 0 Boot Device Device Overview 27 ADVANCE INFORMATION The boot sequence is a process by which the DSP's internal memory is loaded with program and data sections. The DSP's internal registers are programmed with predetermined values. The boot sequence is started automatically after each power-on reset. A Hard reset, Soft reset or Local reset to an individual C66x CorePac should not affect the state of the hardware boot controller on the device. For more details on the initiators of the resets, see section 7.7 ‘‘Reset Controller’’ on page 153. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.5.1 Boot Device Field The Boot Device field BOOTMODE[2:0] defines the boot device that is chosen. Table 2-3 ‘‘Boot Mode Pins: Boot Device Values’’ shows the supported boot modes. Table 2-3 Boot Mode Pins: Boot Device Values Bit Field Value Description 2-0 Boot Device 0 No boot 1 Serial Rapid I/O ADVANCE INFORMATION 2 Ethernet (SGMII) (PA driven from core clk) 3 Ethernet (SGMII) (PA driver from PA clk) 4 PCI 5 I2C 6 SPI 7 HyperLink 2.5.2 Device Configuration Field The device configuration fields BOOTMODE[9:3] are used to configure the boot peripheral and, therefore, the bit definitions depend on the boot mode 2.5.2.1 No Boot Device Configuration Figure 2-3 Sleep Configuration Bit Fields 9 8 7 Reserved Table 2-4 Wait Enable Bit Field Reserved 7 Wait Enable Value 4 Sub-Mode 3 Reserved Description Reserved Sub-Mode 0 Wait enable disabled 1 Wait enable enabled 0 No Boot 1-3 4-3 5 Sleep Configuration Bit Field Descriptions 9-8 6-5 6 Reserved Reserved Reserved 2.5.2.2 Ethernet (SGMII) Boot Device Configuration Figure 2-4 Ethernet (SGMII) Device Configuration Bit Fields 9 8 SerDes Clock Mult 28 Device Overview 7 6 Ext connection 5 4 3 Dev ID Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Ethernet (SGMII) Configuration Bit Field Descriptions Bit Field 9-8 SerDes clock mult 7-6 5-3 Ext connection Device ID Value Description The output frequency of the PLL must be 1.25 GBs. 0 ×8 for input clock of 156.25 MHz 1 ×5 for input clock of 250 MHz 2 ×4 for input clock of 312.5 MHz 3 Reserved 0 Mac to Mac connection, master with auto negotiation 1 Mac to Mac connection, slave, and Mac to Phy 2 Mac to Mac, forced link 3 Mac to fiber connection 0-7 ADVANCE INFORMATION Table 2-5 This value is used in the device ID field of the Ethernet-ready frame. Copyright 2010 Texas Instruments Incorporated Device Overview 29 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.5.2.3 Serial Rapid I/O Boot Device Configuration The device ID is always set to 0xff (8-bit node IDs) or 0xffff (16 bit node IDs) at power-on reset. Figure 2-5 Serial Rapid I/O Device Configuration Bit Fields 9 8 Lane Setup Table 2-6 9 Lane Setup 4 Ref Clock Value 3 Reserved Description 0 ADVANCE INFORMATION Data Rate Ref Clock 4-3 5 Serial Rapid I/O Configuration Bit Field Descriptions Field 6-5 6 Data Rate Bit 8-7 7 Reserved Port Configured as 4 ports each 1 lane wide (4 -1× ports) 1 Port Configured as 2 ports 2 lanes wide (2 – 2× ports) 0 Data Rate = 1.25 GBs 1 Data Rate = 2.5 GBs 2 Data Rate = 3.125 GBs 3 Data Rate = 5.0 GBs 0 Reference Clock = 156.25 MHz 1 Reference Clock = 250 MHz 2 Reference Clock = 312.5 MHz 0-3 Reserved In SRIO boot mode, both the message mode and DirectIO mode will be enabled by default. If use of the memory reserved for received messages is required and reception of messages cannot be prevented, the master can disable the message mode by writing to the boot table and generating a boot restart. 2.5.2.4 PCI Boot Device Configuration Extra device configuration is provided in the PCI bits in the DEVSTAT register. Figure 2-6 PCI Device Configuration Bit Fields 9 8 7 Reserved Table 2-7 5 4 BAR Config 3 Reserved PCI Device Configuration Bit Field Descriptions Bit Field 9 Reserved 8-5 Bar Config 0-0xf 4-3 Reserved 0-3 30 6 Device Overview Value Description Reserved See Table 2-8. Reserved Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com BAR Config / PCIe Window Sizes 32-Bit Address Translation 64-Bit Address Translation BAR cfg BAR0 BAR1 BAR2 BAR3 BAR4 BAR5 0b0000 PCIe MMRs 32 32 32 32 Clone of BAR4 BAR1/2 BAR3/4 0b0001 16 16 32 64 0b0010 16 32 32 64 0b0011 32 32 32 64 0b0100 16 16 64 64 0b0101 16 32 64 64 0b0110 32 32 64 64 0b0111 32 32 64 128 0b1000 64 64 128 256 0b1001 4 128 128 128 0b1010 4 128 128 256 0b1011 0b1100 4 128 256 256 256 256 0b1101 512 512 0b1110 1024 1024 0b1111 2048 2048 2.5.2.5 I2C Boot Device Configuration 2.5.2.5.1 I2C Master Mode In master mode, the I2C device configuration uses ten bits of device configuration instead of seven as used in other 2 boot modes. In this mode, the device will make the initial read of the I C EEPROM while the PLL is in bypass mode. The initial read will contain the desired clock multiplier, which will be set up prior to any subsequent reads. I2C Master Mode Device Configuration Bit Fields Figure 2-7 12 11 10 9 Reserved Speed Address Mode 8 7 6 5 4 Parameter Index (0) Table 2-9 Field 12 Reserved 11 Speed 9 Reserved I2C Master Mode Device Configuration Field Descriptions Bit 10 3 Address Mode Value Description Reserved 0 I2C data rate set to approximately 20 kHz 1 I C fast mode. Data rate set to approximately 400 kHz (will not exceed) 0 Boot from I2C EEPROM at I2C bus address 0x50 1 Boot from I C EEPROM at I C bus address 0x51 0 Master mode 1 Passive mode (see ‘‘I2C Passive Mode’’ on page 32) 2 2 2 8-3 Parameter Index 0-63 Identifies the index of the configuration table initially read from the I2C EEPROM 4-3 Reserved 0-3 Reserved Copyright 2010 Texas Instruments Incorporated Device Overview 31 ADVANCE INFORMATION Table 2-8 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.5.2.5.2 I2C Passive Mode In passive mode, the device does not drive the clock, but simply acks data received on the specified address. I2C Passive Mode Device Configuration Bit Fields Figure 2-8 9 8 7 Mode (1) Table 2-10 6 5 4 2 Receive I C Address 3 Reserved I2C Passive Mode Device Configuration Field Descriptions ADVANCE INFORMATION Bit Field Value 9 Mode 0 Master Mode (see ‘‘I2C Master Mode’’ on page 31) 1 Passive Mode 2 Description 2 8-5 Receive I C Address 0-15 The I C Bus address the device will listen to for data 4-3 Reserved 0-3 Reserved 2.5.2.6 SPI Boot Device Configuration In SPI boot mode, the SPI device configuration uses ten bits of device configuration instead of seven as used in other boot modes. Figure 2-9 SPI Device Configuration Bit Fields 12 11 Mode Table 2-11 Bit Field 12-11 Mode 10 9 10 9 4, 5 Pin Addr Width 8 7 Chip Select 5 4 Parameter Table Index 3 Reserved SPI Device Configuration Field Descriptions 4, 5 Pin Addr Width Value Description Clk Pol / Phase 0 Data is output on the rising edge of SPICLK. Input data is latched on the falling edge. 1 Data is output one half-cycle before the first rising edge of SPICLK and on subsequent falling edges. Input data is latched on the rising edge of SPICLK. 2 Data is output on the falling edge of SPICLK. Input data is latched on the rising edge. 3 Data is output one half-cycle before the first falling edge of SPICLK and on subsequent rising edges. Input data is latched on the falling edge of SPICLK. 0 4-pin mode used 1 5-pin mode used 0 16-bit address values are used 1 24-bit address values are used 8-7 Chip Select 0-3 The chip select field value 6-5 Parameter Table Index 0-3 Specifies which parameter table is loaded 4-3 Reserved 0-3 Reserved 32 6 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.5.2.7 HyperLink Boot Device Configuration Figure 2-10 HyperLink Boot Device Configuration Fields 9 8 7 Reserved Data Rate Field 9 Reserved 8-7 Data Rate 4-3 4 3 Ref Clock Reserved HyperLink Boot Device Configuration Field Descriptions Bit 6-5 5 Value Description Reserved Ref Clocks Reserved 0 1.25 GBs 1 3.125 GBs 2 6.25 GBs 3 12.5 GBs 0 156.25 MHz 1 250 MHz 2 312.5 MHz 0-3 Reserved 2.5.3 PLL Settings The PLL default settings are determined by the BOOTMODE[12:10] bits. Table 2-13 shows settings for various input clock frequencies. This will set the PLL to the maximum clock setting for the device. CLK = CLKIN × (PLLM+1) ÷ (2 × (PLLD+1)) The PA configuration is also shown. The PA is configured with these values only if the Ethernet boot mode is selected with the input clock set to match the main PLL clock (not the PA SerDes clock). See Table 2-3 for details on configuring Ethernet boot mode. The Main PLL is controlled using a PLL controller and a chip level MMR. The DDR3 PLL and PASS PLL are controlled by chip level MMRs. For details on how to setup the PLL see Section 7.8 ‘‘Main PLL and the PLL Controller’’ on page 160. For details on the operation of the PLL controller module, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. Table 2-13 BOOTMODE [12:10] C66x CorePac System PLL Configuration Input Clock Freq (MHz) 800 MHz Device PLLD PLLM DSP ƒ 1000 MHz Device PLLD PLLM DSP ƒ PA = 350 MHz (1) 1200 MHz Device PLLD PLLM DSP ƒ PLLD PLLM DSP ƒ (2) 0b000 50.00 0 31 800 0 39 1000 0 47 1200 0 41 1050 0b001 66.67 0 23 800.04 0 29 1000.05 0 35 1200.06 1 62 1050.053 0b010 80.00 0 19 800 0 24 1000 0 29 1200 3 104 1050 0b011 100.00 0 15 800 0 19 1000 0 23 1200 0 20 1050 0b100 156.25 24 255 800 4 63 1000 24 383 1200 24 335 1050 0b101 250.00 4 31 800 0 7 1000 4 47 1200 4 41 1050 0b110 312.50 24 127 800 4 31 1000 24 191 1200 24 167 1050 0b111 122.88 47 624 800 28 471 999.989 31 624 1200 11 204 1049.6 1 The PASS PLL generates 1050 MHz and is internally divided by 3 to feed 350 MHz to the Packet Accelerator. 2 ƒ represents frequency in MHz. Copyright 2010 Texas Instruments Incorporated Device Overview 33 ADVANCE INFORMATION Table 2-12 6 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.6 Second-Level Bootloaders Any of the boot modes can be used to download a second-level bootloader. A second-level bootloader allows for any level of customization to current boot methods as well as the definition of a completely customized boot. 2.7 Terminals Figure 2-11 shows the TMS320C6670 CYP ball grid array package (bottom view). Figure 2-11 CYP 841-PIN BGA Package Bottom View AH ADVANCE INFORMATION AF AD AB Y V T AJ AG AE AC AA W U R P N M L K J H F D G E C B A 3 1 2 34 Device Overview 5 4 9 7 6 8 11 13 15 17 19 21 23 25 27 29 10 12 14 16 18 20 22 24 26 28 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.8 Terminal Functions The terminal functions table (Table 2-15) identifies the external signal names, the associated pin (ball) numbers, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors, and gives functional pin descriptions. This table is arranged by function. The power terminal functions table (Table 2-16) lists the various power supply pins and ground pins and gives functional pin descriptions. Table 2-17 shows all pins arranged by signal name. Table 2-18 shows all pins arranged by ball number. There are 17 pins that have a secondary function as well as a primary function. The secondary function is indicated with a dagger (†). ADVANCE INFORMATION For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and pullup/pulldown resistors, see chapter 3 ‘‘Device Configuration’’ on page 60. Use the symbol definitions in Table 2-14 when reading Table 2-15. Table 2-14 I/O Functional Symbol Definitions Functional Symbol IPD or IPU A Definition Internal 100-μA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 59. Table 2-15 Column Heading IPD/IPU Analog signal Type Ground Type Input terminal Type O Output terminal Type S Supply voltage Type Z Three-state terminal or high impedance Type GND I End of Table 2-14 Table 2-15 Signal Name Terminal Functions — Signals and Control by Function (Part 1 of 12) Ball No. Type IPD/IPU Description AIF AIFRXN0 L28 I AIFRXP0 M28 I AIFRXN1 K29 I AIFRXP1 L29 I AIFRXN2 R28 I AIFRXP2 P28 I AIFRXN3 P29 I AIFRXP3 N29 I AIFRXN4 T29 I AIFRXP4 U29 I AIFRXN5 U28 I AIFRXP5 V28 I Copyright 2010 Texas Instruments Incorporated Antenna Interface Receive Data (6 links) Device Overview 35 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-15 www.ti.com Terminal Functions — Signals and Control by Function (Part 2 of 12) Signal Name Ball No. Type IPD/IPU Description AIFTXN0 L26 O AIFTXP0 M26 O AIFTXN1 L27 O AIFTXP1 K27 O AIFTXN2 R26 O AIFTXP2 P26 O AIFTXN3 P27 O ADVANCE INFORMATION AIFTXP3 N27 O AIFTXN4 U27 O AIFTXP4 T27 O AIFTXN5 U26 O AIFTXP5 V26 O Antenna Interface Transmit Data (6 links) AIF2 Timer (AT) Module RP1CLKP Y28 I RP1CLKN AA28 I EXTFRAMEEVENT AE17 OZ RP1FBP Y29 I RP1FBN AA29 I PHYSYNC AB27 I down Alternate Frame Sync Clock Input (vs. FSYNCCLK(N|P)) RADSYNC AA27 I down Alternate Frame Sync Input (vs. FRAMBURST (N|P)) Frame Sync Interface Clock used to drive the frame synchronization interface (OBSAI RP1 clock) Down Frame Sync Clock Output Frame Burst to drive frame indicators to the frame synchronization module (OBSAI RP1) Boot Configuration Pins LENDIAN † AJ20 IOZ Up BOOTMODE00 † AG18 IOZ Down BOOTMODE01† AD19 IOZ Down BOOTMODE02 † AE19 IOZ Down BOOTMODE03 † AF18 IOZ Down BOOTMODE04 † AE18 IOZ Down BOOTMODE05 † AG20 IOZ Down BOOTMODE06 † AH19 IOZ Down BOOTMODE07 † AJ19 IOZ Down BOOTMODE08 † AE21 IOZ Down BOOTMODE09 † AG19 IOZ Down BOOTMODE10 † AD20 IOZ Down BOOTMODE11 † AE20 IOZ Down BOOTMODE12 † AF21 IOZ Down PCIESSMODE0 † AH20 IOZ Down PCIESSMODE1 † AD21 IOZ Down PCIESSEN † AJ23 I Endian configuration pin (Pin shared with GPIO[0]) See Section 2.5 ‘‘Boot Modes Supported and PLL Settings’’ on page 27 for more details (Pins shared with GPIO[1:13]) PCIe Mode selection pins (Pins shared with GPIO[14:15]) PCIe module enable (Pin shared with TIMI0) Clock / Reset SYSCLKP AC29 I SYSCLKN AC28 I PASSCLKP AJ18 I PASSCLKN AH18 I 36 Device Overview System Clock Input to Antenna Interface and Main PLL (Main PLL optional vs. ALTCORECLK) PA Sub-system Reference Clock to PA Sub-system PLL (PASS PLL optional vs. REFCLK) Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Terminal Functions — Signals and Control by Function (Part 3 of 12) Signal Name Ball No. Type IPD/IPU Description ALTCORECLKP AB29 I ALTCORECLKN AB28 I SRIOSGMIICLKP AJ16 I SRIOSGMIICLKN AH16 I DDRCLKP G29 I DDRCLKN H29 I PCIECLKP AH17 I PCIECLKN AJ17 I MCMCLKP W1 I MCMCLKN W2 I SYSCLKOUT AA26 OZ Down System Clock Output to be used as a general purpose output clock for debug purposes CORECLKSEL AB25 I Down Core Clock Select to select between SYSCLK and ALTCORECCLK to the Main PLL PACLKSEL AD23 IOZ Down PA Clock select to choose between PASSCLK and the output of Main PLL MUX (dependent on CORECLKSEL pin) to the PA Sub-system PLL HOUT AC18 OZ Up Interrupt output pulse created by IPCGRH NMI AC25 I Up Non-maskable Interrupt LRESET AE22 I Up Local Reset LRESETNMIEN AC20 I Up Enable for core selects CORESEL0 AH15 I down CORESEL1 AC16 I down CORESEL2 AD15 I down RESETFULL AE23 I Up Full Reset Power-on Reset RESET AC24 I Up Reset of non isolated portion on the IC POR AC19 I RESETSTAT AD18 O Up Reset Status Output BOOTCOMPLETE AC21 OZ Down Boot progress indication output PTV15 H24 A Alternate System Clock Input to Main PLL (Main PLL optional vs. SYSCLK) RapidIO/SGMII Reference Clock to drive the RapidIO and SGMII SERDES DDR Reference Clock Input to DDR PLL PCIe Reference Clock Input to drive PCIe SERDES ADVANCE INFORMATION Table 2-15 HyperLink Reference Clock Input to drive the HyperLink SERDES Select for the target core for LRESET and NMI. For more details see Table 7-24 ‘‘NMI and LRESET Timing Requirements’’ on page 137 POR Power-on Reset Copyright 2010 Texas Instruments Incorporated PTV Compensation NMOS Reference Input Device Overview 37 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-15 Signal Name www.ti.com Terminal Functions — Signals and Control by Function (Part 4 of 12) Ball No. Type IPD/IPU Description DDR ADVANCE INFORMATION DDRDQS0P C28 IOZ DDRDQS0N C29 IOZ DDRDQS1P A27 IOZ DDRDQS1N B27 IOZ DDRDQS2P A24 IOZ DDRDQS2N B24 IOZ DDRDQS3P A21 IOZ DDRDQS3N B21 IOZ DDRDQS4P A9 IOZ DDRDQS4N B9 IOZ DDRDQS5P B6 IOZ DDRDQS5N A6 IOZ DDRDQS6P B3 IOZ DDRDQS6N A3 IOZ DDRDQS7P D1 IOZ DDRDQS7N C1 IOZ DDRDQS8P A19 IOZ DDRDQS8N B19 IOZ DDRCB00 E19 IOZ DDRCB01 C20 IOZ DDRCB02 D19 IOZ DDRCB03 B20 IOZ DDRCB04 C19 IOZ DDRCB05 C18 IOZ DDRCB06 B18 IOZ DDRCB07 A18 IOZ 38 Device Overview DDR EMIF Data Strobe DDR EMIF Check Bits Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Terminal Functions — Signals and Control by Function (Part 5 of 12) Signal Name Ball No. Type IPD/IPU Description DDRD00 E28 IOZ DDRD01 D29 IOZ DDRD02 E27 IOZ DDRD03 D28 IOZ DDRD04 D27 IOZ DDRD05 B28 IOZ DDRD06 E26 IOZ DDRD07 F25 IOZ DDRD08 F24 IOZ DDRD09 E24 IOZ DDRD10 E25 IOZ DDRD11 D25 IOZ DDRD12 D26 IOZ DDRD13 C26 IOZ DDRD14 B26 IOZ DDRD15 A26 IOZ DDRD16 F23 IOZ DDRD17 F22 IOZ DDRD18 D24 IOZ DDRD19 E23 IOZ DDRD20 A23 IOZ DDRD21 B23 IOZ DDRD22 C24 IOZ DDRD23 E22 IOZ DDRD24 D21 IOZ DDRD25 F20 IOZ DDRD26 E21 IOZ DDRD27 F21 IOZ DDRD28 D22 IOZ DDRD29 C21 IOZ Copyright 2010 Texas Instruments Incorporated ADVANCE INFORMATION Table 2-15 DDR EMIF Data Bus Device Overview 39 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-15 www.ti.com Terminal Functions — Signals and Control by Function (Part 6 of 12) ADVANCE INFORMATION Signal Name Ball No. Type IPD/IPU Description DDRD30 B22 DDRD31 C22 IOZ DDRD32 E10 IOZ DDRD33 D10 IOZ DDRD34 B10 IOZ DDRD35 D9 IOZ DDRD36 E9 IOZ DDRD37 C9 IOZ DDRD38 B8 IOZ DDRD39 E8 IOZ DDRD40 A7 IOZ DDRD41 D7 IOZ DDRD42 E7 IOZ DDRD43 C7 IOZ DDRD44 B7 IOZ DDRD45 E6 IOZ DDRD46 D6 IOZ DDRD47 C6 IOZ DDRD48 C5 IOZ DDRD49 A5 IOZ DDRD50 B4 IOZ DDRD51 A4 IOZ DDRD52 D4 IOZ DDRD53 E4 IOZ DDRD54 C4 IOZ DDRD55 C3 IOZ DDRD56 F4 IOZ DDRD57 D2 IOZ DDRD58 E2 IOZ DDRD59 C2 IOZ DDRD60 F2 IOZ DDRD61 F3 IOZ DDRD62 E1 IOZ DDRD63 F1 IOZ DDRCE0 C11 OZ DDRCE1 C12 OZ DDRBA0 A13 OZ DDRBA1 B13 OZ DDRBA2 C13 OZ 40 Device Overview IOZ DDR EMIF Data Bus DDR EMIF Chip Enables DDR EMIF Bank Address Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Terminal Functions — Signals and Control by Function (Part 7 of 12) Signal Name Ball No. Type IPD/IPU Description DDRA00 A14 OZ DDRA01 B14 OZ DDRA02 F14 OZ DDRA03 F13 OZ DDRA04 A15 OZ DDRA05 C15 OZ DDRA06 B15 OZ DDRA07 D15 OZ DDRA08 F15 OZ DDRA09 E15 OZ DDRA10 E16 OZ DDRA11 D16 OZ DDRA12 E17 OZ DDRA13 C16 OZ DDRA14 D17 OZ DDRA15 C17 OZ DDRCAS D12 OZ DDR EMIF Column Address Strobe DDRRAS C10 OZ DDR EMIF Row Address Strobe DDRWE E12 OZ DDR EMIF Write Enable DDRCKE0 D11 OZ DDRCKE1 E18 OZ DDRCLKOUTP0 A12 OZ DDRCLKOUTN0 B12 OZ DDRCLKOUTP1 A16 OZ DDRCLKOUTN1 B16 OZ DDRODT0 D13 OZ DDRODT1 E13 OZ DDRRESET E11 OZ DDRSLRATE0 H27 I Down DDRSLRATE1 H26 I Down VREFSSTL E14 P DDR EMIF Address Bus ADVANCE INFORMATION Table 2-15 DDR EMIF Clock Enables DDR EMIF Output Clocks to drive SDRAMs (one clock pair per SDRAM) DDR EMIF On Die Termination Outputs used to set termination on the SDRAMs DDR Reset signal Copyright 2010 Texas Instruments Incorporated DDR Slew rate control Reference Voltage Input for SSTL15 buffers used by DDR EMIF (VDDS15 ÷ 2) Device Overview 41 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-15 Signal Name www.ti.com Terminal Functions — Signals and Control by Function (Part 8 of 12) Ball No. Type IPD/IPU Description EMU EMU00 AE29 IOZ Up EMU01 AF29 IOZ Up EMU02 AE28 IOZ Up EMU03 AF28 IOZ Up EMU04 AE26 IOZ Up EMU05 AD25 IOZ Up ADVANCE INFORMATION EMU06 AF25 IOZ Up EMU07 AE25 IOZ Up EMU08 AF27 IOZ Up EMU09 AG29 IOZ Up EMU10 AF26 IOZ Up EMU11 AG28 IOZ Up EMU12 AG27 IOZ Up EMU13 AG25 IOZ Up EMU14 AH28 IOZ Up EMU15 AJ27 IOZ Up EMU16 AH27 IOZ Up EMU17 AJ26 IOZ Up EMU18 AH25 IOZ Up Emulation and Trace Ports General Purpose Input/Output (GPIO) GPIO00 AJ20 IOZ Up GPIO01 AG18 IOZ Down GPIO02 AD19 IOZ Down GPIO03 AE19 IOZ Down GPIO04 AF18 IOZ Down GPIO05 AE18 IOZ Down GPIO06 AG20 IOZ Down GPIO07 AH19 IOZ Down GPIO08 AJ19 IOZ Down GPIO09 AE21 IOZ Down GPIO10 AG19 IOZ Down GPIO11 AD20 IOZ Down GPIO12 AE20 IOZ Down GPIO13 AF21 IOZ Down GPIO14 AH20 IOZ Down GPIO15 AD21 IOZ Down 42 Device Overview General Purpose Input/Output These GPIO pins have secondary functions assigned to them as mentioned in the Boot Configuration Pins section above. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 2-15 Terminal Functions — Signals and Control by Function (Part 9 of 12) Signal Name Ball No. Type IPD/IPU Description HyperLink T2 I MCMRXP0 R2 I MCMRXN1 P1 I MCMRXP1 R1 I MCMRXN2 L1 I MCMRXP2 M1 I MCMRXN3 N2 I MCMRXP3 M2 I MCMTXN0 T5 O MCMTXP0 R5 O MCMTXN1 R4 O MCMTXP1 P4 O MCMTXN2 L4 O MCMTXP2 M4 O MCMTXN3 M5 O MCMTXP3 N5 O Serial HyperLink Receive Data (4 links) ADVANCE INFORMATION MCMRXN0 Serial HyperLink Transmit Data (4 links) MCMRXFLCLK V3 O down MCMRXFLDAT W3 O down MCMTXFLCLK Y1 I down MCMTXFLDAT Y2 I down MCMRXPMCLK AA3 I down MCMRXPMDAT Y3 I down MCMTXPMCLK AA2 O down MCMTXPMDAT AA1 O down MCMREFCLKOUTP V2 O MCMREFCLKOUTN V1 O Serial HyperLink Sideband Signals HyperLink reference clock output for daisy chain connection 2 I C 2 SCL AC17 IOZ I C Clock SDA AD17 IOZ I2C Data TCK AD29 I Up JTAG Clock Input TDI AD28 I Up JTAG Data Input TDO AC27 OZ Up JTAG Data Output TMS AC26 I Up JTAG Test Mode Input TRST AD26 I Down JTAG Reset JTAG MDIO MDIO AG16 IOZ Up MDIO Data MDCLK AF16 O Down MDIO Clock Copyright 2010 Texas Instruments Incorporated Device Overview 43 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-15 Signal Name www.ti.com Terminal Functions — Signals and Control by Function (Part 10 of 12) Ball No. Type IPD/IPU Description PCIe PCIERXN0 AJ14 I PCIERXP0 AJ13 I PCIERXN1 AH12 I PCIERXP1 AH13 I ADVANCE INFORMATION PCIETXN0 AG14 O PCIETXP0 AG13 O PCIETXN1 AF12 O PCIETXP1 AF13 O RIORXN0 AJ11 I PCIexpress Receive Data (2 links) PCIexpress Transmit Data (2 links) Serial RapidIO RIORXP0 AJ10 I RIORXN1 AH10 I RIORXP1 AH9 I RIORXN2 AJ7 I RIORXP2 AJ8 I RIORXN3 AH6 I RIORXP3 AH7 I RIOTXN0 AG11 O RIOTXP0 AG10 O RIOTXN1 AF9 O RIOTXP1 AF10 O RIOTXN2 AG7 O RIOTXP2 AG8 O RIOTXN3 AF6 O RIOTXP3 AF7 O Serial RapidIO Receive Data (4 links) Serial RapidIO Transmit Data (4 links) SGMII SGMII0RXN AH3 I SGMII0RXP AH4 I SGMII1RXN AJ4 I SGMII1RXP AJ5 I SGMII0TXN AF3 O SGMII0TXP AF4 O SGMII1TXN AG4 O SGMII1TXP AG5 O VCL Y4 IOZ Voltage Control I C Clock VD W4 IOZ Voltage Control I C Data VCNTL0 AB4 OZ VCNTL1 AB3 OZ VCNTL2 AA4 OZ VCNTL3 AB1 OZ Ethernet MAC SGMII Receive Data (2 links) Ethernet MAC SGMII Transmit Data (2 links) SmartReflex 44 Device Overview 2 2 Voltage Control Outputs to variable core power supply Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 2-15 Signal Name Terminal Functions — Signals and Control by Function (Part 11 of 12) Ball No. Type IPD/IPU Description SPI SPISCS0 AH21 OZ Up SPI Interface Enable 0 SPISCS1 AJ22 OZ Up SPI Interface Enable 1 SPICLK AG21 OZ Down SPI Clock SPIDIN AH22 I Down SPI Data In SPIDOUT AJ21 OZ Down SPI Data Out TIMI0 AJ23 I Down TIMI1 AG23 I Down TIMO0 AH23 OZ Down TIMO1 AF23 OZ Down ADVANCE INFORMATION Timer Timer Inputs Timer Outputs UART UARTRXD AF24 I Down UART Serial Data In UARTTXD AJ24 OZ Down UART Serial Data Out UARTCTS AH24 I Down UART Clear To Send UARTRTS AG24 OZ Down UART Request TO Send Reserved RSV01 AJ25 IOZ Down Reserved - Connect to GND RSV03 AC23 OZ Down Reserved - leave unconnected RSV04 Y27 O Reserved - leave unconnected RSV05 W27 O Reserved - leave unconnected RSV06 J28 O Reserved - leave unconnected RSV07 H28 O Reserved - leave unconnected RSV08 J24 A Reserved - leave unconnected RSV09 J25 A Reserved - leave unconnected RSV10 H23 A Reserved - leave unconnected RSV11 J23 A Reserved - leave unconnected RSV12 AD22 A Reserved - leave unconnected RSV13 AC22 A Reserved - leave unconnected RSV14 V4 A Reserved - leave unconnected RSV15 AE8 A Reserved - leave unconnected RSV16 AE14 A Reserved - leave unconnected RSV17 AE5 A Reserved - leave unconnected RSV18 AA24 A Reserved - leave unconnected RSV19 G27 A Reserved - leave unconnected RSV20 AB26 OZ Down Reserved - leave unconnected RSV21 G26 OZ Down Reserved - leave unconnected RSV22 AE16 OZ Down Reserved - leave unconnected RSV23 AD16 A Reserved - leave unconnected RSV24 AG17 O Reserved - leave unconnected RSV25 AF17 O Reserved - leave unconnected Copyright 2010 Texas Instruments Incorporated Device Overview 45 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-15 www.ti.com Terminal Functions — Signals and Control by Function (Part 12 of 12) Signal Name Ball No. Type IPD/IPU Description RSV26 U25 A Reserved - leave unconnected RSV27 L25 A Reserved - leave unconnected End of Table 2-15 Table 2-16 Terminal Functions — Power and Ground ADVANCE INFORMATION Supply Ball No. Volts Description AVDDA1 W24 1.8 PLL Supply: CORE_PLL AVDDA2 J26 1.8 PLL Supply: DDR3_PLL AVDDA3 AB15 1.8 PLL Supply: PASS_PLL. CVDD 0.9 H11, H13, H15, H17, H19, H21, J12, J18, K11, K19, L12, L18, M11, M13, M15 M17, to M19, N8, N10, N12, N14, N16, N18, N20, N22, P9, P11, P13, P15, P17, P19, P21, R8, R10, R12, R14, R16, R18, R20, R22, T9, T11, T13, T15, T17, T19, T21, U8, U10, U12, U14, 1.1 U16, U18, U20, U22, V9, V11, V13, V15, V17, V19, V21, V23, W8, W10, W18, W20, W22, Y9, Y19, Y21, Y23, AA8, AA10, AA12, AA14, AA16, AA18, AA20, AA22, AB23 SmartReflex core supply voltage CVDD1 G6, H1, H3, H5, H7, H9, J2, J4, J6, J8, J10, J14, J16, J20, J22, K7, K9, K13, K15, K17, K21, 1.0 L8, L10, L14, L16, L20, L22, M9, M21, W12, W14, W16, Y11, Y13, Y15, Y17, AD1, AD3, AE2, AF1, AG2, AH1, AJ2 Fixed core supply voltage DVDD15 A2, A11, A17, A28, B1, B29, C14, C25, D5, D8, D20, D23, E3, F5, F7, F9, F11, F17, F19, F27, G2, G4, G8, G10, G12, G14, G16 G18, G20, G22, G24 1.5 DDR IO supply DVDD18 G28, H25, V5, Y5, Y25, AB5, AB17, AB19, AB21, AC2, AC4, AE24, AE27, AF19, AF22, AH26, AH29, AJ28 1.8 IO supply VDDR1 K6 1.5 HyperLink SerDes regulator supply VDDR2 AE15 1.5 PCIe SerDes regulator supply VDDR3 AE6 1.5 SGMII SerDes regulator supply VDDR4 AE11 1.5 SRIO SerDes regulator supply VDDR5 R25 VDDR6 N25 1.5 AIF SerDes regulator supply VDDT1 M7, N6, P7, R6, T7, V7, W6, Y7 1.0 HyperLink SerDes termination supply VDDT2 AC6, AC8, AC10, AC12, AC14, AD5, AD7, AD9, AD11, AD13, AE4, AE10, AE12 1.0 SGMII/SRIO/PCIe SerDes termination supply VDDT3 K25, L24, M23, M25, N24, P23, P25, R24, T23, T25, U24, V25 VREFSSTL E14 VSS 1.0 AIF SerDes termination supply 0.75 DDR3 reference voltage A1, A29, B11, B17, B25, C8, C23, D3, D14, D18, E5, E20, F6, F8, F10, F12, F16, F18, F26, Gnd F28, F29, G1, G3, G5, G7, G9, G11, G13, G15, G17, G19, G21, G23, G25, H2, H4, H6, H8, H10, H12, H14, H16, H18, H20, H22, J1, J3, J5, J7, J9, J11, J13, J15, J17, J19, J21, J27, J29, K1, K2, K3, K4, K5, K8, K10, K12, K14, K16, K18, K20, K22, K26, K28, L2, L3,L5, L6, L7, L9, L11, L13, L15, L17, L19, L21, L23, M3, M6, M8, M10, M12, M14, M16, M18, M20, M22, M24, M27, M29, N1, N3, N4, N7, N9, N11, N13, N15, N17, N19, N21, N23, N26, N28, P2, P3, P5, P6, P8, P10, P12, P14, P16, P18, P20, P22, P24, R3, R7, R9, R11, R13, R15, R17, R19, R21, R23, R27, R29, T1, T3, T4, T6, T8, T10, T12, T14, T16, T18, T20, T22, T24, T26, T28, U1, U2, U3, U4, U5, U6, U7, U9, U11, U13, U15, U17, U19, U21, U23, V6, V8, V10, V12, V14, V16, V18, V20, V22, V24, V27, V29, W5, W7, W9, W11, W13, W15, W17, W19, W21, W23, W25, W26, W28, W29, Y6, Y8, Y10, Y12, Y14, Y16, Y18, Y20, Y22, Y24, Y26, AA5, AA6, AA7, AA9, AA11, AA13, AA15, AA17, AA19, AA21, AA23, AA25, AB2, AB6, AB7, AB8, AB9, AB10, AB11, AB12, AB13, AB14, AB16, AB18, AB20, AB22, AB24, AC1, AC3, AC5, AC7, AC9, AC11, AC13, AC15, AD2, AD4, AD6, AD8, AD10, AD12, AD14, AD24, AD27, AE1, AE3, AE7, AE9, AE13, AF2, AF5, AF8, AF11, AF14, AF15, AF20, AG1, AG3, AG6, AG9, AG12, AG15, AG22, AG26, AH2, AH5, AH8, AH11, AH14, AJ1, AJ3, AJ6, AJ9, AJ12, AJ15, AJ29 Ground End of Table 2-16 46 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-17 Terminal Functions — By Signal Name (Part 1 of 11) Table 2-17 Terminal Functions — By Signal Name (Part 2 of 11) Table 2-17 Terminal Functions — By Signal Name (Part 3 of 11) Ball Number Signal Name Ball Number Signal Name Ball Number AIFRXN0 L28 BOOTMODE12 † AF21 DDRA15 C17 AIFRXN1 K29 CORECLKSEL AB25 DDRBA0 A13 AIFRXN2 R28 CORESEL0 AH15 DDRBA1 B13 AIFRXN3 P29 CORESEL1 AC16 DDRBA2 C13 AIFRXN4 T29 CORESEL2 AD15 DDRCAS D12 AIFRXN5 U28 CVDD H11, H13, H15, H17, H19, H21, J12, J18, K11, K19, L12, L18, M11, M13, M15 M17, M19, N8, N10, N12, N14, N16, N18, N20, N22, P9, P11, P13, P15, P17, P19 DDRCB00 E19 DDRCB01 C20 DDRCB02 D19 DDRCB03 B20 DDRCB04 C19 DDRCB05 C18 Signal Name AIFRXP0 M28 AIFRXP1 L29 AIFRXP2 P28 AIFRXP3 N29 AIFRXP4 U29 AIFRXP5 V28 AIFTXN0 L26 AIFTXN1 L27 AIFTXN2 R26 AIFTXN3 P27 AIFTXN4 U27 AIFTXN5 U26 AIFTXP0 M26 AIFTXP1 K27 AIFTXP2 P26 AIFTXP3 N27 AIFTXP4 T27 AIFTXP5 V26 ALTCORECLKN AB28 ALTCORECLKP AB29 CVDD CVDD CVDD1 P21, R8, R10, R12, R14, R16, R18, R20, R22, T9, T11, T13, T15, T17, T19, T21, U8, U10, U12, U14, U16, U18, U20, U22, V9, V11, V13, V15, V17, V19, V21, V23 DDRCB06 B18 DDRCB07 A18 DDRCE0 C11 DDRCE1 C12 DDRCKE0 D11 W8, W10, W18, W20, W22, Y9, Y19, Y21, Y23, AA8, AA10, AA12, AA14, AA16, AA18, AA20, AA22, AB23 DDRCKE1 E18 DDRCLKN H29 DDRCLKOUTN0 B12 DDRCLKOUTN1 B16 G6, H1, H3, H5, H7, H9, J2, J4, J6, J8, J10, J14, J16, J20, J22, K7, K9, K13, K15, K17, K21, L8, L10, L14, L16, L20, L22, M9, M21, W12, W14, W16, Y11, Y13, Y15, Y17, AD1, AD3, AE2, AF1, AG2, AH1, AJ2 DDRCLKOUTP0 A12 DDRCLKOUTP1 A16 DDRCLKP G29 DDRD00 E28 DDRD01 D29 DDRD02 E27 DDRD03 D28 AVDDA1 W24 AVDDA2 J26 DDRA00 A14 DDRD04 D27 AVDDA3 AB15 DDRA01 B14 DDRD05 B28 BOOTCOMPLETE AC21 DDRA02 F14 DDRD06 E26 BOOTMODE00 † AG18 DDRA03 F13 DDRD07 F25 BOOTMODE01 † AD19 DDRA04 A15 DDRD08 F24 BOOTMODE02 † AE19 DDRA05 C15 DDRD09 E24 BOOTMODE03 † AF18 DDRA06 B15 DDRD10 E25 BOOTMODE04 † AE18 DDRA07 D15 DDRD11 D25 BOOTMODE05 † AG20 DDRA08 F15 DDRD12 D26 BOOTMODE06 † AH19 DDRA09 E15 DDRD13 C26 BOOTMODE07 † AJ19 DDRA10 E16 DDRD14 B26 BOOTMODE08 † AE21 DDRA11 D16 DDRD15 A26 BOOTMODE09 † AG19 DDRA12 E17 DDRD16 F23 BOOTMODE10 † AD20 DDRA13 C16 DDRD17 F22 BOOTMODE11 † AE20 DDRA14 D17 DDRD18 D24 Copyright 2010 Texas Instruments Incorporated Device Overview ADVANCE INFORMATION www.ti.com 47 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-17 Terminal Functions — By Signal Name (Part 4 of 11) Signal Name www.ti.com Table 2-17 Terminal Functions — By Signal Name (Part 5 of 11) ADVANCE INFORMATION Ball Number Signal Name DDRD19 E23 DDRD20 A23 DDRD21 B23 DDRD63 F1 DDRD22 C24 DDRDQM0 E29 DDRD23 E22 DDRDQM1 DDRD24 D21 DDRDQM2 DDRD25 F20 DDRDQM3 DDRD26 E21 DDRD27 Table 2-17 Terminal Functions — By Signal Name (Part 6 of 11) Ball Number Signal Name Ball Number DDRD61 F3 DVDD18 DDRD62 E1 G28, H25, V5, Y5, Y25, AB5, AB17, AB19, AB21, AC2, AC4, AE24, AE27, AF19, AF22, AH26, AH29, AJ28 C27 EMU00 AE29 A25 EMU01 AF29 A22 EMU02 AE28 DDRDQM4 A10 EMU03 AF28 F21 DDRDQM5 A8 EMU04 AE26 DDRD28 D22 DDRDQM6 B5 EMU05 AD25 DDRD29 C21 DDRDQM7 B2 EMU06 AF25 DDRD30 B22 DDRDQM8 A20 EMU07 AE25 DDRD31 C22 DDRDQS0N C29 EMU08 AF27 DDRD32 E10 DDRDQS0P C28 EMU09 AG29 DDRD33 D10 DDRDQS1N B27 EMU10 AF26 DDRD34 B10 DDRDQS1P A27 EMU11 AG28 DDRD35 D9 DDRDQS2N B24 EMU12 AG27 DDRD36 E9 DDRDQS2P A24 EMU13 AG25 DDRD37 C9 DDRDQS3N B21 EMU14 AH28 DDRD38 B8 DDRDQS3P A21 EMU15 AJ27 DDRD39 E8 DDRDQS4N B9 EMU16 AH27 DDRD40 A7 DDRDQS4P A9 EMU17 AJ26 DDRD41 D7 DDRDQS5N A6 EMU18 AH25 DDRD42 E7 DDRDQS5P B6 EXTFRAMEEVENT AE17 DDRD43 C7 DDRDQS6N A3 GPIO00 AJ20 DDRD44 B7 DDRDQS6P B3 GPIO01 AG18 DDRD45 E6 DDRDQS7N C1 GPIO02 AD19 DDRD46 D6 DDRDQS7P D1 GPIO03 AE19 DDRD47 C6 DDRDQS8N B19 GPIO04 AF18 DDRD48 C5 DDRDQS8P A19 GPIO05 AE18 DDRD49 A5 DDRODT0 D13 GPIO06 AG20 DDRD50 B4 DDRODT1 E13 GPIO07 AH19 DDRD51 A4 DDRRAS C10 GPIO08 AJ19 DDRD52 D4 DDRRESET E11 GPIO09 AE21 DDRD53 E4 DDRSLRATE0 H27 GPIO10 AG19 DDRD54 C4 DDRSLRATE1 H26 GPIO11 AD20 DDRD55 C3 DDRWE E12 GPIO12 AE20 DDRD56 F4 DVDD15 GPIO13 AF21 DDRD57 D2 DDRD58 E2 DDRD59 C2 DDRD60 F2 A2, A11, A17, A28, B1, B29, C14, C25, D5, D8, D20, D23, E3, F5, F7, F9, F11, F17, F19, F27, G2, G4, G8, G10, G12, G14, G16 G18, G20, G22, G24 48 Device Overview GPIO14 AH20 GPIO15 AD21 HOUT AC18 LENDIAN AJ20 † Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-17 Terminal Functions — By Signal Name (Part 7 of 11) Table 2-17 Signal Name Ball Number Signal Name LRESETNMIEN AC20 LRESET AE22 MCMCLKN MCMCLKP Terminal Functions — By Signal Name (Part 8 of 11) Table 2-17 Terminal Functions — By Signal Name (Part 9 of 11) Ball Number Signal Name PCIESSMODE0 † AH20 RSV0A K24 PCIESSMODE1 † AD21 RSV0B K23 W2 PCIESSEN † AJ23 RSV10 H23 W1 PCIETXN0 AG14 RSV11 J23 MCMREFCLKOUTN V1 PCIETXN1 AF12 RSV12 AD22 MCMREFCLKOUTP V2 PCIETXP0 AG13 RSV13 AC22 MCMRXFLCLK V3 PCIETXP1 AF13 RSV14 V4 MCMRXFLDAT W3 PHYSYNC AB27 RSV15 AE8 MCMRXN0 T2 POR AC19 RSV16 AE14 MCMRXN1 P1 PTV15 H24 RSV17 AE5 MCMRXN2 L1 RADSYNC AA27 RSV18 AA24 MCMRXN3 N2 RESETFULL AE23 RSV19 G27 MCMRXP0 R2 RESETSTAT AD18 RSV20 AB26 MCMRXP1 R1 RESET AC24 RSV21 G26 MCMRXP2 M1 RIORXN0 AJ11 RSV22 AE16 MCMRXP3 M2 RIORXN1 AH10 RSV23 AD16 MCMRXPMCLK AA3 RIORXN2 AJ7 RSV24 AG17 MCMRXPMDAT Y3 RIORXN3 AH6 RSV25 AF17 MCMTXFLCLK Y1 RIORXP0 AJ10 RSV26 U25 MCMTXFLDAT Y2 RIORXP1 AH9 RSV27 L25 MCMTXN0 T5 RIORXP2 AJ8 SCL AC17 MCMTXN1 R4 RIORXP3 AH7 SDA AD17 MCMTXN2 L4 RIOTXN0 AG11 SGMII0RXN AH3 MCMTXN3 M5 RIOTXN1 AF9 SGMII0RXP AH4 MCMTXP0 R5 RIOTXN2 AG7 SGMII0TXN AF3 MCMTXP1 P4 RIOTXN3 AF6 SGMII0TXP AF4 MCMTXP2 M4 RIOTXP0 AG10 SGMII1RXN AJ4 MCMTXP3 N5 RIOTXP1 AF10 SGMII1RXP AJ5 MCMTXPMCLK AA2 RIOTXP2 AG8 SGMII1TXN AG4 MCMTXPMDAT AA1 RIOTXP3 AF7 SGMII1TXP AG5 MDCLK AF16 RP1CLKN AA28 SPICLK AG21 MDIO AG16 RP1CLKP Y28 SPIDIN AH22 NMI AC25 RP1FBN AA29 SPIDOUT AJ21 PACLKSEL AD23 RP1FBP Y29 SPISCS0 AH21 PASSCLKN AH18 RSV01 AJ25 SPISCS1 AJ22 PASSCLKP AJ18 RSV03 AC23 SRIOSGMIICLKN AH16 PCIECLKN AJ17 RSV04 Y27 SRIOSGMIICLKP AJ16 PCIECLKP AH17 RSV05 W27 SYSCLKN AC28 PCIERXN0 AJ14 RSV06 J28 SYSCLKOUT AA26 PCIERXN1 AH12 RSV07 H28 SYSCLKP AC29 PCIERXP0 AJ13 RSV08 J24 TCK AD29 PCIERXP1 AH13 RSV09 J25 TDI AD28 Copyright 2010 Texas Instruments Incorporated Ball Number Device Overview ADVANCE INFORMATION www.ti.com 49 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-17 Terminal Functions — By Signal Name (Part 10 of 11) Signal Name www.ti.com Table 2-17 Terminal Functions — By Signal Name (Part 11 of 11) ADVANCE INFORMATION Ball Number Signal Name Ball Number TDO AC27 VSS TIMI0 AJ23 K22, K26, K28, L2, L3,L5, L6, L7, L9, L11, L13, L15, L17, L19, L21, L23, M3, M6, M8, M10, M12, M14, M16, M18, M20, M22, M24, M27, M29, N1, N3, N4, N7 VSS N9, N11, N13, N15, N17, N19, N21, N23, N26, N28, P2, P3, P5, P6, P8, P10, P12, P14, P16, P18, P20, P22, P24, R3, R7, R9, R11, R13, R15, R17, R19, R21, R23, R27 VSS R29, T1, T3, T4, T6, T8, T10, T12, T14, T16, T18, T20, T22, T24, T26, T28, U1, U2, U3, U4, U5, U6, U7, U9, U11, U13, U15, U17, U19, U21, U23, V6, V8, V10 VSS V12, V14, V16, V18, V20, V22, V24, V27, V29, W5, W7, W9, W11, W13, W15, W17, W19, W21, W23, W25, W26, W28, W29, Y6, Y8, Y10, Y12, Y14, Y16 VSS Y18, Y20, Y22, Y24, Y26, AA5, AA6, AA7, AA9, AA11, AA13, AA15, AA17, AA19, AA21, AA23, AA25, AB2, AB6, AB7, AB8, AB9, AB10, AB11, AB12, AB13, AB14 VSS AB16, AB18, AB20, AB22, AB24, AC1, AC3, AC5, AC7, AC9, AC11, AC13, AC15, AD2, AD4, AD6, AD8, AD10, AD12, AD14, AD24, AD27, AE1, AE3, AE7, AE9 VSS AE13, AF2, AF5, AF8, AF11, AF14, AF15, AF20, AG1, AG3, AG6, AG9, AG12, AG15, AG22, AG26, AH2, AH5, AH8, AH11, AH14, AJ1, AJ3, AJ6, AJ9, AJ12 VSS AJ15, AJ29 TIMI1 AG23 TIMO0 AH23 TIMO1 AF23 TMS AC26 TRST AD26 UARTCTS AH24 UARTRTS AG24 UARTRXD AF24 UARTTXD AJ24 VCL Y4 VCNTL0 AB4 VCNTL1 AB3 VCNTL2 AA4 VCNTL3 AB1 VD W4 VDDR1 K6 VDDR2 AE15 VDDR3 AE6 VDDR4 AE11 VDDR5 R25 VDDR6 N25 VDDT1 M7, N6, P7, R6, T7, V7, W6, Y7 VDDT2 AC6, AC8, AC10, AC12, AC14, AD5, AD7, AD9, AD11, AD13, AE4, AE10, AE12 VDDT3 K25, L24, M23, M25, N24, P23, P25, R24, T23, T25, U24, V25 VREFSSTL E14 VSS A1, A29, B11, B17, B25, C8, C23, D3, D14, D18, E5, E20, F6, F8, F10, F12, F16, F18, F26, F28, F29, G1, G3, G5, G7, G9, G11, G13, G15, G17, G19, G21, G23, G25 VSS 50 H2, H4, H6, H8, H10, H12, H14, H16, H18, H20, H22, J1, J3, J5, J7, J9, J11, J13, J15, J17, J19, J21, J27, J29, K1, K2, K3, K4, K5, K8, K10, K12, K14, K16, K18, K20 Device Overview End of Table 2-17 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-18 Terminal Functions — By Ball Number (Part 1 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 2 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 3 of 21) Signal Name Ball Number Signal Name Ball Number Signal Name A1 VSS B14 DDRA01 C27 DDRDQM1 A2 DVDD15 B15 DDRA06 C28 DDRDQS0P A3 DDRDQS6N B16 DDRCLKOUTN1 C29 DDRDQS0N A4 DDRD51 B17 VSS D1 DDRDQS7P A5 DDRD49 B18 DDRCB06 D2 DDRD57 A6 DDRDQS5N B19 DDRDQS8N D3 VSS A7 DDRD40 B20 DDRCB03 D4 DDRD52 A8 DDRDQM5 B21 DDRDQS3N D5 DVDD15 A9 DDRDQS4P B22 DDRD30 D6 DDRD46 A10 DDRDQM4 B23 DDRD21 D7 DDRD41 A11 DVDD15 B24 DDRDQS2N D8 DVDD15 A12 DDRCLKOUTP0 B25 VSS D9 DDRD35 A13 DDRBA0 B26 DDRD14 D10 DDRD33 A14 DDRA00 B27 DDRDQS1N D11 DDRCKE0 A15 DDRA04 B28 DDRD05 D12 DDRCAS A16 DDRCLKOUTP1 B29 DVDD15 D13 DDRODT0 A17 DVDD15 C1 DDRDQS7N D14 VSS A18 DDRCB07 C2 DDRD59 D15 DDRA07 A19 DDRDQS8P C3 DDRD55 D16 DDRA11 A20 DDRDQM8 C4 DDRD54 D17 DDRA14 A21 DDRDQS3P C5 DDRD48 D18 VSS A22 DDRDQM3 C6 DDRD47 D19 DDRCB02 A23 DDRD20 C7 DDRD43 D20 DVDD15 A24 DDRDQS2P C8 VSS D21 DDRD24 A25 DDRDQM2 C9 DDRD37 D22 DDRD28 A26 DDRD15 C10 DDRRAS D23 DVDD15 A27 DDRDQS1P C11 DDRCE0 D24 DDRD18 A28 DVDD15 C12 DDRCE1 D25 DDRD11 A29 VSS C13 DDRBA2 D26 DDRD12 B1 DVDD15 C14 DVDD15 D27 DDRD04 B2 DDRDQM7 C15 DDRA05 D28 DDRD03 B3 DDRDQS6P C16 DDRA13 D29 DDRD01 B4 DDRD50 C17 DDRA15 E1 DDRD62 B5 DDRDQM6 C18 DDRCB05 E2 DDRD58 B6 DDRDQS5P C19 DDRCB04 E3 DVDD15 B7 DDRD44 C20 DDRCB01 E4 DDRD53 B8 DDRD38 C21 DDRD29 E5 VSS B9 DDRDQS4N C22 DDRD31 E6 DDRD45 B10 DDRD34 C23 VSS E7 DDRD42 B11 VSS C24 DDRD22 E8 DDRD39 B12 DDRCLKOUTN0 C25 DVDD15 E9 DDRD36 B13 DDRBA1 C26 DDRD13 E10 DDRD32 Ball Number Copyright 2010 Texas Instruments Incorporated Device Overview ADVANCE INFORMATION www.ti.com 51 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-18 Terminal Functions — By Ball Number (Part 4 of 21) Ball Number www.ti.com Table 2-18 Terminal Functions — By Ball Number (Part 5 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 6 of 21) ADVANCE INFORMATION Signal Name Ball Number Signal Name Ball Number E11 DDRRESET F24 DDRD08 H8 VSS E12 DDRWE F25 DDRD07 H9 CVDD1 E13 DDRODT1 F26 VSS H10 VSS E14 VREFSSTL F27 DVDD15 H11 CVDD E15 DDRA09 F28 VSS H12 VSS E16 DDRA10 F29 VSS H13 CVDD E17 DDRA12 G1 VSS H14 VSS E18 DDRCKE1 G2 DVDD15 H15 CVDD E19 DDRCB00 G3 VSS H16 VSS E20 VSS G4 DVDD15 H17 CVDD E21 DDRD26 G5 VSS H18 VSS E22 DDRD23 G6 CVDD1 H19 CVDD E23 DDRD19 G7 VSS H20 VSS E24 DDRD09 G8 DVDD15 H21 CVDD E25 DDRD10 G9 VSS H22 VSS E26 DDRD06 G10 DVDD15 H23 RSV10 E27 DDRD02 G11 VSS H24 PTV15 E28 DDRD00 G12 DVDD15 H25 DVDD18 E29 DDRDQM0 G13 VSS H26 DDRSLRATE1 F1 DDRD63 G14 DVDD15 H27 DDRSLRATE0 F2 DDRD60 G15 VSS H28 RSV07 F3 DDRD61 G16 DVDD15 H29 DDRCLKN F4 DDRD56 G17 VSS J1 VSS F5 DVDD15 G18 DVDD15 J2 CVDD1 F6 VSS G19 VSS J3 VSS F7 DVDD15 G20 DVDD15 J4 CVDD1 F8 VSS G21 VSS J5 VSS F9 DVDD15 G22 DVDD15 J6 CVDD1 F10 VSS G23 VSS J7 VSS F11 DVDD15 G24 DVDD15 J8 CVDD1 F12 VSS G25 VSS J9 VSS F13 DDRA03 G26 RSV21 J10 CVDD1 F14 DDRA02 G27 RSV19 J11 VSS F15 DDRA08 G28 DVDD18 J12 CVDD F16 VSS G29 DDRCLKP J13 VSS F17 DVDD15 H1 CVDD1 J14 CVDD1 F18 VSS H2 VSS J15 VSS F19 DVDD15 H3 CVDD1 J16 CVDD1 F20 DDRD25 H4 VSS J17 VSS F21 DDRD27 H5 CVDD1 J18 CVDD F22 DDRD17 H6 VSS J19 VSS F23 DDRD16 H7 CVDD1 J20 CVDD1 52 Device Overview Signal Name Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-18 Terminal Functions — By Ball Number (Part 7 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 8 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 9 of 21) Ball Number Signal Name Ball Number Signal Name Ball Number J21 VSS L5 VSS M18 VSS J22 CVDD1 L6 VSS M19 CVDD J23 RSV11 L7 VSS M20 VSS J24 RSV08 L8 CVDD1 M21 CVDD1 J25 RSV09 L9 VSS M22 VSS J26 AVDDA2 L10 CVDD1 M23 VDDT3 J27 VSS L11 VSS M24 VSS J28 RSV06 L12 CVDD M25 VDDT3 J29 VSS L13 VSS M26 AIFTXP0 K1 VSS L14 CVDD1 M27 VSS K2 VSS L15 VSS M28 AIFRXP0 K3 VSS L16 CVDD1 M29 VSS K4 VSS L17 VSS N1 VSS K5 VSS L18 CVDD N2 MCMRXN3 K6 VDDR1 L19 VSS N3 VSS K7 CVDD1 L20 CVDD1 N4 VSS K8 VSS L21 VSS N5 MCMTXP3 K9 CVDD1 L22 CVDD1 N6 VDDT1 K10 VSS L23 VSS N7 VSS K11 CVDD L24 VDDT3 N8 CVDD K12 VSS L25 RSV27 N9 VSS K13 CVDD1 L26 AIFTXN0 N10 CVDD K14 VSS L27 AIFTXN1 N11 VSS K15 CVDD1 L28 AIFRXN0 N12 CVDD K16 VSS L29 AIFRXP1 N13 VSS K17 CVDD1 M1 MCMRXP2 N14 CVDD K18 VSS M2 MCMRXP3 N15 VSS K19 CVDD M3 VSS N16 CVDD K20 VSS M4 MCMTXP2 N17 VSS K21 CVDD1 M5 MCMTXN3 N18 CVDD K22 VSS M6 VSS N19 VSS K23 RSV0B M7 VDDT1 N20 CVDD