TMS320C6654 Fixed and Floating-Point Digital Signal Processor Data Manual PRODUCT PREVIEW information applies to products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Literature Number: SPRS841 March 2012 TMS320C6654 Data Manual SPRS841—March 2012 www.ti.com Release History Revision Date Description/Comments SPRS814 March 2012 Initial release For detailed revision information, see ‘‘Revision History’’ on page A-217. 2 Release History Copyright 2012 Texas Instruments Incorporated TMS320C6654 Fixed and Floating-Point Digital Signal Processor www.ti.com SPRS