K24 RSV0A M8 VSS N21 VSS K25 VDDT3 M9 CVDD1 N22 CVDD K26 VSS M10 VSS N23 VSS K27 AIFTXP1 M11 CVDD N24 VDDT3 K28 VSS M12 VSS N25 VDDR6 K29 AIFRXN1 M13 CVDD N26 VSS L1 MCMRXN2 M14 VSS N27 AIFTXP3 L2 VSS M15 CVDD N28 VSS L3 VSS M16 VSS N29 AIFRXP3 L4 MCMTXN2 M17 CVDD P1 MCMRXN1 Copyright 2010 Texas Instruments Incorporated Signal Name Device Overview ADVANCE INFORMATION www.ti.com 53 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-18 Terminal Functions — By Ball Number (Part 10 of 21) www.ti.com Table 2-18 Terminal Functions — By Ball Number (Part 11 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 12 of 21) ADVANCE INFORMATION Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name P2 VSS R15 VSS T28 VSS P3 VSS R16 CVDD T29 AIFRXN4 P4 MCMTXP1 R17 VSS U1 VSS P5 VSS R18 CVDD U2 VSS P6 VSS R19 VSS U3 VSS P7 VDDT1 R20 CVDD U4 VSS P8 VSS R21 VSS U5 VSS P9 CVDD R22 CVDD U6 VSS P10 VSS R23 VSS U7 VSS P11 CVDD R24 VDDT3 U8 CVDD P12 VSS R25 VDDR5 U9 VSS P13 CVDD R26 AIFTXN2 U10 CVDD P14 VSS R27 VSS U11 VSS P15 CVDD R28 AIFRXN2 U12 CVDD P16 VSS R29 VSS U13 VSS P17 CVDD T1 VSS U14 CVDD P18 VSS T2 MCMRXN0 U15 VSS P19 CVDD T3 VSS U16 CVDD P20 VSS T4 VSS U17 VSS P21 CVDD T5 MCMTXN0 U18 CVDD P22 VSS T6 VSS U19 VSS P23 VDDT3 T7 VDDT1 U20 CVDD P24 VSS T8 VSS U21 VSS P25 VDDT3 T9 CVDD U22 CVDD P26 AIFTXP2 T10 VSS U23 VSS P27 AIFTXN3 T11 CVDD U24 VDDT3 P28 AIFRXP2 T12 VSS U25 RSV26 P29 AIFRXN3 T13 CVDD U26 AIFTXN5 R1 MCMRXP1 T14 VSS U27 AIFTXN4 R2 MCMRXP0 T15 CVDD U28 AIFRXN5 R3 VSS T16 VSS U29 AIFRXP4 R4 MCMTXN1 T17 CVDD V1 MCMREFCLKOUTN R5 MCMTXP0 T18 VSS V2 MCMREFCLKOUTP R6 VDDT1 T19 CVDD V3 MCMRXFLCLK R7 VSS T20 VSS V4 RSV14 R8 CVDD T21 CVDD V5 DVDD18 R9 VSS T22 VSS V6 VSS R10 CVDD T23 VDDT3 V7 VDDT1 R11 VSS T24 VSS V8 VSS R12 CVDD T25 VDDT3 V9 CVDD R13 VSS T26 VSS V10 VSS R14 CVDD T27 AIFTXP4 V11 CVDD 54 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-18 Terminal Functions — By Ball Number (Part 13 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 14 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 15 of 21) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name V12 VSS W25 VSS AA9 VSS V13 CVDD W26 VSS AA10 CVDD V14 VSS W27 RSV05 AA11 VSS V15 CVDD W28 VSS AA12 CVDD V16 VSS W29 VSS AA13 VSS V17 CVDD Y1 MCMTXFLCLK AA14 CVDD V18 VSS Y2 MCMTXFLDAT AA15 VSS V19 CVDD Y3 MCMRXPMDAT AA16 CVDD V20 VSS Y4 VCL AA17 VSS V21 CVDD Y5 DVDD18 AA18 CVDD V22 VSS Y6 VSS AA19 VSS V23 CVDD Y7 VDDT1 AA20 CVDD V24 VSS Y8 VSS AA21 VSS V25 VDDT3 Y9 CVDD AA22 CVDD V26 AIFTXP5 Y10 VSS AA23 VSS V27 VSS Y11 CVDD1 AA24 RSV18 V28 AIFRXP5 Y12 VSS AA25 VSS V29 VSS Y13 CVDD1 AA26 SYSCLKOUT W1 MCMCLKP Y14 VSS AA27 RADSYNC W2 MCMCLKN Y15 CVDD1 AA28 RP1CLKN W3 MCMRXFLDAT Y16 VSS AA29 RP1FBN W4 VD Y17 CVDD1 AB1 VCNTL3 W5 VSS Y18 VSS AB2 VSS W6 VDDT1 Y19 CVDD AB3 VCNTL1 W7 VSS Y20 VSS AB4 VCNTL0 W8 CVDD Y21 CVDD AB5 DVDD18 W9 VSS Y22 VSS AB6 VSS W10 CVDD Y23 CVDD AB7 VSS W11 VSS Y24 VSS AB8 VSS W12 CVDD1 Y25 DVDD18 AB9 VSS W13 VSS Y26 VSS AB10 VSS W14 CVDD1 Y27 RSV04 AB11 VSS W15 VSS Y28 RP1CLKP AB12 VSS W16 CVDD1 Y29 RP1FBP AB13 VSS W17 VSS AA1 MCMTXPMDAT AB14 VSS W18 CVDD AA2 MCMTXPMCLK AB15 AVDDA3 W19 VSS AA3 MCMRXPMCLK AB16 VSS W20 CVDD AA4 VCNTL2 AB17 DVDD18 W21 VSS AA5 VSS AB18 VSS W22 CVDD AA6 VSS AB19 DVDD18 W23 VSS AA7 VSS AB20 VSS W24 AVDDA1 AA8 CVDD AB21 DVDD18 Copyright 2010 Texas Instruments Incorporated Device Overview ADVANCE INFORMATION www.ti.com 55 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 2-18 Terminal Functions — By Ball Number (Part 16 of 21) Ball Number www.ti.com Table 2-18 Terminal Functions — By Ball Number (Part 17 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 18 of 21) ADVANCE INFORMATION Signal Name Ball Number Signal Name Ball Number Signal Name AB22 VSS AD6 VSS AE16 RSV22 AB23 CVDD AD7 VDDT2 AE17 EXTFRAMEEVENT AB24 VSS AD8 VSS AE18 GPIO05 AB25 CORECLKSEL AD9 VDDT2 AE18 † BOOTMODE04 AB26 RSV20 AD10 VSS AE19 GPIO03 AB27 PHYSYNC AD11 VDDT2 AE19 † BOOTMODE02 AB28 ALTCORECLKN AD12 VSS AE20 GPIO12 AB29 ALTCORECLKP AD13 VDDT2 AE20 † BOOTMODE11 AC1 VSS AD14 VSS AE21 GPIO09 AC2 DVDD18 AD15 CORESEL2 AE22 LRESET AC3 VSS AD16 RSV23 AE23 RESETFULL AC4 DVDD18 AD17 SDA AE24 DVDD18 AC5 VSS AD18 RESETSTAT AE25 EMU07 AC6 VDDT2 AD19 GPIO02 AE26 EMU04 AC7 VSS AD19 † BOOTMODE01 AE27 DVDD18 AC8 VDDT2 AD20 GPIO11 AE28 EMU02 AC9 VSS AD20 † BOOTMODE10 AE29 EMU00 AC10 VDDT2 AD21 GPIO15 AF1 CVDD1 AC11 VSS AD21 † PCIESSMODE1 AF2 VSS AC12 VDDT2 AD22 RSV12 AF3 SGMII0TXN AC13 VSS AD23 PACLKSEL AF4 SGMII0TXP AC14 VDDT2 AD24 VSS AF5 VSS AC15 VSS AD25 EMU05 AF6 RIOTXN3 AC16 CORESEL1 AD26 TRST AF7 RIOTXP3 AC17 SCL AD27 VSS AF8 VSS AC18 HOUT AD28 TDI AF9 RIOTXN1 AC19 POR AD29 TCK AF10 RIOTXP1 AC20 LRESETNMIEN AE1 VSS AF11 VSS AC21 BOOTCOMPLETE AE2 CVDD1 AF12 PCIETXN1 AC22 RSV13 AE3 VSS AF13 PCIETXP1 AC23 RSV03 AE4 VDDT2 AF14 VSS AC24 RESET AE5 RSV17 AF15 VSS AC25 NMI AE6 VDDR3 AF16 MDCLK AC26 TMS AE7 VSS AF17 RSV25 AC27 TDO AE8 RSV15 AF18 GPIO04 AC28 SYSCLKN AE9 VSS AF18 † BOOTMODE03 AC29 SYSCLKP AE10 VDDT2 AF19 DVDD18 AD1 CVDD1 AE11 VDDR4 AF20 VSS AD2 VSS AE12 VDDT2 AF21 GPIO13 AD3 CVDD1 AE13 VSS AF21 † BOOTMODE12 AD4 VSS AE14 RSV16 AF22 DVDD18 AD5 VDDT2 AE15 VDDR2 AF23 TIMO1 56 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Terminal Functions — By Ball Number (Part 19 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 20 of 21) Table 2-18 Terminal Functions — By Ball Number (Part 21 of 21) Ball Number Signal Name Ball Number Signal Name Ball Number Signal Name AF24 UARTRXD AH6 RIORXN3 AJ17 PCIECLKN AF25 EMU06 AH7 RIORXP3 AJ18 PASSCLKP AF26 EMU10 AH8 VSS AJ19 GPIO08 AF27 EMU08 AH9 RIORXP1 AJ19 † BOOTMODE07 AF28 EMU03 AH10 RIORXN1 AJ20 GPIO00 AF29 EMU01 AH11 VSS AJ20 † LENDIAN AG1 VSS AH12 PCIERXN1 AJ21 SPIDOUT AG2 CVDD1 AH13 PCIERXP1 AJ22 SPISCS1 AG3 VSS AH14 VSS AJ23 TIMI0 AG4 SGMII1TXN AH15 CORESEL0 AJ23 † PCIESSEN AG5 SGMII1TXP AH16 SRIOSGMIICLKN AJ24 UARTTXD AG6 VSS AH17 PCIECLKP AJ25 RSV01 AG7 RIOTXN2 AH18 PASSCLKN AJ26 EMU17 AG8 RIOTXP2 AH19 GPIO07 AJ27 EMU15 AG9 VSS AH19 † BOOTMODE06 AJ28 DVDD18 AG10 RIOTXP0 AH20 GPIO14 AJ29 VSS AG11 RIOTXN0 AH20 † PCIESSMODE0 End of Table 2-18 AG12 VSS AH21 SPISCS0 AG13 PCIETXP0 AH22 SPIDIN AG14 PCIETXN0 AH23 TIMO0 AG15 VSS AH24 UARTCTS AG16 MDIO AH25 EMU18 AG17 RSV24 AH26 DVDD18 AG18 GPIO01 AH27 EMU16 AG18 † BOOTMODE00 AH28 EMU14 AG19 GPIO10 AH29 DVDD18 AG20 GPIO06 AJ1 VSS AG20 † BOOTMODE05 AJ2 CVDD1 AG21 SPICLK AJ3 VSS AG22 VSS AJ4 SGMII1RXN AG23 TIMI1 AJ5 SGMII1RXP AG24 UARTRTS AJ6 VSS AG25 EMU13 AJ7 RIORXN2 AG26 VSS AJ8 RIORXP2 AG27 EMU12 AJ9 VSS AG28 EMU11 AJ10 RIORXP0 AG29 EMU09 AJ11 RIORXN0 AH1 CVDD1 AJ12 VSS AH2 VSS AJ13 PCIERXP0 AH3 SGMII0RXN AJ14 PCIERXN0 AH4 SGMII0RXP AJ15 VSS AH5 VSS AJ16 SRIOSGMIICLKP Copyright 2010 Texas Instruments Incorporated Device Overview ADVANCE INFORMATION Table 2-18 57 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2.9 Development 2.9.1 Development Support In case the customer would like to develop their own features and software on the C6670 device, TI offers an extensive line of development tools for the TMS320C6000™ DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). ADVANCE INFORMATION The following products support development of C6000™ DSP-based applications: • Software Development Tools: – Code Composer Studio™ Integrated Development Environment (IDE), including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools – Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any DSP application. • Hardware Development Tools: – Extended Development System (XDS™) Emulator (supports C6000™ DSP multiprocessor system debug) – EVM (Evaluation Module) 2.9.2 Device Support 2.9.2.1 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMX320CMH). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: • TMX: Experimental device that is not necessarily representative of the final device's electrical specifications • TMP: Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification • TMS: Fully qualified production device Support tool development evolutionary flow: • TMDX: Development-support product that has not yet completed Texas Instruments internal qualification testing. • TMDS: Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped with the following disclaimer: Developmental product is intended for internal evaluation purposes. TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. 58 Device Overview Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Related Documentation from Texas Instruments 64-bit Timer (Timer 64) for KeyStone Devices User Guide SPRUGV5 Antenna Interface 2 (AIF2) for KeyStone Devices User Guide SPRUGV7 Bootloader for the C66x DSP User Guide SPRUGY5 C66x CorePac User Guide SPRUGW0 C66x CPU and Instruction Set Reference Guide SPRUGH7 C66x DSP Cache User Guide SPRUGY8 DDR3 Design Guide for KeyStone Devices SPRABI1 Emulation and Trace Headers Technical Reference SPRU655 Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide SPRUGS5 Ethernet Media Access Control (EMAC) for KeyStone Devices User Guide SPRUGV9 Fast Fourier Transform Coprocessor (FFTC) for KeyStone Devices User Guide SPRUGS2 General Purpose Input/Output (GPIO) for KeyStone Devices User Guide SPRUGV1 Hardware Design Guide for KeyStone Devices SPRABI2 HyperLink for KeyStone Devices User Guide SPRUGW8 2 Inter Integrated Circuit (I C) for KeyStone Devices User Guide SPRUGV3 Interrupt Controller (INTC) for KeyStone Devices User Guide SPRUGW4 Memory Protection Unit (MPU) for KeyStone Devices User Guide SPRUGW5 Multicore Navigator for KeyStone Devices User Guide SPRUGR9 Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide SPRUGW7 Packet Accelerator (PA) for KeyStone Devices User Guide SPRUGS4 Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide SPRUGS6 Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide SPRUGV2 Power Management for KeyStone Devices SPRABH0 Power Sleep Controller (PSC) for KeyStone Devices User Guide SPRUGV4 Rake Search Accelerator (RSA) for KeyStone Devices User Guide SPRUGY7 Serial Peripheral Interface (SPI) for KeyStone Devices User Guide SPRUGP2 Serial RapidIO (SRIO) for KeyStone Devices User Guide SPRUGW1 Turbo Decoder Coprocessor 3 (TCP3d) for KeyStone Devices User Guide SPRUGS0 Turbo Encoder Coprocessor 3 (TCP3e) for KeyStone Devices User Guide SPRUGS1 Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices User Guide SPRUGP1 Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems SPRA387 Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs SPRA753 Using IBIS Models for Timing Analysis SPRA839 Viterbi Coprocessor (VCP2) for KeyStone Devices User Guide SPRUGV6 Copyright 2010 Texas Instruments Incorporated Device Overview ADVANCE INFORMATION These documents describe the TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip. Copies of these documents are available on the Internet at www.ti.com 59 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 3 Device Configuration On the TMS320C6670 device, certain device configurations like boot mode and endianess, are selected at device power-on reset. The status of the peripherals (enabled/disabled) is determined after device power-on reset. By default, the peripherals on the device are disabled and need to be enabled by software before being used. 3.1 Device Configuration at Device Reset ADVANCE INFORMATION Table 3-1 describes the device configuration pins. The logic level is latched at power-on reset to determine the device configuration. The logic level on the device configuration pins can be set by using external pullup/pulldown resistors or by using some control device (e.g., FPGA/CPLD) to intelligently drive these pins. When using a control device, care should be taken to ensure there is no contention on the lines when the device is out of reset. The device configuration pins are sampled during power-on reset and are driven after the reset is removed. To avoid contention, the control device must stop driving the device configuration pins of the DSP. Note—If a configuration pin must be routed out from the device and it is not driven (Hi-Z state), the internal pullup/pulldown (IPU/IPD) resistor should not be relied upon. TI recommends the use of an external pullup/pulldown resistor. For more detailed information on pullup/pulldown resistors and situations in which external pullup/pulldown resistors are required, see Section 3.4 ‘‘Pullup/Pulldown Resistors’’ on page 76. Table 3-1 TMS320C6670 Device Configuration Pins Configuration Pin Pin No. IPD/IPU (1) Functional Description (1) (2) AJ20 IPU Device endian mode (LENDIAN). 0 = Device operates in big endian mode 1 = Device operates in little endian mode BOOTMODE[12:0] (1) (2) AF21, AE20, AD20, AG19, AE21, AJ19, AH19, AG20, AE18, AF18, AE19, AD19, AG18 IPD Method of boot. See ‘‘Boot Modes Supported and PLL Settings’’ on page 27 for more details. See the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59 for detailed information on boot configuration AD21, AH20 IPD PCIe Subsystem mode selection. 00 = PCIe in end point mode 01 = PCIe legacy end point (no support for MSI) 10 = PCIe in root complex mode 11 = Reserved (1) (2) AJ23 IPD PCIe subsystem enable/disable. 0 = PCIE Subsystem is disabled 1 = PCIE Subsystem is enabled CORECLKSEL (1) AB25 IPD Core clock select. 0 = SYSCLK is used as the input to Main PLL 1 = ALTCORECLK is used as the input to Main PLL PACLKSEL(1) AD23 IPD Packet accelerator subsystem clock select. 0 = SYSCLK / ALTCORECLK (controlled by CORECLKSEL pin) is used as the input to PA_SS PLL 1 = PASSCLK is used as the input to PASS PLL LENDIAN PCIESSMODE[1:0] PCIESSEN (1) (2) End of Table 3-1 1 Internal 100-μA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see Section 3.4 ‘‘Pullup/Pulldown Resistors’’ on page 76. 2 These signal names are the secondary functions of these pins. 60 Device Configuration Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 3.2 Peripheral Selection After Device Reset Several of the peripherals on the TMS320C6670 are controlled by the Power Sleep Controller (PSC). By default, the PCIe, SRIO, HyperLink, FFTC, AIF2, TCP3d, TCP3e, and VCP are held in reset and clock-gated. The memories in these modules are also in a low-leakage sleep mode. Software is required to turn these memories on. Then, the software enables the modules (turns on clocks and de-asserts reset) before these modules can be used. All other modules come up enabled by default and there is no special software sequence to enable. For more detailed information on the PSC usage, see the Power Sleep Controller (PSC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 3.3 Device State Control Registers The TMS320C6670 device has a set of registers that are used to control the status of its peripherals. These registers are shown in Table 3-2. Table 3-2 Device State Control Registers (Part 1 of 3) Address Start Address End Size Acronym 0x02620000 0x02620007 8B Reserved 0x02620008 0x02620017 16B Reserved 0x02620018 0x0262001B 4B JTAGID 0x0262001C 0x0262001F 4B Reserved 0x02620020 0x02620023 4B DEVSTAT Description See section 3.3.3 See section 3.3.1 0x02620024 0x02620037 20B Reserved 0x02620038 0x0262003B 4B KICK0 0x0262003C 0x0262003F 4B KICK1 0x02620040 0x02620043 4B DSP_BOOT_ADDR0 The boot address for C66x DSP CorePac 0 0x02620044 0x02620047 4B DSP_BOOT_ADDR1 The boot address for C66x DSP CorePac 1 0x02620048 0x0262004B 4B DSP_BOOT_ADDR2 The boot address for C66x DSP CorePac 2 The boot address for C66x DSP CorePac 3 See section 3.3.4 0x0262004C 0x0262004F 4B DSP_BOOT_ADDR3 0x02620050 0x02620053 4B Reserved 0x02620054 0x02620057 4B Reserved 0x02620058 0x0262005B 4B Reserved 0x0262005C 0x0262005F 4B Reserved 0x02620060 0x026200DF 128B Reserved 0x026200E0 0x0262010F 48B Reserved 0x02620110 0x02620117 8B MACID 0x02620118 0x0262012F 24B Reserved 0x02620130 0x02620133 4B LRSTNMIPINSTAT_CLR See section 3.3.6 See section 3.3.8 0x02620134 0x02620137 4B RESET_STAT_CLR 0x02620138 0x0262013B 4B Reserved 0x0262013C 0x0262013F 4B BOOTCOMPLETE 0x02620140 0x02620143 4B Reserved See section 7.19 ‘‘Ethernet MAC (EMAC)’’ on page 190 See section 3.3.9 0x02620144 0x02620147 4B RESET_STAT See section 3.3.7 0x02620148 0x0262014B 4B LRSTNMIPINSTAT See section 3.3.5 0x0262014C 0x0262014F 4B DEVCFG See section 3.3.2 Copyright 2010 Texas Instruments Incorporated Device Configuration 61 ADVANCE INFORMATION If one of the above modules is used in the selected ROM boot mode, the ROM code will automatically enable the module. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 3-2 www.ti.com Device State Control Registers (Part 2 of 3) ADVANCE INFORMATION Address Start Address End Size Acronym Description 0x02620150 0x02620153 4B PWRSTATECTL See section 3.3.10 0x02620154 0x0262017F 44B Reserved 0x02620180 0x02620183 4B Reserved 0x02620184 0x0262018F 12B Reserved 0x02620190 0x02620193 4B Reserved 0x02620194 0x02620197 4B Reserved 0x02620198 0x0262019B 4B Reserved 0x0262019C 0x0262019F 4B Reserved 0x026201A0 0x026201A3 4B Reserved 0x026201A4 0x026201A7 4B Reserved 0x026201A8 0x026201AB 4B Reserved 0x026201AC 0x026201AF 4B Reserved 0x026201B0 0x026201B3 4B Reserved 0x026201B4 0x026201B7 4B Reserved 0x026201B8 0x026201BB 4B Reserved 0x026201BC 0x026201BF 4B Reserved 0x026201C0 0x026201C3 4B Reserved 0x026201C4 0x026201C7 4B Reserved 0x026201C8 0x026201CB 4B Reserved 0x026201CC 0x026201CF 4B Reserved 0x026201D0 0x026201FF 48B Reserved 0x02620200 0x02620203 4B NMIGR0 0x02620204 0x02620207 4B NMIGR1 0x02620208 0x0262020B 4B NMIGR2 0x0262020C 0x0262020F 4B NMIGR3 0x02620210 0x02620213 4B Reserved 0x02620214 0x02620217 4B Reserved 0x02620218 0x0262021B 4B Reserved 0x0262021C 0x0262021F 4B Reserved 0x02620220 0x0262023F 32B Reserved 0x02620240 0x02620243 4B IPCGR0 0x02620244 0x02620247 4B IPCGR1 0x02620248 0x0262024B 4B IPCGR2 0x0262024C 0x0262024F 4B IPCGR3 0x02620250 0x02620253 4B Reserved 0x02620254 0x02620257 4B Reserved 0x02620258 0x0262025B 4B Reserved 0x0262025C 0x0262025F 4B Reserved 0x02620260 0x0262027B 28B Reserved 0x0262027C 0x0262027F 4B IPCGRH 62 Device Configuration See section 3.3.11 See section 3.3.12 See section 3.3.14 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Device State Control Registers (Part 3 of 3) Address Start Address End Size Acronym Description 0x02620280 0x02620283 4B IPCAR0 See section 3.3.13 0x02620284 0x02620287 4B IPCAR1 0x02620288 0x0262028B 4B IPCAR2 0x0262028C 0x0262028F 4B IPCAR3 0x02620290 0x02620293 4B Reserved 0x02620294 0x02620297 4B Reserved 0x02620298 0x0262029B 4B Reserved 0x0262029C 0x0262029F 4B Reserved 0x026202A0 0x026202BB 28B Reserved 0x026202BC 0x026202BF 4B IPCARH 0x026202C0 0x026202FF 64B Reserved See section 3.3.15 0x02620300 0x02620303 4B TINPSEL See section 3.3.16 0x02620304 0x02620307 4B TOUTPSEL See section 3.3.17 See section 3.3.18 0x02620308 0x0262030B 4B RSTMUX0 0x0262030C 0x0262030F 4B RSTMUX1 0x02620310 0x02620313 4B RSTMUX2 0x02620314 0x02620317 4B RSTMUX3 0x02620318 0x0262031B 4B Reserved 0x0262031C 0x0262031F 4B Reserved 0x02620320 0x02620323 4B Reserved 0x02620324 0x02620327 4B Reserved ADVANCE INFORMATION Table 3-2 0x02620328 0x0262032B 4B MAINPLLCTL0 0x0262032C 0x0262032F 4B Reserved 0x02620330 0x02620333 4B DDR3PLLCTL0 0x02620334 0x02620337 4B Reserved 0x02620338 0x0262033B 4B PAPLLCTL0 0x0262033C 0x026203FF 196B Reserved See section 7.8 ‘‘Main PLL and the PLL Controller’’ on page 160 See section 7.9 ‘‘DDR3 PLL’’ on page 173 See section 7.10 ‘‘PASS PLL’’ on page 174 0x02620400 0x02620403 4B PKTDMA_PRI_ALLOC 0x02620404 0x02620467 100B Reserved See section 4.4 ‘‘Bus Priorities’’ on page 80 End of Table 3-2 3.3.1 Device Status Register The Device Status Register depicts the device configuration selected upon a power-on reset by either the POR or RESETFULL pin. Once set, these bits will remain set until a power-on reset. The Device Status Register is shown in Figure 3-1 and described in Table 3-3. Figure 3-1 Device Status Register 31 18 Reserved 17 16 PACLKSEL PCIESSEN PCIESSMODE[1:0 BOOTMODE[12:0] R-x R/W-xx R/W-xxxxxxxxxxxx R-0 15 14 13 1 0 LENDIAN R-x (1) Legend: R = Read only; RW = Read/Write; -n = value after reset 1 x indicates the bootstrap value latched via the external pin Copyright 2010 Texas Instruments Incorporated Device Configuration 63 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 3-3 www.ti.com Device Status Register Field Descriptions ADVANCE INFORMATION Bit Field Description 31-18 Reserved Reserved. Read only, writes have no effect. 17 PACLKSEL PA Clock select to select the reference clock for PA Sub-System PLL 0 = Selects PASSCLKP/N 1 = Selects output of Main PLL MUX (SYSCLK vs. ALTCORECLK - depending on CORECLKSEL pin) 16 PCIESSEN PCIe module enable 0 = PCIe module disabled 1 = PCIe module enabled 15-14 PCIESSMODE[1:0] PCIe Mode selection pins 00b = PCIe in End-point mode 01b = PCIe in Legacy End-point mode (no support for MSI) 10b = PCIe in Root complex mode 11b = Reserved 13-1 BOOTMODE[12:0] Determines the bootmode configured for the device. For more information on bootmode, see Section 2.5 ‘‘Boot Modes Supported and PLL Settings’’ on page 27 and see the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 0 LENDIAN Device Endian mode (LENDIAN) — Shows the status of whether the system is operating in Big Endian mode or Little Endian mode (default). 0 = System is operating in Big Endian mode 1 = System is operating in Little Endian mode (default) End of Table 3-3 3.3.2 Device Configuration Register The Device Configuration Register is one-time writeable through software. The register is reset on all hard resets and is locked after the first write. The Device Configuration Register is shown in Figure 3-2 and described in Table 3-4. Figure 3-2 Device Configuration Register (DEVCFG) 31 1 0 Reserved SYSCLKOUTEN R-0 R/W-1 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-4 Bit 31:1 0 Device Configuration Register Field Descriptions Field Description Reserved Reserved. Read only, writes have no effect. SYSCLKOUTEN SYSCLKOUT Enable 0 = No clock output 1 = Clock output enabled (default) End of Table 3-4 64 Device Configuration Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 3.3.3 JTAG ID (JTAGID) Register Description The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x02620018. The JTAG ID Register is shown in Figure 3-3 and described in Table 3-5. Figure 3-3 JTAG ID (JTAGID) Register 31 28 27 12 11 1 0 VARIANT PART NUMBER MANUFACTURER LSB R-0000 R-0000 0000 1001 1101 0000 0010 111b R-1 Table 3-5 JTAG ID Register Field Descriptions Bit Acronym Value Description 31-28 VARIANT 0000b Variant (4-Bit) value. The value of this field depends on the silicon revision being used. 27-12 PART NUMBER 0000 0000 1001 1101b Part Number for boundary scan 11-1 MANUFACTURER 0000 0010 111b Manufacturer LSB 1b This bit is read as a 1 for TMS320C6670 0 End of Table 3-5 3.3.4 Kicker Mechanism (KICK0 and KICK1) Register The Bootcfg module contains a kicker mechanism to prevent any spurious writes from changing any of the Bootcfg MMR values. When the kicker is locked (which it is initially after power on reset) none of the Bootcfg MMRs are writable (they are only readable). This mechanism requires two MMR writes to the KICK0 and KICK1 registers with exact data values before the kicker lock mechanism is un-locked. See Table 3-2 ‘‘Device State Control Registers’’ on page 61 for the address location. Once released then all the Bootcfg MMRs having “write” permissions are writable (the read only MMRs are still read only). The first KICK0 data is 0x83e70b13. The second KICK1 data is 0x95a4f1e0. Writing any other data value to either of these kick MMRs will lock the kicker mechanism and block any writes to Bootcfg MMRs. In order to ensure protection to all Bootcfg MMRs, software must always re-lock the kicker mechanism after completing the MMR writes. 3.3.5 LRESETNMI PIN Status (LRSTNMIPINSTAT) Register The LRSTNMIPINSTAT Register is created in Boot Configuration to latch the status of LRESET and NMI based on CORESEL. The LRESETNMI PIN Status Register is shown in Figure 3-4 and described in Table 3-6. Figure 3-4 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) 31 20 19 18 17 16 Reserved NMI3 NMI2 NMI1 NMI0 R, +000000000000 R-0 R-0 R-0 R-0 15 4 3 2 1 0 Reserved LR3 LR2 LR1 LR0 R, +000000000000 R-0 R-0 R-0 R-0 Legend: R = Read only; -n = value after reset Table 3-6 Bit 31-20 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) Field Descriptions (Part 1 of 2) Field Description Reserved Reserved 19 NMI3 CorePac 3 in NMI 18 NMI2 CorePac 2 in NMI Copyright 2010 Texas Instruments Incorporated Device Configuration 65 ADVANCE INFORMATION Legend: RW = Read/Write; R = Read only; -n = value after reset TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 3-6 Bit Field 17 Description NMI1 16 www.ti.com LRESETNMI PIN Status Register (LRSTNMIPINSTAT) Field Descriptions (Part 2 of 2) CorePac 1 in NMI NMI0 CorePac 0 in NMI Reserved Reserved 3 LR4 CorePac 3 in Local Reset 2 LR3 CorePac 2 in Local Reset 1 LR31 CorePac 1 in Local Reset 0 LR0 CorePac 0 in Local Reset 15-4 End of Table 3-6 ADVANCE INFORMATION 3.3.6 LRESETNMI PIN Status Clear (LRSTNMIPINSTAT_CLR) Register The LRSTNMIPINSTAT_CLR Register is used to clear the status of LRESET and NMI based on CORESEL[2:0]. The LRESETNMI PIN Status Clear Register is shown in Figure 3-5 and described in Table 3-7. Figure 3-5 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) 31 20 19 Reserved NMI3 R,+000000000000 WC,+0 (1) 18 17 16 NMI2 NMI1 NMI0 WC,+0 WC,+0 WC,+0 15 4 3 2 1 0 Reserved LR3 LR2 LR1 LR0 R,+000000000000 WC,+0 WC,+0 WC,+0 WC,+0 Legend: R = Read only; -n = value after reset; WC = Write 1 to Clear 1 RC: Write one to clear. Table 3-7 Bit LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) Field Descriptions Field 31-20 Description Reserved Reserved 19 NMI3 CorePac 3 in NMI Clear 18 NMI2 CorePac 2 in NMI Clear 17 NMI1 CorePac 1 in NMI Clear 16 NMI0 CorePac 0 in NMI Clear Reserved Reserved 3 LR3 CorePac 3 in Local Reset Clear 2 LR2 CorePac 2 in Local Reset Clear 1 LR1 CorePac 1 in Local Reset Clear 0 LR0 CorePac 0 in Local Reset Clear 15-4 End of Table 3-7 3.3.7 Reset Status (RESET_STAT) Register The reset status register (RESET_STAT) captures the status of Local reset (LRx) for each of the cores and also the global device reset (GR). Software can use this information to take different device initialization steps, if desired. • In case of Local reset: The LRx bits are written as 1 and GR bit is written as 0 only when the CorePac receives an local reset without receiving a global reset. • In case of Global reset: The LRx bits are written as 0 and GR bit is written as 1 only when a global reset is asserted. 66 Device Configuration Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com The Reset Status Register is shown in Figure 3-6 and described in Table 3-8. Figure 3-6 31 Reset Status Register (RESET_STAT) 30 4 3 2 1 0 GR Reserved LR3 LR2 LR1 LR0 R, +1 R, + 000 0000 0000 0000 0000 0000 0000 R,+0 R,+0 R,+0 R,+0 Legend: R = Read only; -n = value after reset Reset Status Register (RESET_STAT) Field Descriptions Bit 31 Field Description GR Global reset status 0 = Device has not received a global reset. 1 = Device received a global reset. Reserved Reserved. 3 LR3 CorePac 3 reset status 0 = CorePac 3 has not received a local reset. 1 = CorePac 3 received a local reset. 2 LR2 CorePac 2 reset status 0 = CorePac 2 has not received a local reset. 1 = CorePac 2 received a local reset. 1 LR1 CorePac 1 reset status 0 = CorePac 1 has not received a local reset. 1 = CorePac 1 received a local reset. 0 LR0 CorePac 0 reset status 0 = CorePac 0 has not received a local reset. 1 = CorePac 0 received a local reset. 30-4 ADVANCE INFORMATION Table 3-8 End of Table 3-8 3.3.8 Reset Status Clear (RESET_STAT_CLR) Register The RESET_STAT bits can be cleared by writing 1 to the corresponding bit in the RESET_STAT_CLR register. The Reset Status Clear Register is shown in Figure 3-7 and described in Table 3-9. Figure 3-7 31 Reset Status Clear Register (RESET_STAT_CLR) 30 4 3 2 1 0 GR Reserved LR3 LR2 LR1 LR0 RW, +0 R, + 000 0000 0000 0000 0000 0000 0000 RW,+0 RW,+0 RW,+0 RW,+0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-9 Bit 31 30-4 3 Reset Status Clear Register (RESET_STAT_CLR) Field Descriptions (Part 1 of 2) Field Description GR Global Reset Clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the GR bit clears the corresponding bit in the RESET_STAT register. Reserved Reserved. LR3 CorePac 3 reset Clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR3 bit clears the corresponding bit in the RESET_STAT register. Copyright 2010 Texas Instruments Incorporated Device Configuration 67 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 3-9 Bit www.ti.com Reset Status Clear Register (RESET_STAT_CLR) Field Descriptions (Part 2 of 2) Field Description 2 LR2 CorePac 2 reset Clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR2 bit clears the corresponding bit in the RESET_STAT register. 1 LR1 CorePac 1 reset Clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR1 bit clears the corresponding bit in the RESET_STAT register. 0 LR0 CorePac 0 reset Clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR0 bit clears the corresponding bit in the RESET_STAT register. ADVANCE INFORMATION End of Table 3-9 3.3.9 Boot Complete (BOOTCOMPLETE) Register The BOOTCOMPLETE register controls the BOOTCOMPLETE pin status. The purpose is to indicate the completion of the ROM booting process. The Boot Complete Register is shown in Figure 3-8 and described in Table 3-10. Figure 3-8 Boot Complete Register (BOOTCOMPLETE) 31 4 3 2 1 0 Reserved BC3 BC BC1 BC0 R, + 0000 0000 0000 0000 0000 0000 0000 RW,+0 RW,+0 RW,+0 RW,+0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-10 Bit 31-4 Boot Complete Register (BOOTCOMPLETE) Field Descriptions Field Description Reserved Reserved. 3 BC3 CorePac 4 boot status 0 = CorePac 4 boot NOT complete 1 = CorePac 4 boot complete 2 BC2 CorePac 3 boot status 0 = CorePac 3 boot NOT complete 1 = CorePac 3 boot complete 1 BC1 CorePac 2 boot status 0 = CorePac 2 boot NOT complete 1 = CorePac 2 boot complete 0 BC0 CorePac 1 boot status 0 = CorePac 1 boot NOT complete 1 = CorePac 1 boot complete End of Table 3-10 The BCx bit indicates the boot complete status of the corresponding core. All BCx bits will be sticky bits — that is they can be set only once by the software after device reset and they will be cleared to 0 on all device resets. Boot ROM code will be implemented such that each core will set its corresponding BCx bit immediately before branching to the predefined location in memory. 68 Device Configuration Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 3.3.10 Power State Control (PWRSTATECTL) Register The PWRSTATECTL register is controlled by the software to indicate the power-saving mode. ROM code reads this register to differentiate between the various power saving modes. This register is cleared only by POR and will survive all other device resets. See the Hardware Design Guide for KeyStone Devices in‘‘Related Documentation from Texas Instruments’’ on page 59 for more information. The Power State Control Register is shown in Figure 3-9 and described in Table 3-11. Power State Control Register (PWRSTATECTL) 31 3 2 1 0 GENERAL_PURPOSE HIBERNATION_MODE HIBERNATION STANDBY RW, +0000 0000 0000 0000 0000 0000 0000 0 RW,+0 RW,+0 RW,+0 Legend: RW = Read/Write; -n = value after reset Table 3-11 Bit Power State Control Register (PWRSTATECTL) Field Descriptions Field Description GENERAL_PURPOSE Used to provide a start address for execution out of the hibernation modes. See the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 2 HIBERNATION_MODE Indicates whether the device is in hibernation mode 1 or mode 2. 0 = Hibernation mode 1 1 = Hibernation mode 2 1 HIBERNATION Indicates whether the device is in hibernation mode or not. 0 = Not in hibernation mode 1 = Hibernation mode 0 STANDBY Indicates whether the device is in standby mode or not. 0 = Not in standby mode 1 = Standby mode 31-3 End of Table 3-11 3.3.11 NMI Even Generation to CorePac (NMIGRx) Register NMIGRx registers are used for generating NMI events to the corresponding CorePac. The C6670 has four NMIGRx registers (NMIGR0 through NMIGR3). The NMIGR0 register generates an NMI event to CorePac0, the NMIGR1 register generates an NMI event to CorePac1, and so on. Writing a 1 to the NMIG field generates a NMI pulse. Writing a 0 has no effect and Reads return 0 and have no other effect. The NMI Even Generation to CorePac Register is shown in Figure 3-10 and described in Table 3-12. Figure 3-10 NMI Generation Register (NMIGRx) 31 1 0 GENERAL_PURPOSE NMIG R, +0000 0000 0000 0000 0000 0000 0000 000 RW,+0 Legend: RW = Read/Write; -n = value after reset Copyright 2010 Texas Instruments Incorporated Device Configuration 69 ADVANCE INFORMATION Figure 3-9 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 3-12 Bit NMI Generation Register (NMIGRx) Field Descriptions Field 31-1 0 www.ti.com Description Reserved Reserved NMIG Reads return 0 Writes: 0 = No effect 1 = Creates NMI pulse to the corresponding CorePac — CorePac0 for NMIGR0, etc. End of Table 3-12 ADVANCE INFORMATION 3.3.12 IPC Generation (IPCGRx) Registers IPCGRx are the IPC interrupt generation registers to facilitate inter CorePac interrupts. The C6670 has four IPCGRx registers (IPCGR0 through IPCGR3) registers. This can be used by external hosts or CorePacs to generate interrupts to other CorePacs. A write of 1 to IPCG field of IPCGRx register will generate an interrupt pulse to CorePacx (0 <= x <= 3). These registers also provide a Source ID facility by which up to 28 different sources of interrupts can be identified. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are given in the following tables. Virtually anything can be a source for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Generation Register is shown in Figure 3-11 and described in Table 3-13. Figure 3-11 IPC Generation Registers (IPCGRx) 31 30 29 28 SRCS27 SRCS26 SRCS25 SRCS24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 1 0 SRCS23 – SRCS4 SRCS3 SRCS2 RCS1 SRCS0 Reserved IPCG RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R, +000 RW +0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-13 Bit 31-4 IPC Generation Registers (IPCGRx) Field Descriptions Field Description SRCSx Reads return current value of internal register bit. Writes: 0 = No effect 1 = Sets both SRCSx and the corresponding SRCCx. 3-1 0 Reserved Reserved IPCG Reads return 0. Writes: 0 = No effect 1 = Creates an Inter-DSP interrupt. End of Table 3-13 3.3.13 IPC Acknowledgement (IPCARx) Registers IPCARx are the IPC interrupt-acknowledgement registers to facilitate inter-CorePac core interrupts. 70 Device Configuration Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com The C6670 has four IPCARx (IPCAR0 through IPCAR3) registers. These registers also provide a Source ID facility by which up to 28 different sources of interrupts can be identified. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are given in the following tables. Virtually anything can be a source for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Acknowledgement Register is shown in Figure 3-12 and described in Table 3-14. IPC Acknowledgement Registers (IPCARx) 31 30 29 28 SRCC27 SRCC26 SRCC25 SRCC24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 0 SRCC23 – SRCC4 SRCC3 SRCC2 RCC1 SRCC0 Reserved RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R, +0000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-14 Bit 31-4 IPC Acknowledgement Registers (IPCARx) Field Descriptions Field Description SRCCx Reads return current value of internal register bit. Writes: 0 = No effect 1 = Clears both SRCCx and the corresponding SRCSx 3-0 Reserved Reserved End of Table 3-14 3.3.14 IPC Generation Host (IPCGRH) Register IPCGRH register is provided to facilitate host CPU interrupt. Operation and use of IPCGRH is the same as other IPCGR registers. Interrupt output pulse created by IPCGRH is driven on a device pin, host interrupt/event output (HOUT). The host interrupt output pulse should be stretched. It should be asserted for 4 bootcfg clock cycles (CPU/6) followed by a deassertion of 4 bootcfg clock cycles. Generating the pulse will result in 8 CPU/6 cycle pulse blocking window. Write to IPCGRH with IPCG bit (bit 0) set will only generate a pulse if they are beyond 8 CPU/6 cycle period. The IPC Generation Host Register is shown in Figure 3-13 and described in Table 3-15. Figure 3-13 IPC Generation Registers (IPCGRH) 31 30 29 28 SRCS27 SRCS26 SRCS25 SRCS24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 1 0 SRCS23 – SRCS4 SRCS3 SRCS2 RCS1 SRCS0 Reserved IPCG RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R, +000 RW +0 Legend: R = Read only; RW = Read/Write; -n = value after reset Copyright 2010 Texas Instruments Incorporated Device Configuration 71 ADVANCE INFORMATION Figure 3-12 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 3-15 IPC Generation Registers (IPCGRH) Field Descriptions Bit Field 31-4 www.ti.com Description SRCSx Reads return current value of internal register bit. Writes: 0 = No effect 1 = Sets both SRCSx and the corresponding SRCCx. 3-1 0 Reserved Reserved IPCG Reads return 0. ADVANCE INFORMATION Writes: 0 = No effect 1 = Creates an interrupt pulse on device pin (host interrupt/event output in HOUT pin) End of Table 3-15 3.3.15 IPC Acknowledgement Host (IPCARH) Register IPCARH registers are provided to facilitate host CPU interrupt. Operation and use of IPCARH is the same as other IPCAR registers. The IPC Acknowledgement Host Register is shown in Figure 3-14 and described in Table 3-16. Figure 3-14 IPC Acknowledgement Register (IPCARH) 31 30 29 28 27 SRCC27 SRCC26 SRCC25 SRCC24 RW +0 RW +0 RW +0 RW +0 8 7 6 5 4 3 0 SRCC23 – SRCC4 SRCC3 SRCC2 RCC1 SRCC0 Reserved RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R, +0000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-16 IPC Acknowledgement Register (IPCARH) Field Descriptions Bit Field 31-4 Description SRCCx Reads return current value of internal register bit. Writes: 0 = No effect 1 = Clears both SRCCx and the corresponding SRCSx 3-0 Reserved Reserved End of Table 3-16 3.3.16 Timer Input Selection Register (TINPSEL) Timer input selection is handled within the control register TINPSEL. The Timer Input Selection Register is shown in Figure 3-15 and described in Table 3-17. Figure 3-15 Timer Input Selection Register (TINPSEL) 31 16 15 14 13 12 11 10 9 Reserved TINPHSEL7 TINPLSEL7 TINPHSEL6 TINPLSEL6 TINPHSEL5 TINPLSEL5 TINPHSEL4 0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 spacer 8 7 6 5 4 3 2 1 0 TINPLSEL4 TINPHSEL3 TINPLSEL3 TINPHSEL2 TINPLSEL2 TINPHSEL1 TINPLSEL1 TINPHSEL0 TINPLSEL0 RW, +0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 RW, +1 RW, +1 RW, +0 Legend: R = Read only; RW = Read/Write; -n = value after reset 72 Device Configuration Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Bit Timer Input Selection Field Description (TINPSEL) Field 31-16 Reserved Description Reserved 15 TINPHSEL7 Input select for TIMER7 high. 0 = TIMI0 1 = TIMI1 14 TINPLSEL7 Input select for TIMER7 low. 0 = TIMI0 1 = TIMI1 13 TINPHSEL6 Input select for TIMER6 high. 0 = TIMI0 1 = TIMI1 12 TINPLSEL6 Input select for TIMER6 low. 0 = TIMI0 1 = TIMI1 11 TINPHSEL5 Input select for TIMER5 high. 0 = TIMI0 1 = TIMI1 10 TINPLSEL5 Input select for TIMER5 low. 0 = TIMI0 1 = TIMI1 9 TINPHSEL4 Input select for TIMER4 high. 0 = TIMI0 1 = TIMI1 8 TINPLSEL4 Input select for TIMER4 low. 0 = TIMI0 1 = TIMI1 7 TINPHSEL3 Input select for TIMER3 high. 0 = TIMI0 1 = TIMI1 6 TINPLSEL3 Input select for TIMER3 low. 0 = TIMI0 1 = TIMI1 5 TINPHSEL2 Input select for TIMER2 high. 0 = TIMI0 1 = TIMI1 4 TINPLSEL2 Input select for TIMER2 low. 0 = TIMI0 1 = TIMI1 3 TINPHSEL1 Input select for TIMER1 high. 0 = TIMI0 1 = TIMI1 2 TINPLSEL1 Input select for TIMER1 low. 0 = TIMI0 1 = TIMI1 1 TINPHSEL0 Input select for TIMER0 high. 0 = TIMI0 1 = TIMI1 0 TINPLSEL0 Input select for TIMER0 low. 0 = TIMI0 1 = TIMI1 ADVANCE INFORMATION Table 3-17 End of Table 3-17 Copyright 2010 Texas Instruments Incorporated Device Configuration 73 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 3.3.17 Timer Output Selection Register (TOUTPSEL) The timer output selection is handled within the control register TOUTSEL. The Timer Output Selection Register is shown in Figure 3-16 and described in Table 3-18. Figure 3-16 Timer Output Selection Register (TOUTPSEL) 31 9 8 5 4 3 0 Reserved TOUTPSEL1 Reserved TOUTPSEL0 R,+0000000000000000000000000 RW,+0001 0 RW,+0000 Legend: R = Read only; RW = Read/Write; -n = value after reset ADVANCE INFORMATION Table 3-18 Timer Output Selection Field Description (TOUTPSEL) Bit Field Description 31-9 Reserved Reserved 8-5 TOUTPSEL1 Output select for TIMO1 0000: TOUTL0 0001: TOUTH0 0010: TOUTL1 0011: TOUTH1 0100: TOUTL2 0101: TOUTH2 0110: TOUTL3 0111: TOUTH3 4 Reserved Reserved 3-0 TOUTPSEL0 Output select for TIMO0 0000: TOUTL0 0001: TOUTH0 0010: TOUTL1 0011: TOUTH1 0100: TOUTL2 0101: TOUTH2 0110: TOUTL3 0111: TOUTH3 1000: TOUTL4 1001: TOUTH4 1010: TOUTL5 1011: TOUTH5 1100: TOUTL6 1101: TOUTH6 1110: TOUTL7 1111: TOUTH7 1000: TOUTL4 1001: TOUTH4 1010: TOUTL5 1011: TOUTH5 1100: TOUTL6 1101: TOUTH6 1110: TOUTL7 1111: TOUTH7 End of Table 3-18 3.3.18 Reset Mux (RSTMUXx) Register The software controls the Reset Mux block through the reset multiplex registers using RSTMUX0 through RSTMUX3 for each of the four CorePacs on the C6670. These registers are located in Bootcfg memory space. The Timer Output Selection Register is shown in Figure 3-17 and described in Table 3-19. Figure 3-17 Reset Mux Register (RSTMUX0 through RSTMUX3) 31 10 9 8 7 5 4 3 1 0 Reserved EVTSTATCLR Reserved DELAY EVTSTAT OMODE LOCK R, +0000 0000 0000 0000 0000 00 RC, +0 R, +0 RW, +100 R, +0 RW, +000 RW, +0 Legend: R = Read only; RW = Read/Write; -n = value after reset; RC = Read only and write 1 to clear 74 Device Configuration Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Bit 31-10 Reset Mux Register Field Descriptions Field Description Reserved Reserved 9 EVTSTATCLR 8 Reserved 7-5 0 = Writing O had no effect 1 = Writing 1 to this bit clears the EVTSTAT bit Reserved DELAY 000b = 256 CPU/6 cycles delay between NMI & Local reset, when OMODE = 100b 001b = 512 CPU/6 cycles delay between NMI & Local reset, when OMODE=100b 010b = 1024 CPU/6 cycles delay between NMI & Local reset, when OMODE=100b 011b = 2048 CPU/6 cycles delay between NMI & Local reset, when OMODE=100b 100b = 4096 CPU/6 cycles delay between NMI & Local reset, when OMODE=100b (Default) 101b = 8192 CPU/6 cycles delay between NMI & Local reset, when OMODE=100b 110b = 16384 CPU/6 cycles delay between NMI & Local reset, when OMODE=100b 111b = 32768 CPU/6 cycles delay between NMI & Local reset, when OMODE=100b 4 EVTSTAT 0 = No event received (Default) 1 = WD timer event received by Reset Mux block 3-1 OMODE 000b = WD Timer Event input to the Reset Mux block does not cause any output event (Default) 001b = Reserved 010b = WD Timer Event input to the Reset Mux block causes local reset input to CorePac 011b = WD Timer Event input to the Reset Mux block causes NMI input to CorePac 100b = WD Timer Event input to the Reset Mux block causes NMI input followed by Local reset input to CorePac. Delay between NMI and local reset is set in DELAY bit field. 101b = WD Timer Event input to the Reset Mux block causes Device Reset to C6670 110b = Reserved 111b = Reserved LOCK 0 = Register fields are not locked (Default) 1 = Register fields are locked until the next timer reset 0 ADVANCE INFORMATION Table 3-19 End of Table 3-19 Copyright 2010 Texas Instruments Incorporated Device Configuration 75 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 3.4 Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Device Configuration Pins: If the pin is both routed out and are not driven (in Hi-Z state), an external pullup/pulldown resistor must be used, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. ADVANCE INFORMATION For the device configuration pins (listed in Table 3-1), if they are both routed out and are not driven (in Hi-Z state), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device configuration pins. In addition, applying external pullup/pulldown resistors on the device configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value that can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration that sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the DVDD rail. For most systems: • A 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • A 20-kΩ resistor can be used to compliment the IPU/IPD on the device configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. For more detailed information on input current (II), and the low-level/high-level input voltages (VIL and VIH) for the TMS320C6670 device, see Section 6.3 ‘‘Electrical Characteristics’’ on page 92. To determine which pins on the device include internal pullup/pulldown resistors, see Table 2-16 ‘‘Terminal Functions — Power and Ground’’ on page 46. 76 Device Configuration Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip www.ti.com SPRS689—November 2010 4 System Interconnect On the TMS320C6670 device, the C66x CorePac, the EDMA3 transfer controllers, and the system peripherals are interconnected through two switch fabrics. The switch fabrics allow for low-latency, concurrent data transfers between master peripherals and slave peripherals. The switch fabrics also allow for seamless arbitration between the system masters when accessing system slaves. Two types of buses exist in the device: data buses and configuration buses. Some peripherals have both a data bus and a configuration bus interface, while others only have one type of interface. Furthermore, the bus interface width and speed varies from peripheral to peripheral. Configuration buses are mainly used to access the register space of a peripheral and the data buses are used mainly for data transfers. However, in some cases, the configuration bus is also used to transfer data. For example, data is transferred to the VCP2 via its configuration bus. Similarly, the data bus can also be used to access the register space of a peripheral. For example, the DDR3 memory controller registers are accessed through their data bus interface. The C66x CorePac, the EDMA3 traffic controllers, and the various system peripherals can be classified into two categories: masters and slaves. Masters are capable of initiating read and write transfers in the system and do not rely on the EDMA3 for their data transfers. Slaves on the other hand rely on the EDMA3 to perform transfers to and from them. Examples of masters 2 include the EDMA3 traffic controllers, SRIO, and EMAC. Examples of slaves include the SPI, UART, and I C. The device contains two switch fabrics (the TeraNet) through which masters and slaves communicate. The data switch fabric, known as the data switched central resource (SCR), is a high-throughput interconnect mainly used to move data across the system (for more information, see Section 4.2 ‘‘Data Switch Fabric Connections’’). The data SCR is further divided into two smaller SCRs. One connects very high speed masters to slaves via 256-bit data buses running at a CPU/2 frequency. The other connects masters to slaves via 128-bit data buses running at a CPU/3 frequency. Peripherals that match the native bus width of the SCR it’s connected to can connect directly to the data SCR; other peripherals require a bridge. The configuration switch fabric, also known as the configuration switch central resource (SCR), is mainly used to access peripheral registers (for more information, see Section 4.3 ‘‘Configuration Switch Fabric’’). The configuration SCR connects the C66x CorePac and masters on the data switch fabric to slaves via 32-bit configuration buses running at a CPU/3 frequency. As with the data SCR, some peripherals require the use of a bridge to interface to the configuration SCR. Bridges perform a variety of functions: • Conversion between configuration bus and data bus. • Width conversion between peripheral bus width and SCR bus width. • Frequency conversion between peripheral bus frequency and SCR bus frequency. Copyright 2010 Texas Instruments Incorporated System Interconnect 77 ADVANCE INFORMATION 4.1 Internal Buses, Bridges, and Switch Fabrics TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 4.2 Data Switch Fabric Connections A detailed figure will be added here for a future release. Connection information is shown in the tables below. Table 4-1 CPU/2 Data SCR Connection Matrix Slave To CPU/3 Data SCR Masters TPCC0 TC0_RD HyperLink_Slave MSMC_SMS MSMC_SES Br_1 Br_2 Br_3 Br_4 Y Y Y N Y N N ADVANCE INFORMATION TPCC0 TC0_WR Y Y Y N Y N N TPCC0 TC1_RD Y Y Y N N Y N TPCC0 TC1_WR Y Y Y N N Y N HyperLink_Master N Y Y Y N N N MSMC_master Y N N N N N Y From CPU/3 Data SCR Br_5 Y Y Y N N N N From CPU/3 Data SCR Br_6 Y Y Y N N N N From CPU/3 Data SCR Br_7 Y Y Y N N N N From CPU/3 Data SCR Br_8 Y Y Y N N N N From CPU/3 Data SCR Br_9 Y Y Y N N N N From CPU/3 Data SCR Br_10 Y Y Y N N N N End of Table 4-1 78 System Interconnect Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 4-2 CPU/3 Data SCR Connection Br_9 (to CPU/2 Data SCR) Br_10 (to CPU/2 Data SCR) Br_12 (to Config SCR) Br_13 (to Config SCR) Br_14 (to Config SCR) N N N N N N Y N N Y Y Y Y Y N N N N N N Y N N N N N N TPCC0 TC1 Y Y Y Y Y Y Y N N N N N N N Y N N N N N N TPCC1_TC0_RD Y Y Y Y Y Y Y N Y N N N N N Y N N N N N N TPCC1_TC0_WR Y Y Y Y Y Y Y N Y N N N N N Y N N N N N N TPCC1_TC1_RD Y Y Y Y Y Y Y Y N Y N N N N N Y N N N N N TPCC1_TC1_WR Y Y Y Y Y Y Y Y N Y N N N N N Y N N N N N TPCC1_TC2_RD Y Y Y Y Y Y Y N N N Y N N N N N Y N N N N TPCC1_TC2_WR Y Y Y Y Y Y Y N N N Y N N N N N Y N N N N TPCC1_TC3_RD Y Y Y Y Y Y Y N N N N Y N N Y N N N N N N TPCC1_TC3_WR Y Y Y Y Y Y Y N N N N Y N N Y N N N N N N TPCC2_TC0_RD Y Y Y Y Y Y Y N N N N N Y N Y N N Y Y Y Y TPCC2_TC0_WR Y Y Y Y Y Y Y N N N N N Y N Y N N Y Y Y Y TPCC2_TC1_RD Y Y Y Y Y Y Y Y N N N N N Y N Y N Y Y Y Y TPCC2_TC1_WR Y Y Y Y Y Y Y Y N N N N N Y N Y N Y Y Y Y TPCC2_TC2_RD Y Y Y Y Y Y Y N Y N N N N N Y N N Y Y N N TPCC2_TC2_WR Y Y Y Y Y Y Y N Y N N N N N Y N N Y Y N N TPCC2_TC3_RD Y Y Y Y Y Y Y N N Y N N N N N N Y Y N Y Y TPCC2_TC3_WR Y Y Y Y Y Y Y N N Y N N N N N N Y Y N Y Y SRIO Messaging Y Y Y Y N N N Y N N N N Y N N N N N N N N SRIO Data Y Y Y Y N Y N Y N N Y N N N Y N N Y Y Y Y PCIe_Master Y Y Y Y N Y N Y N N Y N N N Y N N Y Y Y Y Packet Accelerator_Data_Master Y Y Y Y N N N Y N N N N N Y N N N N N N N Br_4(MSMC_Data_Master) Y Y Y Y Y Y Y Y N N N N N N Y N N Y Y Y Y Queue Manager Y Y Y Y N N N Y N N N Y N N N N N N N N N FFTC_B Y Y Y Y Y Y Y Y N N N N N Y Y N N Y Y Y Y AIF Y Y Y Y N N N Y N N Y N N N N N N N N N N FFTC_A Y Y Y Y N N N Y N Y N N N N N N N N N N N End of Table 4-2 4.3 Configuration Switch Fabric A detailed figure will be added here for a future release. All masters can talk to all slaves on the configuration switch fabric. Copyright 2010 Texas Instruments Incorporated System Interconnect 79 ADVANCE INFORMATION TCP3e_WR Br_8 (to CPU/2 Data SCR) Y Y TCP3e_RD Br_7 (to CPU/2 Data SCR) Y Y TCP3d Br_6 (to CPU/2 Data SCR) Y Y VCP2 Br_5 (to CPU/2 Data SCR) Y Y PCIe_Slave Y Y SRIO_Data_Slave Y Y CorePac3_SDMA Y Y CorePac2_SDMA Y TPCC0 TC0 CorePac1_SDMA HyperLink Master SCR_3_A Masters CorePac0_SDMA QM_Slave Br_11 for (boot_ROM, SPI) Slaves TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 4.4 Bus Priorities The priority level of all master peripheral traffic is defined at the TeraNet boundary. User programmable priority registers will be present to allow software configuration of the data traffic through the TeraNet. Note that a lower number means higher priority - PRI = 000b = urgent, PRI = 111b = low. All other masters provide their priority directly and do not need a default priority setting. Examples include the CorePacs, whose priorities are set through software in the UMC control registers. All the Packet DMA based peripherals also have internal registers to define the priority level of their initiated transactions. ADVANCE INFORMATION The Packet DMA secondary port is one master port that does not have priority allocation register inside the IP. The priority level for transaction from this master port is described by PKTDMA_PRI_ALLOC register in Figure 4-1 and Table 4-3. Figure 4-1 Packed DMA Priority Allocation Register (PKTDMA_PRI_ALLOC) 31 16 15 10 9 8 7 4 3 2 0 Reserved PKTDMA_PRI R/W-00000000000000000000001000011 RW-000 Legend: R = Read only; R/W = Read/Write; -n = value after reset Table 4-3 Packed DMA Priority Allocation Register (PKTDMA_PRI_ALLOC) Field Descriptions Bit Acronym Description 31-10 Reserved Reserved. 2-0 PKDTDMA_PRI Control the priority level for the transactions from Packet DMA Master port, which access the external linking RAM. End of Table 4-3 For all other modules, see the respective User Guides in ‘‘Related Documentation from Texas Instruments’’ on page 59 for programmable priority registers. 80 System Interconnect Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com The C66x CorePac consists of several components: • The C66x DSP core • Level-one and level-two memories (L1P, L1D, L2) • RSA accelerator (on cores 1 and 2 only) • Data Trace Formatter (DTF) • Embedded Trace Buffer (ETB) • Interrupt controller • Power-down controller • External memory controller • Extended memory controller • A dedicated power/sleep controller (LPSC) The C66x CorePac also provides support for memory protection and bandwidth management (for resources local to the CorePac). Figure 5-1 shows a block diagram of the C66x CorePac. C66x CorePac Block Diagram 66xx Memory Controller (PMC) With Memory Protect/Bandwidth Mgmt C66x DSP Core Interrupt and Exception Controller Instruction Fetch 16-/32-bit Instruction Dispatch Control Registers In-Circuit Emulation Instruction Decode Data Path B Data Path A PLLC LPSC A Register File B Register File A31-A16 A15-A0 B31-B16 B15-B0 .M1 xx xx .M2 xx xx GPSC .L1 .S1 .D1 .D2 .S2 .L2 Data Memory Controller (DMC) With Memory Protect/Bandwidth Mgmt RSA Cores 1 & 2 only Copyright 2010 Texas Instruments Incorporated 32KB L1D L2 Cache/ SRAM 1024KB MSM SRAM 2048KB DDR3 SRAM DMA Switch Fabric External Memory Controller (EMC) Boot Controller Unified Memory Controller (UMC) 32KB L1P Extended Memory Controller (XMC) Figure 5-1 CFG Switch Fabric RSA Cores 1 & 2 only C66x CorePac 81 ADVANCE INFORMATION 5 C66x CorePac TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com For more detailed information on the C66x CorePac in the C6670 device, see the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 5.1 Memory Architecture Each core of the TMS320C6670 device contains a 1024KB level-2 memory (L2), a 32KB level-1 program memory (L1P), and a 32KB level-1 data memory (L1D). The device also contain a 2048KB multicore shared memory (MSM). All memory on the C6670 has a unique location in the memory map (see Table 2-2 ‘‘TMS320C6670 Memory Map Summary’’ on page 18. ADVANCE INFORMATION After device reset, L1P and L1D cache are configured as all cache, by default. The L1P and L1D cache can be reconfigured via software through the L1PMODE field of the L1P Configuration Register (L1PMODE) and the L1DMODE field of the L1D Configuration Register (L1DCFG) of the C66x CorePac. L1D is a two-way set-associative cache, while L1P is a direct-mapped cache. The on-chip bootloader changes the reset configuration for L1P and L1D. For more information, see the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. For more information on the operation L1 and L2 caches, see the C66x DSP Cache User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 5.1.1 L1P Memory The L1P memory configuration for the C6670 device is as follows: • Region 0 size is 0K bytes (disabled) • Region 1 size is 32K bytes with no wait states Figure 5-2 shows the available SRAM/cache configurations for L1P. Figure 5-2 TMS320C6670 L1P Memory Configurations L1P mode bits 000 001 010 011 100 1/2 SRAM All SRAM 7/8 SRAM L1P memory Block base address 00E0 0000h 16K bytes 3/4 SRAM direct mapped cache 00E0 4000h 8K bytes dm cache 82 C66x CorePac direct mapped cache direct mapped cache 00E0 6000h 4K bytes 00E0 7000h 4K bytes 00E0 8000h Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 5.1.2 L1D Memory The L1D memory configuration for the C6670 device is as follows: • Region 0 size is 0K bytes (disabled) • Region 1 size is 32K bytes with no wait states Figure 5-3 shows the available SRAM/cache configurations for L1D. Figure 5-3 TMS320C6670 L1D Memory Configurations L1D mode bits 001 010 011 100 1/2 SRAM All SRAM 7/8 SRAM L1D memory Block base address 00F0 0000h ADVANCE INFORMATION 000 16K bytes 3/4 SRAM 2-way cache 00F0 4000h 8K bytes 2-way cache 00F0 6000h 4K bytes 2-way cache 2-way cache Copyright 2010 Texas Instruments Incorporated 00F0 7000h 4K bytes 00F0 8000h C66x CorePac 83 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 5.1.3 L2 Memory The L2 memory configuration for the C6670 device is as follows: • Total memory size is 4096KB • Each core contains 1024KB of memory • Local starting address for each core is 0080 0000h L2 memory can be configured as all SRAM, all 4-way set-associative cache, or a mix of the two. The amount of L2 memory that is configured as cache is controlled through the L2MODE field of the L2 Configuration Register (L2CFG) of the C66x CorePac. Figure 5-4 shows the available SRAM/cache configurations for L2. By default, L2 is configured as all SRAM after device reset. ADVANCE INFORMATION Figure 5-4 TMS320C6670 L2 Memory Configurations C6497-8 000 L2 mode bits 001 010 011 100 101 110 L2 memory Block base address 0080 0000h 512Kbytes 1/2 SRAM 31/32 SRAM ALL SRAM 15/16 SRAM 7/8 SRAM 3/4 SRAM 0088 0000h 4-way cache 256Kbytes 008C 0000h 128Kbytes 4-way cache 4-way cache 84 C66x CorePac 4-way cache 4-way cache 4-way cache 008E 0000h 64Kbytes 32Kbytes 008F 0000h 008F 8000h 32Kbytes 008F FFFFh Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip www.ti.com SPRS689—November 2010 5.1.4 MSM SRAM The MSM SRAM configuration for the C6670 device is as follows: • Memory size is 2048KB • The MSM can be configured as shared L2 or shared L3 memory • Allows extension of external addresses from 2GB to up to 8GB • Has built in memory protection features The MSM SRAM is always configured as all SRAM. When configured as a shared L2, its contents can be cached in L1P and L1D. When configured in shared L3 mode, it’s contents can be cached in L2 also. For more details on external memory address extension and memory protection features, see the Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 5.1.5 L3 Memory The L3 ROM on the device is 128KB. The ROM contains software used to boot the device. There is no requirement to block accesses from this portion to the ROM. Copyright 2010 Texas Instruments Incorporated C66x CorePac 85 ADVANCE INFORMATION Global addresses that are accessible to all masters in the system are in all memory local to the processors. In addition, local memory can be accessed directly by the associated processor through aliased addresses, where the eight MSBs are masked to 0. The aliasing is handled within the CorePac and allows for common code to be run unmodified on multiple cores. For example, address location 0x10800000 is the global base address for CorePac 0's L2 memory. CorePac 0 can access this location by either using 0x10800000 or 0x00800000. Any other master on the device must use 0x10800000 only. Conversely, 0x00800000 can by used by any of the four CorePacs as their own L2 base addresses. For CorePac 0, as mentioned, this is equivalent to 0x10800000, for CorePac 1 this is equivalent to 0x11800000, and for CorePac 2 this is equivalent to 0x12800000. Local addresses should be used only for shared code or data, allowing a single image to be included in memory. Any code/data targeted to a specific core, or a memory region allocated during run-time by a particular CorePac should always use the global address only. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 5.2 Memory Protection Memory protection allows an operating system to define who or what is authorized to access L1D, L1P, and L2 memory. To accomplish this, the L1D, L1P, and L2 memories are divided into pages. There are 16 pages of L1P (2KB each), 16 pages of L1D (2KB each), and 32 pages of L2 (32KB each). The L1D, L1P, and L2 memory controllers in the C66x CorePac are equipped with a set of registers that specify the permissions for each memory page. ADVANCE INFORMATION Each page may be assigned with fully orthogonal user and supervisor read, write, and execute permissions. In addition, a page may be marked as either (or both) locally accessible or globally accessible. A local access is a direct DSP access to L1D, L1P, and L2, while a global access is initiated by a DMA (either IDMA or the EDMA3) or by other system masters. Note that EDMA or IDMA transfers programmed by the DSP count as global accesses. On a secure device, pages can be restricted to secure access only (default) or opened up for public, non-secure access. The DSP and each of the system masters on the device are all assigned a privilege ID. It is only possible to specify whether memory pages are locally or globally accessible. The AIDx and LOCAL bits of the memory protection page attribute registers specify the memory page protection scheme, see Table 5-1. Table 5-1 AIDx (1) Bit Available Memory Page Protection Schemes Local Bit Description 0 0 No access to memory page is permitted. 0 1 Only direct access by DSP is permitted. 1 0 Only accesses by system masters and IDMA are permitted (includes EDMA and IDMA accesses initiated by the DSP). 1 1 All accesses permitted. End of Table 5-1 1 x = 0, 1, 2, 3, 4, 5 Faults are handled by software in an interrupt (or an exception, programmable within the CorePac interrupt controller) service routine. A DSP or DMA access to a page without the proper permissions will: • Block the access — reads return 0, writes are ignored • Capture the initiator in a status register — ID, address, and access type are stored • Signal event to DSP interrupt controller The software is responsible for taking corrective action to respond to the event and resetting the error status in the memory controller. For more information on memory protection for L1D, L1P, and L2, see the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 86 C66x CorePac Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 5.3 Bandwidth Management The priority level for operations initiated within the C66x CorePac are declared through registers in the CorePac. These operations are: • DSP-initiated transfers • User-programmed cache coherency operations • IDMA-initiated transfers The priority level for operations initiated outside the CorePac by system peripherals is declared through the Priority Allocation Register (PRI_ALLOC), see Section 4.4 ‘‘Bus Priorities’’ on page 80. System peripherals with no fields in PRI_ALLOC have their own registers to program their priorities. More information on the bandwidth management features of the CorePac can be found in the C66x CorePac Reference Guide (literature number SPRUGW0.) 5.4 Power-Down Control The C66x CorePac supports the ability to power-down various parts of the CorePac. The power-down controller (PDC) of the CorePac can be used to power down L1P, the cache control hardware, the DSP, and the entire CorePac. These power-down features can be used to design systems for lower overall system power requirements. Note—The C6670 does not support power-down modes for the L2 memory at this time. More information on the power-down features of the C66x CorePac can be found in the C66x CorePac Reference Guide (literature number SPRUGW0). 5.5 CorePac Resets Table 5-2 shows the reset types supported on the C6670 device and how they affect the resetting of the CorePac, either both globally or just locally. Table 5-2 Reset Type CorePac Reset (Global or Local) Global CorePac Reset Local CorePac Reset Y Y Power-On Reset Hard Reset Y Y Soft Reset Y Y Local Reset N Y End of Table 5-2 For more detailed information on the global and local CorePac resets, see the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. And for more detailed information on device resets, see Section 7.7 ‘‘Reset Controller’’ on page 153. Copyright 2010 Texas Instruments Incorporated C66x CorePac 87 ADVANCE INFORMATION When multiple requestors contend for a single C66x CorePac resource, the conflict is resolved by granting access to the highest priority requestor. The following four resources are managed by the Bandwidth Management control hardware: • Level 1 Program (L1P) SRAM/Cache • Level 1 Data (L1D) SRAM/Cache • Level 2 (L2) SRAM/Cache • Memory-mapped registers configuration bus TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 5.6 CorePac Revision The version and revision of the C66x CorePac can be read from the CorePac Revision ID Register (MM_REVID) located at address 0181 2000h. The MM_REVID register is shown in Table 5-3 and described in Table 5-4. The C66x CorePac revision is dependant on the silicon revision being used. Table 5-3 CorePac Revision ID Register (MM_REVID) Address - 0181 2000h Bit 31 30 29 28 27 26 25 (1) ADVANCE INFORMATION Bit 22 21 20 19 18 17 16 6 5 4 3 2 1 0 R-h 15 14 13 12 11 10 9 8 7 REVISION Acronym Reset 23 VERSION Acronym Reset 24 (1) R-n 1 R/W = Read/Write; R = Read only; -n = value after reset Table 5-4 CorePac Revision ID Register (MM_REVID) Field Descriptions Bit Acronym Value 31:16 VERSION - Version of the C66x CorePac implemented on the device. Description 15:0 REVISION - Revision of the C66x CorePac version implemented on the device. End of Table 5-4 5.7 C66x CorePac Register Descriptions See the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59 for register offsets and definitions. 88 C66x CorePac Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 ADVANCE INFORMATION www.ti.com Copyright 2010 Texas Instruments Incorporated C66x CorePac 89 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 6 Device Operating Conditions 6.1 Absolute Maximum Ratings Table 6-1 Absolute Maximum Ratings (1) Over Operating Case Temperature Range (Unless Otherwise Noted) ADVANCE INFORMATION Supply voltage range (2): CVDD -0.3 V to TBD V CVDD1 -0.3 V to TBD V DVDD15 -0.3 V to TBD V DVDD18 -0.3 V to TBD V VREFSSTL 0.49 × DVDD15 to 0.51 × DVDD15 VDDT1, VDDT2, VDDT3 -0.3 V to TBD V VDDT4, VDDT5, VDDT6 VDDR1, VDDR2, VDDR3 -0.3 V to TBD V AVDDA1, AVDDA2, AVDDA3 -0.3 V to TBD V VSS Ground 0V LVCMOS (1.8V) -0.3 V to TBD V DDR3 -0.3 V to TBD V 2 Input voltage (VI) range: Output voltage (VO) range: IC -0.3 V to TBD V LVDS -0.3 V to TBD V LJCB -0.3 V to TBD V SERDES -0.3 V to TBD V LVCMOS (1.8V) -0.3 V to TBD V DDR3 -0.3 V to TBD V 2 IC -0.3 V to TBD V SERDES -0.3 V to TBD V Commercial Operating case temperature range, TC: Extended 1-GHz CPU 1.2-GHz CPU 1-GHz CPU 1.2-GHz CPU 0°C to 100°C 0°C to 95°C -40°C to 100°C -40°C to 95°C LVCMOS (1.8V) Overshoot/undershoot (3) DDR3 2 20% Overshoot/Undershoot for 20% of Signal Duty Cycle IC Storage temperature range, Tstg: -65°C to 150°C End of Table 6-1 1 Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2 All voltage values are with respect to VSS. 3 Overshoot/Undershoot percentage relative to I/O operating values - for example the maximum overshoot value for 1.8-V LVCMOS signals is DVDD18 + 0.20 × DVDD18 and maximum undershoot value would be VSS - 0.20 × DVDD18 90 Device Operating Conditions Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 6.2 Recommended Operating Conditions (2) Min Nom 1-GHz CPU 0.855 1 Max Unit 1.05 1.2-GHz CPU 0.855 1 1.05 CVDD SR Core Supply V CVDD1 Core Supply 0.95 1 1.05 V DVDD18 1.8-V supply I/O voltage 1.71 1.8 1.89 V DVDD15 1.5-V supply I/O voltage 1.425 1.5 1.575 V VREFSSTL DDR3 reference voltage 0.49 × DVDD15 0.5 × DVDD15 0.51 × DVDD15 V SerDes regulator supply (3) 1.425 1.5 1.575 V VDDAx PLL analog supply 1.71 1.8 1.89 V VDDTx SerDes termination supply 0.95 1 1.05 V VSS Ground 0 0 0 V VDDRx LVCMOS (1.8 V) VIH High-level input voltage 2 IC DDR3 EMIF 0.65 × DVDD18 V 0.7 × DVDD18 V VREFSSTL + 0.1 V LVCMOS (1.8 V) VIL Low-level input voltage DDR3 EMIF -0.3 2 IC Commercial TC Operating case temperature Extended 1-GHz CPU 1.2-GHz CPU 0 0.35 × DVDD18 V VREFSSTL - 0.1 V 0.3 × DVDD18 V 100 °C 0 95 °C 1-GHz CPU -40 100 °C 1.2-GHz CPU -40 95 °C ADVANCE INFORMATION Recommended Operating Conditions (1) Table 6-2 End of Table 6-2 1 All differential clock inputs comply with the LVDS Electrical Specification, IEEE 1596.3-1996 and all SERDES I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002. 2 All SERDES I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002. 3 Where x = 1, 2, 3, 4... to indicate all supplies of the same kind. Copyright 2010 Texas Instruments Incorporated Device Operating Conditions 91 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 6.3 Electrical Characteristics Table 6-3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) Parameter LVCMOS (1.8 V) VOH High-level output voltage Test Conditions (1) IO = IOH Min Typ Max Unit DVDD18 - 0.45 DDR3 DVDD15 - 0.4 V 2 (2) IC LVCMOS (1.8 V) VOL Low-level output voltage IO = IOL 0.45 DDR3 ADVANCE INFORMATION 2 IC 0.4 IO = 3 mA, pulled up to 1.8 V No IPD/IPU LVCMOS (1.8 V) II (3) Input current [DC] Internal pulldown 2 IC IOH High-level output current [DC] Low-level output current [DC] IOL -5 Internal pullup 0.1 × DVDD18 V < VI < 0.9 × DVDD18 V (4) Off-state output current [DC] 5 50 100 170 -170 -100 -50 -10 10 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD IOZ LVCMOS (1.8 V) V 0.4 μA μA mA mA TBD -2 2 μA End of Table 6-3 1 For test conditions shown as MIN, MAX, or TYP, use the appropriate value specified in the recommended operating conditions table. 2 I2C uses open collector IOs and does not have a VOH Minimum. 3 II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II includes input leakage current and off-state (Hi-Z) output leakage current. 4 IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current. 92 Device Operating Conditions Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7 TMS320C6670 Peripheral Information and Electrical Specifications This chapter covers the various peripherals on the TMS320C6670 device. Peripheral-specific information, timing diagrams, electrical specifications, and register memory maps are described in this chapter. 7.1 Parameter Information The data manual provides timing at the device pin. For output analysis, the transmission line and associated parasitics (vias, multiple nodes, etc.) must also be taken into account. The transmission line delay varies depending on the trace length. An approximate range for output delays can vary from 176 ps to 2 ns depending on the end product design. For recommended transmission line lengths, see the appropriate application notes, user guides, and design guides. A transmission line delay of 2 ns was used for all output measurements, except the DDR3, which was evaluated using a 528-ps delay. 2 Figure 7-1 represents all device outputs, except differential or I C. Figure 7-1 Test Load Circuit for AC Timing Measurements Device DDR3 Output Test Load Transmission Line Zo = 50 W 4 pF Data Manual Timing Reference Point (Device Terminal) Device Output Test Load Excluding DDR3 Transmission Line Zo = 50 W 5 pF The load capacitance value stated is for characterization and measurement of AC timing signals only. This load capacitance value does not indicate the maximum load the device is capable of driving. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 93 ADVANCE INFORMATION This section describes the conditions used to capture the electrical data seen in this chapter. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.1.1 1.8-V Signal Transition Levels All input and output timing parameters are referenced to 0.9 V for both 0 and 1 logic levels. Figure 7-2 Input and Output Voltage Reference Levels for AC Timing Measurements Vref = 0.9 V All rise and fall transition timing parameters are reference to VIL MAX and VIH MIN for input clocks. ADVANCE INFORMATION Figure 7-3 Rise and Fall Transition Time Voltage Reference Levels Vref = VIH MIN (or VOH MIN) 7.1.2 Timing Parameters and Board Routing Analysis The timing parameter values specified in this data sheet do not include delays by board routings. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends using the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report in ‘‘Related Documentation from Texas Instruments’’ on page 59. If needed, external logic hardware such as buffers may be used to compensate any timing differences. For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin, but also tends to improve the input hold time margins (Table 7-1 and Figure 7-4). Table 7-1 Board-Level Timing Example (see Figure 7-4) No. Description 1 Clock route delay 2 Minimum DSP hold time 3 Minimum DSP setup time 4 External device hold time requirement 5 External device setup time requirement 6 Control signal route delay 7 External device hold time 8 External device access time 9 DSP hold time requirement 10 DSP setup time requirement 11 Data route delay End of Table 7-1 94 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 7-4 shows a general transfer between the DSP and an external device. The figure also shows board route delays and how they are perceived by the DSP and the external device Figure 7-4 Board-Level Input/Output Timings AECLKOUT (Output from DSP) 1 AECLKOUT (Input to External Device) 2 3 Control Signals (Input to External Device) 6 5 4 ADVANCE INFORMATION Control Signals (A) (Output from DSP) 7 8 (B) Data Signals (Output from External Device) 10 (B) Data Signals (Input to DSP) 9 11 (A) Control signals include data for writes. (B) Data signals are generated during reads from an external device. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 95 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.2 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 7.3 Power Supplies The following sections describe the proper power-supply sequencing and timing needed to properly power on the C6670. The various power supply rails and their primary function is listed in Table 7-2 below. Table 7-2 ADVANCE INFORMATION Name Power Supply Rails on TMS320C6670 Primary Function Voltage Notes CVDD SmartReflex core supply voltage 0.9 - 1.1 V Includes core voltage for DDR3 module CVDD1 Core supply voltage for memory array 1.0 V Fixed supply at 1.0 V VDDT1 HyperLink SerDes termination supply 1.0 V Filtered version of CVDD1. Special considerations for noise. Filter is not needed if HyperLink is not in use. VDDT3 AIF SerDes termination supply 1.0 V Filtered version of CVDD1. Special considerations for noise. Filter is not needed if AIF is not in use. VDDT2 SGMII/SRIO/PCIE SerDes termination supply 1.0 V Filtered version of CVDD1. Special considerations for noise. Filter is not needed if SGMII/SRIO/PCIE is not in use. DVDD15 1.5-V DDR3 IO supply 1.5 V VDDR1 HyperLink SerDes regulator supply 1.5 V Filtered version of DVDD15. Special considerations for noise. Filter is not needed if HyperLink is not in use. VDDR2 PCIE SerDes regulator supply 1.5 V Filtered version of DVDD15. Special considerations for noise. Filter is not needed if PCIE is not in use. VDDR3 SGMII SerDes regulator supply 1.5 V Filtered version of DVDD15. Special considerations for noise. Filter is not needed if SGMII is not in use. VDDR4 SRIO SerDes regulator supply 1.5 V Filtered version of DVDD15. Special considerations for noise. Filter is not needed if SRIO is not in use. 1.5 V Filtered version of DVDD15. Special considerations for noise. Filter is not needed if AIF is not in use. VDDR5 AIF SerDes regulator supply VDDR6 DVDD18 1.8-V IO supply 1.8V AVDDA1 Main PLL supply 1.8 V Filtered version of DVDD18. Special considerations for noise. AVDDA2 DDR3 PLL supply 1.8 V Filtered version of DVDD18. Special considerations for noise. AVDDA3 PASS PLL supply 1.8 V Filtered version of DVDD18. Special considerations for noise. VREFSSTL 0.75-V DDR3 reference voltage 0.75 V Should track the 1.5-V supply. Use 1.5 V as source. VSS Ground GND End of Table 7-2 7.3.1 Power-Up Sequencing This section defines the requirements for a power up sequencing from a Power-on reset condition. There are two acceptable power sequences for the device. The first sequence stipulates the core voltages starting before the IO voltages as shown below. 1. CVDD 2. CVDD1, VDDT1-3 3. DVDD18, AVDD1, AVDD2 (HHV) 4. DVDD15, VDDR1-6 96 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com The device initialization is broken into two phases. The first phase consists of the time period from the activation of the first power supply until the point in which all supplies are active and at a valid voltage level. Either of the sequencing scenarios described above can be implemented during this phase. The figures below show both the core-before-IO voltage sequence and the IO-before-core voltage sequence. POR must be held low for the entire power stabilization phase. This is followed by the device initialization phase. Either POR or RESETFULL may be used to trigger the end of the initialization phase, but both must be inactive for the initialization to complete. The differences between POR-controlled initialization and RESETFULL initialization are described below. The following section has a mention of REFCLK in many places. REFCLK here refers to the clock input that has been selected as the source for the Main PLL. See Figure 7-23 for more details. 7.3.1.1 POR-Controlled Device Initialization The timing diagrams in the figures below show the power sequencing and reset control of the device when RESETFULL is held high and POR is used to control the device initialization. In this mode, POR must be held low until the power has been stable for the required 100 μsec and the device initialization requirements have been met. On the rising edge of POR, the HHV signal will go inactive allowing the core to control the state of the output buffers and pulls. The POR must be held for the 100 μsec after the power has stabilized plus the time period between that100 μsec and when the clock is active in addition to the 16 μsecs following the active clock. If the clock becomes active before the 100 μsec stabilization period has expired, only the additional 16 μsecs of POR is required to complete initialization. Note—REFCLK must always be active before POR can be removed. 7.3.1.1.1 Core-Before-IO Power Sequencing Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 97 ADVANCE INFORMATION The second sequence provides compatibility with other TI processors with the IO voltage starting before the core voltages as shown below. 1. DVDD18, AVDD1, AVDD2 (HHV) 2. CVDD 3. CVDD1, VDDT1-3 4. DVDD15, VDDR1-6 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com The timing diagram for core-before-IO power sequencing is shown in Figure 7-5 and defined in Table 7-3. Figure 7-5 POR-Controlled Power Sequencing — Core Before IO Pow er Stabilization Phase C hip Initialization Phase POR z R ESETFULLz ADVANCE INFORMATION t4b RESET z t1 C VD D(core AVS) t2a t5 CVDD1 (core constant) t6 t7 t3 DVDD18 (1.8V) t2b DVDD15 (1.5V) t4a t2c REFC LKP&N D DRC LKP&N RESET STATz PORz Controlled Reset Sequencing – Core before IO Table 7-3 POR-Controlled Power Sequencing — Core Before IO (Part 1 of 2) Time System State t1 Begin Power Stabilization Phase • CVDD (core AVS) ramps up. • POR must be held low through the power stabilization phase. Because POR is low, all the core logic that has async reset (created from POR) is put into the reset state. t2a • CVDD1 (core constant) ramps at the same time or shortly following CVDD. Although ramping CVDD1 and CVDD simultaneously is permitted, the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage. • The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 (core constant) should trail CVDD (core AVS) as this will ensure that the WLs in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS), then the worst-case current could be on the order of twice the specified draw of CVDD1. t2b • Once CVDD is valid, the clock drivers should be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or be held in a static state with one leg high and one leg low. t2c • The DDRCLK and REFCLK may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by t7. t3 • DVDD18 (1.8 V) supply is ramped up followed coincidentally by HHV (1.8 V). • Filtered versions of 1.8 V can ramp simultaneously with DVDD18. • RESETSTAT is driven low once the DVDD18 supply is available. • All LVCMOS input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 is valid could cause damage to the device. t4a • DVDD15 (1.5 V) supply is ramped up following DVDD18. Although ramping DVDD18 and DVDD15 simultaneously is permitted, the voltage for DVDD15 must never exceed DVDD18. 98 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-3 POR-Controlled Power Sequencing — Core Before IO (Part 2 of 2) Time System State t4b • RESETFULL and RESET may be driven high anytime after DVDD18 is at a valid level. In a POR controlled boot both RESETFULL and RESET must be high before POR is driven high. t5 • POR must continue to remain low for at least 100 μs after power has stabilized. End Power Stabilization Phase t6 • Device initialization requires 500 REFCLK periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec, so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. t7 • The rising edge of POR will remove the reset to the efuse farm, allowing the scan to begin. • Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. ADVANCE INFORMATION End Device Initialization Phase End of Table 7-3 7.3.1.1.2 IO-Before-Core Power Sequencing The timing diagram for IO-before-core power sequencing is shown in Figure 7-6 and defined in Table 7-4. Figure 7-6 POR-Controlled Power Sequencing — IO Before Core Power Stabilization Phase C hip Initialization Phase PORz RESETF ULLz R ESETz t2a CVDD(core AVS) t3a t2b CVD D1 (core constant) t6 t1 t4 DVDD18 (1.8V) DVDD15 (1.5V) t7 t5 t3c t3b REFCLKP&N D DRCLKP&N RESETST ATz PORz Controlled Reset Sequencing – IO before Core Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 99 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-4 www.ti.com POR-Controlled Power Sequencing — IO Before Core ADVANCE INFORMATION Time System State t1 Begin Power Stabilization Phase • DVDD18 (1.8 V) supply is ramped up followed coincidentally by HHV (1.8 V). • Since POR is low all the core logic having async reset (created from POR) are put into reset state once the core supply ramps. POR must remain low through Power Stabilization Phase. • Filtered versions of 1.8V can ramp simultaneously with DVDD18. • RESETSTAT is driven low once the DVDD18 supply is available. • All input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 could cause damage to the device. t2a • RESETFULL and RESET may be driven high anytime after DVDD18 is at a valid level. In a POR-controlled boot both RESETFULL and RESET must be high before POR is driven high. t2b • CVDD (core AVS) ramps up. t3a • CVDD1 (core constant) ramps at the same time or following CVDD. Although ramping CVDD1 and CVDD simultaneously is permitted the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage. • The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 (core constant) should trail CVDD (core AVS) as this will ensure that the WLs in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS) then the worst case current could be on the order of twice the specified draw of CVDD1. t3b • Once CVDD is valid the clock drivers should be enabled. Although the clock inputs are not necessary at this time they should either be driven with a valid clock or held is a static state with one leg high and one leg low. t3c • The DDRCLK and REFCLK may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by t7. t4 • DVDD15 (1.5 V) supply is ramped up following CVDD1. t5 • POR must continue to remain low for at least 100 μs after power has stabilized. End Power Stabilization Phase t6 Begin Device Initialization • Device initialization requires 500 REFCLK periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. • POR must remain low. t7 • The rising edge of the POR will remove the reset to the efuse farm allowing the scan to begin. • Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. End Device Initialization Phase End of Table 7-4 7.3.1.2 RESETFULL-Controlled Device Initialization The timing diagrams in the figures below show the power sequencing and reset control of the device when RESETFULL is used to extend device initialization. In this mode, POR may be removed after the power has been stable for the required 100 μsec, but RESETFULL may be held low until the device initialization requirements have been met. On the rising edge of POR, the HHV signal will go inactive. Note—REFCLK must always be active before POR can be removed. 7.3.1.2.1 Core-Before-IO Power Sequencing 100 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com The timing diagram for core-before-IO power sequencing is shown in Figure 7-7 and defined in Table 7-5. Figure 7-7 RESETFULL-Controlled Device Initialization — Core Before IO Power Stabilization Phase Chip Initialization Phase PORz t7 RESET FULLz R ESETz t1 t4b CVDD(core AVS) CVDD1 (core constant) t6 t3 D VD D18 (1.8V) t2b t4a t8 t2c DVDD15 (1.5V) R EF CLKP&N DD RCLKP&N RESET STATz RESETFULLz Controlled Reset Sequencing – Core before IO Table 7-5 RESETFULL-Controlled Device Initialization — Core Before IO (Part 1 of 2) Time System State t1 Begin Power Stabilization Phase • CVDD (core AVS) ramps up. • POR must be held low through the power stabilization phase. Because POR is low, all the core logic that has async reset (created from POR) is put into the reset state. t2a • CVDD1 (core constant) ramps at the same time or shortly following CVDD. Although ramping CVDD1 and CVDD simultaneously is permitted, the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage. • The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 (core constant) should trail CVDD (core AVS) as this will ensure that the WLs in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS), then the worst-case current could be on the order of twice the specified draw of CVDD1. t2b • Once CVDD is valid the clock drivers should be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or held is a static state with one leg high and one leg low. t2c • The DDRCLK and REFCLK may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by t7. t3 • DVDD18 (1.8 V) supply is ramped up followed coincidentally by HHV (1.8 V). • Filtered versions of 1.8 V can ramp simultaneously with DVDD18. • RESETSTAT is driven low once the DVDD18 supply is available. • All LVCMOS input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 is valid could cause damage to the device t4a • DVDD15 (1.5 V) supply is ramped up following DVDD18. Although ramping DVDD18 and DVDD15 simultaneously is permitted, the voltage for DVDD15 must never exceed DVDD18. t4b • RESET may be driven high anytime after DVDD18 is at a valid level. In a RESETFULL-controlled boot, both POR and RESET must be high before RESETFULL is driven high. t5 • POR must continue to remain low for at least 100 μs after power has stabilized. End Power Stabilization Phase Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 101 ADVANCE INFORMATION t5 t2a TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-5 www.ti.com RESETFULL-Controlled Device Initialization — Core Before IO (Part 2 of 2) Time System State t6 Begin Device Initialization Phase • Device initialization requires 500 REFCLK periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec, so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. In RESETFULL-controlled boot, the RESETFULL signal will continue to be low after POR transitions high. t7 • RESETFULL is held low for some period after POR has transitioned high. t8 • The rising edge of the RESETFULL will remove the reset to the efuse farm, allowing the scan to begin. • Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. End Device Initialization Phase ADVANCE INFORMATION End of Table 7-5 7.3.1.2.2 IO-Before-Core Power Sequencing The timing diagram for core-before-IO power sequencing is shown in Figure 7-8 and defined in Table 7-6. Figure 7-8 RESETFULL-Controlled Device Initialization — IO Before Core Pow er Stabilization Phase C hip Initialization Phase POR z t7 R ESETFULLz RESET z C VD D(core AVS) t5 t3a t2b t6 t2a CVDD1 (core constant) DVDD18 (1.8V) t4 t8 t1 t3c DVDD15 (1.5V) t3b REFC LKP&N D DRC LKP&N RESET STATz RESETFULLz Controlled Reset Sequencing – IO before Core 102 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com RESETFULL-Controlled Device Initialization — IO Before Core Time System State t1 Begin Power Stabilization Phase • DVDD18 (1.8 V) supply is ramped up followed coincidentally by HHV (1.8 V). • Because POR is low, all the core logic that has async reset (created from POR) is put into the reset state once the core supply ramps. POR must remain low through the Power Stabilization Phase. • Filtered versions of 1.8V can ramp simultaneously with DVDD18. • RESETSTAT is driven low once the DVDD18 supply is available. • All input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 could cause damage to the device. t2a • RESET may be driven high anytime after DVDD18 is at a valid level. In a RESETFULL-controlled boot both POR and RESET must be high before RESETFULL is driven high. t2b • CVDD (core AVS) ramps up. t3a CVDD1 (core constant) ramps at the same time or following CVDD. Although ramping CVDD1 and CVDD simultaneously is permitted the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage. The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 (core constant) should trail CVDD (core AVS) as this will ensure that the WLs in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS) then the worst case current could be on the order of twice the specified draw of CVDD1. t3b • Once CVDD is valid, the clock drivers should be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or held is a static state with one leg high and one leg low. t3c • The DDRCLK and REFCLK may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by t7. t4 • DVDD15 (1.5 V) supply is ramped up following CVDD1. t5 • POR must continue to remain low for at least 100 μs after power has stabilized. End Power Stabilization Phase t6 Begin Device Initialization • Device initialization requires 500 REFCLK periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. • POR must remain low. t7 • RESETFULL is held low for some period after POR has transitioned high. • The rising edge of the RESETFULL will remove the reset to the efuse farm allowing the scan to begin. t8 • The rising edge of the RESETFULL will remove the reset to the efuse farm allowing the scan to begin. • Once device initialization and the efuse farm scan are complete the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. End Device Initialization Phase End of Table 7-6 7.3.1.3 Prolonged Resets Holding the device in POR, RESETFULL, or RESET for long periods of time will affect the long term reliability of the part. The device should not be held in a reset for times exceeding one hour and should not be held in reset for more the 5% of the time during which power is applied. Exceeding these limits will cause a gradual reduction in the reliability of the part. This can be avoided by allowing the DSP to boot and then configuring it to enter a hibernation state soon after power is applied. This will satisfy the reset requirement while limiting the power consumption of the device. 7.3.2 Power-Down Sequence The power down sequence is the exact reverse of the power-up sequence described above. The goal is to prevent a large amount of static current and to prevent overstress of the device. A power-good circuit that monitors all the supplies for the device should be used in all designs. If a catastrophic power supply failure occurs on any voltage rail, POR should transition to low to prevent over-current conditions that could possibly impact device reliability. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 103 ADVANCE INFORMATION Table 7-6 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com A system power monitoring solution is needed to shut down power to the board if a power supply fails. Long-term exposure to an environment in which one of the power supply voltages is no longer present will affect the reliability of the device. Holding the device in reset is not an acceptable solution because prolonged periods of time with an active reset can also affect long term reliability. Some of the clock inputs are required to be present for the device to initialize correctly, but behavior of many of the clocks is contingent on the state of the boot configuration pins. Table 7-7 describes the clock sequencing and the conditions that affect the clock operation. Note that all clock drivers should be in a high-impedance state until CVDD is at a valid level and that all clock inputs either be active or in a static state with one leg pulled low and the other connected to CVDD. ADVANCE INFORMATION Table 7-7 Clock Sequencing Clock Condition Sequencing DDRCLK None Must be present 16 μsec before POR transitions high. SYSCLK ALTCORECLK PASSCLK CORECLKSEL = 0 SYSCLK used to clock the core PLL. It must be present 16 μsec before POR transitions high. CORECLKSEL = 1 SYSCLK used only for AIF. Clock most be present before the reset to the AIF is removed. CORECLKSEL = 0 ALTCORECLK is not used and should be tied to a static state. CORECLKSEL = 1 ALTCORECLK is used to clock the core PLL. It must be present 16 μsec before POR transitions high. PASSCLKSEL = 0 PASSCLK is not used and should be tied to a static state. PASSCLKSEL = 1 PASSCLK is used as a source for the PA_SS PLL. It must be present before the PA_SS PLL is removed from reset and programmed. An SGMII port will be used. SRIOSGMIICLK must be present 16 μsec before POR transitions high. SGMII will not be used. SRIO SRIOSGMIICLK must be present 16 μsec before POR transitions high. will be used as a boot device. SRIOSGMIICLK SGMII will not be used. SRIO will be used after boot. PCIECLK MCMCLK SRIOSGMIICLK is used as a source to the SRIO SERDES PLL. It must be present before the SRIO is removed from reset and programmed. SGMII will not be used. SRIO will not be used. SRIOSGMIICLK is not used and should be tied to a static state. PCIE will be used as a boot device. PCIECLK must be present 16 μsec before POR transitions high. PCIE will be used after boot. PCIECLK is used as a source to the PCIE SERDES PLL. It must be present before the PCIE is removed from reset and programmed. PCIE will not be used. PCIECLK is not used and should be tied to a static state. HyperLink will be used as a boot device. MCMCLK must be present 16 μsec before POR transitions high. HyperLink will be used after boot. MCMCLK is used as a source to the HyperLink SERDES PLL. It must be present before the HyperLink is removed from reset and programmed. HyperLink will not be used. MCMCLK is not used and should be tied to a static state. End of Table 7-7 7.3.3 Power Supply Decoupling and Bulk Capacitors In order to properly decouple the supply planes on the PCB from system noise, decoupling and bulk capacitors are required. Bulk capacitors are used to minimize the effects of low frequency current transients and decoupling or bypass capacitors are used to minimize higher frequency noise. For recommendations on selection of Power Supply Decoupling and Bulk capacitors see the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 59. 104 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.3.4 SmartReflex Texas Instruments' SmartReflex technology is used to decrease both static and dynamic power consumption while maintaining the device performance. SmartReflex in the TMS320C6670 device is a feature that allows the core voltage to be optimized based on the process corner of the device. This requires a voltage regulator for each TMS320C6670 device. To guarantee maximizing performance and minimizing power consumption of the device, SmartReflex is required to be implemented whenever the TMS320C6670 device is used. The voltage selection is done using 4 VCNTL pins which are used to select the output voltage of the core voltage regulator. For information on implementation of SmartReflex see the Power Management for KeyStone Devices application report and the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 59. Table 7-8 SmartReflex 4-Pin VID Interface Switching Characteristics (see Figure 7-9) No. Parameter Min Max Unit 1 tosu(Bn-SELECTL) Setup Time - VCNTL[2:0] (B[2:0]]) valid before VCNTL[3] (Select) low 35.00 μs 2 toh(SELECTL-Bn) Hold Time - VCNTL[2:0] (B[2:0]]) valid after VCNTL[3] (Select) low 35.00 μs 3 tosu(Bn-SELECTH) Setup Time - VCNTL[2:0] (B[2:0]]) valid before VCNTL[3] (Select) high 35.00 μs 4 toh(SELECTH-Bn) Hold Time - VCNTL[2:0] (B[2:0]]) valid after VCNTL[3] (Select) high 35.00 μs End of Table 7-8 Figure 7-9 SmartReflex 4-Pin VID Interface Timing 2 1 4 3 VCNTL[3] (Select) VCNTL[2:0] (B[2:0]) Table 7-9 LSB VID[2:0] SmartReflex I2C Interface Timing Requirements (1) MSB VID[5:3] (Part 1 of 2) (see Figure 7-10) Standard Mode No. Min Max Fast Mode Min Max Unit s 1 tc(VCL) Cycle time, VCL 10 2.5 μs 2 tsu(VCLH-VDL) Setup Time, VCL high before VD low (for a repeated START condition) 4.7 0.6 μs 4 0.6 μs 4.7 1.3 μs 4 0.6 μs 250 100 (2) ns 3 th(VDL-VCLL) Hold time, VCL low after VD low (for a START and a repeated START condition 4 tw(VCLL) Pulse duration, VCL low 5 tw(VCLH) Pulse duration, VCL high 6 tsu(VDV-VCLH) Setup time, VD valid before VCL high Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 105 ADVANCE INFORMATION Increasing the device complexity increases its power consumption and with the smaller transistor structures responsible for higher achievable clock rates and increased performance, comes an inevitable penalty, increasing the leakage currents. Leakage currents are present in any active circuit, independently of clock rates and usage scenarios. This static power consumption is mainly determined by transistor type and process technology. Higher clock rates also increase dynamic power, the power used when transistors switch. The dynamic power depends mainly on a specific usage scenario, clock rates, and I/O activity. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com SmartReflex I2C Interface Timing Requirements Table 7-9 (1) (Part 2 of 2) (see Figure 7-10) Standard Mode No. Min Max Min Max Unit s 3.45 0 (3) 0.9 (4) μs th(VCLL-VD) Hold time, VD valid after VCL low (for IIC bus devices) 0 (3) 8 tw(VDH) Pulse duration, VD high between STOP and START conditions 4.7 9 tr(SDA) Rise time, SDA 7 Fast Mode 1.3 1000 μs 20 + 0.1Cb (5) 300 μs 10 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb (5) 300 ns 11 tf(SDA) Fall time, SDA 300 20 + 0.1Cb (5) 300 ns 20 + 0.1Cb (5) 300 ns Fall time, SCL 300 ADVANCE INFORMATION 12 tf(SCL) 13 tsu(VCLH-VDH) Setup time, high before VD high (for STOP condition) 4 tw(SP) 0 14 Cb Pulse duration, spike (must be suppressed) (5) 0.6 50 Capacitive load for each bus line μs 0 400 50 ns 400 pF End of Table 7-9 1 The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down 2 2 2 A Fast-mode I C-bus™ device can be used in a Standard-mode I C-bus™ system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. 3 A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. 4 The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal. 5 Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. SmartReflex I2C Interface Receive Timings Figure 7-10 11 9 SDA 8 6 4 14 13 5 10 SCL 12 1 3 7 2 3 Stop Table 7-10 Start Repeated Start SmartReflex I2C Interface Switching Characteristics (1) Stop (Part 1 of 2) (see Figure 7-11) Standard Mode No. 16 Parameter tc(VCL) 17 tosu(VCLH-VDL) Setup Time, VCL high before VD low (for a repeated START condition) 18 toh(VDL-VCLL) Hold time, VCL low after VD low (for a START and a repeated START condition 19 tw(VCLL) Pulse duration, VCL low 20 tw(VCLH) Pulse duration, VCL high 21 tosu(VDV-VCLH) Setup time, VD valid before VCL high 22 toh(VCLL-VD) Hold time, VD valid after VCL low (for IIC bus devices) 23 tw(VDH) Pulse duration, VD high between STOP and START conditions 106 Min Cycle time, VCL TMS320C6670 Peripheral Information and Electrical Specifications Max Fast Mode Min Max Unit 10 2.5 ms 4.7 0.6 ms 4 0.6 ms 4.7 1.3 ms 4 0.6 ms 250 100 0 0 4.7 1.3 ns 0.9 ms ms Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2 Table 7-10 SmartReflex I C Interface Switching Characteristics (1) (Part 2 of 2) (see Figure 7-11) Standard Mode No. 24 Parameter tr(SDA) Min Rise time, SDA Fast Mode Max Min Max Unit 1000 20 + 0.1Cb (1) 300 ns 25 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb (1) 300 ns 26 tf(SDA) Fall time, SDA 300 20 + 0.1Cb (1) 300 ns 300 20 + 0.1Cb (1) 300 tf(SCL) Fall time, SCL 28 tsu(VCLH-VDH) Setup time, high before VD high (for STOP condition) Cp Capacitance for each I C pin 4 2 0.6 10 ns ms 10 pF ADVANCE INFORMATION 27 End of Table 7-10 1 Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. Figure 7-11 SmartReflex I2C Interface Transmit Timings 24 26 SDA 23 21 19 28 20 25 SCL 27 16 18 22 17 18 Stop Start Copyright 2010 Texas Instruments Incorporated Repeated Start Stop TMS320C6670 Peripheral Information and Electrical Specifications 107 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.4 Enhanced Direct Memory Access (EDMA3) Controller The primary purpose of the EDMA3 is to service user-programmed data transfers between two memory-mapped slave endpoints on the device. The EDMA3 services software-driven paging transfers (e.g., data movement between external memory and internal memory), performs sorting or subframe extraction of various data structures, services event driven peripherals, and offloads data transfers from the device CPU. There are 3 EDMA Channel Controllers on the device, TPCC0, TPCC1, and TPCC2. TPCC0 is optimized to be used for transfers to/from/within the MSMC and DDR-3 Subsytems. The others are to be used for the remaining traffic. ADVANCE INFORMATION Each EDMA3 Channel Controller includes the following features: • Fully orthogonal transfer description – 3 transfer dimensions: › Array (multiple bytes) › Frame (multiple arrays) › Block (multiple frames) – Single event can trigger transfer of array, frame, or entire block – Independent indexes on source and destination • Flexible transfer definition: – Increment or FIFO transfer addressing modes – Linking mechanism allows for ping-pong buffering, circular buffering, and repetitive/continuous transfers, all with no CPU intervention – Chaining allows multiple transfers to execute with one event • 128 PaRAM entries for TPCC0, 512 each for TPCC1 and TPCC2 – Used to define transfer context for channels – Each PaRAM entry can be used as a DMA entry, QDMA entry, or link entry • 16 DMA channels for TPCC0, 64 each for TPCC1 and TPCC2 – Manually triggered (CPU writes to channel controller register), external event triggered, and chain triggered (completion of one transfer triggers another) • 8 Quick DMA (QDMA) channels per TPCCx – Used for software-driven transfers – Triggered upon writing to a single PaRAM set entry • 2 transfer controllers and 2 event queues with programmable system-level priority for TPCC0, 4 transfer controllers and 4 event queues with programmable system-level priority for each of TPCC1 and TPCC2 • Interrupt generation for transfer completion and error conditions • Debug visibility – Queue watermarking/threshold allows detection of maximum usage of event queues – Error and status recording to facilitate debug In the context of this document, TPTCs associated with TPCC0 are referred to as TPCC0 TPTC0 and1. TPTCs associated with TPCC1 and 2 are each referred to as TPCCx TPTC0 - 3, where x is 1 or 2. Each of the transfer controllers has a direct connection to the switched central resource (SCR). Table 4-1 ‘‘SCR Connection Matrix’’ lists the peripherals that can be accessed by the transfer controllers. 108 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.4.1 EDMA3 Device-Specific Information For the range of memory addresses that include EDMA3 Channel Controller (TPCC) Control Registers and EDMA3 Transfer Controller (TPTC) Control Register see Section 2.3 ‘‘Memory Map Summary’’ on page 18. For memory offsets and other details on TPCC and TPTC Control Registers entries, see the Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. Refer to Table 7-11 for offset addresses on Parameter RAM (PaRAM) registers. Table 7-11 EDMA3 Parameter RAM Contents (1) PaRAM Set Number Offset Address Parameters 0 4000h to 401Fh PaRAM set 0 1 4020h to 403Fh PaRAM set 1 2 4040h to 405Fh PaRAM set 2 3 4060h to 407Fh PaRAM set 3 4 4080h to 409Fh PaRAM set 4 5 40A0h to 40BFh PaRAM set 5 6 40C0h to 40DFh PaRAM set 6 7 40E0h to 40FFh PaRAM set 7 8 4100h to 411Fh PaRAM set 8 9 4120h to 413Fh PaRAM set 9 ... ... ... 63 47E0h to 47FFh PaRAM set 63 64 4800h to 481Fh PaRAM set 64 65 4820h to 483Fh PaRAM set 65 ... ... ... 254 5FC0h to 5FDFh PaRAM set 254 255 5FE0h to 5FFFh PaRAM set 255 ... ... ... 510 7FC0h to 7FDFh PaRAM set 254 511 7FE0h to 7FFFh PaRAM set 255 1 A PaRAM set can be configured for use with either DMA channel, QDMA channel, or as a reload link set. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 109 ADVANCE INFORMATION The EDMA supports two addressing modes: constant addressing and increment addressing mode. Constant addressing mode is applicable to a very limited set of use cases; for most applications increment mode can be used. On the C6670 DSP, the EDMA can use constant addressing mode only with the Enhanced Viterbi-Decoder Coprocessor (VCP) and the Enhanced Turbo Decoder Coprocessor (TCP). Constant addressing mode is not supported by any other peripheral or internal memory in the DSP. Note that increment mode is supported by all peripherals, including VCP and TCP. For more information on these two addressing modes, see the Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.4.2 EDMA3 Channel Synchronization Events The EDMA3 supports up to 16 DMA channels for TPCC0, 64 each for TPCC1 and TPCC2 that can be used to service system peripherals and to move data between system memories. DMA channels can be triggered by synchronization events generated by system peripherals. The following tables lists the source of the synchronization event associated with each of the EDMA TPCC DMA channels. On the C6670, the association of each synchronization event and DMA channel is fixed and cannot be reprogrammed. For more detailed information on the EDMA3 module and how EDMA3 events are enabled, captured, processed, prioritized, linked, chained, and cleared, etc., see the Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. ADVANCE INFORMATION Table 7-12 TPCC0 Events for C6670 Event Number Event 0~5 Reserved Event Description 6 INTC2_OUT40 Interrupt Controller Output 7 INTC2_OUT41 Interrupt Controller Output 8 INTC2_OUT0 Interrupt Controller Output 9 INTC2_OUT1 Interrupt Controller Output 10 INTC2_OUT2 Interrupt Controller Output 11 INTC2_OUT3 Interrupt Controller Output 12 INTC2_OUT4 Interrupt Controller Output 13 INTC2_OUT5 Interrupt Controller Output 14 INTC2_OUT6 Interrupt Controller Output 15 INTC2_OUT7 Interrupt Controller Output End of Table 7-12 Table 7-13 TPCC1 Events for C6670 (Part 1 of 2) Event Number Event Event Description 0 SPIINT0 SPI interrupt 1 SPIINT1 SPI interrupt 2 SPIXEVT Transmit event 3 SPIREVT Receive event 4 I2CREVT I2C Receive event 5 I2CXEVT I2C Transmit event 6 GPINT0 GPIO Interrupt 7 GPINT1 GPIO Interrupt 8 GPINT2 GPIO Interrupt 9 GPINT3 GPIO Interrupt 10 AIF_SEVT0 AIF radio timing sync event 0 11 AIF_SEVT1 AIF radio timing sync event 1 12 AIF_SEVT2 AIF radio timing sync event 2 13 AIF_SEVT3 AIF radio timing sync event 3 14 AIF_SEVT4 AIF radio timing sync event 4 15 AIF_SEVT5 AIF radio timing sync event 5 16 AIF_SEVT6 AIF radio timing sync event 6 17 AIF_SEVT7 AIF radio timing sync event 7 18 SEMINT0 Semaphore interrupt 19 SEMINT1 Semaphore interrupt 110 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com TPCC1 Events for C6670 (Part 2 of 2) Event Number Event Event Description 20 SEMINT2 Semaphore interrupt 21 SEMINT3 Semaphore interrupt 22 TINT4L Timer interrupt low 23 TINT4H Timer interrupt high 24 TINT5L Timer interrupt low 25 TINT5H Timer interrupt high 26 TINT6L Timer interrupt low 27 TINT6H Timer interrupt high 28 TINT7L Timer interrupt low 29 TINT7H Timer interrupt high 30 - 44 Reserved 45 INTC1_OUT2 Interrupt Controller Output 46 INTC1_OUT3 Interrupt Controller Output 47 INTC1_OUT4 Interrupt Controller Output 48 INTC1_OUT5 Interrupt Controller Output 49 INTC1_OUT6 Interrupt Controller Output 50 INTC1_OUT7 Interrupt Controller Output 51 INTC1_OUT8 Interrupt Controller Output 52 INTC1_OUT9 Interrupt Controller Output 53 INTC1_OUT10 Interrupt Controller Output 54 INTC1_OUT11 Interrupt Controller Output 55 INTC1_OUT12 Interrupt Controller Output 56 INTC1_OUT13 Interrupt Controller Output 57 INTC1_OUT14 Interrupt Controller Output 58 INTC1_OUT15 Interrupt Controller Output 59 INTC1_OUT16 Interrupt Controller Output 60 INTC1_OUT17 Interrupt Controller Output 61 INTC1_OUT18 Interrupt Controller Output 62 INTC1_OUT19 Interrupt Controller Output 63 INTC1_OUT20 Interrupt Controller Output ADVANCE INFORMATION Table 7-13 End of Table 7-13 Table 7-14 TPCC2 Events for C6670 (Part 1 of 3) Event Number Event Event Description 0 TCP3D_AREVT0 TCP3D_A Receive event0 1 TCP3D_AREVT1 TCP3D_A Receive event1 2 TCP3EREVT TCP3e read event 3 TCP3EWEVT TCP3e Write event 4 URXEVT UART Receive Event 5 UTXEVT UART Transmit Event 6 GPINT0 GPIO Interrupt 7 GPINT1 GPIO Interrupt 8 GPINT2 GPIO Interrupt 9 GPINT3 GPIO Interrupt Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 111 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-14 www.ti.com TPCC2 Events for C6670 (Part 2 of 3) Event Number Event Event Description 10 VCPAREVT Receive event 11 VCPAXEVT Transmit event 12 VCPBREVT Receive event 13 VCPBXEVT Transmit event 14 VCPCREVT Receive event 15 VCPCXEVT Transmit event 16 VCPDREVT Receive event ADVANCE INFORMATION 17 VCPDXEVT Transmit event 18 SEMINT0 Semaphore interrupt 19 SEMINT1 Semaphore interrupt 20 SEMINT2 Semaphore interrupt 21 SEMINT3 Semaphore interrupt 22 TINT4L Timer interrupt low 23 TINT4H Timer interrupt high 24 TINT5L Timer interrupt low 25 TINT5H Timer interrupt high 26 TINT6L Timer interrupt low 27 TINT6H Timer interrupt high 28 TINT7L Timer interrupt low 29 TINT7H Timer interrupt high 30 SPIXEVT SPI Transmit event 31 SPIREVT SPI Receive event 32 I2CREVT I2C Receive event 33 I2CXEVT I2C Transmit event 34 TCP3D_BREVT0 TCP3D_B Receive event0 35 TCP3D_BREVT1 TCP3D_B Receive event1 36 INTC1_OUT23 Interrupt Controller Output 37 INTC1_OUT24 Interrupt Controller Output 38 INTC1_OUT25 Interrupt Controller Output 39 INTC1_OUT26 Interrupt Controller Output 40 INTC1_OUT27 Interrupt Controller Output 41 INTC1_OUT28 Interrupt Controller Output 42 INTC1_OUT29 Interrupt Controller Output 43 INTC1_OUT30 Interrupt Controller Output 44 INTC1_OUT31 Interrupt Controller Output 45 INTC1_OUT32 Interrupt Controller Output 46 INTC1_OUT33 Interrupt Controller Output 47 INTC1_OUT34 Interrupt Controller Output 48 INTC1_OUT35 Interrupt Controller Output 49 INTC1_OUT36 Interrupt Controller Output 50 INTC1_OUT37 Interrupt Controller Output 51 INTC1_OUT38 Interrupt Controller Output 52 INTC1_OUT39 Interrupt Controller Output 53 INTC1_OUT40 Interrupt Controller Output 112 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-14 TPCC2 Events for C6670 (Part 3 of 3) Event Number Event Event Description 54 INTC1_OUT41 Interrupt Controller Output 55 INTC1_OUT42 Interrupt Controller Output 56 INTC1_OUT43 Interrupt Controller Output 57 INTC1_OUT44 Interrupt Controller Output 58 - 63 Reserved ADVANCE INFORMATION End of Table 7-14 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 113 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.5 Interrupts 7.5.1 Interrupt Sources and Interrupt Controller The CPU interrupts on the C6670 device are configured through the C66x CorePac interrupt controller. The interrupt controller allows for up to 128 system events to be programmed to any of the twelve CPU interrupt inputs (CPUINT4 - CPUINT15), the CPU exception input (EXCEP), or the advanced emulation logic. The 128 system events consist of both internally-generated events (within the CorePac) and chip-level events. ADVANCE INFORMATION Additional system events are routed to each of the C66x CorePacs to provide chip-level events that are not required as CPU interrupts/exceptions to be routed to the interrupt controller as emulation events. In addition, error-class events or infrequently used events are also routed through the system event router to offload the C66x CorePac interrupt selector. This is accomplished through INTC blocks, INTC[2:0], with one controller per C66x CorePac. This is clocked using CPU/6. The event controllers consist of simple combination logic to provide additional events to each C66x CorePac, plus the TPCC. INTC0 provides 16 additional events to each of the C66x CorePacs, INTC1 provides 21 and 30 additional events to TPCC1 and TPCC2 respectively, and INTC provides 8 and 32 additional events to TPCC0 and HyperLink respectively. The events that are routed to the C66x CorePacs for AET purposes, from those TPCC and FSYNC events that are not otherwise provided to each C66x CorePac. For more details on the INTC features, please see the Interrupt Controller (INTC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 114 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 7-12 shows the C6670 interrupt topology. Figure 7-12 TMS320C6670 Interrupt Topology 8 Broadcast Events from AIF 6 Reserved Secondary Events 65 Primary Events Core0 INTC0 119 Core-only Secondary Events 18 Secondary Events 65 Primary Events Core1 83 Common Events ADVANCE INFORMATION 18 Secondary Events 65 Primary Events Core2 18 Secondary Events 65 Primary Events Core3 18 Secondary Events 8 Broadcast Events from INTC0 12 Reserved Secondary Events 83 Common Events 45 Primary Events INTC1 5 Reserved Secondary Events 19 Secondary Events 42 Primary Events 72 TPCC-only Events 22 Secondary Events 32 Queue Events 5 Reserved Secondary Events CPU/3 TPCC1 CPU/3 TPCC2 HyperLink 32 Secondary Events 59 Events INTC2 6 Primary Events 10 Secondary Events CPU/2 TPCC0 6670 Table 7-15 shows the mapping of system events. For more information on the Interrupt Controller, see the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. Table 7-15 TMS320C6670 System Event Mapping — C66x CorePac Primary Interrupts (Part 1 of 4) Event Number Interrupt Event Description 0 EVT0 Event combiner 0 output 1 EVT1 Event combiner 1 output 2 EVT2 Event combiner 2 output 3 EVT3 4 TETBHFULLINTn Event combiner 3 output 1 5 TETBFULLINTn 6 TETBACQINTn1 1 TETB is half full TETB is full Acquisition has been completed Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 115 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-15 Event Number 7 www.ti.com TMS320C6670 System Event Mapping — C66x CorePac Primary Interrupts (Part 2 of 4) Interrupt Event TETBOVFLINTn Description 1 Overflow Condition Interrupt 1 Underflow Condition Interrupt 8 TETBUNFLINTn 9 EMU_DTDMA 10 MSMC_mpf_errorn 11 Reserved Emulation interrupt for: 1. Host scan access 2. DTDMA transfer complete 3. AET interrupt 4 Memory protection fault indicators for local CorePac ADVANCE INFORMATION 12 Reserved 13 IDMA0 14 IDMA1 15 SEMERRn 2 Semaphore Error Interrupt 16 SEMINTn 2 Semaphore Interrupt 17 PCIEXpress_MSI_INTn3 IDMA Channel 0 Interrupt IDMA Channel 1 Interrupt Message Signaled Interrupt Mode 3 18 PCIEXpress_MSI_INTn+1 19 Reserved 20 INTDST(n+16)10 21 INTDST(n+20) Message Signaled Interrupt Mode SRIO Interrupt 10 SRIO Interrupt 7 Interrupt Controller Output 7 Interrupt Controller Output 24 7 INTC0_OUT(64+2+10*n) Interrupt Controller Output 25 INTC0_OUT(64+3+10*n)7 Interrupt Controller Output 26 7 INTC0_OUT(64+4+10*n) Interrupt Controller Output 27 INTC0_OUT(64+5+10*n) 7 Interrupt Controller Output 7 Interrupt Controller Output 7 Interrupt Controller Output 30 7 INTC0_OUT(64+8+10*n) Interrupt Controller Output 31 INTC0_OUT(64+9+10*n)7 Interrupt Controller Output 22 INTC0_OUT(64+0+10*n) 23 INTC0_OUT(64+1+10*n) 28 INTC0_OUT(64+6+10*n) 29 INTC0_OUT(64+7+10*n) 32 QM_INT_LOW_0 QM Interrupt for 0~31 Queues 33 QM_INT_LOW_1 QM Interrupt for 32~63 Queues 34 QM_INT_LOW_2 QM Interrupt for 64~95 Queues 35 QM_INT_LOW_3 QM Interrupt for 96~127 Queues 36 QM_INT_LOW_4 QM Interrupt for 128~159 Queues 37 QM_INT_LOW_5 QM Interrupt for 160~191 Queues 38 QM_INT_LOW_6 QM Interrupt for 192~223 Queues 39 QM_INT_LOW_7 QM Interrupt for 224~255 Queues 40 QM_INT_LOW_8 QM Interrupt for 256~287 Queues 41 QM_INT_LOW_9 QM Interrupt for 288~319 Queues 42 QM_INT_LOW_10 QM Interrupt for 320~351 Queues 43 QM_INT_LOW_11 QM Interrupt for 352~383 Queues 44 QM_INT_LOW_12 QM Interrupt for 384~415 Queues 45 QM_INT_LOW_13 QM Interrupt for 416~447 Queues 46 QM_INT_LOW_14 QM Interrupt for 448~479 Queues 47 QM_INT_LOW_15 QM Interrupt for 480~511 Queues 48 9 116 QM_INT_HIGH_n QM Interrupt for Queue 704+n TMS320C6670 Peripheral Information and Electrical Specifications 9 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Event Number TMS320C6670 System Event Mapping — C66x CorePac Primary Interrupts (Part 3 of 4) Interrupt Event 49 QM_INT_HIGH_(n+4) 9 50 QM_INT_HIGH_(n+8) 9 Description QM Interrupt for Queue 708+n 9 QM Interrupt for Queue 712+n 9 9 QM Interrupt for Queue 716+n9 9 QM Interrupt for Queue 720+n 9 9 9 51 QM_INT_HIGH_(n+12) 52 QM_INT_HIGH_(n+16) 53 QM_INT_HIGH_(n+20) QM Interrupt for Queue 724+n 54 QM_INT_HIGH_(n+24)9 QM Interrupt for Queue 728+n9 55 9 QM_INT_HIGH_(n+28) QM Interrupt for Queue 732+n 56 INTC0_OUT0 Interrupt Controller Output 57 INTC0_OUT1 Interrupt Controller Output 58 INTC0_OUT2 Interrupt Controller Output 59 INTC0_OUT3 Interrupt Controller Output 60 INTC0_OUT4 Interrupt Controller Output 61 INTC0_OUT5 Interrupt Controller Output 62 INTC0_OUT6 Interrupt Controller Output 63 INTC0_OUT7 Interrupt Controller Output 6 9 Local Timer interrupt low 64 TINTLn 65 TINTHn6 Local Timer interrupt high 66 TINT4L Timer 4 interrupt low 67 TINT4H Timer 4 interrupt high 68 TINT5L Timer 5 interrupt low 69 TINT5H Timer 5 interrupt high 70 TINT6L Timer 6 interrupt low 71 TINT6H Timer 6 interrupt high 72 TINT7L Timer 7 interrupt low 73 TINT7H Timer 7 interrupt high 7 74 INTC0_OUT(8+16*n) 75 INTC0_OUT(9+16*n) Interrupt Controller Output 7 Interrupt Controller Output 76 7 INTC0_OUT(10+16*n) Interrupt Controller Output 77 INTC0_OUT(11+16*n)7 Interrupt Controller Output 78 GPINT4 Local GPIO Interrupt 79 GPINT5 Local GPIO Interrupt 80 GPINT6 Local GPIO Interrupt 81 GPINT7 Local GPIO Interrupt 82 GPINT8 Local GPIO Interrupt 83 GPINT9 Local GPIO Interrupt 84 GPINT10 Local GPIO Interrupt 85 GPINT11 Local GPIO Interrupt 86 GPINT12 Local GPIO Interrupt 87 GPINT13 Local GPIO Interrupt 88 GPINT14 Local GPIO Interrupt 89 GPINT15 Local GPIO Interrupt 90 IPC_LOCAL Inter DSP Interrupt from IPCGRn 91 GPINTn 92 ADVANCE INFORMATION Table 7-15 5 Local GPIO Interrupt 7 INTC0_OUT(12+16*n) Interrupt Controller Output Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 117 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-15 www.ti.com TMS320C6670 System Event Mapping — C66x CorePac Primary Interrupts (Part 4 of 4) Event Number Interrupt Event Description 7 Interrupt Controller Output 94 7 INTC0_OUT(14+16*n) Interrupt Controller Output 95 INTC0_OUT(15+16*n)7 Interrupt Controller Output 93 INTC0_OUT(13+16*n) ADVANCE INFORMATION 96 INTERR Dropped CPU interrupt event 97 EMC_IDMAERR Invalid IDMA parameters 98 Reserved 99 Reserved 100 EFIINTA EFI Interrupt from Side A 101 EFIINTB EFI Interrupt from Side B 102 AIF_SEVT0 AIF System Event 103 AIF_SEVT0 AIF System Event 104 AIF_SEVT0 AIF System Event 105 AIF_SEVT0 AIF System Event 106 AIF_SEVT0 AIF System Event 107 AIF_SEVT0 AIF System Event 108 AIF_SEVT0 AIF System Event 109 AIF_SEVT0 AIF System Event 110 MDMAERREVT VbusM error event 111 Reserved 112 TPCC0_EDMACC_AETEVT TPCC0 AET Event 113 PMC_ED Single bit error detected during DMA read 114 TPCC1_EDMACC_AETEVT TPCC1 AET Event 115 TPCC2_EDMACC_AETEVT TPCC2 AET Event 116 UMC_ED1 Corrected bit error detected 117 UMC_ED2 Uncorrected bit error detected 118 PDC_INT Power Down sleep interrupt 119 SYS_CMPA SYS CPU MP fault event 120 PMC_CMPA CPU memory protection fault 121 PMC_DMPA DMA memory protection fault 122 DMC_CMPA CPU memory protection fault 123 DMC_DMPA DMA memory protection fault 124 UMC_CMPA CPU memory protection fault 125 UMC_DMPA DMA memory protection fault 126 EMC_CMPA CPU memory protection fault 127 EMC_BUSERR Bus Error Interrupt End of Table 7-15 1. 2. 3. 4. 5. 6. 7. 9. 10. 118 Core [n] will receive TETBHFULLINTn, TETBFULLINTn, TETBACQINTn, TETBOVFLINTn and TETBUNFLINTn. Core [n] will receive SEMINTn and SEMERRn. Core [n] will receive PCIEXpress_MSI_INTn and PCIEXpress_MSI_INTn+1. Core [n] will receive MSMC_mpf_errorn. Core [n] will receive GPINTn. Core [n] will receive TINTLn and TINTHn. For Core 0~3, it is INTC(interrupt number+17*n). n is core number. Core [n] will receive INTDST(n+16) and INTDST(n+20). TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com INTC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 1 of 5) Input Event# on INTC System Interrupt Description 0 TPCC1 EDMACC_ERRINT TPCC1 Error Interrupt 1 TPCC1 EDMACC_MPINT TPCC1 Memory Protection Interrupt 2 TPCC1 EDMATC_ERRINT0 TPCC1 TPTC0 Error Interrupt 3 TPCC1 EDMATC_ERRINT1 TPCC1 TPTC1 Error Interrupt 4 TPCC1 EDMATC_ERRINT2 TPCC1 TPTC2 Error Interrupt 5 TPCC1 EDMATC_ERRINT3 TPCC1 TPTC3 Error Interrupt 6 TPCC1 EDMACC_GINT TPCC1 GINT 7 Reserved 8 TPCC1 TPCCINT0 TPCC1 Individual Completion Interrupt 9 TPCC1 TPCCINT1 TPCC1 Individual Completion Interrupt 10 TPCC1 TPCCINT2 TPCC1 Individual Completion Interrupt 11 TPCC1 TPCCINT3 TPCC1 Individual Completion Interrupt 12 TPCC1 TPCCINT4 TPCC1 Individual Completion Interrupt 13 TPCC1 TPCCINT5 TPCC1 Individual Completion Interrupt 14 TPCC1 TPCCINT6 TPCC1 Individual Completion Interrupt 15 TPCC1 TPCCINT7 TPCC1 Individual Completion Interrupt 16 TPCC2 EDMACC_ERRINT TPCC2 Error Interrupt 17 TPCC2 EDMACC_MPINT TPCC2 Memory Protection Interrupt 18 TPCC2 EDMATC_ERRINT0 TPCC2 TPTC0 Error Interrupt 19 TPCC2 EDMATC_ERRINT1 TPCC2 TPTC1 Error Interrupt 20 TPCC2 EDMATC_ERRINT2 TPCC2 TPTC2 Error Interrupt 21 TPCC2 EDMATC_ERRINT3 TPCC2 TPTC3 Error Interrupt 22 TPCC2 EDMACC_GINT TPCC2 GINT 23 Reserved 24 TPCC2 TPCCINT0 TPCC2 Individual Completion Interrupt 25 TPCC2 TPCCINT1 TPCC2 Individual Completion Interrupt 26 TPCC2 TPCCINT2 TPCC2 Individual Completion Interrupt 27 TPCC2 TPCCINT3 TPCC2 Individual Completion Interrupt 28 TPCC2 TPCCINT4 TPCC2 Individual Completion Interrupt 29 TPCC2 TPCCINT5 TPCC2 Individual Completion Interrupt 30 TPCC2 TPCCINT6 TPCC2 Individual Completion Interrupt 31 TPCC2 TPCCINT7 TPCC2 Individual Completion Interrupt 32 TPCC0 EDMACC_ERRINT TPCC0 Error Interrupt 33 TPCC0 EDMACC_MPINT TPCC0 Memory Protection Interrupt 34 TPCC0 EDMATC_ERRINT0 TPCC0 TPTC0 Error Interrupt 35 TPCC0 EDMATC_ERRINT1 TPCC0 TPTC1 Error Interrupt 36 TPCC0 EDMACC_GINT TPCC0 GINT 37 Reserved 38 TPCC0INT0 TPCC0 Individual Completion Interrupt 39 TPCC0INT1 TPCC0 Individual Completion Interrupt 40 TPCC0INT2 TPCC0 Individual Completion Interrupt 41 TPCC0INT3 TPCC0 Individual Completion Interrupt 42 TPCC0INT4 TPCC0 Individual Completion Interrupt 43 TPCC0INT5 TPCC0 Individual Completion Interrupt Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications ADVANCE INFORMATION Table 7-16 119 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-16 www.ti.com INTC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 2 of 5) Input Event# on INTC System Interrupt Description 44 TPCC0INT6 TPCC0 Individual Completion Interrupt 45 TPCC0INT7 TPCC0 Individual Completion Interrupt 46 Reserved ADVANCE INFORMATION 47 Reserved 48 PCIEXpress_ERR_INT Protocol Error Interrupt 49 PCIEXpress_PM_INT Power Management Interrupt 50 PCIEXpress_Legacy_INTA Legacy Interrupt Mode 51 PCIEXpress_Legacy_INTB Legacy Interrupt Mode 52 PCIEXpress_Legacy_INTC Legacy Interrupt Mode 53 PCIEXpress_Legacy_INTD Legacy Interrupt Mode 54 SPIINT0 SPI Interrupt0 55 SPIINT1 SPI Interrupt1 56 SPIXEVT SPI Transmit event 57 SPIREVT SPI Receive event 58 I2CINT I2C interrupt 59 I2CREVT I C Receive event 60 I2CXEVT I2C Transmit event 61 Reserved 62 Reserved 63 TETBHFULLINT TETB is half full 64 TETBFULLINT TETB is full 65 TETBACQINT Acquisition has been completed 66 TETBOVFLINT Overflow condition occur 67 TETBUNFLINT Underflow condition occur 68 mdio_link_intr0 Packet Accelerator Subsystem mdio Interrupt 2 69 mdio_link_intr1 Packet Accelerator Subsystem mdio Interrupt 70 mdio_user_intr0 Packet Accelerator Subsystem mdio Interrupt 71 mdio_user_intr1 Packet Accelerator Subsystem mdio Interrupt 72 misc_intr Packet Accelerator Subsystem misc Interrupt 73 Tracer_core_0_INTD Tracer sliding time window interrupt for individual core 74 Tracer_core_1_INTD Tracer sliding time window interrupt for individual core 75 Tracer_core_2_INTD Tracer sliding time window interrupt for individual core 76 Tracer_core_3_INTD Tracer sliding time window interrupt for individual core 77 Tracer_DDR_INTD Tracer sliding time window interrupt for DDR3 EMIF1 78 Tracer_MSMC_0_INTD Tracer sliding time window interrupt for MSMC SRAM Bank0 79 Tracer_MSMC_1_INTD Tracer sliding time window interrupt for MSMC SRAM Bank1 80 Tracer_MSMC_2_INTD Tracer sliding time window interrupt for MSMC SRAM Bank2 81 Tracer_MSMC_3_INTD Tracer sliding time window interrupt for MSMC SRAM Bank3 82 Tracer_CFG_INTD Tracer sliding time window interrupt for CFG0 SCR 83 Tracer_QM_SS_CFG_INTD Tracer sliding time window interrupt for QM_SS CFG 84 Tracer_QM_SS_DMA_INTD Tracer sliding time window interrupt for QM_SS Slave 85 Tracer_SEM_INTD Tracer sliding time window interrupt for Semaphore 86 PSC_ALLINT Power & Sleep Controller Interrupt 87 MSMC_scrub_cerror Correctable (1-bit) soft error detected during scrub cycle 120 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com INTC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 3 of 5) Input Event# on INTC System Interrupt Description 88 Chip-level MMR Error Register BOOTCFG_INTD 89 Reserved 90 MPU0_INTD (MPU0_ADDR_ERR_INT and MPU0_PROT_ERR_INT combined) 91 Reserved 92 MPU1_INTD (MPU1_ADDR_ERR_INT and MPU1_PROT_ERR_INT combined) 93 Reserved 94 MPU2_INTD (MPU2_ADDR_ERR_INT and MPU2_PROT_ERR_INT combined) 95 Reserved 96 MPU3_INTD (MPU3_ADDR_ERR_INT and MPU3_PROT_ERR_INT combined) 97 Reserved 98 MSMC_dedc_cerror MPU0 addressing violation interrupt and protection violation interrupt. MPU1 addressing violation interrupt and protection violation interrupt. MPU2 addressing violation interrupt and protection violation interrupt. MPU3 addressing violation interrupt and protection violation interrupt. Correctable (1-bit) soft error detected on SRAM read 99 MSMC_dedc_nc_error Non-correctable (2-bit) soft error detected on SRAM read 100 MSMC_scrub_nc_error Non-correctable (2-bit) soft error detected during scrub cycle 101 MSMC_mpax_addr_error SES MPAX setup error causing extended address to be out of EMIF range 102 MSMC_mpf_error8 Memory protection fault indicators for each system master PrivID 103 MSMC_mpf_error9 Memory protection fault indicators for each system master PrivID 104 MSMC_mpf_error10 Memory protection fault indicators for each system master PrivID 105 MSMC_mpf_error11 Memory protection fault indicators for each system master PrivID 106 MSMC_mpf_error12 Memory protection fault indicators for each system master PrivID 107 MSMC_mpf_error13 Memory protection fault indicators for each system master PrivID 108 MSMC_mpf_error14 Memory protection fault indicators for each system master PrivID 109 MSMC_mpf_error15 Memory protection fault indicators for each system master PrivID 110 DDR3_ERR DDR3_EMIF Error Interrupt 111 vusr_int_o HyperLink Interrupt 112 INTDST0 RapidIO Interrupt 113 INTDST1 RapidIO Interrupt 114 INTDST2 RapidIO Interrupt 115 INTDST3 RapidIO Interrupt 116 INTDST4 RapidIO Interrupt 117 INTDST5 RapidIO Interrupt 118 INTDST6 RapidIO Interrupt 119 INTDST7 RapidIO Interrupt 120 INTDST8 RapidIO Interrupt 121 INTDST9 RapidIO Interrupt 122 INTDST10 RapidIO Interrupt 123 INTDST11 RapidIO Interrupt 124 INTDST12 RapidIO Interrupt 125 INTDST13 RapidIO Interrupt 126 INTDST14 RapidIO Interrupt Copyright 2010 Texas Instruments Incorporated ADVANCE INFORMATION Table 7-16 TMS320C6670 Peripheral Information and Electrical Specifications 121 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-16 www.ti.com INTC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 4 of 5) Input Event# on INTC System Interrupt Description 127 RapidIO Interrupt INTDST15 ADVANCE INFORMATION 128 - 132 Reserved 133 AIF_INTD AIF CPU error interrupt and AIF CPU alarm interrupt and Starvation interrupt 134 QM_INT_PASS_TXQ_PEND_22 Queue Manager (Packet Accelerator) Pend Event 135 QM_INT_PASS_TXQ_PEND_23 Queue Manager (Packet Accelerator) Pend Event 136 QM_INT_PASS_TXQ_PEND_24 Queue Manager (Packet Accelerator) Pend Event 137 QM_INT_PASS_TXQ_PEND_25 Queue Manager (Packet Accelerator) Pend Event 138 QM_INT_PASS_TXQ_PEND_26 Queue Manager (Packet Accelerator) Pend Event 139 QM_INT_PASS_TXQ_PEND_27 Queue Manager (Packet Accelerator) Pend Event 140 QM_INT_PASS_TXQ_PEND_28 Queue Manager (Packet Accelerator) Pend Event 141 QM_INT_PASS_TXQ_PEND_29 Queue Manager (Packet Accelerator) Pend Event 142 QM_INT_PASS_TXQ_PEND_30 Queue Manager (Packet Accelerator) Pend Event 143 VCP0INT Error interrupt 144 VCP1INT Error interrupt 145 VCP2INT Error interrupt 146 VCP3INT Error interrupt 147 VCP0REVT Receive event 148 VCP0XEVT Transmit event 149 VCP1REVT Receive event 150 VCP1XEVT Transmit event 151 VCP2REVT Receive event 152 VCP2XEVT Transmit event 153 VCP3REVT Receive event 154 VCP3XEVT Transmit event 155 TCP3D_A_INTD TCP3d_A Error interrupt TCP3DINT0 and TCP3DINT1 156 TCP3D_B_INTD TCP3d_B Error interrupt TCP3DINT0 and TCP3DINT1 157 TCP3D_AREVT0 TCP3d_A Receive event0 158 TCP3D_AREVT1 TCP3d_A Receive event1 159 TCP3E_INTD Error interrupt TCP3EINT 160 TCP3EREVT TCP3e read event 161 TCP3EWEVT TCP3e Write event 162 TCP3D_BREVT0 TCP3d_B Receive event0 163 TCP3D_BREVT1 TCP3d_B Receive event1 164 UARTINT UART Interrupt 165 URXEVT UART Receive Event 166 UTXEVT UART Transmit Event 167 - 169 Reserved 170 MSMC_mpf_error4 Memory protection fault indicators for each system master PrivID 171 MSMC_mpf_error5 Memory protection fault indicators for each system master PrivID 172 MSMC_mpf_error6 Memory protection fault indicators for each system master PrivID 173 MSMC_mpf_error7 Memory protection fault indicators for each system master PrivID 174 Reserved 175 QM_INT_PASS_TXQ_PEND_31 Queue Manager (Packet Accelerator) Pend Event 176 QM_INT_CDMA_0 QM Interrupt for CDMA Starvation 122 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com INTC0 Event Inputs — C66x CorePac Secondary Interrupts (Part 5 of 5) Input Event# on INTC System Interrupt Description 177 QM_INT_CDMA_1 QM Interrupt for CDMA Starvation 178 RapidIO_INT_CDMA_0 RapidIO Interrupt for CDMA Starvation 179 PASS_INT_CDMA_0 PASS Interrupt for CDMA Starvation 180 Reserved 181 SmartReflex_intrreq0 SmartReflex sensor interrupt 182 SmartReflex_intrreq SmartReflex sensor interrupt 183 SmartReflex_intrreq2 SmartReflex sensor interrupt 184 SmartReflex_intrreq3 SmartReflex sensor interrupt 185 VPNoSMPSAck VPVOLTUPDATE has been asserted but SMPS has not been responded in a defined time interval 186 VPEqValue SRSINTERUPTZ is asserted, but the new voltage is not different from the current SMPS voltage. 187 VPMaxVdd the new voltage required is equal to or greater than MaxVdd. 188 VPMinVdd the new voltage required is equal to or less than MinVdd. 189 VPINIDLE Indicating that the FSM of Voltage Processor is in idle. 190 VPOPPChangeDone Indicating that the average frequency error is within the desired limit. 191 Reserved 192 FFTC_A_INTD0 FFTC_A error event and FFTC_A debug event 193 FFTC_A_INTD1 FFTC_A error event and FFTC_A debug event 194 FFTC_A_INTD2 FFTC_A error event and FFTC_A debug event 195 FFTC_A_INTD3 FFTC_A error event and FFTC_A debug event 196 FFTC_B_INTD0 FFTC_B error event and FFTC_B debug event 197 FFTC_B_INTD1 FFTC_B error event and FFTC_B debug event 198 FFTC_B_INTD2 FFTC_B error event and FFTC_B debug event 199 FFTC_B_INTD3 FFTC_B error event and FFTC_B debug event 200 - 207 Reserved Reserved inputs End of Table 7-16 Table 7-17 INTC1 Event Inputs (Secondary Events for TPCC1 and TPCC2) (Part 1 of 5) Input Event # on INTC System Interrupt Description 0 GPINT8 GPIO Interrupt 1 GPINT9 GPIO Interrupt 2 GPINT10 GPIO Interrupt 3 GPINT11 GPIO Interrupt 4 GPINT12 GPIO Interrupt 5 GPINT13 GPIO Interrupt 6 GPINT14 GPIO Interrupt 7 GPINT15 GPIO Interrupt 8 TETBHFULLINT TETB is half full 9 TETBFULLINT TETB is full 10 TETBACQINT Acquisition has been completed 11 TETBHFULLINT0 TETB is half full 12 TETBFULLINT0 TETB is full 13 TETBACQINT0 Acquisition has been completed Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 123 ADVANCE INFORMATION Table 7-16 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-17 www.ti.com INTC1 Event Inputs (Secondary Events for TPCC1 and TPCC2) (Part 2 of 5) ADVANCE INFORMATION Input Event # on INTC System Interrupt Description 14 TETBHFULLINT1 TETB is half full 15 TETBFULLINT1 TETB is full 16 TETBACQINT1 Acquisition has been completed 17 TETBHFULLINT2 TETB is half full 18 TETBFULLINT2 TETB is full 19 TETBACQINT2 Acquisition has been completed 20 TETBHFULLINT3 TETB is half full 21 TETBFULLINT3 TETB is full 22 TETBACQINT3 Acquisition has been completed 23 Reserved 24 QM_INT_HIGH_16 QM Interrupt for IPC_core_0 25 QM_INT_HIGH_17 QM Interrupt for IPC_core_1 26 QM_INT_HIGH_18 QM Interrupt for IPC_core_2 27 QM_INT_HIGH_19 QM Interrupt for IPC_core_3 28 QM_INT_HIGH_20 QM Interrupt for IPC_core_0 29 QM_INT_HIGH_21 QM Interrupt for IPC_core_1 30 QM_INT_HIGH_22 QM Interrupt for IPC_core_2 31 QM_INT_HIGH_23 QM Interrupt for IPC_core_3 32 QM_INT_HIGH_24 QM Interrupt for IPC_core_0 33 QM_INT_HIGH_25 QM Interrupt for IPC_core_1 34 QM_INT_HIGH_26 QM Interrupt for IPC_core_2 35 QM_INT_HIGH_27 QM Interrupt for IPC_core_3 36 QM_INT_HIGH_28 QM Interrupt for IPC_core_0 37 QM_INT_HIGH_29 QM Interrupt for IPC_core_1 38 QM_INT_HIGH_30 QM Interrupt for IPC_core_2 39 QM_INT_HIGH_31 QM Interrupt for IPC_core_3 40 mdio_link_intr0 PASS_mdio Interrupt 41 mdio_link_intr1 PASS_mdio Interrupt 42 mdio_user_intr0 PASS_mdio Interrupt 43 mdio_user_intr1 PASS_mdio Interrupt 44 misc_intr PASS_misc Interrupt 45 Tracer_core_0_INTD Tracer sliding time window interrupt for individual core 46 Tracer_core_1_INTD Tracer sliding time window interrupt for individual core 47 Tracer_core_2_INTD Tracer sliding time window interrupt for individual core 48 Tracer_core_3_INTD Tracer sliding time window interrupt for individual core 49 Tracer_DDR_INTD Tracer sliding time window interrupt for DDR3 EMIF1 50 Tracer_MSMC_0_INTD Tracer sliding time window interrupt for MSMC SRAM Bank0 51 Tracer_MSMC_1_INTD Tracer sliding time window interrupt for MSMC SRAM Bank1 52 Tracer_MSMC_2_INTD Tracer sliding time window interrupt for MSMC SRAM Bank2 53 Tracer_MSMC_3_INTD Tracer sliding time window interrupt for MSMC SRAM Bank3 54 Tracer_CFG_INTD Tracer sliding time window interrupt for CFG0 SCR 55 Tracer_QM_SS_CFG_INTD Tracer sliding time window interrupt for QM_SS CFG 56 Tracer_QM_SS_DMA_INTD Tracer sliding time window interrupt for QM_SS Slave port 57 Tracer_SEM_INTD Tracer sliding time window interrupt for Semaphore 124 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com INTC1 Event Inputs (Secondary Events for TPCC1 and TPCC2) (Part 3 of 5) Input Event # on INTC System Interrupt Description 58 SEMERR0 Semaphore interrupt 59 SEMERR1 Semaphore interrupt 60 SEMERR2 Semaphore interrupt 61 SEMERR3 Semaphore interrupt 62 BOOTCFG_INTD Chip-level MMR Interrupt 63 PASS_INT_CDMA_0 PASS Interrupt for CDMA Starvation 64 MPU0_INTD (MPU0_ADDR_ERR_INT and MPU0_PROT_ERR_INT combined) MPU0 Addressing violation interrupt and Protection violation interrupt. 65 MSMC_scrub_cerror Correctable (1-bit) soft error detected during scrub cycle 66 MPU1_INTD (MPU1_ADDR_ERR_INT and MPU1_PROT_ERR_INT combined) MPU1 Addressing violation interrupt and Protection violation interrupt. 67 RapidIO_INT_CDMA_0 RapidIO Interrupt for CDMA Starvation 68 MPU2_INTD (MPU2_ADDR_ERR_INT and MPU2_PROT_ERR_INT combined) MPU2 Addressing violation interrupt and Protection violation interrupt. 69 QM_INT_CDMA_0 QM Interrupt for CDMA Starvation 70 MPU3_INTD (MPU3_ADDR_ERR_INT and MPU3_PROT_ERR_INT combined) MPU3 Addressing violation interrupt and Protection violation interrupt. 71 QM_INT_CDMA_1 QM Interrupt for CDMA Starvation 72 MSMC_dedc_cerror Correctable (1-bit) soft error detected on SRAM read 73 MSMC_dedc_nc_error Non-correctable (2-bit) soft error detected on SRAM read 74 MSMC_scrub_nc_error Non-correctable (2-bit) soft error detected during scrub cycle 75 Reserved 76 MSMC_mpf_error0 Memory protection fault indicators for each system master PrivID 77 MSMC_mpf_error1 Memory protection fault indicators for each system master PrivID 78 MSMC_mpf_error2 Memory protection fault indicators for each system master PrivID 79 MSMC_mpf_error3 Memory protection fault indicators for each system master PrivID 80 MSMC_mpf_error4 Memory protection fault indicators for each system master PrivID 81 MSMC_mpf_error5 Memory protection fault indicators for each system master PrivID 82 MSMC_mpf_error6 Memory protection fault indicators for each system master PrivID 83 MSMC_mpf_error7 Memory protection fault indicators for each system master PrivID 84 MSMC_mpf_error8 Memory protection fault indicators for each system master PrivID 85 MSMC_mpf_error9 Memory protection fault indicators for each system master PrivID 86 MSMC_mpf_error10 Memory protection fault indicators for each system master PrivID 87 MSMC_mpf_error11 Memory protection fault indicators for each system master PrivID 88 MSMC_mpf_error12 Memory protection fault indicators for each system master PrivID 89 MSMC_mpf_error13 Memory protection fault indicators for each system master PrivID 90 MSMC_mpf_error14 Memory protection fault indicators for each system master PrivID 91 MSMC_mpf_error15 Memory protection fault indicators for each system master PrivID 92 Reserved 93 INTDST0 RapidIO Interrupt 94 INTDST1 RapidIO Interrupt 95 INTDST2 RapidIO Interrupt 96 INTDST3 RapidIO Interrupt Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications ADVANCE INFORMATION Table 7-17 125 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-17 www.ti.com INTC1 Event Inputs (Secondary Events for TPCC1 and TPCC2) (Part 4 of 5) ADVANCE INFORMATION Input Event # on INTC System Interrupt Description 97 INTDST4 RapidIO Interrupt 98 INTDST5 RapidIO Interrupt 99 INTDST6 RapidIO Interrupt 100 INTDST7 RapidIO Interrupt 101 INTDST8 RapidIO Interrupt 102 INTDST9 RapidIO Interrupt 103 INTDST10 RapidIO Interrupt 104 INTDST11 RapidIO Interrupt 105 INTDST12 RapidIO Interrupt 106 INTDST13 RapidIO Interrupt 107 INTDST14 RapidIO Interrupt 108 INTDST15 RapidIO Interrupt 109 INTDST16 RapidIO Interrupt 110 INTDST17 RapidIO Interrupt 111 INTDST18 RapidIO Interrupt 112 INTDST19 RapidIO Interrupt 113 INTDST20 RapidIO Interrupt 114 INTDST21 RapidIO Interrupt 115 INTDST22 RapidIO Interrupt 116 INTDST23 RapidIO Interrupt 117 AIF_INTD AIF CPU error interrupt and AIF CPU alarm interrupt and Starvation interrupt 118 Reserved 119 VCPAINT Error interrupt 120 VCPBINT Error interrupt 121 VCPCINT Error interrupt 122 VCPDINT Error interrupt 123 TCP3D_A_INTD Error interrupt TCP3DINT0 and TCP3DINT1 124 TCP3D_B_INTD Error interrupt TCP3DINT0 and TCP3DINT1 125 TCP3E_INTD Error interrupt TCP3EINT 126 FFTC_B_INTD0 FFTC_B error event and FFTC_B debug event 127 FFTC_B_INTD1 FFTC_B error event and FFTC_B debug event 128 GPINT4 GPIO Interrupt 129 GPINT5 GPIO Interrupt 130 GPINT6 GPIO Interrupt 131 GPINT7 GPIO Interrupt 132 Reserved 133 Reserved 134 Reserved 135 Reserved 136 Reserved 137 QM_INT_HIGH_0 QM Interrupt for SRIO_core_0 138 QM_INT_HIGH_1 QM Interrupt for SRIO_core_1 139 QM_INT_HIGH_2 QM Interrupt for SRIO_core_2 140 QM_INT_HIGH_3 QM Interrupt for SRIO_core_3 126 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com INTC1 Event Inputs (Secondary Events for TPCC1 and TPCC2) (Part 5 of 5) Input Event # on INTC System Interrupt Description 141 QM_INT_HIGH_4 QM Interrupt for FFTC_core_0 142 QM_INT_HIGH_5 QM Interrupt for FFTC_core_1 143 QM_INT_HIGH_6 QM Interrupt for FFTC_core_2 144 QM_INT_HIGH_7 QM Interrupt for FFTC_core_3 145 QM_INT_HIGH_8 QM Interrupt for PA_SS_core_0 146 QM_INT_HIGH_9 QM Interrupt for PA_SS_core_1 147 QM_INT_HIGH_10 QM Interrupt for PA_SS_core_2 148 QM_INT_HIGH_11 QM Interrupt for PA_SS_core_3 149 QM_INT_HIGH_12 QM Interrupt for IPC_core_0 150 QM_INT_HIGH_13 QM Interrupt for IPC_core_1 151 QM_INT_HIGH_14 QM Interrupt for IPC_core_2 152 QM_INT_HIGH_15 QM Interrupt for IPC_core_3 153 FFTC_A_INTD0 FFTC_A error event and FFTC_A debug event 154 FFTC_A_INTD1 FFTC_A error event and FFTC_A debug event 155 FFTC_A_INTD2 FFTC_A error event and FFTC_A debug event 156 FFTC_A_INTD3 FFTC_A error event and FFTC_A debug event 157 FFTC_B_INTD2 FFTC_B error event and FFTC_B debug event 158 FFTC_B_INTD3 FFTC_B error event and FFTC_B debug event 159 Reserved Reserved inputs ADVANCE INFORMATION Table 7-17 End of Table 7-17 Table 7-18 INTC2 Event Inputs (Secondary Events for TPCC0 and HyperLink) (Part 1 of 3) Input Event # on INTC System Interrupt Description 0 GPINT0 GPIO Interrupt 1 GPINT1 GPIO Interrupt 2 GPINT2 GPIO Interrupt 3 GPINT3 GPIO Interrupt 4 GPINT4 GPIO Interrupt 5 GPINT5 GPIO Interrupt 6 GPINT6 GPIO Interrupt 7 GPINT7 GPIO Interrupt 8 GPINT8 GPIO Interrupt 9 GPINT9 GPIO Interrupt 10 GPINT10 GPIO Interrupt 11 GPINT11 GPIO Interrupt 12 GPINT12 GPIO Interrupt 13 GPINT13 GPIO Interrupt 14 GPINT14 GPIO Interrupt 15 GPINT15 GPIO Interrupt 16 TETBHFULLINT System TETB is half full 17 TETBFULLINT System TETB is full 18 TETBACQINT System Acquisition has been completed 19 TETBHFULLINT0 TETB0 is half full Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 127 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-18 www.ti.com INTC2 Event Inputs (Secondary Events for TPCC0 and HyperLink) (Part 2 of 3) ADVANCE INFORMATION Input Event # on INTC System Interrupt Description 20 TETBFULLINT0 TETB0 is full 21 TETBACQINT0 TETB0 Acquisition has been completed 22 TETBHFULLINT1 TETB1 is half full 23 TETBFULLINT1 TETB1 is full 24 TETBACQINT1 TETB1 Acquisition has been completed 25 TETBHFULLINT2 TETB2 is half full 26 TETBFULLINT2 TETB2 is full 27 TETBACQINT2 TETB2 Acquisition has been completed 28 TETBHFULLINT3 TETB3 is half full 29 TETBFULLINT3 TETB3 is full 30 TETBACQINT3 TETB3 Acquisition has been completed 31 Tracer_core_0_INTD Tracer sliding time window interrupt for individual core 32 Tracer_core_1_INTD Tracer sliding time window interrupt for individual core 33 Tracer_core_2_INTD Tracer sliding time window interrupt for individual core 34 Tracer_core_3_INTD Tracer sliding time window interrupt for individual core 35 Tracer_DDR_INTD Tracer sliding time window interrupt for DDR3 EMIF1 36 Tracer_MSMC_0_INTD Tracer sliding time window interrupt for MSMC SRAM Bank0 37 Tracer_MSMC_1_INTD Tracer sliding time window interrupt for MSMC SRAM Bank1 38 Tracer_MSMC_2_INTD Tracer sliding time window interrupt for MSMC SRAM Bank2 39 Tracer_MSMC_3_INTD Tracer sliding time window interrupt for MSMC SRAM Bank3 40 Tracer_CFG_INTD Tracer sliding time window interrupt for CFG0 SCR 41 Tracer_QM_SS_CFG_INTD Tracer sliding time window interrupt for QM_SS CFG 42 Tracer_QM_SS_DMA_INTD Tracer sliding time window interrupt for QM_SS Slave port 43 Tracer_SEM_INTD Tracer sliding time window interrupt for Semaphore 44 vusr_int_o HyperLink Interrupt 45 Reserved 46 Reserved 47 Reserved 48 Reserved 49 TINT4L Timer64_4 Interrupt Low 50 TINT4H Timer64_4 Interrupt High 51 TINT5L Timer64_5 Interrupt Low 52 TINT5H Timer64_5 Interrupt High 53 TINT6L Timer64_6 Interrupt Low 54 TINT6H Timer64_6 Interrupt High 55 TINT7L Timer64_7 Interrupt Low 56 TINT7H Timer64_7 Interrupt High 57 Reserved 58 Reserved 59 Reserved 60 Reserved 61 DDR3_ERR 128 DDR3 EMIF Error Interrupt TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-18 INTC2 Event Inputs (Secondary Events for TPCC0 and HyperLink) (Part 3 of 3) Input Event # on INTC System Interrupt 62 Reserved 63 Reserved Description End of Table 7-18 7.5.2 INTC Registers This section includes the INTC memory map information and registers. Table 7-19 ADVANCE INFORMATION 7.5.2.1 INTC0 Register Map INTC0 Registers (Part 1 of 3) Address Offset Register Mnemonic Register Name 0x0 REVISION_REG Revision Register 0x4 CONTROL_REG Control Register 0xc HOST_CONTROL_REG Host Control Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Int Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2c ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Int Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Int Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x208 RAW_STATUS_REG2 Raw Status Register 2 0x20c RAW_STATUS_REG3 Raw Status Register 3 0x210 RAW_STATUS_REG4 Raw Status Register 4 0x214 RAW_STATUS_REG5 Raw Status Register 5 0x218 RAW_STATUS_REG6 Raw Status Register 6 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 0x288 ENA_STATUS_REG2 Enabled Status Register 2 0x28c ENA_STATUS_REG3 Enabled Status Register 3 0x290 ENA_STATUS_REG4 Enabled Status Register 4 0x294 ENA_STATUS_REG5 Enabled Status Register 5 0x298 ENA_STATUS_REG6 Enabled Status Register 6 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x308 ENABLE_REG2 Enable Register 2 0x30c ENABLE_REG3 Enable Register 3 0x310 ENABLE_REG4 Enable Register 4 0x314 ENABLE_REG5 Enable Register 5 0x318 ENABLE_REG6 Enable Register 6 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 129 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-19 www.ti.com INTC0 Registers (Part 2 of 3) ADVANCE INFORMATION Address Offset Register Mnemonic Register Name 0x388 ENABLE_CLR_REG2 Enable Clear Register 2 0x38c ENABLE_CLR_REG3 Enable Clear Register 3 0x390 ENABLE_CLR_REG4 Enable Clear Register 4 0x394 ENABLE_CLR_REG5 Enable Clear Register 5 0x398 ENABLE_CLR_REG6 Enable Clear Register 6 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40c CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41c CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42c CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43c CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x440 CH_MAP_REG16 Interrupt Channel Map Register for 64 to 64+3 0x444 CH_MAP_REG17 Interrupt Channel Map Register for 68 to 68+3 0x448 CH_MAP_REG18 Interrupt Channel Map Register for 72 to 72+3 0x44c CH_MAP_REG19 Interrupt Channel Map Register for 76 to 76+3 0x450 CH_MAP_REG20 Interrupt Channel Map Register for 80 to 80+3 0x454 CH_MAP_REG21 Interrupt Channel Map Register for 84 to 84+3 0x458 CH_MAP_REG22 Interrupt Channel Map Register for 88 to 88+3 0x45c CH_MAP_REG23 Interrupt Channel Map Register for 92 to 92+3 0x460 CH_MAP_REG24 Interrupt Channel Map Register for 96 to 96+3 0x464 CH_MAP_REG25 Interrupt Channel Map Register for 100 to 100+3 0x468 CH_MAP_REG26 Interrupt Channel Map Register for 104 to 104+3 0x46c CH_MAP_REG27 Interrupt Channel Map Register for 108 to 108+3 0x470 CH_MAP_REG28 Interrupt Channel Map Register for 112 to 112+3 0x474 CH_MAP_REG29 Interrupt Channel Map Register for 116 to 116+3 0x478 CH_MAP_REG30 Interrupt Channel Map Register for 120 to 120+3 0x47c CH_MAP_REG31 Interrupt Channel Map Register for 124 to 124+3 0x480 CH_MAP_REG32 Interrupt Channel Map Register for 128 to 128+3 0x484 CH_MAP_REG33 Interrupt Channel Map Register for 132 to 132+3 0x488 CH_MAP_REG34 Interrupt Channel Map Register for 136 to 136+3 0x48c CH_MAP_REG35 Interrupt Channel Map Register for 140 to 140+3 0x490 CH_MAP_REG36 Interrupt Channel Map Register for 144 to 144+3 0x494 CH_MAP_REG37 Interrupt Channel Map Register for 148 to 148+3 0x498 CH_MAP_REG38 Interrupt Channel Map Register for 152 to 152+3 130 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com INTC0 Registers (Part 3 of 3) Address Offset Register Mnemonic Register Name 0x49c CH_MAP_REG39 Interrupt Channel Map Register for 156 to 156+3 0x4a0 CH_MAP_REG40 Interrupt Channel Map Register for 160 to 160+3 0x4a4 CH_MAP_REG41 Interrupt Channel Map Register for 164 to 164+3 0x4a8 CH_MAP_REG42 Interrupt Channel Map Register for 168 to 168+3 0x4ac CH_MAP_REG43 Interrupt Channel Map Register for 172 to 172+3 0x4b0 CH_MAP_REG44 Interrupt Channel Map Register for 176 to 176+3 0x4b4 CH_MAP_REG45 Interrupt Channel Map Register for 180 to 180+3 0x4b8 CH_MAP_REG46 Interrupt Channel Map Register for 184 to 184+3 0x4bc CH_MAP_REG47 Interrupt Channel Map Register for 188 to 188+3 0x4c0 CH_MAP_REG48 Interrupt Channel Map Register for 192 to 192+3 0x4c4 CH_MAP_REG49 Interrupt Channel Map Register for 196 to 196+3 0x4c8 CH_MAP_REG50 Interrupt Channel Map Register for 200 to 200+3 0x4cc CH_MAP_REG51 Interrupt Channel Map Register for 204 to 204+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80c HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81c HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x82c HINT_MAP_REG11 Host Interrupt Map Register for 44 to 44+3 0x830 HINT_MAP_REG12 Host Interrupt Map Register for 48 to 48+3 0x834 HINT_MAP_REG13 Host Interrupt Map Register for 52 to 52+3 0x838 HINT_MAP_REG14 Host Interrupt Map Register for 56 to 56+3 0x83c HINT_MAP_REG15 Host Interrupt Map Register for 60 to 60+3 0x840 HINT_MAP_REG16 Host Interrupt Map Register for 64 to 64+3 0x844 HINT_MAP_REG17 Host Interrupt Map Register for 68 to 68+3 0x848 HINT_MAP_REG18 Host Interrupt Map Register for 72 to 72+3 0x84c HINT_MAP_REG19 Host Interrupt Map Register for 76 to 76+3 0x1500 ENABLE_HINT_REG0 Host Int Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Int Enable Register 1 0x1508 ENABLE_HINT_REG2 Host Int Enable Register 2 ADVANCE INFORMATION Table 7-19 End of Table 7-19 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 131 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.5.2.2 INTC1 Register Map Table 7-20 INTC1 Registers (Part 1 of 2) ADVANCE INFORMATION Address Offset Register Mnemonic Register Name 0x0 REVISION_REG Revision Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Int Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2c ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Int Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Int Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x208 RAW_STATUS_REG2 Raw Status Register 2 0x20c RAW_STATUS_REG3 Raw Status Register 3 0x210 RAW_STATUS_REG4 Raw Status Register 4 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 0x288 ENA_STATUS_REG2 Enabled Status Register 2 0x28c ENA_STATUS_REG3 Enabled Status Register 3 0x290 ENA_STATUS_REG4 Enabled Status Register 4 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x308 ENABLE_REG2 Enable Register 2 0x30c ENABLE_REG3 Enable Register 3 0x310 ENABLE_REG4 Enable Register 4 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 0x388 ENABLE_CLR_REG2 Enable Clear Register 2 0x38c ENABLE_CLR_REG3 Enable Clear Register 3 0x390 ENABLE_CLR_REG4 Enable Clear Register 4 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40c CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41c CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42c CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 132 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com INTC1 Registers (Part 2 of 2) Address Offset Register Mnemonic Register Name 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43c CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x440 CH_MAP_REG16 Interrupt Channel Map Register for 64 to 64+3 0x444 CH_MAP_REG17 Interrupt Channel Map Register for 68 to 68+3 0x448 CH_MAP_REG18 Interrupt Channel Map Register for 72 to 72+3 0x44c CH_MAP_REG19 Interrupt Channel Map Register for 76 to 76+3 0x450 CH_MAP_REG20 Interrupt Channel Map Register for 80 to 80+3 0x454 CH_MAP_REG21 Interrupt Channel Map Register for 84 to 84+3 0x458 CH_MAP_REG22 Interrupt Channel Map Register for 88 to 88+3 0x45c CH_MAP_REG23 Interrupt Channel Map Register for 92 to 92+3 0x460 CH_MAP_REG24 Interrupt Channel Map Register for 96 to 96+3 0x464 CH_MAP_REG25 Interrupt Channel Map Register for 100 to 100+3 0x468 CH_MAP_REG26 Interrupt Channel Map Register for 104 to 104+3 0x46c CH_MAP_REG27 Interrupt Channel Map Register for 108 to 108+3 0x470 CH_MAP_REG28 Interrupt Channel Map Register for 112 to 112+3 0x474 CH_MAP_REG29 Interrupt Channel Map Register for 116 to 116+3 0x478 CH_MAP_REG30 Interrupt Channel Map Register for 120 to 120+3 0x47c CH_MAP_REG31 Interrupt Channel Map Register for 124 to 124+3 0x480 CH_MAP_REG32 Interrupt Channel Map Register for 128 to 128+3 0x484 CH_MAP_REG33 Interrupt Channel Map Register for 132 to 132+3 0x488 CH_MAP_REG34 Interrupt Channel Map Register for 136 to 136+3 0x48c CH_MAP_REG35 Interrupt Channel Map Register for 140 to 140+3 0x490 CH_MAP_REG36 Interrupt Channel Map Register for 144 to 144+3 0x494 CH_MAP_REG37 Interrupt Channel Map Register for 148 to 148+3 0x498 CH_MAP_REG38 Interrupt Channel Map Register for 152 to 152+3 0x49c CH_MAP_REG39 Interrupt Channel Map Register for 156 to 156+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80c HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81c HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x82c HINT_MAP_REG11 Host Interrupt Map Register for 44 to 44+3 0x830 HINT_MAP_REG12 Host Interrupt Map Register for 48 to 48+3 0x834 HINT_MAP_REG13 Host Interrupt Map Register for 52 to 52+3 0x1500 ENABLE_HINT_REG0 Host Int Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Int Enable Register 1 ADVANCE INFORMATION Table 7-20 End of Table 7-20 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 133 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.5.2.3 INTC2 Register Map Table 7-21 INTC2 Registers (Part 1 of 2) ADVANCE INFORMATION Address Offset Register Mnemonic Register Name 0x0 REVISION_REG Revision Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Int Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2c ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Int Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Int Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40c CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41c CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42c CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43c CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80c HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81c HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 134 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-21 INTC2 Registers (Part 2 of 2) Address Offset Register Mnemonic Register Name 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x1500 ENABLE_HINT_REG0 Host Int Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Int Enable Register 1 End of Table 7-21 7.5.3 Inter-Processor Register Map IPC Generation Registers (IPCGRx) Address Start Address End Size Register Name Description 0x02620200 0x02620203 4B NMIGR0 NMI Event Generation Register for Core 0 0x02620204 0x02620207 4B NMIGR1 NMI Event Generation Register for Core 1 0x02620208 0x0262020B 4B NMIGR2 NMI Event Generation Register for Core 2 0x0262020C 0x0262020F 4B NMIGR3 NMI Event Generation Register for Core 3 0x02620210 0x02620213 4B Reserved Reserved 0x02620214 0x02620217 4B Reserved Reserved 0x02620218 0x0262021B 4B Reserved Reserved 0x0262021C 0x0262021F 4B Reserved Reserved 0x02620220 0x0262023F 32B Reserved Reserved 0x02620240 0x02620243 4B IPCGR0 IPC Generation Register for Core 0 0x02620244 0x02620247 4B IPCGR1 IPC Generation Register for Core 1 0x02620248 0x0262024B 4B IPCGR2 IPC Generation Register for Core 2 0x0262024C 0x0262024F 4B IPCGR3 IPC Generation Register for Core 3 0x02620250 0x02620253 4B Reserved Reserved 0x02620254 0x02620257 4B Reserved Reserved 0x02620258 0x0262025B 4B Reserved Reserved 0x0262025C 0x0262025F 4B Reserved Reserved 0x02620260 0x0262027B 28B Reserved Reserved 0x0262027C 0x0262027F 4B IPCGRH IPC Generation Register for Host 0x02620280 0x02620283 4B IPCAR0 IPC Acknowledgement Register for Core 0 0x02620284 0x02620287 4B IPCAR1 IPC Acknowledgement Register for Core 1 0x02620288 0x0262028B 4B IPCAR2 IPC Acknowledgement Register for Core 2 0x0262028C 0x0262028F 4B IPCAR3 IPC Acknowledgement Register for Core 3 0x02620290 0x02620293 4B Reserved Reserved 0x02620294 0x02620297 4B Reserved Reserved 0x02620298 0x0262029B 4B Reserved Reserved 0x0262029C 0x0262029F 4B Reserved Reserved 0x026202A0 0x026202BB 28B Reserved Reserved 0x026202BC 0x026202BF 4B IPCARH IPC Acknowledgement Register for Host ADVANCE INFORMATION Table 7-22 End of Table 7-22 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 135 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.5.4 NMI and LRESET The Non-Maskable Interrupts (NMI) can be generated by chip-level registers and the LRESET can be generated by software writing into LPSC registers. LRESET and NMI can also be asserted by device pins or Watch Dog Timers. There is one NMI pin and one LRESET pin on the device and CORESEL[2:0] is used to select the CorePac that needs to be acted upon the assertion of this pin. The configuration is shown in Table 7-23. Table 7-23 LRESET and NMI Decoding ADVANCE INFORMATION CORESEL[2:0] Pin Input LRESET Pin Input NMI Pin Input LRESETNMIEN Pin Input Reset Mux Block Output XXX X X 1 No local reset or NMI assertion 000 0 X 0 Assert local reset to CorePac 0 001 0 X 0 Assert local reset to CorePac 1 010 0 X 0 Assert local reset to CorePac 2 011 0 X 0 Assert local reset to CorePac 3. 1xx 0 X 0 Assert local reset to all CorePac s 000 1 1 0 De-assert local reset & NMI to CorePac 0 001 1 1 0 De-assert local reset & NMI to CorePac 1 010 1 1 0 De-assert local reset & NMI to CorePac 2 011 1 1 0 De-assert local reset & NMI to CorePac 3 1xx 1 1 0 De-assert local reset & NMI to all CorePac s 000 1 0 0 Assert NMI to CorePac 0 001 1 0 0 Assert NMI to CorePac 1 010 1 0 0 Assert NMI to CorePac 2 011 1 0 0 Assert NMI to CorePac 3 1xx 1 0 0 Assert NMI to all CorePac s End of Table 7-23 136 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.5.5 External Interrupts Electrical Data/Timing Table 7-24 NMI and LRESET Timing Requirements (1) (see Figure 7-13) Min Max Unit 1 tsu(LRESET-LRESETNMIENL) Setup Time - LRESET valid before LRESETNMIEN low TBD μs 1 tsu(NMI-LRESETNMIENL) Setup Time - NMI valid before LRESETNMIEN low TBD μs 1 tsu(CORESELn-LRESETNMIENL) Setup Time - CORESEL[2:0] valid before LRESETNMIEN low TBD μs 2 th(LRESETNMIENL-LRESET) Hold Time - LRESET valid after LRESETNMIEN low TBD μs 2 th(LRESETNMIENL-NMI) Hold Time - NMI valid after LRESETNMIEN low TBD μs 2 th(LRESETNMIENL-CORESELn) Hold Time - CORESEL[2:0] valid after LRESETNMIEN low TBD μs 3 tw(LRESETNMIEN) Pulse Width - LRESETNMIEN low width TBD μs 4 tc(LRESETNMIENL-LRESETNMIENL) Cycle Time - time between LRESETNMIEN low TBD μs End of Table 7-24 1 P = 1/CPU clock frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns. Figure 7-13 NMI and LRESET Timing 1 2 CORESEL[2:0]/ LRESET/ NMI 3 LRESETNMIEN 4 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 137 ADVANCE INFORMATION No. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.6 Memory Protection Unit (MPU) The C6670 supports four MPUs: • One MPU is used to protect main CORE/3 CFG TeraNet (CFG space of all slave devices on the TeraNet is protected by the MPU). • Two MPUs are used for packet DMA (one for DATA PORT and another is for CFG PORT). • One MPU is used for Semaphore. This section contains MPU register map and details of device-specific MPU registers only. For MPU features and details of generic MPU registers, see the Memory Protection Unit (MPU) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. ADVANCE INFORMATION The following tables show the configuration of each MPU and the memory regions protected by each MPU. Table 7-25 MPU Default Configuration MPU0 Main CFG SCR Setting MPU1 (QM_SS DATA PORT) MPU2 (QM_SS CFG PORT) MPU3 Semaphore Default permission Assume allowed Assume allowed Assume allowed Assume allowed Number of allowed IDs supported 16 16 16 16 Number of programmable ranges supported 16 4 16 1 Compare width 1KB granularity 1KB granularity 1KB granularity 1KB granularity End of Table 7-25 Table 7-26 MPU Memory Regions Memory Protection Start Address End Address MPU0 Main CFG SCR 0x01D00000 0x026203FF MPU1 QM_SS DATA PORT 0x34000000 0x340BFFFF MPU2 QM_SS CFG PORT 0x02A00000 0x02ABFFFF MPU3 Semaphore 0x02640000 0x026407FF End of Table 7-26 Table 7-27 shows the privilege ID of each CORE and every mastering peripheral. Table 7-27 also shows the privilege level (supervisor vs. user), security level (secure vs. non-secure), and access type (instruction read vs. data/DMA read or write) of each master on the device. In some cases, a particular setting depends on software being executed at the time of the access or the configuration of the master peripheral. Table 7-27 Device Master Settings (Part 1 of 2) Privilege ID Master Privilege Level Security Level Access Type 0 CorePac0 SW dependant, driven by MSMC SW dependant DMA 1 CorePac1 SW dependant, driven by MSMC SW dependant DMA 2 CorePac2 SW dependant, driven by MSMC SW dependant DMA 3 CorePac3 SW dependant, driven by MSMC SW dependant DMA 4 AIF User Non-secure DMA 5 Reserved 6 Reserved 7 FFTC User Non-secure DMA 8 PA_SS User Non-secure DMA 9 SRIO_CPPI/SRIO_M User/Driven by SRIO block, User mode and supervisor mode is determined Non-secure by per transaction basis. Only the transaction with source ID matching the value in SupervisorID register is granted supervisor mode. DMA 138 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-27 Device Master Settings (Part 2 of 2) Privilege ID Master Privilege Level Security Level Access Type 10 QM_CDMA/QM_second User Non-secure DMA 11 PCIe Supervisor Non-secure DMA 12 DAP Driven by debug_SS Driven by debug_SS DMA 13 Reserved Supervisor Non-secure DMA 14 Reserved Supervisor Non-secure DMA 15 Reserved User Non-secure DMA ADVANCE INFORMATION End of Table 7-27 7.6.1 MPU Registers This section includes the offsets for MPU registers and definitions for device specific MPU registers. 7.6.1.1 MPU Register Map Table 7-28 MPU0 Registers (Part 1 of 2) Offset Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG1_MPSAR Programmable range 1, start address 204h PROG1_MPEAR Programmable range 1, end address 208h PROG1_MPPA Programmable range 1, memory page protection attributes 210h PROG2_MPSAR Programmable range 2, start address 214h PROG2_MPEAR Programmable range 2, end address 218h PROG2_MPPA Programmable range 2, memory page protection attributes 220h PROG3_MPSAR Programmable range 3, start address 224h PROG3_MPEAR Programmable range 3, end address 228h PROG3_MPPA Programmable range 3, memory page protection attributes 230h PROG4_MPSAR Programmable range 4, start address 234h PROG4_MPEAR Programmable range 4, end address 238h PROG4_MPPA Programmable range 4, memory page protection attributes 240h PROG5_MPSAR Programmable range 5, start address 244h PROG5_MPEAR Programmable range 5, end address 248h PROG5_MPPA Programmable range 5, memory page protection attributes 250h PROG6_MPSAR Programmable range 6, start address 254h PROG6_MPEAR Programmable range 6, end address 258h PROG6_MPPA Programmable range 6, memory page protection attributes 260h PROG7_MPSAR Programmable range 7, start address 264h PROG7_MPEAR Programmable range 7, end address 268h PROG7_MPPA Programmable range 7, memory page protection attributes Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 139 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-28 www.ti.com MPU0 Registers (Part 2 of 2) ADVANCE INFORMATION Offset Name Description 270h PROG8_MPSAR Programmable range 8, start address 274h PROG8_MPEAR Programmable range 8, end address 278h PROG8_MPPA Programmable range 8, memory page protection attributes 280h PROG9_MPSAR Programmable range 9, start address 284h PROG9_MPEAR Programmable range 9, end address 288h PROG9_MPPA Programmable range 9, memory page protection attributes 290h PROG10_MPSAR Programmable range 10, start address 294h PROG10_MPEAR Programmable range 10, end address 298h PROG10_MPPA Programmable range 10, memory page protection attributes 2A0h PROG11_MPSAR Programmable range 11, start address 2A4h PROG11_MPEAR Programmable range 11, end address 2A8h PROG11_MPPA Programmable range 11, memory page protection attributes 2B0h PROG12_MPSAR Programmable range 12, start address 2B4h PROG12_MPEAR Programmable range 12, end address 2B8h PROG12_MPPA Programmable range 12, memory page protection attributes 2C0h PROG13_MPSAR Programmable range 13, start address 2C4h PROG13_MPEAR Programmable range 13, end address 2C8h PROG13_MPPA Programmable range 13, memory page protection attributes 2D0h PROG14_MPSAR Programmable range 14, start address 2D4h PROG14_MPEAR Programmable range 14, end address 2Dh PROG14_MPPA Programmable range 14, memory page protection attributes 2E0h PROG15_MPSAR Programmable range 15, start address 2E4h PROG15_MPEAR Programmable range 15, end address 2E8h PROG15_MPPA Programmable range 15, memory page protection attributes 2F0h PROG16_MPSAR Programmable range 16, start address 2F4h PROG16_MPEAR Programmable range 16, end address 2F8h PROG16_MPPA Programmable range 16, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear End of Table 7-28 Table 7-29 MPU1 Registers (Part 1 of 2) Offset Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG1_MPSAR Programmable range 1, start address 204h PROG1_MPEAR Programmable range 1, end address 140 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com MPU1 Registers (Part 2 of 2) Offset Name Description 208h PROG1_MPPA Programmable range 1, memory page protection attributes 210h PROG2_MPSAR Programmable range 2, start address 214h PROG2_MPEAR Programmable range 2, end address 218h PROG2_MPPA Programmable range 2, memory page protection attributes 220h PROG3_MPSAR Programmable range 3, start address 224h PROG3_MPEAR Programmable range 3, end address 228h PROG3_MPPA Programmable range 3, memory page protection attributes 230h PROG4_MPSAR Programmable range 4, start address 234h PROG4_MPEA Programmable range 4, end address 238h PROG4_MPPA Programmable range 4, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear ADVANCE INFORMATION Table 7-29 End of Table 7-29 Table 7-30 MPU2 Registers (Part 1 of 2) Offset Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG1_MPSAR Programmable range 1, start address 204h PROG1_MPEAR Programmable range 1, end address 208h PROG1_MPPA Programmable range 1, memory page protection attributes 210h PROG2_MPSAR Programmable range 2, start address 214h PROG2_MPEAR Programmable range 2, end address 218h PROG2_MPPA Programmable range 2, memory page protection attributes 220h PROG3_MPSAR Programmable range 3, start address 224h PROG3_MPEAR Programmable range 3, end address 228h PROG3_MPPA Programmable range 3, memory page protection attributes 230h PROG4_MPSAR Programmable range 4, start address 234h PROG4_MPEAR Programmable range 4, end address 238h PROG4_MPPA Programmable range 4, memory page protection attributes 240h PROG5_MPSAR Programmable range 5, start address 244h PROG5_MPEAR Programmable range 5, end address 248h PROG5_MPPA Programmable range 5, memory page protection attributes 250h PROG6_MPSAR Programmable range 6, start address 254h PROG6_MPEAR Programmable range 6, end address 258h PROG6_MPPA Programmable range 6, memory page protection attributes 260h PROG7_MPSAR Programmable range 7, start address Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 141 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-30 www.ti.com MPU2 Registers (Part 2 of 2) Offset Name Description 264h PROG7_MPEAR Programmable range 7, end address 268h PROG7_MPPA Programmable range 7, memory page protection attributes 270h PROG8_MPSAR Programmable range 8, start address ADVANCE INFORMATION 274h PROG8_MPEAR Programmable range 8, end address 278h PROG8_MPPA Programmable range 8, memory page protection attributes 280h PROG9_MPSAR Programmable range 9, start address 284h PROG9_MPEAR Programmable range 9, end address 288h PROG9_MPPA Programmable range 9, memory page protection attributes 290h PROG10_MPSAR Programmable range 10, start address 294h PROG10_MPEAR Programmable range 10, end address 298h PROG10_MPPA Programmable range 10, memory page protection attributes 2A0h PROG11_MPSAR Programmable range 11, start address 2A4h PROG11_MPEAR Programmable range 11, end address 2A8h PROG11_MPPA Programmable range 11, memory page protection attributes 2B0h PROG12_MPSAR Programmable range 12, start address 2B4h PROG12_MPEAR Programmable range 12, end address 2B8h PROG12_MPPA Programmable range 12, memory page protection attributes 2C0h PROG13_MPSAR Programmable range 13, start address 2C4h PROG13_MPEAR Programmable range 13, end address 2C8h PROG13_MPPA Programmable range 13, memory page protection attributes 2D0h PROG14_MPSAR Programmable range 14, start address 2D4h PROG14_MPEAR Programmable range 14, end address 2Dh PROG14_MPPA Programmable range 14, memory page protection attributes 2E0h PROG15_MPSAR Programmable range 15, start address 2E4h PROG15_MPEAR Programmable range 15, end address 2E8h PROG15_MPPA Programmable range 15, memory page protection attributes 2F0h PROG16_MPSAR Programmable range 16, start address 2F4h PROG16_MPEAR Programmable range 16, end address 2F8h PROG16_MPPA Programmable range 16, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear End of Table 7-30 Table 7-31 Offset MPU3 Registers (Part 1 of 2) Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 142 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-31 MPU3 Registers (Part 2 of 2) Offset Name Description 200h PROG1_MPSAR Programmable range 1, start address 204h PROG1_MPEAR Programmable range 1, end address 208h PROG1_MPPA Programmable range 1, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear ADVANCE INFORMATION End of Table 7-31 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 143 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.6.1.2 Device-Specific MPU Registers 7.6.1.2.1 Configuration Register (CONFIG) The configuration register (CONFIG) contains the configuration value of the MPU. Figure 7-14 Configuration Register (CONFIG) 31 MPU0 24 23 20 19 16 15 12 11 1 0 ADDR_WIDTH NUM_FIXED NUM_PROG NUM_AIDS Reserved ASSUME_ALLOWED R-0 R-0 R-4 R-16 R-0 R-1 MPU1 R-16 MPU2 R-1 MPU3 R-16 Reset Values ADVANCE INFORMATION Legend: R = Read only; -n = value after reset Table 7-32 Configuration Register (CONFIG) Field Descriptions Bits Field Description 31 – 24 ADDR_WIDTH Address alignment for range checking 0 = 1KB alignment 6 = 64KB alignment 23 – 20 NUM_FIXED Number of fixed address ranges 19 – 16 NUM_PROG Number of programmable address ranges 15 – 12 NUM_AIDS Number of supported AIDs 11 – 1 Reserved Reserved. Always reads as 0. 0 ASSUME_ALLOWED Assume allowed bit. When an address is not covered by any MPU protection range, this bit determines whether the transfer is assumed to be allowed or not. 0 = Assume disallowed 1 = Assume allowed 7.6.2 MPU Programmable Range Registers 7.6.2.1 Programmable Range n Start Address Register (PROGn_MPSAR) The programmable address start register holds the start address for the range. This register is writeable by a supervisor entity only. If NS = 0 (non-secure mode) in the associated MPPA register, then the register is also writeable only by a secure entity. The start address must be aligned on a page boundary. The size of the page is 1K byte. The size of the page determines the width of the address field in MPSAR and MPEAR. Figure 7-15 Programmable Range n Start Address Register (PROGn_MPSAR) 31 10 9 0 START_ADDR Reserved R/W R Legend: R = Read only; R/W = Read/Write 144 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Register Register 0 Register 1 Register 2 Register 3 Register 4 Register 5 Register 6 Register 7 Register 8 Register 9 Register 10 Register 11 Register 12 Register 13 Register 14 Register 15 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU0) Bits Name Reset Value Range Programmable 31 – 10 START_ADDR 0x7400 9–0 Reserved 000h Description Start address for range 0. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x7C00 9–0 Reserved 000h Programmable Start address for range 1. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x8000 9–0 Reserved 000h Programmable Start address for range 2. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x8600 9–0 Reserved 000h Programmable Start address for range 3. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x8700 9–0 Reserved 000h Programmable ADVANCE INFORMATION Table 7-33 Start address for range 4. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x87C0 9–0 Reserved 000h Programmable Start address for range 5. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x8800 9–0 Reserved 000h Programmable Start address for range 6. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x8C40 9–0 Reserved 000h Programmable Start address for range 7. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x8C80 9–0 Reserved 000h Programmable Start address for range 8. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x8CC0 9–0 Reserved 000h 31 – 10 START_ADDR 0x8D40 9–0 Reserved 000h Programmable Start address for range 9. Reserved. Always reads as 0. Programmable Start address for range 10. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x9000 9–0 Reserved 000h Programmable Start address for range 11. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x9400 9–0 Reserved 000h Programmable Start address for range 12. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x94C0 9–0 Reserved 000h Programmable Start address for range 13. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x9800 9–0 Reserved 000h Programmable Start address for range 14. Reserved. Always reads as 0. 31 – 10 START_ADDR 0x9880 9–0 Reserved 000h Programmable Start address for range 15. Reserved. Always reads as 0. End of Table 7-33 Table 7-34 Register Register 0 Register 1 Register 2 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU1) (Part 1 of 2) Bits Name Reset Value Range Programmable 31 – 10 START_ADDR 0xD0000 9–0 Reserved 000h 31 – 10 START_ADDR 0xD0080 9–0 Reserved 000h 31 – 10 START_ADDR 0xD0180 9–0 Reserved 000h Copyright 2010 Texas Instruments Incorporated Description Start address for range 0. Reserved. Always reads as 0. Programmable Start address for range 1. Reserved. Always reads as 0. Programmable Start address for range 2. Reserved. Always reads as 0. TMS320C6670 Peripheral Information and Electrical Specifications 145 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-34 www.ti.com Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU1) (Part 2 of 2) Register Register 3 Register 4 Register 5 Bits Name Reset Value Range Description 31 – 10 START_ADDR 0xD01A0 Programmable Start address for range 3. 9–0 Reserved 000h 31 – 10 START_ADDR 0xD02E0 Programmable Start address for range 4. 9–0 Reserved 000h 31 – 10 START_ADDR 0xD0200 9–0 Reserved 000h Reserved. Always reads as 0. Reserved. Always reads as 0. Programmable Start address for range 5. Reserved. Always reads as 0. End of Table 7-34 ADVANCE INFORMATION Table 7-35 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU2) Register Register 0 Register 1 Register 2 Register 3 Register 4 Register 5 Register 6 Register 7 Register 8 Register 9 Register 10 Register 11 Register 12 Register 13 Register 14 Register 15 Bits Name Reset Value Range Description Programmable Start address for range 0. 31 – 10 START_ADDR 0xA800 9–0 Reserved 000h 31 – 10 START_ADDR 0xA880 9–0 Reserved 000h 31 – 10 START_ADDR 0xA900 9–0 Reserved 000h 31 – 10 START_ADDR 0xA980 9–0 Reserved 000h 31 – 10 START_ADDR 0xA9A0 9–0 Reserved 000h 31 – 10 START_ADDR 0xA9A4 9–0 Reserved 000h 31 – 10 START_ADDR 0xA9A8 9–0 Reserved 000h 31 – 10 START_ADDR 0xA9AC 9–0 Reserved 000h 31 – 10 START_ADDR 0xA9B0 9–0 Reserved 000h 31 – 10 START_ADDR 0xA9B8 9–0 Reserved 000h 31 – 10 START_ADDR 0xAA00 9–0 Reserved 000h 31 – 10 START_ADDR 0xAA40 9–0 Reserved 000h 31 – 10 START_ADDR 0xAA80 9–0 Reserved 000h 31 – 10 START_ADDR 0xAAA0 9–0 Reserved 000h 31 – 10 START_ADDR 0xAAD0 9–0 Reserved 000h 31 – 10 START_ADDR 0xAAE0 9–0 Reserved 000h Reserved. Always reads as 0. Programmable Start address for range 1. Reserved. Always reads as 0. Programmable Start address for range 2. Reserved. Always reads as 0. Programmable Start address for range 3. Reserved. Always reads as 0. Programmable Start address for range 4. Reserved. Always reads as 0. Programmable Start address for range 5. Reserved. Always reads as 0. Programmable Start address for range 6. Reserved. Always reads as 0. Programmable Start address for range 7. Reserved. Always reads as 0. Programmable Start address for range 8. Reserved. Always reads as 0. Programmable Start address for range 9. Reserved. Always reads as 0. Programmable Start address for range 10. Reserved. Always reads as 0. Programmable Start address for range 11. Reserved. Always reads as 0. Programmable Start address for range 12. Reserved. Always reads as 0. Programmable Start address for range 13. Reserved. Always reads as 0. Programmable Start address for range 14. Reserved. Always reads as 0. Programmable Start address for range 15. Reserved. Always reads as 0. End of Table 7-35 146 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-36 Register Register 0 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions (MPU3) Bits Name Reset Value Range Description 31 – 16 START_ADDR 0x9900 Programmable 9–0 Reserved 000h Start address for range 0. Reserved. Always reads as 0. End of Table 7-36 The programmable address end register holds the end address for the range. This register is writeable by a supervisor entity only. If NS = 0 (non-secure mode) in the associated MPPA register then the register is also only writeable by a secure entity. The end address must be aligned on a page boundary. The size of the page depends on the MPU number. The page size for MPU1 is 1K byte and for MPU2 it is 64K bytes. The size of the page determines the width of the address field in MPSAR and MPEAR Figure 7-16 Programmable Range n End Address Register (PROGn_MPEAR) 31 10 9 0 END_ADDR Reserved R/W R Legend: R = Read only; R/W = Read/Write Table 7-37 Register Register 0 Register 1 Register 2 Register 3 Register 4 Register 5 Register 6 Register 7 Register 8 Register 9 Register 10 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU0) Bits Name Reset Value Range Description 31 – 10 END_ADDR 0x75E0 Programmable End address for range 0. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x7DFF Programmable End address for range 1. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x827F Programmable End address for range 2. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x86BF Programmable End address for range 3. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x8783 Programmable End address for range 4. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x87DF Programmable End address for range 5. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x89C0 Programmable End address for range 6. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x8C40 Programmable End address for range 7. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x8C80 Programmable End address for range 8. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x8CC0 Programmable End address for range 9. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x8D43 Programmable End address for range 10. 9–0 Reserved 3FFh Copyright 2010 Texas Instruments Incorporated Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. TMS320C6670 Peripheral Information and Electrical Specifications 147 ADVANCE INFORMATION 7.6.2.2 Programmable Range n - End Address Register (PROGn_MPEAR) TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-37 Register Register 11 Register 12 Register 13 Register 14 ADVANCE INFORMATION Register 15 www.ti.com Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU0) Bits Name Reset Value Range Description 31 – 10 END_ADDR 91CF Programmable End address for range 11. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x9480 Programmable End address for range 12. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x9500 Programmable End address for range 13. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x982F Programmable End address for range 14. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0x9881 Programmable End address for range 15. 9–0 Reserved 3FFh Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. End of Table 7-37 Table 7-38 Register Register 0 Register 1 Register 2 Register 3 Register 4 Register 5 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU1) Bits Name Reset Value Range 31 – 10 END_ADDR 0xD007F Programmable 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xD017F 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xD019F 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xD02DF 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xD02FF 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xD02FF 9–0 Reserved 3FFh Description End address for range 0. Reserved. Always reads as 0. Programmable End address for range 1. Reserved. Always reads as 0. Programmable End address for range 2. Reserved. Always reads as 0. Programmable End address for range 3. Reserved. Always reads as 0. Programmable End address for range 4. Reserved. Always reads as 0. Programmable End address for range 5. Reserved. Always reads as 0. End of Table 7-38 Table 7-39 Register Register 0 Register 1 Register 2 Register 3 Register 4 Register 5 148 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU2) (Part 1 of 2) Bits Name Reset Value Range Description 31 – 10 END_ADDR 0xA87F Programmable End address for range 0. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xA8FF 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xA97F 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xA99F 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xA9A3 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xA9A7 9–0 Reserved 3FFh Reserved. Always reads as 0. Programmable End address for range 1. Reserved. Always reads as 0. Programmable End address for range 2. Reserved. Always reads as 0. Programmable End address for range 3. Reserved. Always reads as 0. Programmable End address for range 4. Reserved. Always reads as 0. Programmable TMS320C6670 Peripheral Information and Electrical Specifications End address for range 5. Reserved. Always reads as 0. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU2) (Part 2 of 2) Register Register 6 Register 7 Register 8 Register 9 Register 10 Register 11 Register 12 Register 13 Register 14 Register 15 Bits Name Reset Value Range Description 31 – 10 END_ADDR 0xA9AB Programmable End address for range 6. Programmable End address for range 7. Programmable End address for range 8. Programmable End address for range 9. Programmable End address for range 10. Programmable End address for range 11. Programmable End address for range 12. Programmable End address for range 13. Programmable End address for range 14. Programmable End address for range 15. 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xA9AF 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xA9B7 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xA9BF 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xAA3F 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xAA7F 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xAA9F 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xAACF 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xAADE 9–0 Reserved 3FFh 31 – 10 END_ADDR 0xAAFF 9–0 Reserved 3FFh Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. ADVANCE INFORMATION Table 7-39 Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. Reserved. Always reads as 0. End of Table 7-39 Table 7-40 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions (MPU3) Register Bits Register 0 Name Reset Value Range Programmable 31 – 16 END_ADDR 9901h 9–0 Reserved 3FFh Description End address for range 0. Reserved. Always reads as 0. End of Table 7-40 7.6.2.3 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) The programmable address memory protection page attribute register holds the permissions for the region. This register is writeable only by a non-debug supervisor entity. If NS = 0 (secure mode) then the register is also only writeable by a non-debug secure entity. The NS bit is only writeable by a non-debug secure entity. For debug accesses, the register is writeable only when NS = 1 or EMU = 1. Figure 7-17 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) 31 26 25 24 23 22 21 20 19 18 17 16 15 Reserved AID15 AID14 AID13 AID12 AID11 AID10 AID9 AID8 AID7 AID6 AID5 R R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AID4 AID3 AID2 AID1 AID0 AIDX Reserved NS EMU SR SW SX UR UW UX R/W R/W R/W R/W R/W R/W R R/W R/W R/W R/W R/W R/W R/W R/W Legend: R = Read only; R/W = Read/Write Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 149 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-41 www.ti.com Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Field Descriptions (Part 1 of 2) ADVANCE INFORMATION Bits Name Description 31 – 26 Reserved Reserved. Always reads as 0. 25 AID15 Controls access from ID = 15 0 = Access denied. 1 = Access granted. 24 AID14 Controls access from ID = 14 0 = Access denied. 1 = Access granted. 23 AID13 Controls access from ID = 13 0 = Access denied. 1 = Access granted. 22 AID12 Controls access from ID = 12 0 = Access denied. 1 = Access granted. 21 AID11 Controls access from ID = 11 0 = Access denied. 1 = Access granted. 20 AID10 Controls access from ID = 10 0 = Access denied. 1 = Access granted. 19 AID9 Controls access from ID = 9 0 = Access denied. 1 = Access granted. 18 AID8 Controls access from ID = 8 0 = Access denied. 1 = Access granted. 17 AID7 Controls access from ID = 7 0 = Access denied. 1 = Access granted. 16 AID6 Controls access from ID = 6 0 = Access denied. 1 = Access granted. 15 AID5 Controls access from ID = 5 0 = Access denied. 1 = Access granted. 14 AID4 Controls access from ID = 4 0 = Access denied. 1 = Access granted. 13 AID3 Controls access from ID = 3 0 = Access denied. 1 = Access granted. 12 AID2 Controls access from ID = 2 0 = Access denied. 1 = Access granted. 11 AID1 Controls access from ID = 1 0 = Access denied. 1 = Access granted. 10 AID0 Controls access from ID = 0 0 = Access denied. 1 = Access granted. 150 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Field Descriptions (Part 2 of 2) Bits Name Description 9 AIDX Controls access from ID > 15 0 = Access denied. 1 = Access granted. 8 Reserved Reserved. Always reads as 0. 7 NS Non-secure access permission 0 = Only secure access allowed. 1 = Non-secure access allowed. 6 EMU Emulation (debug) access permission. This bit is ignored if NS = 1 0 = Debug access not allowed. 1 = Debug access allowed. 5 SR Supervisor Read permission 0 = Access not allowed. 1 = Access allowed. 4 SW Supervisor Write permission 0 = Access not allowed. 1 = Access allowed. 3 SX Supervisor Execute permission 0 = Access not allowed. 1 = Access allowed. 2 UR User Read permission 0 = Access not allowed. 1 = Access allowed 1 UW User Write permission 0 = Access not allowed. 1 = Access allowed. 0 UX User Execute permission ADVANCE INFORMATION Table 7-41 0 = Access not allowed. 1 = Access allowed. End of Table 7-411 Table 7-42 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Reset Values (Part 1 of 2) Register MPU0 MPU1 MPU2 MPU3 Register 0 0X0003_FCB6 0X03FF_FC80 0x03FF_FCA4 0X0003_FCB6 Register 1 0X0003_FCB6 0X0003_FCB6 0X0003_FCB6 N/A Register 2 0X0003_FCB6 0X0003_FCB4 0X0003_FCB6 N/A Register 3 0X0003_FCB6 0X0003_FC80 0X0003_FCB4 N/A Register 4 0X0003_FCB6 0X0003_FCB6 0X0003_FCB4 N/A Register 5 0X0003_FCB6 N/A 0X0003_FCB4 N/A Register 6 0X0003_FCB6 N/A 0X0003_FCB4 N/A Register 7 0X0003_FCB4 N/A 0X0003_FCB4 N/A Register 8 0X0003_FCB4 N/A 0X0003_FCB4 N/A Register 9 0X0003_FCB4 N/A 0X0003_FCB4 N/A Register 10 0X0003_FCB4 N/A 0X0003_FCA4 N/A Register 11 0X0003_FCB6 N/A 0X0003_FCB4 N/A Register 12 0X0003_FCB4 N/A 0X0003_FCB4 N/A Register 13 0X0003_FCB6 N/A 0X0003_FCB4 N/A Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 151 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-42 www.ti.com Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Reset Values (Part 2 of 2) Register MPU0 MPU1 MPU2 MPU3 Register 14 0X0003_FCB4 N/A 0X0003_FCB4 N/A Register 15 0X0003_FCB4 N/A 0X0003_FCB6 N/A End of Table 7-42 ADVANCE INFORMATION 152 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.7 Reset Controller The reset controller detects the different type of resets supported on the TMS320C6670 device and manages the distribution of those resets throughout the device. Table 7-43 explains further the types of reset, the reset initiator, and the effects of each reset on the device. For more information on the effects of each reset on the PLL controllers and their clocks, see Section 7.7.7 ‘‘Reset Electrical Data/Timing’’ on page 156. Table 7-43 Reset Types Type Power-on Reset Initiator POR pin RESETFULL pin RESET pin Hard Reset Soft Reset PLLCTL (1) register (RSCTRL) Watchdog Timers Resets the entire chip including the test and emulation logic. The device configuration pins are latched only during Power-on Reset. Hard Reset resets everything except for test, emulation logic and reset isolation modules. This reset is also different from Power-on Reset in that the PLLCTL assumes power and clocks are stable when Hard Reset is asserted. The device configurations pins are not re-latched. Emulation initiated reset is always a Hard Reset. Emulation By default these initiators are configured as Hard reset, but can be configured (Except Emulation) as Soft reset in the RSCFG register of PLLCTL. Contents of DDR3 SDRAM memory can be retained during a Hard Reset if the SDRAM is placed in self-refresh mode. RESET pin Soft Reset will behave like Hard Reset except that PCIe MMRs and DDR3 EMIF MMRs contents are retained. PLLCTL register (RSCTRL) Watchdog Timers Local Reset Effect(s) LRESET pin Watchdog Timer timeout By default these initiators are configured as Hard reset, but can be configured as Soft reset in the RSCFG register of PLLCTL. Contents of DDR3 SDRAM memory can be retained during a Soft Reset if the SDRAM is placed in self-refresh mode. Resets the CorePac, without destroying clock alignment or memory contents. The device configuration pins are not re-latched. LPSC MMRs End of Table 7-43 1 All masters in the device have access to the PLLCTL registers. 7.7.1 Power-on Reset Power-on reset is used to reset the entire device, including the test and emulation logic. Power-on reset is initiated by the following 1. POR pin 2. RESETFULL pin During power-up, the POR pin must be asserted (driven low) until the power supplies have reached their normal operating conditions. A RESETFULL pin is also provided to allow the on-board host to reset the entire device including the reset isolated logic. The assumption is that, device is already powered up and hence unlike POR, RESETFULL pin will be driven by the on-board host control other than the power good circuitry. For power-on reset, the Main PLL controller comes up in bypass mode and the PLL is not enabled. Other resets do not affect the state of the PLL or the dividers in the PLL controller. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 153 ADVANCE INFORMATION The device has the following types of resets: • Power-on Reset • Hard Reset • Soft Reset • Local Reset TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com ADVANCE INFORMATION The following sequence must be followed during a power-on reset: 1. Wait for all power supplies to reach normal operating conditions while keeping the POR pin asserted (driven low). While POR is asserted, all pins except RESETSTAT will be set to high-impedance. After the POR pin is de-asserted (driven high), all Z group pins, low group pins, and high group pins are set to their reset state and will remain at their reset state until otherwise configured by their respective peripheral. All peripherals that are power managed, are disabled after a Power-on Reset and must be enabled through the Device State Control registers (for more details, see Section Table 3-2 ‘‘Device State Control Registers’’ on page 61). 2. Clocks are reset, and they are propagated throughout the chip to reset any logic that was using reset synchronously. All logic is now reset and RESETSTAT will be driven low indicating that the device is in reset. 3. POR must be held active until all supplies on the board are stable then for at least an additional time for the Chip level PLLs to lock. 4. The POR pin can now be de-asserted. Reset sampled pin values are latched at this point. The Chip level PLLs is taken out of reset and begins its locking sequence, and all power-on device initialization also begins. 5. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). By this time, DDR3 PLL has already completed its locking sequence and is outputting a valid clock. The system clocks of both PLL controllers are allowed to finish their current cycles and then paused for 10 cycles of their respective system reference clocks. After the pause, the system clocks are restarted at their default divide by settings. 6. The device is now out of reset and device execution begins as dictated by the selected boot mode. Note—To most of the device, reset is de-asserted only when the POR and RESET pins are both de-asserted (driven high). Therefore, in the sequence described above, if the RESET pin is held low past the low period of the POR pin, most of the device will remain in reset. The RESET pin should not be tied together with the POR pin. 7.7.2 Hard Reset A Hard reset will reset everything on the device except the PLLs, test, emulation logic and reset isolation modules. POR should also remain de-asserted during this time. Hard reset is initiated by the following • RESET pin • RSCTRL register in PLLCTL • Watchdog Timer • Emulation All the above initiators by default are configured to act as Hard reset. Except Emulation all the other 3 initiators can be configured as Soft resets in the RSCFG register in PLLCTL. The following sequence must be followed during a Hard reset: 1. The RESET pin is pulled active low for a minimum of 24 CLKIN1 cycles. During this time the RESET signal is able to propagate to all modules (except those specifically mentioned above). All I/O are Hi-Z for modules affected by RESET, to prevent off-chip contention during the warm reset. 2. Once all logic is reset, RESETSTAT is driven active to denote that the device is in reset. 3. The RESET pin can now be released. A minimal device initialization begins to occur. Note that configuration pins are not re-latched and clocking is unaffected within the device. 4. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). Note—The POR pin should be held inactive (high) throughout the warm reset sequence. Otherwise, if POR is activated (brought low), the minimum POR pulse width must be met. The RESET pin should not be tied together with the POR pin. 154 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip www.ti.com SPRS689—November 2010 7.7.3 Soft Reset Soft reset is initiated by the following • RESET pin • RSCTRL register in PLLCTL • Watchdog Timer • Emulation All the above initiators by default are configured to act as Hard reset. Except Emulation all the other 3 initiators can be configured as Soft resets in the RSCFG register in PLLCTL. In the case of a soft reset, the clock logic or the power control logic of the peripherals are not affected, and, therefore, the enabled/disabled state of the peripherals is not affected. The following external memory contents are maintained during a soft reset: • DDR3 MMRs: The DDR3 Memory Controller registers are not reset. In addition, the DDR3 SDRAM memory content is retained if the user places the DDR3 SDRAM in self-refresh mode before invoking the soft reset. • PCIe MMRs: The contents of the memory connected to the EMIFA are retained. The EMIFA registers are not reset. During a soft reset, the following happens: 1. The RESETSTAT pin goes low to indicate an internal reset is being generated. The reset is allowed to propagate through the system. Internal system clocks are not affected. PLLs also remain locked. 2. After device initialization is complete, the RESETSTAT pin is deasserted (driven high). In addition, the PLL controllers pause their system clocks for about 8 cycles. At this point: › The state of the peripherals before the soft reset is not changed. › The I/O pins are controlled as dictated by the DEVSTAT register. › The DDR3 MMRs and PCIe MMRs retain their previous values. Only the DDR3 Memory Controller and PCIe state machines are reset by the soft reset. › The PLL controllers are operating in the mode prior to soft reset. System clocks are unaffected. The boot sequence is started after the system clocks are restarted. Since the configuration pins are not latched with a System Reset, the previous values, as shown in the DEVSTAT register, are used to select the boot mode. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 155 ADVANCE INFORMATION A soft reset will behave like a hard reset except that the PCIe MMRs and DDR3 EMIF MMRs contents are retained. POR should also remain de-asserted during this time. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.7.4 Local Reset The local reset can be used to reset a particular CorePac without resetting any other chip components. ADVANCE INFORMATION Local reset is initiated by the following (for more details see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59): • LRESET pin • Watchdog Timer should cause one of the below based on the setting of the CORESEL[2:0] and RSTCFG registers in the PLL controller. See ‘‘Reset Configuration Register (RSTCFG)’’ on page 168 and ‘‘INTC Registers’’ on page 129. – Local Reset – NMI – NMI followed by a time delay and then a local reset for the core selected – Hard Reset by requesting reset via PLLCTL • LPSC MMRs 7.7.5 Reset Priority If any of the above reset sources occur simultaneously, the PLLCTL processes only the highest priority reset request. The reset request priorities are as follows (high to low): • Power-on reset • Hard/Soft reset 7.7.6 Reset Controller Register The reset controller register are part of the PLLCTL MMRs. All C6670 device-specific MMRs are covered in Section 7.8.2 ‘‘PLL Controller Memory Map’’ on page 162. For more details on these registers and how to program them, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.7.7 Reset Electrical Data/Timing Table 7-44 Reset Timing Requirements (1) (2) (Part 1 of 2) (see Figure 7-18, Figure 7-19, Figure 7-20 and Figure 7-21) No. Min Max Unit POR Pin Reset 1 th(PORL) Hold Time - POR low after VDDS15 stable and input clocks valid 500C + 100 μs 2 tsu(RESETH-PORH) Setup Time - RESET high before POR high 500C + 100 μs 2 tsu(RESETFULLH-PORH) Setup Time - RESETFULLhigh before POR high 500C + 100 μs RESETFULL Pin Reset 4 td(PORH-RESETFULLL) Delay Time - POR high before RESETFULL low 500C + 100 μs 5 tw(RESETFULLL) Pulse Width - Pulse width RESETFULL low 500C + TBD μs 6 td(RESETH-RESETFULLL) Delay Time - RESET high before RESETFULL low 500C + 100 μs Hard-Reset 4 td(PORH-RESETL) Delay Time - POR high before RESET low 500C + 100 μs 9 tw(RESETL) Pulse Width - Pulse width RESET low 500C + TBD μs 6 td(RESETFULLH-RESETL) Delay Time - RESETFULL high before RESET low 500C + 100 μs 500C + 100 μs Soft Reset 12 156 td(PORH-RESETL) Delay Time - POR high before RESET low TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-44 Reset Timing Requirements (1) (2) (Part 2 of 2) (see Figure 7-18, Figure 7-19, Figure 7-20 and Figure 7-21) No. Min Max Unit 13 tw(RESETL) Pulse Width - Pulse width RESET low 500C + TBD μs 14 td(RESETFULLH-RESETL) Delay Time - RESETFULL high before RESET low 500C + 100 μs End of Table 7-44 1 If CORECLKSEL = 0, C = 1 ÷ CORECLK(N|P) frequency in ns. 2 If CORECLKSEL = 1, C = 1 ÷ ALTCORECLK frequency in ns. Reset Switching Characteristics Over Recommended Operating Conditions (see Figure 7-18, Figure 7-19, Figure 7-20 and Figure 7-21) No. Parameter Min Max Unit POR Pin Reset 3 td(PORH-RESETSTATH) Delay Time - RESETSTAT high after POR high TBD μs RESETFULL Pin Reset 7 td(RESETFULLH-RESETSTATH) Delay Time - RESETSTAT high after RESETFULL high TBD μs Hard Reset 11 td(RESETH-RESETSTATH) Delay Time - RESETSTAT high after RESET high 15 td(RESETH-RESETSTATH) Delay Time - RESETSTAT high after RESET high TBD μs Soft Reset TBD μs End of Table 7-45 Figure 7-18 POR Reset Timing 1 2 VDDS15 Stable + Clocks Valid (internal signal) POR RESET RESETFULL 3 RESETSTAT Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 157 ADVANCE INFORMATION Table 7-45 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Figure 7-19 www.ti.com RESETFULL Reset Timing 5 4 6 RESETFULL RESET 7 RESETSTAT ADVANCE INFORMATION POR Figure 7-20 Hard-Reset Timing 9 8 10 RESET RESETFULL 11 RESETSTAT POR Figure 7-21 Soft-Reset Timing 13 12 14 RESET RESETFULL 15 RESETSTAT POR 158 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-46 Boot Configuration Timing Requirements (1) (2) See Figure 7-22) No. Min Max Unit 1 tsu(GPIOn-POR) Setup Time - GPIO valid before POR asserted 12C ns 2 th(POR-GPIOn) Hold Time - GPIO valid after POR asserted 12C ns End of Table 7-46 1 If CORECLKSEL = 0, C = 1 ÷ CORECLK(N|P) frequency in ns. 2 If CORECLKSEL = 1, C = 1 ÷ ALTCORECLK frequency in ns. Figure 7-22 Boot Configuration Timing ADVANCE INFORMATION 1 POR GPIO[15:0] 2 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 159 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.8 Main PLL and the PLL Controller This section provides a description of the Main PLL and the PLL controller. For details on the operation of the PLL controller module, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. Note—The Main PLL controller registers can be accessed by any master in the device. ADVANCE INFORMATION The Main PLL is controlled by the standard PLL controller. The PLL controller manages the clock ratios, alignment, and gating for the system clocks to the device. Figure 7-23 shows a block diagram of the main PLL controller. The following paragraphs define the clocks and PLL controller parameters. Figure 7-23 Main PLL and PLL Controller AIF Module Main PLL Controller SYSCLK(N|P) xM /2 REFCLK ALTCORECLK(N|P) CORECLKSEL Main PLL C66x CorePac /x SYSCLK2 /2 SYSCLK3 /3 SYSCLK4 /y SYSCLK5 /64 SYSCLK6 /6 SYSCLK7 To Switch Fabric, Peripherals, Accelerators /z SYSCLK8 /12 SYSCLK9 /3 SYSCLK10 /6 SYSCLK11 160 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com The inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLL controller also controls reset propagation through the chip, clock alignment, and test points. The PLL controller monitors the PLL status and provides an output signal indicating when the PLL is locked. The minimum SYSCLK rise and fall times should also be observed. For the input clock timing requirements, see Section 7.8.4 ‘‘Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Electrical Data/Timing’’. CAUTION—The PLL controller module as described in the see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59 includes a superset of features, some of which are not supported on the TMS320C6670 device. The following sections describe the registers that are supported; it should be assumed that any registers not included in these sections is not supported by the device. Furthermore, only the bits within the registers described here are supported. Avoid writing to any reserved memory location or changing the value of reserved bits. 7.8.1 Main PLL Controller Device-Specific Information 7.8.1.1 Internal Clocks and Maximum Operating Frequencies The Main PLL, used to drive the CorePacs, the switch fabric, and a majority of the peripheral clocks (all but the DDR3 and the PASS modules) requires a PLL controller to manage the various clock divisions, gating, and synchronization. The Main PLL’s PLL controller has several SYSCLK outputs that are listed below, along with the clock description. Each SYSCLK has a corresponding divider that divides down the output clock of the PLL. Note that dividers are not programmable unless explicitly mentioned in the description below. • REFCLK: Full-rate clock for CorePac 0~CorePac 3 and RSA. • SYSCLK2: 1/x-rate clock for CorePac (emulation) and the ADTF module. Default rate for this will be 1/3. This is programmable from /1 to /32, where this clock does not violate the max of 350 MHz. The SYSCLK2 can be turned off by software. • SYSCLK3: 1/2-rate clock used to clock the L2/MSMC, TCP3d, HyperLink, CPU/2 SCR, DDR EMIF and CPU/2 EDMA. • SYSCLK4: 1/3-rate clock for the switch fabrics and fast peripherals. The Debug_SS and ETBs will use this as well. • SYSCLK5: 1/y-rate clock for system trace module only. Default rate for this will be 1/5. It is configurable and the max configurable clock is 210 MHz and min configuration clock is 32 MHz. The SYSCLK5 can be turned off by software. • SYSCLK6: 1/64-rate clock. 1/64 rate clock (emif_ptv) used to clock the PVT compensated buffers for DDR3 EMIF. • SYSCLK7: 1/6-rate clock for slow peripherals and sources the SYSCLKOUT output pin. • SYSCLK8: 1/z-rate clock. This clock is used as slow_sysclck in the system. Default for this will be 1/64. This is programmable from /24 to /80. • SYSCLK9: 1/12-rate clock for SmartReflex. • SYSCLK10: 1/3-rate clock for SRIO only. • SYSCLK11: 1/6-rate clock for PSC only. Only SYSCLK2, SYSCLK5, and SYSCLK8 are programmable on TMS320C6670 device. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 161 ADVANCE INFORMATION Main PLL power is supplied externally via the Main PLL power-supply pin (AVDDA1). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 59 for detailed recommendations. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter). TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Note—In case any of the other programmable SYSCLKs are set slower than 1/64 rate, then SYSCLK8 (SLOW_SYSCLK) needs to be programmed to either match, or be slower than, the slowest SYSCLK in the system. 7.8.1.2 Main PLL Controller Operating Modes The Main PLL controller has two modes of operation: bypass mode and PLL mode. The mode of operation is determined by the PLLEN bit of the PLL control register (PLLCTL). In PLL mode, REFCLK is generated from the PLL output using the divider POSTDIV and the PLL multiplier PLLM. In bypass mode, PLL output is fed directly to REFCLK. ADVANCE INFORMATION All hosts must hold off accesses to the DSP while the frequency of its internal clocks is changing. A mechanism must be in place such that the DSP notifies the host when the PLL configuration has completed. 7.8.1.3 Main PLL Stabilization, Lock, and Reset Times The PLL stabilization time is the amount of time that must be allotted for the internal PLL regulators to become stable after device powerup. The PLL should not be operated until this stabilization time has expired. The PLL reset time is the amount of wait time needed when resetting the PLL (writing PLLRST = 1), in order for the PLL to properly reset, before bringing the PLL out of reset (writing PLLRST = 0). For the Main PLL reset time value, see Table 7-47. The PLL lock time is the amount of time needed from when the PLL is taken out of reset (PLLRST = 1 with PLLEN = 0) to when to when the PLL controller can be switched to PLL mode (PLLEN = 1). The Main PLL lock time is given in Table 7-47. Table 7-47 Main PLL Stabilization, Lock, and Reset Times Min PLL stabilization time Max 100 Unit μs 2000 × C (1) PLL lock time PLL reset time Typ 1000 ns End of Table 7-47 1 C = SYSCLK(N|P) cycle time in ns. 7.8.2 PLL Controller Memory Map The memory map of the PLL controller is shown in Table 7-48. TMS320C6670 specific PLL Controller register definitions can be found in the sections following the Table 7-48, for other registers in the table, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. CAUTION—Note that only registers documented here are accessible on the TMS320C6670. Other addresses in the PLL controller memory map including the reserved registers should not be modified. Furthermore, only the bits within the registers described here are supported. Avoid writing to any reserved memory location or changing the value of reserved bits. It is recommended to use read-modify-write sequence to make any changes to the valid bits in the register. 162 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com PLL Controller Registers (Including Reset Controller) Hex Address Range Acronym 0231 0000 - 0231 00E3 - Register Name Reserved 0231 00E4 RSTYPE Reset Type Status Register (Reset Controller) 0231 00E8 RSTCTRL Software Reset Control Register (Reset Controller) 0231 00EC RSTCFG Reset Configuration Register (Reset Controller) 0231 00F0 RSISO 0231 00F0 - 0231 00FF - 0231 0100 PLLCTL 0231 0104 - 0231 0108 SECCTL 0231 010C - 0231 0110 PLLM Reset isolation register (Reset Controller) Reserved PLL Control Register ADVANCE INFORMATION Table 7-48 Reserved PLL Secondary Control Register Reserved PLL Multiplier Control Register 0231 0114 PREDIV PLL pre-divider control register 0231 0118 PLLDIV1 Reserved 0231 011C PLLDIV2 PLL controller divider 2 register 0231 0120 PLLDIV3 Reserved 0231 0124 - Reserved 0231 0128 POSTDIV PLL Post-Divider Register 0231 012C - 0231 0134 - 0231 0138 PLLCMD Reserved 0231 013C PLLSTAT PLL Controller Status Register 0231 0140 ALNCTL PLL Controller Clock Align Control Register 0231 0144 DCHANGE 0231 0148 CKEN Reserved 0231 014C CKSTAT Reserved 0231 0150 SYSTAT SYSCLK Status Register PLL Controller Command Register PLLDIV Ratio Change Status Register 0231 0154 - 0231 015C - Reserved 0231 0160 PLLDIV4 Reserved 0231 0164 PLLDIV5 PLL Controller Divider 5 Register 0231 0168 PLLDIV6 Reserved 0231 016C PLLDIV7 Reserved 0231 0170 PLLDIV8 PLL Controller Divider 8 Register 0231 0174 - 0231 0193 PLLDIV9 - PLLDIV16 Reserved 0231 0194 - 0231 01FF - Reserved End of Table 7-48 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 163 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.8.2.1 PLL Secondary Control Register (SECCTL) The PLL Secondary Control Register contains extra fields to control the Main PLL and is shown in Figure 7-24 and described in Table 7-49. Figure 7-24 PLL Secondary Control Register (SECCTL)) 31 24 23 Reserved BYPASS R-0000 0000 RW-0 22 21 20 19 18 OUTPUT_DIVIDE RW-0 RW-0 0 Reserved RW-0 RW-1 RW-001 0000 0000 0000 0000 Legend: R/W = Read/Write; R = Read only; -n = value after reset ADVANCE INFORMATION Table 7-49 PLL Secondary Control Register (SECCTL) Field Descriptions Bit Field Description 31-24 Reserved Reserved 23 BYPASS 22-19 OUTPUT_DIVIDE Output Divider ratio bits. 0h = ÷1. Divide frequency by 1. 1h = ÷2. Divide frequency by 2. 2h = ÷3. Divide frequency by 3. 3h = ÷4. Divide frequency by 4. 4h - Fh = ÷5 to ÷16. Divide frequency by 5 to divide frequency by 80. 18-0 Reserved Reserved Main PLL Bypass Enable 0 = Main PLL Bypass disabled 1 = Main PLL Bypass enabled End of Table 7-49 7.8.2.2 PLL Controller Divider Register (PLLDIV2, PLLDIV5, PLLDIV8) The PLL controller divider registers (PLLDIV2, PLLDIV5, PLLDIV8) are shown in Figure 7-25 and described in Table 7-50. The default values of the RATIO field on a reset for PLLDIV2, PLLDIV5, and PLLDIV8 are different and mentioned in the footnote of Figure 7-25. Figure 7-25 PLL Controller Divider Register (PLLDIVn) 31 16 Reserved 15 Dn R-0 (1) 14 EN R/W-1 8 7 0 Reserved RATIO R-0 R/W-n (2) Legend: R/W = Read/Write; R = Read only; -n = value after reset 1 D2EN for PLLDIV2; D5EN for PLLDIV5; D8EN for PLLDIV8 2 n=02h for PLLDIV2; n=04h for PLLDIV5; n=3Fh for PLLDIV8 Table 7-50 PLL Controller Divider Register (PLLDIVn) Field Descriptions Bit Field Description 31-16 Reserved Reserved. 15 DnEN Divider Dn enable bit. (see footnote of Figure 7-25) 0 = Divider n is disabled. 1 = No clock output. Divider n is enabled. 164 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-50 PLL Controller Divider Register (PLLDIVn) Field Descriptions Bit Field Description 14-8 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 7-0 RATIO Divider ratio bits. (see footnote of Figure 7-25) 0h = ÷1. Divide frequency by 1. 1h = ÷2. Divide frequency by 2. 2h = ÷3. Divide frequency by 3. 3h = ÷4. Divide frequency by 4. 4h - 4Fh = ÷5 to ÷80. Divide frequency by 5 to divide frequency by 80. ADVANCE INFORMATION End of Table 7-50 7.8.2.3 PLL Controller Clock Align Control Register (ALNCTL) The PLL controller clock align control register (ALNCTL) is shown in Figure 7-26 and described in Table 7-51. Figure 7-26 PLL Controller Clock Align Control Register (ALNCTL) 31 8 7 6 5 4 3 2 1 0 Reserved ALN8 Reserved ALN5 Reserved ALN2 Reserved R-0 R/W-1 R-0 R/W-1 R-0 R/W-1 R-0 Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value Table 7-51 Bit PLL Controller Clock Align Control Register (ALNCTL) Field Descriptions Field Description Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 7 ALN8 4 ALN5 1 ALN2 SYSCLKn alignment. Do not change the default values of these fields. 0 = Do not align SYSCLKn to other SYSCLKs during GO operation. If SYSn in DCHANGE is set, SYSCLKn switches to the new ratio immediately after the GOSET bit in PLLCMD is set. 1 = Align SYSCLKn to other SYSCLKs selected in ALNCTL when the GOSET bit in PLLCMD is set and SYSn in DCHANGE is 1. The SYSCLKn rate is set to the ratio programmed in the RATIO bit in PLLDIVn. 31-8 6-5 3-2 0 End of Table 7-51 7.8.2.4 PLLDIV Divider Ratio Change Status Register (DCHANGE) Whenever a different ratio is written to the PLLDIVn registers, the PLLCTL flags the change in the DCHANGE status register. During the GO operation, the PLL controller will change only the divide ratio of the SYSCLKs with the bit set in DCHANGE. Note that the ALNCTL register determines if that clock also needs to be aligned to other clocks. The PLLDIV divider ratio change status register is shown in Figure 7-27 and described in Table 7-52. Figure 7-27 PLLDIV Divider Ratio Change Status Register (DCHANGE) 31 8 7 6 5 4 3 2 1 0 Reserved SYS8 Reserved SYS5 Reserved SYS2 Reserved R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 165 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-52 Bit www.ti.com PLLDIV Divider Ratio Change Status Register (DCHANGE) Field Descriptions Field Description Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 7 SYS8 4 SYS5 1 SYS2 Identifies when the SYSCLKn divide ratio has been modified. 0 = SYSCLKn ratio has not been modified. When GOSET is set, SYSCLKn will not be affected. 1 = SYSCLKn ratio has been modified. When GOSET is set, SYSCLKn will change to the new ratio. 31-8 6-5 3-2 0 End of Table 7-52 ADVANCE INFORMATION 7.8.2.5 SYSCLK Status Register (SYSTAT) The SYSCLK status register (SYSTAT) shows the status of SYSCLK[11:1]. SYSTAT is shown in Figure 7-28 and described in Table 7-53. Figure 7-28 SYSCLK Status Register (SYSTAT) 31 11 10 Reserved 9 SYS11ON SYS10ON R-n R-1 8 7 6 5 4 3 2 1 0 SYS9ON SYS8ON SYS7ON SYS6ON SYS5ON SYS4ON SYS3ON SYS2ON SYS1ON R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1 Legend: R/W = Read/Write; R = Read only; -n = value after reset Table 7-53 SYSCLK Status Register (SYSTAT) Field Descriptions Bit Field 31-11 Reserved Description Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. (1) SYS[N ]ON 10-0 SYSCLK[N] on status. 0 = SYSCLK[N] is gated. 1 = SYSCLK[N] is on. End of Table 7-53 1 Where N = 1, 2, 3,....N (Not all these output clocks may be used on a specific device. For more information, see the device-specific data manual) 7.8.2.6 Reset Type Status Register (RSTYPE) The reset type status (RSTYPE) register latches the cause of the last reset. If multiple reset sources occur simultaneously, this register latches the highest priority reset source. The Reset Type Status register is shown in Figure 7-29 and described in Table 7-54. Figure 7-29 31 Reset Type Status Register (RSTYPE) 29 28 27 12 11 8 7 3 2 1 0 Reserved EMU-RST Reserved WDRST[N] Reserved PLLCTRLRST RESET POR R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 Legend: R = Read only; -n = value after reset 166 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Bit Reset Type Status Register (RSTYPE) Field Descriptions Field Description 31-29 Reserved Reserved. Read only. Always reads as 0. Writes have no effect. 28 EMU-RST Reset initiated by emulation. 0 = Not the last reset to occur. 1 = The last reset to occur. 27-12 Reserved Reserved. Read only. Always reads as 0. Writes have no effect. 11 WDRST3 10 WDRST2 9 WDRST1 Reset initiated by Watchdog Timer[N]. 0 = Not the last reset to occur. 1 = The last reset to occur. 8 WDRST0 7-3 Reserved Reserved. Read only. Always reads as 0. Writes have no effect. 2 PLLCTLRST Reset initiated by PLLCTL. 0 = Not the last reset to occur. 1 = The last reset to occur. 1 RESET RESET reset. 0 = RESET was not the last reset to occur. 1 = RESET was the last reset to occur. 0 POR Power-on reset. 0 = Power-on reset was not the last reset to occur. 1 = Power-on reset was the last reset to occur. End of Table 7-54 7.8.2.7 Reset Control Register (RSTCTRL) This register contains a key that enables writes to the MSB of this register and the RSTCFG register. The key value is 0x5A69. A valid key will be stored as 0x000C, any other key value is invalid. When the RSTCTRL or the RSTCFG is written, the key is invalidated. Every write must be set up with a valid key. The Software Reset Control register (RSTCTRL) is shown in Figure 7-30 and described in Table 7-55. Figure 7-30 Reset Control Register (RSTCTRL) 31 17 Reserved R-0x0000 16 15 SWRST R/W-0x (1) 0 KEY R/W-0x0003 Legend: R = Read only; -n = value after reset; 1 Writes are conditional based on valid key. Table 7-55 Reset Control Register (RSTCTRL) Field Descriptions Bit Field Description 31-17 Reserved Reserved. 16 SWRST Software reset 0 = Reset 1 = Not reset 15-0 KEY Key used to enable writes to RSTCTRL and RSTCFG. End of Table 7-55 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 167 ADVANCE INFORMATION Table 7-54 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.8.2.8 Reset Configuration Register (RSTCFG) This register is used to configure the type of reset initiated by RESET, Watchdog Timer and the PLL controller’s RSTCTRL register; i.e., a Hard reset or a Soft reset. By default, these resets will be Hard resets. The Reset Configuration register (RSTCFG) is shown in Figure 7-31 and described in Table 7-56. Figure 7-31 Reset Configuration Register (RSTCFG) 31 16 15 Reserved 14 13 Reserved R-0x0000 12 PLLCTLRSTTYPE R-00 R/W-0 (2) 11 RESETTYPE R/W-0 4 3 Reserved 2 0 (1) WDTYPE[N ] 2 R-0x0 R/W-0x00 Legend: R = Read only; R/W = Read/Write; -n = value after reset ADVANCE INFORMATION 1 Where N = 1, 2, 3,....N (Not all these output may be used on a specific device. For more information, see the device-specific data manual) 2 Writes are conditional based on valid key. For details, see Section 7.8.2.7 ‘‘Reset Control Register (RSTCTRL)’’. Table 7-56 Reset Configuration Register (RSTCFG) Field Descriptions Bit Acronym Description 31-14 Reserved Reserved. 13 PLLCTLRSTTYPE PLL controller initiates a software-driven reset of type: 0 = Hard reset (default) 1 = Soft reset 12 RESETTYPE RESET initiates a reset of type: 0 = Hard Reset (default) 1 = Soft Reset 11-4 Reserved Reserved. 3 WDTYPE3 2 WDTYPE2 1 WDTYPE1 Watchdog Timer [N] initiates a reset of type: 0 = Hard Reset (default) 1 = Soft Reset 0 WDTYPE0 End of Table 7-56 7.8.2.9 Reset Isolation Register (RSISO) This register is used to select the module clocks that must maintain their clocking without pausing through non Power-on reset. Setting any of these bits effectively blocks reset to all PLLCTL registers in order to maintain current values of PLL multiplier, divide ratios and other settings. The Reset Isolation register (RSTCTRL) is shown in Figure 7-32 and described in Table 7-57. Figure 7-32 Reset Isolation Register (RSISO) 31 9 8 Reserved 16 15 Reserved 10 SRIOISO SRISO 7 Reserved 4 AIF2ISO 3 Reserved 2 0 R-0x0000 R-0x00 R/W-0 R/W-0 R-0x0 R/W-0 R-000 Legend: R = Read only; R/W = Read/Write; -n = value after reset 168 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Bit Reset Isolation Register (RSISO) Field Descriptions Acronym Description 31-10 Reserved Reserved. 9 SRIOISO Isolate SRIO module 0 = Not reset isolated 1 = Reset Isolated 8 SRISO Isolate SmartReflex 0 = Not reset isolated 1 = Reset Isolated 7-4 Reserved Reserved. 3 AIF2ISO Isolate AIF2 module 0 = Not reset isolated 1 = Reset isolated 2-0 Reserved Reserved. End of Table 7-57 7.8.3 Main PLL Control Register The Main PLL uses a chip-level register (MAINPLLCTL) along with the PLL controller for its configuration. This MMR exists inside the Bootcfg space. To write to this register, software should go through an un-locking sequence using KICK0/KICK1 registers. For valid configurable values into the MAINPLLCTL register see Section 2.5.3 ‘‘PLL Settings’’ on page 33. See 3.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 65 for the address location of the registers and locking and unlocking sequences for accessing the registers. This register is reset on POR only. Figure 7-33 Main PLL Control Register (MAINPLLCTL) 31 24 23 19 18 12 11 6 5 0 BWADJ[7:0] Reserved PLLM[12:6] Reserved PLLD RW,+0000 0101 RW - 0000 0 RW,+0000000 RW, +000000 RW,+000000 Legend: RW = Read/Write; -n = value after reset Table 7-58 Bit Main PLL Control Register Field Descriptions Field Description 31-24 BWADJ[7:0] BWADJ should be programmed to a value equal to half of PLLM[12:0] 23-19 Reserved Reserved 18-12 PLLM[12:6] A 13-bit bus that selects the values for the multiplication factor (see Note below) 11-6 Reserved Reserved 5-0 PLLD A 6-bit bus that selects the values for the reference divider End of Table 7-58 Note—PLLM[5:0] bits of the multiplier is controlled by the PLLM register inside the PLL controller and PLLM[12:6] bits are controlled by the above chip level register. MAINPLLCTL register PLLM[12:6] bits should be written just before writing to PLLM register PLLM[5:0] bits in the controller to have the complete 13 bit value latched when the GO operation is initiated in the PLL controller. See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 169 ADVANCE INFORMATION Table 7-57 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com page 59 for the recommended programming sequence. Output Divide ratio and Bypass enable/disable of the Main PLL is controlled by the SECCTL register in the PLL Controller. See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59 for more details. 7.8.4 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Electrical Data/Timing Table 7-59 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Timing Requirements (1) (Part 1 of 2) (see Figure 7-34 and Figure 7-35) No. Min Max Unit SYSCLK[P:N] ADVANCE INFORMATION Cycle Time _ SYSCLKN cycle time 3.25 or 6.51 or 8.138 (2) tc(SYSCLKP) Cycle Time _ SYSCLKP cycle time 3.25 or 6.51 or 8.138 tw(SYSCLKN) Pulse Width _ SYSCLKN high 0.45*tc 0.55*tc 2 tw(SYSCLKN) Pulse Width _ SYSCLKN low 0.45*tc 0.55*tc ns 2 tw(SYSCLKP) Pulse Width _ SYSCLKP high 0.45*tc 0.55*tc ns 3 tw(SYSCLKP) Pulse Width _ SYSCLKP low 0.45*tc 0.55*tc ns 4 tr(SYSCLKN_250mv) Transition Time _ SYSCLKN Rise time (250mV) 50 350 ps 4 tf(SYSCLKN_250mv) Transition Time _ SYSCLKN Fall time (250mV) 50 350 ps 4 tr(SYSCLKP_250mv) Transition Time _ SYSCLKP Rise time (250mV) 50 350 ps 4 tf(SYSCLKP_250mv) Transition Time _ SYSCLKP Fall time (250mV) 50 350 ps 5 tj(SYSCLKN) Jitter, Peak_to_Peak _ Periodic SYSCLKN 100 ps 5 tj(SYSCLKP) Jitter, Peak_to_Peak _ Periodic SYSCLKP 100 ps 1 tc(SYSCLKN) 1 3 ns ns ns ALTCORECLK[P:N] 1 tc(ALTCORCLKN) Cycle Time _ ALTCORECLKN cycle time 3.2 25 ns 1 tc(ALTCORECLKP) Cycle Time _ ALTCORECLKP cycle time 3.2 25 ns 3 tw(ALTCORECLKN) Pulse Width _ ALTCORECLKN high 0.45*tc(ALTCORECLKN) 0.55*tc(ALTCORECLKN) ns 2 tw(ALTCORECLKN) Pulse Width _ ALTCORECLKN low 0.45*tc(ALTCORECLKN) 0.55*tc(ALTCORECLKN) ns 2 tw(ALTCORECLKP) Pulse Width _ ALTCORECLKP high 0.45*tc(ALTCORECLKP) 0.55*tc(ALTCORECLKP) ns 3 tw(ALTCORECLKP) Pulse Width _ ALTCORECLKP low 0.45*tc(ALTCORECLKP) 0.55*tc(ALTCORECLKP) ns 4 tr(ALTCORECLKN_250mv) Transition Time _ ALTCORECLKN Rise time (250mV) 50 350 ps 4 tf(ALTCORECLKN_250mv) Transition Time _ ALTCORECLKN Fall time (250mV) 50 350 ps 4 tr(ALTCORECLKP_250mv) Transition Time _ ALTCORECLKP Rise time (250mV) 50 350 ps 4 tf(ALTCORECLKP_250mv) Transition Time _ ALTCORECLKP Fall time (250mV) 50 350 ps 5 tj(ALTCORECLKN) Jitter, Peak_to_Peak _ Periodic ALTCORECLKN 100 ps 5 tj(ALTCORECLKP) Jitter, Peak_to_Peak _ Periodic ALTCORECLKP 100 ps SRIOSGMIICLK[P:N] 1 tc(SRIOSMGMIICLKN) Cycle Time _ SRIOSMGMIICLKN cycle time 3.2 or 4 or 6.4 ns 1 tc(SRIOSMGMIICLKP) Cycle Time _ SRIOSMGMIICLKP cycle time 3.2 or 4 or 6.4 ns 3 tw(SRIOSMGMIICLKN) Pulse Width _ SRIOSMGMIICLKN high 0.45*tc(SRIOSGMIICLKN) 0.55*tc(SRIOSGMIICLKN) ns 2 tw(SRIOSMGMIICLKN) Pulse Width _ SRIOSMGMIICLKN low 0.45*tc(SRIOSGMIICLKN) 0.55*tc(SRIOSGMIICLKN) ns 2 tw(SRIOSMGMIICLKP) Pulse Width _ SRIOSMGMIICLKP high 0.45*tc(SRIOSGMIICLKP) 0.55*tc(SRIOSGMIICLKP) ns 3 tw(SRIOSMGMIICLKP) Pulse Width _ SRIOSMGMIICLKP low 0.45*tc(SRIOSGMIICLKP) 0.55*tc(SRIOSGMIICLKP) ns 4 tr(SRIOSMGMIICLKN_250mv) Transition Time _ SRIOSMGMIICLKN Rise time (250mV) 50 350 ps 4 tf(SRIOSMGMIICLKN_250mv) Transition Time _ SRIOSMGMIICLKN Fall time (250mV) 50 350 ps 170 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-59 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Timing Requirements (1) (Part 2 of 2) (see Figure 7-34 and Figure 7-35) Min Max Unit 4 tr(SRIOSMGMIICLKP_250mv) Transition Time _ SRIOSMGMIICLKP Rise time (250mV) 50 350 ps 4 tf(SRIOSMGMIICLKP_250mv) Transition Time _ SRIOSMGMIICLKP Fall time (250mV) 50 350 ps 5 tj(SRIOSMGMIICLKN) Jitter, Peak_to_Peak _ Periodic SRIOSMGMIICLKN 4 ps,RMS 5 tj(SRIOSMGMIICLKP) Jitter, Peak_to_Peak _ Periodic SRIOSMGMIICLKP 4 ps,RMS 5 tj(SRIOSMGMIICLKN) Jitter, Peak_to_Peak _ Periodic SRIOSMGMIICLKN (SRIO Not Used) 8 ps,RMS 5 tj(SRIOSMGMIICLKP) Jitter, Peak_to_Peak _ Periodic SRIOSMGMIICLKP (SRIO Not Used) 8 ps,RMS 1 tc(MCMCLKN) Cycle Time _ MCMCLKN cycle time HyperLink CLK[P:N] 3.2 or 4 or 6.4 ns 3.2 or 4 or 6.4 ns 1 tc(MCMCLKP) Cycle Time _ MCMCLKP cycle time 3 tw(MCMCLKN) Pulse Width _ MCMCLKN high 0.45*tc(MCMCLKN) 0.55*tc(MCMCLKN) 2 tw(MCMCLKN) Pulse Width _ MCMCLKN low 0.45*tc(MCMCLKN) 0.55*tc(MCMCLKN) ns 2 tw(MCMCLKP) Pulse Width _ MCMCLKP high 0.45*tc(MCMCLKP) 0.55*tc(MCMCLKP) ns 3 tw(MCMCLKP) Pulse Width _ MCMCLKP low 0.45*tc(MCMCLKP) 0.55*tc(MCMCLKP) ns 4 tr(MCMCLKN_250mv) Transition Time _ MCMCLKN Rise time (250 mV) 50 350 ps 4 tf(MCMCLKN_250mv) Transition Time _ MCMCLKN Fall time (250 mV) 50 350 ps 4 tr(MCMCLKP_250mv) Transition Time _ MCMCLKP Rise time (250 mV) 50 350 ps 4 tf(MCMCLKP_250mv) Transition Time _ MCMCLKP Fall time (250 mV) 50 350 ps 5 tj(MCMCLKN) Jitter, Peak_to_Peak _ Periodic MCMCLKN 4 ps,RMS 5 tj(MCMCLKP) Jitter, Peak_to_Peak _ Periodic MCMCLKP 4 ps,RMS ns PCIECLK[P:N] 1 tc(PCIECLKN) Cycle Time _ PCIECLKN cycle time 3.2 or 4 or 6.4 or 10 ns 1 tc(PCIECLKP) Cycle Time _ PCIECLKP cycle time 3.2 or 4 or 6.4 or 10 ns 3 tw(PCIECLKN) Pulse Width _ PCIECLKN high 0.45*tc(PCIECLKN) 0.55*tc(PCIECLKN) ns 2 tw(PCIECLKN) Pulse Width _ PCIECLKN low 0.45*tc(PCIECLKN) 0.55*tc(PCIECLKN) ns 2 tw(PCIECLKP) Pulse Width _ PCIECLKP high 0.45*tc(PCIECLKP) 0.55*tc(PCIECLKP) ns 3 tw(PCIECLKP) Pulse Width _ PCIECLKP low 0.45*tc(PCIECLKP) 0.55*tc(PCIECLKP) ns 4 tr(PCIECLKN_250mv) Transition Time _ PCIECLKN Rise time (250 mV) 50 350 ps 4 tf(PCIECLKN_250mv) Transition Time _ PCIECLKN Fall time (250 mV) 50 350 ps 4 tr(PCIECLKP_250mv) Transition Time _ PCIECLKP Rise time (250 mV) 50 350 ps 4 tf(PCIECLKP_250mv) Transition Time _ PCIECLKP Fall time (250 mV) 50 350 ps 5 tj(PCIECLKN) Jitter, Peak_to_Peak _ Periodic PCIECLKN 4 ps,RMS 5 tj(PCIECLKP) Jitter, Peak_to_Peak _ Periodic PCIECLKP 4 ps,RMS End of Table 7-59 1 If CORECLKSEL = 0, C = 1/SYSCLK(NIP) frequency, in ns. If CORECLKSEL = 1, C = 1/ALTCORECLK frequency, in ns. 2 If AIF2 is being used then SYSCLK(N|P) can only be programmed to fixed values, if AIF2 is not being used then any value in the range between the min and max values can be used. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 171 ADVANCE INFORMATION No. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Figure 7-34 www.ti.com Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Timing 1 2 3 <CLK_NAME>CLKN <CLK_NAME>CLKP 4 Figure 7-35 5 Main PLL Transition Time ADVANCE INFORMATION peak-to-peak differential input voltage (250 mV to 2 V) 0 250 mV peak-to-peak TR = 50 ps min to 350 ps max (10% to 90 %) for the 250 mV peak-to-peak centered at zero crossing 172 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.9 DDR3 PLL The DDR3 PLL generates interface clocks for the DDR3 memory controller. When coming out of power-on reset, DDR3 PLL is programmed to a valid frequency during the boot config before being enabled and used. Figure 7-36 DDR3 PLL Block Diagram DDR3 PLL DDRCLK(N|P) /2 PLLOUT DDR3 PHY xPLLM 7.9.1 DDR3 PLL Control Register The DDR3 PLL, which is used to drive the DDR PHY for the EMIF, does not use a PLL controller. DDR3 PLL can be controlled using the DDR3PLLCTL register located in the Bootcfg module. This MMR exists inside the Bootcfg space. To write to this register, software should go through an un-locking sequence using KICK0/KICK1 registers. For suggested configurable values see 2.5.3 ‘‘PLL Settings’’ on page 33. See 3.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 65 for the address location of the registers and locking and unlocking sequences for accessing the registers. This register is reset on POR only . DDR3 PLL Control Register (DDR3PLLCTL) (1) Figure 7-37 31 24 23 22 19 18 6 5 0 Reserved BYPASS Reserved PLLM PLLD RW,+0000 1001 RW,+0 RW,+0001 RW,+0000000010011 RW,+000000 Legend: RW = Read/Write; -n = value after reset 1 This register is Reset on POR only. The regreset, reset and bgreset from PLL are all tied to a common pll0_ctrl_rst_n The pwrdn, regpwrdn, bgpwrdn are all tied to common pll0_ctrl_to_pll_pwrdn. Table 7-60 Bit DDR3 PLL Control Register Field Descriptions Field Description 31-24 Reserved Reserved 23 BYPASS Enable Bypass Mode 0 = Bypass Disabled 1 = Bypass Enabled 22-19 Reserved Reserved 18-6 PLLM A 13-bit bus that selects the values for the multiplication factor (see Note below) 5-0 PLLD A 6-bit bus that selects the values for the reference divider End of Table 7-60 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 173 ADVANCE INFORMATION DDR3 PLL power is supplied externally via the Main PLL power-supply pin (AVDDA2). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 59 for detailed recommendations. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter). TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.9.2 DDR3 PLL Device-Specific Information As shown in Figure 7-36, the output of DDR3 PLL (PLLOUT) is divided by 2 and directly fed to the DDR3 memory controller. The DDR3 PLL is affected by power-on reset. During power-on resets, the internal clocks of the DDR3 PLL are affected as described in Section 7.7 ‘‘Reset Controller’’ on page 153. DDR3 PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any of the other resets. 7.9.3 DDR3 PLL Input Clock Electrical Data/Timing Table 7-61 DDR3 PLL DDRREFCLK(N|P) Timing Requirements (see Figure 7-38 and Figure 7-35) ADVANCE INFORMATION No. Min Max Unit 3.2 25 ns DDRCLK[P:N] 1 tc(DDRCLKN) Cycle Time _ DDRCLKN cycle time 1 tc(DDRCLKP) Cycle Time _ DDRCLKP cycle time 3.2 25 ns 3 tw(DDRCLKN) Pulse Width _ DDRCLKN high 0.45*tc(DDRCLKN) 0.55*tc(DDRCLKN) ns 2 tw(DDRCLKN) Pulse Width _ DDRCLKN low 0.45*tc(DDRCLKN) 0.55*tc(DDRCLKN) ns 2 tw(DDRCLKP) Pulse Width _ DDRCLKP high 0.45*tc(DDRCLKP) 0.55*tc(DDRCLKP) ns 3 tw(DDRCLKP) Pulse Width _ DDRCLKP low 0.45*tc(DDRCLKP) 0.55*tc(DDRCLKP) ns 4 tr(DDRCLKN_250mv) Transition Time _ DDRCLKN Rise time (250mV) 50 350 ps 4 tf(DDRCLKN_250mv) Transition Time _ DDRCLKN Fall time (250mV) 50 350 ps 4 tr(DDRCLKP_250mv) Transition Time _ DDRCLKP Rise time (250mV) 50 350 ps 4 tf(DDRCLKP_250mv) Transition Time _ DDRCLKP Fall time (250mV) 50 350 ps 5 tj(DDRCLKN) Jitter, Peak_to_Peak _ Periodic DDRCLKN 0.025*tc(DDRCLKN) ps 5 tj(DDRCLKP) Jitter, Peak_to_Peak _ Periodic DDRCLKP 0.025*tc(DDRCLKN) ps End of Table 7-61 Figure 7-38 DDR3 PLL DDRCLK Timing 1 2 3 DDRCLKN DDRCLKP 4 5 7.10 PASS PLL The PASS PLL generates interface clocks for the Packet Accelerator Subsystem. Using the PACLKSEL pin the user can select the input source of PASS PLL as either the output of Main PLL mux or the PASSCLK clock reference sources. When coming out of power-on reset, PASS PLL comes out in a bypass mode and needs to be programmed to a valid frequency before being enabled and used. PASS PLL power is supplied externally via the Main PLL power-supply pin (AVDDA3). An external EMI filter circuit must be added to all PLL supplies. Please see the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 59 for detailed recommendations. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter). 174 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 7-39 PASS PLL Block Diagram SYSCLK(P|N) REFCLK Main PLL and PLL Controller ALTCORECLK(P|N) CORECLKSEL PASS PLL /2 PLLOUT Packet Accelerator PASSCLK(P|N) 7.10.1 PASS PLL Control Register The PASS PLL, which is used to drive the Packet Accelerator Sub-System, does not use a PLL controller. PASS PLL can be controlled using the PAPLLCTL register located in Bootcfg module. This MMR exists inside the Bootcfg space. To write to this register, software should go through an un-locking sequence using KICK0/KICK1 registers. For suggested configurable values see 2.5.3 ‘‘PLL Settings’’ on page 33. See 3.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 65 for the address location of the registers and locking and unlocking sequences for accessing the registers. This register is reset on POR only . PASS PLL Control Register (PASSPLLCTL) (1) Figure 7-40 31 24 23 22 19 18 6 5 0 Reserved BYPASS Reserved PLLM PLLD RW,+0000 1001 RW,+0 RW,+0001 RW,+0000000010011 RW,+000000 Legend: RW = Read/Write; -n = value after reset 1 This register is Reset on POR only. The regreset, reset, and bgreset from PLL are all tied to a common pll0_ctrl_rst_n. The pwrdn, regpwrdn, and bgpwrdn are all tied to common pll0_ctrl_to_pll_pwrdn. Table 7-62 Bit PASS PLL Control Register Field Descriptions Field Description 31-24 Reserved Reserved 23 BYPASS Enable Bypass Mode 0 = Bypass Disabled 1 = Bypass Enabled 22-19 Reserved Reserved 18-6 PLLM A 13-bit bus that selects the values for the multiplication factor (see Note below) 5-0 PLLD A 6-bit bus that selects the values for the reference divider End of Table 7-62 7.10.2 PASS PLL Device-Specific Information As shown in Figure 7-39, the output of PASS PLL (PLLOUT) is divided by 2 and directly fed to the Packet Accelerator Sub-System. The PASS PLL is affected by power-on reset. During power-on resets, the internal clocks of the PASS PLL are affected as described in Section 7.7 ‘‘Reset Controller’’ on page 153. PASS PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any of the other resets. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 175 ADVANCE INFORMATION xPLLM PACLKSEL TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.10.3 PASS PLL Input Clock Electrical Data/Timing Table 7-63 PASS PLL Timing Requirments (See Figure 7-41 and Figure 7-35) No. Parameter Min Max 3.2 25 Unit PASSCLK[P:N] 1 tc(PASSCLKN) Cycle Time _ PASSCLKN cycle time ns 1 tc(PASSCLKP) Cycle Time _ PASSCLKP cycle time 3.2 25 ns 3 tw(PASSCLKN) Pulse Width _ PASSCLKN high 0.45*tc(PASSCLKN) 0.55*tc(PASSCLKN) ns ADVANCE INFORMATION 2 tw(PASSCLKN) Pulse Width _ PASSCLKN low 0.45*tc(PASSCLKN) 0.55*tc(PASSCLKN) ns 2 tw(PASSCLKP) Pulse Width _ PASSCLKP high 0.45*tc(PASSCLKP) 0.55*tc(PASSCLKP) ns 3 tw(PASSCLKP) Pulse Width _ PASSCLKP low 0.45*tc(PASSCLKP) 0.55*tc(PASSCLKP) ns 4 tr(PASSCLKN_250mv) Transition Time _ PASSCLKN Rise time (250 mV) 50 350 ps 4 tf(PASSCLKN_250mv) Transition Time _ PASSCLKN Fall time (250 mV) 50 350 ps 4 tr(PASSCLKP_250mv) Transition Time _ PASSCLKP Rise time (250 mV) 50 350 ps 4 tf(PASSCLKP_250mv) Transition Time _ PASSCLKP Fall time (250 mV) 50 350 ps 5 tj(PASSCLKN) Jitter, Peak_to_Peak _ Periodic PASSCLKN 100 ps, pk-pk 5 tj(PASSCLKP) Jitter, Peak_to_Peak _ Periodic PASSCLKP 100 ps, pk-pk Figure 7-41 PASS PLL Timing 1 2 3 PASSCLKN PASSCLKP 4 176 TMS320C6670 Peripheral Information and Electrical Specifications 5 Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.11 DDR3 Memory Controller The 64-bit DDR3 Memory Controller bus of the TMS320C6670 is used to interface to JEDEC standard-compliant DDR3 SDRAM devices. The DDR3 external bus interfaces only to DDR3 SDRAM devices; it does not share the bus with any other types of peripherals. 7.11.1 DDR3 Memory Controller Device-Specific Information Due to the complicated nature of the interface, a limited number of topologies will be supported to provide a 16-bit, 32-bit, or 64-bit interface. The DDR3 electrical requirements are fully specified in the DDR Jedec Specification JESD79-3C. Standard DDR3 SDRAMs are available in 8- and 16-bit versions, allowing for the following bank topologies to be supported by the interface: • 72-bit: Five 16-bit SDRAMs (including 8 bits of ECC) • 72-bit: Nine 8-bit SDRAMs (including 8 bits of ECC) • 36-bit: Three 16-bit SDRAMs (including 4 bits of ECC) • 36-bit: Five 8-bit SDRAMs (including 4 bits of ECC) • 64-bit: Four 16-bit SDRAMs • 64-bit: Eight 8-bit SDRAMs • 32-bit: Two 16-bit SDRAMs • 32-bit: Four 8-bit SDRAMs • 16-bit: One 16-bit SDRAM • 16-bit: Two 8-bit SDRAM The approach to specifying interface timing for the DDR3 memory bus is different than on other interfaces such as I2C or SPI. For these other interfaces, the device timing was specified in terms of data manual specifications and I/O buffer information specification (IBIS) models. For the DDR3 memory bus, the approach is to specify compatible DDR3 devices and provide the printed circuit board (PCB) solution and guidelines directly to the user. A race condition may exist when certain masters write data to the DDR3 memory controller. For example, if master A passes a software message via a buffer in external memory and does not wait for indication that the write completes, when master B attempts to read the software message, then the master B read may bypass the master A write and, thus, master B may read stale data and, therefore, receive an incorrect message. Some master peripherals (e.g., EDMA3 transfer controllers) will always wait for the write to complete before signaling an interrupt to the system, thus avoiding this race condition. For masters that do not have a hardware specification of write-read ordering, it may be necessary to specify data ordering via software. If master A does not wait for indication that a write is complete, it must perform the following workaround: 1. Perform the required write. 2. Perform a dummy write to the DDR3 memory controller module ID and revision register. 3. Perform a dummy read to the DDR3 memory controller module ID and revision register. 4. Indicate to master B that the data is ready to be read after completion of the read in step 3. The completion of the read in step 3 ensures that the previous write was done. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 177 ADVANCE INFORMATION The TMS320C6670 includes one 64-bit wide 1.5-V DDR3 SDRAM EMIF interface. The DDR3 interface can operate at 800 Mega Transfers per Second (MTS), 1033 MTS, 1333 MTS, and 1600 MTS TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.11.2 DDR3 Memory Controller Electrical Data/Timing The DDR3 Implementation Guidelines application report in ‘‘Related Documentation from Texas Instruments’’ on page 59 specifies a complete DDR3 interface solution as well as a list of compatible DDR3 devices. The DDR3 electrical requirements are fully specified in the DDR3 Jedec Specification JESD79-3C. TI has performed the simulation and system characterization to ensure all DDR3 interface timings in this solution are met; therefore, no electrical data/timing information is supplied here for this interface. Note—TI supports only designs that follow the board design guidelines outlined in the application report. 7.12 I2C Peripheral ADVANCE INFORMATION The inter-integrated circuit (I2C) module provides an interface between DSP and other devices compliant with 2 2 Philips Semiconductors Inter-IC bus (I C bus) specification version 2.1 and connected by way of an I C bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the DSP through the I2C module. 2 7.12.1 I C Device-Specific Information 2 2 The TMS320C6670 device includes an I C peripheral module. NOTE: when using the I C module, ensure there are external pullup resistors on the SDA and SCL pins. 2 The I C modules on the C6670 may be used by the DSP to control local peripheral ICs (DACs, ADCs, etc.) or may be used to communicate with other controllers in a system or to implement a user interface. 2 The I C port supports: 2 • Compatible with Philips I C specification revision 2.1 (January 2000) • Fast mode up to 400 Kbps (no fail-safe I/O buffers) • Noise filter to remove noise 50 ns or less • 7-bit and 10-bit device addressing modes • Multi-master (transmit/receive) and slave (transmit/receive) functionality • Events: DMA, interrupt, or polling • Slew-rate limited open-drain output buffers 178 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2 Figure 7-42 shows a block diagram of the I C module. Figure 7-42 I2C Module Block Diagram 2 I C Module Clock Prescale Peripheral Clock (CPU/6) 2 I CPSC Bit Clock Generator SCL Noise Filter 2 I C Clock I COAR Own Address I2CSAR Slave Address I2CMDR Mode 2 2 I CCLKH ADVANCE INFORMATION Control I2CCLKL 2 I CCNT Transmit I2CXSR 2 I CDXR Transmit Shift Extended Mode Transmit Buffer SDA I2C Data I2CEMDR Data Count Interrupt/DMA Noise Filter I2CDRR 2 I CRSR 2 Interrupt Mask/Status 2 Interrupt Status I CIMR Receive Receive Buffer I CSTR Receive Shift I CIVR 2 Interrupt Vector Shading denotes control/status registers. 2 7.12.2 I C Peripheral Register Description(s) Table 7-64 I2C Registers (Part 1 of 2) Hex Address Range Acronym 02B0 4000 ICOAR I2C own address register 02B0 4004 ICIMR I C interrupt mask/status register 02B0 4008 ICSTR I C interrupt status register 02B0 400C ICCLKL I2C clock low-time divider register 02B0 4010 ICCLKH I C clock high-time divider register 02B0 4014 ICCNT I C data count register 02B0 4018 ICDRR I2C data receive register 02B0 401C ICSAR I C slave address register 02B0 4020 ICDXR I C data transmit register 02B0 4024 ICMDR I2C mode register 02B0 4028 ICIVR I C interrupt vector register 02B0 402C ICEMDR I C extended mode register 02B0 4030 ICPSC Copyright 2010 Texas Instruments Incorporated Register Name 2 2 2 2 2 2 2 2 I2C prescaler register TMS320C6670 Peripheral Information and Electrical Specifications 179 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-64 www.ti.com I2C Registers (Part 2 of 2) Hex Address Range Acronym 02B0 4034 ICPID1 I2C peripheral identification register 1 [Value: 0x0000 0105] Register Name 02B0 4038 ICPID2 I C peripheral identification register 2 [Value: 0x0000 0005] 02B0 403C - 02B0 405C - Reserved 02B0 4060 - 02B3 407F - Reserved 02B0 4080 - 02B3 FFFF - Reserved 2 End of Table 7-64 2 ADVANCE INFORMATION 7.12.3 I C Electrical Data/Timing 2 7.12.3.1 Inter-Integrated Circuits (I C) Timing Table 7-65 I2C Timing Requirements (1) (see Figure 7-43) Standard Mode No. 1 2 3 Min Max Fast Mode Min tc(SCL) Cycle time, SCL 10 2.5 μs tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 μs th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 μs 4 tw(SCLL) Pulse duration, SCL low 5 tw(SCLH) Pulse duration, SCL high 6 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 4.7 1.3 μs 4 0.6 μs 100 (2) 3.45 0 (3) 250 2 (3) μs (5) 300 ns (5) 300 ns 300 20 + 0.1Cb (5) 300 ns 300 (5) 300 th(SCLL-SDAV) Hold time, SDA valid after SCL low (for I C bus devices) 0 8 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 9 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 10 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb 11 tf(SDA) Fall time, SDA 12 tf(SCL) Fall time, SCL 13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) tw(SP) Cb (5) 0.9 1.3 4 20 + 0.1Cb μs 0.6 Pulse duration, spike (must be suppressed) Capacitive load for each bus line ns (4) 7 14 Max Units 0 400 ns μs 50 ns 400 pF End of Table 7-65 1 The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down 2 2 2 A Fast-mode I C-bus™ device can be used in a Standard-mode I C-bus™ system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. 3 A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. 4 The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal. 5 Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. 180 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 2 Figure 7-43 I C Receive Timings 11 9 SDA 8 6 4 14 13 5 10 SCL 3 12 7 2 3 Stop Table 7-66 Start Repeated Start Stop I2C Switching Characteristics (1) (see Figure 7-44) Standard Mode No. Parameter Min Max Fast Mode Min Max Unit 16 tc(SCL) Cycle time, SCL 10 2.5 ms 17 tsu(SCLH-SDAL) Setup time, SCL high to SDA low (for a repeated START condition) 4.7 0.6 ms 18 th(SDAL-SCLL) Hold time, SDA low after SCL low (for a START and a repeated START condition) 4 0.6 ms 19 tw(SCLL) Pulse duration, SCL low 4.7 1.3 ms 20 tw(SCLH) Pulse duration, SCL high 4 0.6 ms 21 td(SDAV-SDLH) Delay time, SDA valid to SCL high 250 100 22 tv(SDLL-SDAV) Valid time, SDA valid after SCL low (for I2C bus devices) 0 0 23 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 24 tr(SDA) Rise time, SDA 4.7 ns 0.9 1.3 1000 ms ms 20 + 0.1Cb (1) 300 ns 25 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb (1) 300 ns 26 tf(SDA) Fall time, SDA 300 20 + 0.1Cb (1) 300 ns 20 + 0.1Cb (1) 300 27 tf(SCL) Fall time, SCL 28 td(SCLH-SDAH) Delay time, SCL high to SDA high (for STOP condition) 300 Cp Capacitance for each I C pin 2 4 0.6 10 ns ms 10 pF End of Table 7-66 1 Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 181 ADVANCE INFORMATION 1 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Figure 7-44 www.ti.com I2C Transmit Timings 26 24 SDA 23 21 19 28 20 25 SCL 16 18 27 22 17 ADVANCE INFORMATION 18 Stop 182 Start TMS320C6670 Peripheral Information and Electrical Specifications Repeated Start Stop Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.13 SPI Peripheral The serial peripheral interconnect (SPI) module provides an interface between the DSP and other SPI-compliant devices. The primary intent of this interface is to allow for connection to a SPI ROM for boot. The SPI module on C6670 is supported only in Master mode. Additional chip-level components can also be included, such as temperature sensors or an I/O expander. 7.13.1 SPI Electrical Data/Timing 7.13.1.1 SPI Timing SPI Timing Requirements See Figure 7-45) No. Min Max Unit Master Mode Timing Diagrams — Base Timings for 3 Pin Mode 7 tsu(SOMI-SPC) Input Setup Time, SPIx_SOMI valid before receive edge of SPIx_CLk. Polarity = 0 Phase = 0 2 ns 7 tsu(SOMI-SPC) Input Setup Time, SPIx_SOMI valid before receive edge of SPIx_CLk. Polarity = 0 Phase = 1 2 ns 7 tsu(SOMI-SPC) Input Setup Time, SPIx_SOMI valid before receive edge of SPIx_CLk. Polarity = 1 Phase = 0 2 ns 7 tsu(SOMI-SPC) Input Setup Time, SPIx_SOMI valid before receive edge of SPIx_CLk. Polarity = 1 Phase = 1 2 ns 8 th(SPC-SOMI) Input Hold Time, SPIx_SOMI valid after receive edge of SPIx_CLK. Polarity = 0 Phase = 0 5 ns 8 th(SPC-SOMI) Input Hold Time, SPIx_SOMI valid after receive edge of SPIx_CLK. Polarity = 0 Phase = 1 5 ns 8 th(SPC-SOMI) Input Hold Time, SPIx_SOMI valid after receive edge of SPIx_CLK. Polarity = 1 Phase = 0 5 ns 8 th(SPC-SOMI) Input Hold Time, SPIx_SOMI valid after receive edge of SPIx_CLK. Polarity = 1 Phase = 1 5 ns End of Table 7-67 Table 7-68 SPI Switching Characteristics (Part 1 of 2) (See Figure 7-45 and Figure 7-46) No. Parameter Min Max Unit Master Mode Timing Diagrams — Base Timings for 3 Pin Mode 1 tc(SPC) Cycle Time, SPIx_CLK, All Master Modes 1/66MHz ns 2 tw(SPCH) Pulse Width High, SPIx_CLK, All Master Modes 7 ns 3 tw(SPCL) Pulse Width Low, SPIx_CLK, All Master Modes 7 4 td(SIMO-SPC) Setup (Delay), initial data bit valid on SPIx_SIMO to initial edge on SPIx_CLK. Polarity = 0, Phase = 0. 5 ns 4 td(SIMO-SPC) Setup (Delay), initial data bit valid on SPIx_SIMO to initial edge on SPIx_CLK. Polarity = 0, Phase = 1. 5 ns 4 td(SIMO-SPC) Setup (Delay), initial data bit valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 1, Phase = 0 5 ns 4 td(SIMO-SPC) Setup (Delay), initial data bit valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 1, Phase = 1 5 ns 5 td(SPC-SIMO) Setup (Delay), subsequent data bits valid on SPIx_SIMO to initial edge on SPIx_CLK. Polarity = 0 Phase = 0 5 ns 5 td(SPC-SIMO) Setup (Delay), subsequent data bits valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 0 Phase = 1 5 ns 5 td(SPC-SIMO) Setup (Delay), subsequent data bits valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 1 Phase = 0 5 ns 5 td(SPC-SIMO) Setup (Delay), subsequent data bits valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 1 Phase = 1 5 ns 6 toh(SPC-SIMO) Output hold time, SPIx_SIMO valid after receive edge of SPIx_CLK except for final bit. Polarity = 0 Phase = 0 0.5*tc - 2 ns 6 toh(SPC-SIMO) Output hold time, SPIx_SIMO valid after receive edge of SPIx_CLK except for final bit. Polarity = 0 Phase = 1 0.5*tc - 2 ns Copyright 2010 Texas Instruments Incorporated ns TMS320C6670 Peripheral Information and Electrical Specifications 183 ADVANCE INFORMATION Table 7-67 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Table 7-68 www.ti.com SPI Switching Characteristics (Part 2 of 2) (See Figure 7-45 and Figure 7-46) No. Parameter Min Max Unit 6 toh(SPC-SIMO) Output hold time, SPIx_SIMO valid after receive edge of SPIx_CLK except for final bit. Polarity = 1 Phase = 0 0.5*tc - 2 ns 6 toh(SPC-SIMO) Output hold time, SPIx_SIMO valid after receive edge of SPIx_CLK except for final bit. Polarity = 1 Phase = 1 0.5*tc - 2 ns Additional SPI Master Timings — 4 Pin Mode with Chip Select Option ADVANCE INFORMATION 19 td(SCS-SPC) Delay from SPIx_SCS\ active to first SPIx_CLK. Polarity = 0 Phase = 0 2*P2 - 5 19 td(SCS-SPC) Delay from SPIx_SCS\ active to first SPIx_CLK. Polarity = 0 Phase = 1 0.5*tc + (2*P2) - 5 0.5*tc + (2*P2) + 5 ns 2*P2 + 5 19 td(SCS-SPC) Delay from SPIx_SCS\ active to first SPIx_CLK. Polarity = 1 Phase = 0 2*P2 - 5 19 td(SCS-SPC) Delay from SPIx_SCS\ active to first SPIx_CLK. Polarity = 1 Phase = 1 0.5*tc + (2*P2) - 5 0.5*tc + (2*P2) + 5 ns 20 td(SPC-SCS) Delay from final SPIx_CLK edge to master deasserting SPIx_SCS\. Polarity = 0 Phase = 0 1*P2 - 5 20 td(SPC-SCS) Delay from final SPIx_CLK edge to master deasserting SPIx_SCS\. Polarity = 0 Phase = 1 0.5*tc + (1*P2) - 5 0.5*tc + (1*P2) + 5 ns 20 td(SPC-SCS) Delay from final SPIx_CLK edge to master deasserting SPIx_SCS\. Polarity = 1 Phase = 0 1*P2 - 5 20 td(SPC-SCS) Delay from final SPIx_CLK edge to master deasserting SPIx_SCS\. Polarity = 1 Phase = 1 0.5*tc + (1*P2) - 5 0.5*tc + (1*P2) + 5 ns tw(SCSH) Minimum inactive time on SPIx_SCS\ pin between two transfers when SPIx_SCS\ is not held using the CSHOLD feature. 2*P2 - 5 2*P2 + 5 1*P2 + 5 1*P2 + 5 ns ns ns ns ns End of Table 7-68 184 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 7-45 SPI Master Mode Timing Diagrams — Base Timings for 3-Pin Mode 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPIx_CLK 5 4 MO(0) 7 SPIx_SOMI 6 MO(1) MO(n-1) MO(n) 8 MI(0) MI(1) MI(n-1) MI(n) ADVANCE INFORMATION SPIx_SIMO MASTER MODE POLARITY = 0 PHASE = 1 4 SPIx_CLK 6 5 SPIx_SIMO MO(0) 7 SPIx_SOMI MO(1) MO(n-1) MI(1) MI(n-1) MO(n) 8 MI(0) 4 MI(n) MASTER MODE POLARITY = 1 PHASE = 0 SPIx_CLK 5 SPIx_SIMO 6 MO(0) MO(1) 7 SPIx_SOMI MO(n-1) MO(n) 8 MI(0) MI(1) MI(n-1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI Figure 7-46 6 MO(1) MO(n-1) MI(1) MI(n-1) MO(n) 8 MI(0) MI(n) SPI Additional Timings for 4-Pin Master Mode with Chip Select Option MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPIx_CLK SPIx_SIMO SPIx_SOMI MO(0) MI(0) MO(1) MO(n-1) MO(n) MI(1) MI(n-1) MI(n) SPIx_SCS Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 185 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.14 HyperLink Peripheral The TMS320C6670 includes the HyperLink for companion chip/die interfaces. This is a four-lane SerDes interface designed to operate at 12.5 Gbps per lane from pin-to-pin and at 18 Gbps per lane from die-to-die. The interface is used to connect with external accelerators that are manufactured using TI libraries. The Hyperbridge links must be connected with DC coupling. The interface includes the Serial Station Management Interfaces used to send power management and flow messages between devices. This consists of four LVCMOS inputs and four LVCMOS outputs configured as two 2-wire output buses and two 2-wire input buses. Each 2-wire bus includes a data signal and a clock signal. Table 7-69 HyperLink Peripheral Timing Requirements ADVANCE INFORMATION (see Figure 7-47, Figure 7-48 and Figure 7-49) No. Min Max Unit FL Interface 1 tc(MCMTXFLCLK) Clock Period - MCMTXFLCLK (C1) 2 tw(MCMTXFLCLKH) High Pulse Width - MCMTXFLCLK 0.4*C1 0.6*C1 6 ns ns 3 tw(MCMTXFLCLKL) Low Pulse Width - MCMTXFLCLK 0.4*C1 0.6*C1 ns 6 tsu(MCMTXFLDAT-MCMTXFLCLKH) Setup Time - MCMTXFLDAT valid before MCMTXFLCLK high 7 th(MCMTXFLCLKH-MCMTXFLDAT) Hold Time - MCMTXFLDAT valid after MCMTXFLCLK high 1 ns 6 tsu(MCMTXFLDAT-MCMTXFLCLKL) Setup Time - MCMTXFLDAT valid before MCMTXFLCLK low 1 ns 7 th(MCMTXFLCLKL-MCMTXFLDAT) Hold Time - MCMTXFLDAT valid after MCMTXFLCLK low 1 ns 6 ns 1 ns PM Interface 1 tc(MCMRXPMCLK) Clock Period - MCMRXPMCLK (C3) 2 tw(MCMRXPMCLK) High Pulse Width - MCMRXPMCLK 0.4*C3 0.6*C3 3 tw(MCMRXPMCLK) Low Pulse Width - MCMRXPMCLK 0.4*C3 0.6*C3 6 tsu(MCMRXPMDAT-MCMRXPMCLKH) Setup Time - MCMRXPMDAT valid before MCMRXPMCLK high 7 th(MCMRXPMCLKH-MCMRXPMDAT) Hold Time - MCMRXPMDAT valid after MCMRXPMCLK high 1 ns 6 tsu(MCMRXPMDAT-MCMRXPMCLKL) Setup Time - MCMRXPMDAT valid before MCMRXPMCLK low 1 ns 7 th(MCMRXPMCLKL-MCMRXPMDAT) Hold Time - MCMRXPMDAT valid after MCMRXPMCLK low 1 ns 1 ns ns ns End of Table 7-69 Table 7-70 HyperLink Peripheral Switching Characteristics (Part 1 of 2) (see Figure 7-47, Figure 7-48 and Figure 7-49) No. Parameter Min Max Unit FL Interface 1 tc(MCMRXFLCLK) Clock Period - MCMRXFLCLK (C2) 6 ns 2 tw(MCMRXFLCLKH) High Pulse Width - MCMRXFLCLK 0.4*C2 0.6*C2 ns 3 tw(MCMRXFLCLKL) Low Pulse Width - MCMRXFLCLK 0.4*C2 0.6*C2 ns 4 tosu(MCMRXFLDAT-MCMRXFLCLKH) Setup Time - MCMRXFLDAT valid before MCMRXFLCLK high 1.1 ns 5 toh(MCMRXFLCLKH-MCMRXFLDAT) Hold Time - MCMRXFLDAT valid after MCMRXFLCLK high 1.1 ns 4 tosu(MCMRXFLDAT-MCMRXFLCLKL) Setup Time - MCMRXFLDAT valid before MCMRXFLCLK low 1.1 ns 5 toh(MCMRXFLCLKL-MCMRXFLDAT) Hold Time - MCMRXFLDAT valid after MCMRXFLCLK low 1.1 ns 1 tc(MCMTXPMCLK) Clock Period - MCMTXPMCLK (C4) 6 ns 2 tw(MCMTXPMCLK) High Pulse Width - MCMTXPMCLK 0.4*C4 0.6*C4 ns 3 tw(MCMTXPMCLK) Low Pulse Width - MCMTXPMCLK 0.4*C4 0.6*C4 ns 4 tosu(MCMTXPMDAT-MCMTXPMCLKH) Setup Time - MCMTXPMDAT valid before MCMTXPMCLK high PM Interface 186 TMS320C6670 Peripheral Information and Electrical Specifications 1.1 ns Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-70 HyperLink Peripheral Switching Characteristics (Part 2 of 2) (see Figure 7-47, Figure 7-48 and Figure 7-49) No. Parameter Min Max Unit 5 toh(MCMTXPMCLKH-MCMTXPMDAT) Hold Time - MCMTXPMDAT valid after MCMTXPMCLK high 1.1 ns 4 tosu(MCMTXPMDAT-MCMTXPMCLKL) Setup Time - MCMTXPMDAT valid before MCMTXPMCLK low 1.1 ns 5 toh(MCMTXPMCLKL-MCMTXPMDAT) Hold Time - MCMTXPMDAT valid after MCMTXPMCLK low 1.1 ns End of Table 7-70 HyperLink Station Management Clock Timing ADVANCE INFORMATION Figure 7-47 1 2 Figure 7-48 3 HyperLink Station Management Transmit Timing 4 5 4 5 6 7 ?_CLK ?_DAT Figure 7-49 HyperLink Station Management Receive Timing 6 7 ?_CLK ?_DAT Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 187 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.15 UART Peripheral The universal asynchronous receiver/transmitter (UART) module provides an interface between the DSP and UART terminal interface or other UART based peripheral. UART is based on the industry standard TL16C550 asynchronous communications element, which in turn is a functional upgrade of the TL16C450. Functionally similar to the TL16C450 on power up (single character or TL16C450 mode), the UART can be placed in an alternate FIFO (TL16C550) mode. This relieves the DSP of excessive software overhead by buffering received and transmitted characters. The receiver and transmitter FIFOs store up to 16 bytes including three additional bits of error status per byte for the receiver FIFO. ADVANCE INFORMATION The UART performs serial-to-parallel conversions on data received from a peripheral device and parallel-to-serial conversion on data received from the DSP. The DSP can read the UART status at any time. The UART includes control capability and a processor interrupt system that can be tailored to minimize software management of the communications link. For more information on UART, see the Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. Table 7-71 UART Timing Requirements (see Figure 7-50 and Figure 7-51) No. Parameter Min Max Unit Receive Timing 4 tw(RXSTART) Pulse width, receive start bit 0.96U 1.05U ns 5 tw(RXH) Pulse width, receive data/parity bit high 0.96U 1.05U ns 5 tw(RXL) Pulse width, receive data/parity bit low 0.96U 1.05U ns 6 tw(RXSTOP1) Pulse width, receive stop bit 1 0.96U 1.05U ns 6 tw(RXSTOP15) Pulse width, receive stop bit 1.5 0.96U 1.05U ns 6 tw(RXSTOP2) Pulse width, receive stop bit 2 0.96U 1.05U ns (1) P ns Autoflow Timing Requirements 8 td(CTSL-TX) Delay time, CTS asserted to START bit transmit P End of Table 7-71 1 P = CPU/6 Figure 7-50 UART Receive Timing Waveform 5 4 RXD Stop/Idle Figure 7-51 Start 5 Bit 0 Bit 1 Bit N-1 Bit N 6 Parity Stop Idle Start UART CTS (Clear-to-Send Input) — Autoflow Timing Waveform 8 TXD Bit N-1 Bit N Stop Start Bit 0 CTS 188 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Table 7-72 UART Switching Characteristics (See Figure 7-52 and Figure 7-53) No. Parameter Min Max Unit 1 tw(TXSTART) Pulse width, transmit start bit U-2 U+2 ns 2 tw(TXH) Pulse width, transmit data/parity bit high U-2 U+2 ns 2 tw(TXL) Pulse width, transmit data/parity bit low U-2 U+2 ns 3 tw(TXSTOP1) Pulse width, transmit stop bit 1 U-2 U+2 ns 3 tw(TXSTOP15) Pulse width, transmit stop bit 1.5 1.5 * (U - 2) 1.5 * ('U + 2) ns 3 tw(TXSTOP2) Pulse width, transmit stop bit 2 2 * (U - 2) 2 * ('U + 2) ns P (1) P ns Autoflow Timing Requirements 7 Delay time, STOP bit received to RTS deasserted td(RX-RTSH) End of Table 7-72 1 P = CPU/6 Figure 7-52 UART Transmit Timing Waveform 1 TXD Figure 7-53 Start Stop/Idle 2 Bit 0 2 Bit 1 Bit N-1 Bit N Parity 3 Stop Idle Start UART RTS (Request-to-Send Output) – Autoflow Timing Waveform 7 RXD Bit N-1 Bit N Stop Start CTS 7.16 PCIe Peripheral The 2 lane PCI express (PCIe) module on TMS320C6670 provides an interface between the DSP and other PCIe compliant devices. The PCI Express module provides low pin count, high reliability, and high-speed data transfer at rates of 5.0 Gbps per lane on the serial links. For more information, see the Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.17 Packet Accelerator The packet accelerator provides L2 to L4 classification functionalities. It supports classification for Ethernet, VLAN, MPLS over Ethernet, IPv4/6, GRE over IP, and other session identification over IP such as TCP and UDP ports. It maintains 8K multiple-in, multiple-out hardware queues. It also provides checksum capability as well as some QoS capabilities. It enables a single IP address to be used for a multi-core device. It can process up to 1.5 M pps. For more information, see the Packet Accelerator (PA) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 189 ADVANCE INFORMATION Transmit Timing TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.18 Security Accelerator The security accelerator provides wire-speed processing on 1-Gbps Ethernet traffic on IPSec, SRTP, and 3GPP Air interface security protocols. It functions on the packet level with the packet and the associated security context being one of these above three types. The security accelerator is coupled with packet accelerator, and receives the packet descriptor containing the security context in the buffer descriptor, and the data to be encrypted/decrypted in the linked buffer descriptor. 7.19 Ethernet MAC (EMAC) ADVANCE INFORMATION The Ethernet media access controller (EMAC) modules provide an efficient interface between the TMS320C6670 DSP and the networked community. The EMAC supports 10Base-T (10 Mbits/second [Mbps]), and 100BaseTX (100 Mbps), in half- or full-duplex mode, and 1000BaseT (1000 Mbps) in full-duplex mode, with hardware flow control and quality-of-service (QOS) support. For more information, see the Ethernet Media Access Control (EMAC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. Each device has a unique MAC address. There are two registers to hold these values, MACID1 (0x02620110) and MACID2 (0x02600114). All bits of these registers are defined as follows: Figure 7-54 MACID1 Register 31 0 MACID[31:0] R,+xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx Legend: R = Read only; -x, value is indeterminate Table 7-73 MACID1 Register Field Descriptions Bit Field Description 31-0 MAC ID[31-0] MAC ID. A range will be assigned to this device. Each device will consume only one MAC address. End of Table 7-73 Figure 7-55 MACID2 Register 31 24 23 18 17 16 15 0 CRC Reserved FLOW BCAST MACID[47:32] R+,cccc cccc R,+rr rrrr R,+z R,+y R,+xxxx xxxx xxxx xxxx Legend: R = Read only; -x, value is indeterminate Table 7-74 MACID2 Register Field Descriptions Bit Field Description 31-24 Reserved Variable 23-18 Reserved 000000 17 FLOW MAC Flow Control 0 = Off 1 = On 16 BCAST Default m/b-cast reception 0 = Broadcast 1 = Disabled 15-0 MAC ID[47-0] MAC ID. A range will be assigned to this device. Each device will consume only one MAC address. End of Table 7-74 190 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.20 Management Data Input/Output (MDIO) The management data input/output (MDIO) module implements the 802.3 serial management interface to interrogate and controls up to 32 Ethernet PHY(s) connected to the device, using a shared two-wire bus. Application software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. For more information, see the Ethernet Media Access Control (EMAC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. Table 7-75 MDIO Timing Requirements No. 1 Min Max ADVANCE INFORMATION (see Figure 7-56) Unit tc(MDCLK) Cycle time, MDCLK 400 ns tw(MDCLKH) Pulse duration, MDCLK high 180 ns tw(MDCLKL) Pulse duration, MDCLK low 180 ns 4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 10 ns 5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 10 tt(MDCLK) Transition time, MDCLK ns 5 ns End of Table 7-75 Figure 7-56 MDIO Input Timing 1 MDCLK 4 5 MDIO (Input) Table 7-76 MDIO Switching Characteristics (see Figure 7-57) No. 7 Parameter td(MDCLKL-MDIO) Min Delay time, MDCLK low to MDIO data output valid Max Unit 100 ns End of Table 7-76 Figure 7-57 MDIO Output Timing 1 MDCLK 7 MDIO (Ouput) Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 191 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.21 Timers The timers can be used to time events, count events, generate pulses, interrupt the CPU, and send synchronization events to the EDMA3 channel controller. 7.21.1 Timers Device-Specific Information The TMS320C6670 device has eight 64-bit timers in total. Of which Timer0 through Timer3 are dedicated to each of the four CorePacs as a watchdog timer and can also be used as general-purpose timers. Each of other 4 timers can also be configured as a general-purpose timer only, with each timer programmed as a 64-bit timer or as two separate 32-bit timers. ADVANCE INFORMATION When operating in 64-bit mode, the timer counts either VBUS clock cycles or input (TINPLx) pulses (rising edge) and generates an output pulse/waveform (TOUTLx) plus an internal event (TINTLx) on a software-programmable period. When operating in 32-bit mode, the timer is split into two independent 32-bit timers. Each timer is made up of two 32-bit counters: a high counter and a low counter. The timer pins, TINPLx and TOUTLx are connected to the low counter. The timer pins, TINPHx and TOUTHx are connected to the high counter. When operating in Watchdog mode, the timer counts down to zero and generates an event. It is a requirement that software writes to the timer before the count expires, after which the count begins again. If the count ever reaches zero, the timer event output is asserted. Reset initiated by a watch dog timer can be set by programming ‘‘Reset Type Status Register (RSTYPE)’’ on page 166 and the type of reset initiated can set by programming ‘‘Reset Configuration Register (RSTCFG)’’ on page 168. For more information, see the 64-bit Timer (Timer 64) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.21.2 Timers Electrical Data/Timing The tables and figures below describe the timing requirements and switching characteristics of Timer0 through Timer7 peripherals. Table 7-77 Timer Input Timing Requirements (1) (see Figure 7-58) No. Min Max Unit 1 tw(TINPH) Pulse duration, high 12C ns 2 tw(TINPL) Pulse duration, low 12C ns End of Table 7-77 1 If CORECLKSEL = 0, C = 1/CORECLK(NIP) frequency in ns. If CORECLKSEL = 1, C = 1/ALTCORECLK frequency in ns. Table 7-78 Timer Output Switching Characteristics (1) (2) (see Figure 7-58) No. Parameter Min Max Unit 3 tw(TOUTH) Pulse duration, high 12C - 3 ns 4 tw(TOUTL) Pulse duration, low 12C - 3 ns End of Table 7-78 1 Over recommended operating conditions. 2 If CORECLKSEL = 0, C = 1/CORECLK(NIP) frequency in ns. If CORECLKSEL = 1, C = 1/ALTCORECLK frequency in ns. 192 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 7-58 Timer Timing 1 2 TIMIx 3 4 ADVANCE INFORMATION TIMOx Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 193 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.22 Rake Search Accelerator (RSA) There are four Rake Search Accelerators (RSAs) on the TMS320C6670 device. CorePac 1 and CorePac 2 each have one set of directly-connected RSA pairs. The RSA is an extension of the C66x CPU. The CPU performs send/receive to the RSAs via the .L and .S functional units. For more information, see the Rake Search Accelerator (RSA) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.23 Enhanced Viterbi-Decoder Coprocessor (VCP2) ADVANCE INFORMATION The TMS320C6670 device has four high-performance embedded Viterbi-Decoder Coprocessor (VCP2) that significantly speeds up channel-decoding operations on-chip. Each VCP2, operating at CPU clock divided-by-3, can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Communications between the VCP2 and the CPU are carried out through the EDMA3 controller. The VCP2 supports: • Unlimited frame sizes • Code rates 3/4, 1/2, 1/3, 1/4, and 1/5 • Constraint lengths 5, 6, 7, 8, and 9 • Programmable encoder polynomials • Programmable reliability and convergence lengths • Hard and soft decoded decisions • Tail and convergent modes • Yamamoto logic • Tail biting logic • Various input and output FIFO lengths For more information, see the Viterbi Coprocessor (VCP2) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.24 Third-Generation Turbo Decoder Coprocessor (TCP3d) The C6670 device has two high-performance embedded Turbo-Decoder Coprocessor (TCP3d) that significantly speed up channel-decoding operations on-chip for WCDMA, HSPA, HSPA+, TD-SCDMA, LTE, and WiMAX. Operating at CPU clock divided-by-2, the TCP3d is capable of processing data channels at a throughput of >100 Mbps. For more information, see the Turbo Decoder Coprocessor 3 (TCP3d) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.25 Turbo Encoder Coprocessor (TCP3e) The C6670 device has a high-performance embedded Turbo-Encoder Coprocessor (TCP3e) that significantly speeds up channel-encoding operations on-chip for WCDMA, HSPA, HSPA+, TD-SCDMA, LTE, and WiMAX. Operating at CPU clock divided-by-3, the TCP3e is capable of processing data channels at a throughput of >200 Mbps. For more information, see the Turbo Encoder Coprocessor 3 (TCP3e) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.26 Serial RapidIO (SRIO) Port The SRIO port on the TMS320C6670 device is a high-performance, low pin-count interconnect aimed for embedded markets. The use of the RapidIO interconnect in a baseband board design can create a homogeneous interconnect environment, providing even more connectivity and control among the components. RapidIO is based on the memory and device addressing concepts of processor buses where the transaction processing is managed 194 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com completely by hardware. This enables the RapidIO interconnect to lower the system cost by providing lower latency, reduced overhead of packet data processing, and higher system bandwidth, all of which are key for wireless interfaces. For more information, see the Serial RapidIO (SRIO) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.27 General-Purpose Input/Output (GPIO) 7.27.1 GPIO Device-Specific Information 7.27.2 GPIO Electrical Data/Timing Table 7-79 GPIO Input Timing Requirements (1) (see Figure 7-59) No. Min Max Unit 1 tw(GPOH) Pulse duration, GPOx high 12C ns 2 tw(GPOL) Pulse duration, GPOx low 12C ns End of Table 7-79 1 If CORECLKSEL = 0, C = 1 ÷ CORECLK(NIP) frequency, in ns. If CORECLKSEL = 1, C = 1 ÷ ALTCORECLK frequency, in ns. Table 7-80 GPIO Output Switching Characteristics (1) (2) (see Figure 7-59) No. Parameter Min Max Unit 1 tw(GPOH) Pulse duration, GPOx high 36C - 8 ns 2 tw(GPOL) Pulse duration, GPOx low 36C - 8 ns End of Table 7-80 1 Over recommended operating conditions. 2 If CORECLKSEL = 0, C = 1 ÷ CORECLK(NIP) frequency, in ns. If CORECLKSEL = 1, C = 1 ÷ ALTCORECLK frequency, in ns. Figure 7-59 GPIO Timing 1 2 GPIx 3 4 GPOx 7.28 Semaphore2 The device contains an enhanced Semaphore module for the management of shared resources of the DSP cores. The Semaphore enforces atomic accesses to shared chip-level resources so that the read-modify-write sequence is not broken. The semaphore block has unique interrupts to each of the cores to identify when that core has acquired the resource. Semaphore resources within the module are not tied to specific hardware resources. It is a software requirement to allocate semaphore resources to the hardware resource(s) to be arbitrated. The Semaphore module supports 3 masters and contains 32 semaphores to be used within the system. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 195 ADVANCE INFORMATION On the TMS320C6670, the GPIO peripheral pins GP[15:0] are also used to latch configuration pins. For more detailed information on device/peripheral configuration and the C6670 device pin muxing, see ‘‘Device Configuration’’ on page 60. TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com There are two methods of accessing a semaphore resource: • Direct Access: A core directly accesses a semaphore resource. If free, the semaphore will be granted. If not, the semaphore is not granted. • Indirect Access: A core indirectly accesses a semaphore resource by writing it. Once it is free, an interrupt notifies the CPU that it is available. 7.29 Antenna Interface Subsystem 2 ADVANCE INFORMATION The enhanced antenna interface subsystem (AIF2) consists of the antenna interface module and two SerDes macros. The AIF2 relies on the performance SerDes macro (high-speed serial link) with a logic layer for the OBSAI RP3 and CPRI protocols. The AIF is used to connect to the backplane for transmission and reception of antenna data, as well as to connect to additional device peripherals. The AIF2 has 11 timer synchronization events from the AIF2 Timer (AT) module. Timer synchronization events 0-7 are routed as primary events to the TPCC1 and also as secondary events to the C66x CorePacs via INTC0. Table 7-81 AIF2 Timer Module Timing Requirements See Figure 7-60, Figure 7-61, Figure 7-62, and Figure 7-63 No. Min Max Unit RP1 Clock and Frameburst 1 tc(RP1CLKN) Cycle time, RP1CLK(N) 1 tc(RP1CLKP) Cycle time, RP1CLK(P) 2 tw(RP1CLKNL) Pulse duration, RP1CLK(N) low 3 tw(RP1CLKNH) 3 tw(RP1CLKPL) 2 tw(RP1CLKPH) Pulse duration, RP1CLK(P) high 4 tr(RP1CLKN) Rise Time - RP1CLKN 10% to 90% 32.55 32.55 ns 32.55 32.55 ns (1) 0.6 * C1 ns Pulse duration, RP1CLK(N) high 0.4 * C1 0.6 * C1 ns Pulse duration, RP1CLK(P) low 0.4 * C1 0.6 * C1 ns 0.4 * C1 0.6 * C1 ns 350.00 ps 0.4 * C1 4 tf(RP1CLKN) Fall Time - RP1CLKN 90% to 10% 350.00 ps 4 tr(RP1CLKP) Rise Time - RP1CLKP 10% to 90% 350.00 ps 4 tf(RP1CLKP) Fall Time - RP1CLKP 90% to 10% 350.00 ps 5 tj(RP1CLKN) Period Jitter (peak-to-peak), RP1CLK(N) 600 ps 5 tj(RP1CLKP) Period Jitter (peak-to-peak), RP1CLK(P) 6 tw(RP1FBN) Bit Period, RP1FB(N) 8 * C1 6 tw(RP1FBP) Bit Period, RP1FB(P) 8 * C1 7 tr(RP1CLKN) Rise Time - RP1FBN 10% to 90% 7 tf(RP1CLKN) Fall Time - RP1FBN 90% to 10% 350.00 ps 7 tr(RP1CLKP) Rise Time - RP1FBP 10% to 90% 350.00 ps 7 tf(RP1CLKP) Fall Time - RP1FBP 90% to 10% 350.00 ps 600 ps 8 * C1 ns 8 * C1 ns 350.00 ps PHY Sync and Radio Sync Pulses 8 tw(PHYSYNCH) Pulse duration, PHYSYNC high 6.50 13.00 ns 9 tw(PHYSYNCL) Pulse duration, PHYSYNC low 6.50 13.00 ns 10 tc(PHYSYNC) Cycle time, PHYSYNC pulse to PHYSYNC pulse 10.00 10.00 ms 11 tw(RADSYNCH) Pulse duration, RADSYNC high 6.50 13.00 ns 12 tw(RADSYNCL) Pulse duration, RADSYNC low 6.50 13.00 ns 13 tc(RADSYNC) Cycle time, RADSYNC pulse to RADSYNC pulse 1.00 10.00 ms End of Table 7-81 1 C1 = tc(RP1CLKN/P) 196 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 7-60 AIF2 RP1 Frame Synchronization Clock Timing 1 2 3 RP1CLKN RP1CLKP 5 4 Figure 7-61 AIF2 RP1 Frame Synchronization Burst Timing 6 RP1CLKN RP1FBP/N RP1 Frame Burst BIT 0 RP1 Frame Burst BIT 1 ADVANCE INFORMATION RP1CLKP RP1 Frame Burst BIT N 7 Figure 7-62 AIF2 Physical Layer Synchronization Pulse Timing 10 8 9 PHYSYNC Figure 7-63 AIF2 Radio Synchronization Pulse Timing 13 11 12 RADSYNC Table 7-82 AIF2 Timer Module Switching Characteristics (see Figure 7-64) No. Parameter Min Max Unit External Frame Event 14 tw(EXTFRAMEEVENTH) Pulse width, EXTFRAMEEVENT output high 4 * C1 15 tw(EXTFRAMEEVENTL) Pulse width, EXTFRAMEEVENT output low 4 * C1 (1) ns ns End of Table 7-82 1 C1 = tc(RP1CLKN/P) Figure 7-64 AIF2 Timer External Frame Event Timing 14 15 EXT FRAME EVENT Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 197 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 7.30 FFTC There are two FFTC coprocessors intended to accelerate FFT, IFFT, DFT, and IDFT operations. For more information, see the Fast Fourier Transform Coprocessor (FFTC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.31 Emulation Features and Capability 7.31.1 Advanced Event Triggering (AET) ADVANCE INFORMATION The TMS320C6670 device supports Advanced Event Triggering (AET). This capability can be used to debug complex problems as well as understand performance characteristics of user applications. AET provides the following capabilities: • Hardware Program Breakpoints: specify addresses or address ranges that can generate events such as halting the processor or triggering the trace capture. • Data Watchpoints: specify data variable addresses, address ranges, or data values that can generate events such as halting the processor or triggering the trace capture. • Counters: count the occurrence of an event or cycles for performance monitoring. • State Sequencing: allows combinations of hardware program breakpoints and data watchpoints to precisely generate events for complex sequences. For more information on AET, see the following documents in ‘‘Related Documentation from Texas Instruments’’ on page 59: • Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs application report • Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems application report 7.31.2 Trace The C6670 device supports Trace. Trace is a debug technology that provides a detailed, historical account of application code execution, timing, and data accesses. Trace collects, compresses, and exports debug information for analysis. Trace works in real-time and does not impact the execution of the system. For more information on board design guidelines for Trace Advanced Emulation, see the Emulation and Trace Headers Technical Reference in ‘‘Related Documentation from Texas Instruments’’ on page 59. 7.31.2.1 Trace Electrical Data/Timing Table 7-83 Trace Switching Characteristics (1) (see Figure 7-65) No. Parameter 1 tw(DPnH) 1 2 Min Pulse duration, DPn/EMUn high Max Unit 2.4 ns tw(DPnH)90% Pulse duration, DPn/EMUn high detected at 90% Voh 1.5 ns tw(DPnL) Pulse duration, DPn/EMUn low 2.4 ns 2 tw(DPnL)10% Pulse duration, DPn/EMUn low detected at 10% Voh 3 tsko(DPn) Output skew time, time delay difference between DPn/EMUn pins configured as trace 1.5 tskp(DPn) Pulse skew, magnitude of difference between high-to-low (tphl) and low-to-high (tplh) propagation delays. tσλδπ_ο(DPn) Output slew rate DPn/EMUn -500 ns 500 600 3.3 ps ps V/ns End of Table 7-83 1 Over recommended operating conditions. 198 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com Figure 7-65 Trace Timing A TPLH TPHL 1 2 B 3 7.31.3 IEEE 1149.1 JTAG The JTAG interface is used to support boundary scan and emulation of the device. The boundary scan supported allows for an asynchronous TRST and only the 5 baseline JTAG signals (e.g., no EMU[1:0]) required for boundary scan. Most interfaces on the device follow the Boundary Scan Test Specification (IEEE1149.1), while all of the SerDes (SRIO and SGMII) support the AC-coupled net test defined in AC-Coupled Net Test Specification (IEEE1149.6). It is expected that all compliant devices are connected through the same JTAG interface, in daisy-chain fashion, in accordance with the specification. The JTAG interface uses 1.8-V LVCMOS buffers, compliant with the Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuit Specification (EAI/JESD8-5). 7.31.3.1 IEEE 1149.1 JTAG Compatibility Statement For maximum reliability, the C6670 DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the DSP's internal emulation logic will always be properly initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of an external pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the DSP after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. 7.31.3.2 JTAG Electrical Data/Timing Table 7-84 JTAG Test Port Timing Requirements (see Figure 7-66) No. Min 1 tc(TCK) Cycle time, TCK 1a tw(TCKH) Pulse duration, TCK high (40% of tc) Max Unit 20 ns 8 ns 1b tw(TCKL) Pulse duration, TCK low(40% of tc) 8 ns 3 tsu(TDI-TCK) input setup time, TDI valid to TCK high 2 ns 3 tsu(TMS-TCK) input setup time, TMS valid to TCK high 2 ns 4 th(TCK-TDI) input hold time, TDI valid from TCK high 10 ns 4 th(TCK-TMS) input hold time, TMS valid from TCK high 10 ns End of Table 7-84 Table 7-85 JTAG Test Port Switching Characteristics (1) (see Figure 7-66) No. 2 Parameter td(TCKL-TDOV) Delay time, TCK low to TDO valid Min Max 8 Unit ns End of Table 7-85 1 Over recommended operating conditions. Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 199 ADVANCE INFORMATION C TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 Figure 7-66 www.ti.com JTAG Test-Port Timing 1 1b 1a TCK 2 TDO 3 4 ADVANCE INFORMATION TDI / TMS 200 TMS320C6670 Peripheral Information and Electrical Specifications Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 ADVANCE INFORMATION www.ti.com Copyright 2010 Texas Instruments Incorporated TMS320C6670 Peripheral Information and Electrical Specifications 201 TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 8 Mechanical Data 8.1 Packaging Information The following packaging information reflects the most current released data available for the designated device(s). This data is subject to change without notice and without revision of this document. ADVANCE INFORMATION 202 Mechanical Data Copyright 2010 Texas Instruments Incorporated TMS320C6670 Multicore Fixed and Floating-Point System-on-Chip SPRS689—November 2010 www.ti.com 8.2 Package CYP CYP (S–PBGA–N841) Plastic Ball Grid Array ADVANCE INFORMATION Figure 8-1 Copyright 2010 Texas Instruments Incorporated Mechanical Data 203 PACKAGE OPTION ADDENDUM www.ti.com 6-Nov-2010 PACKAGING INFORMATION Orderable Device TMX320C6670CYP Status (1) ACTIVE Package Type Package Drawing FCBGA CYP Pins Package Qty 841 1 Eco Plan TBD (2) Lead/ Ball Finish Call TI MSL Peak Temp (3) Samples (Requires Login) Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps RF/IF and ZigBee® Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated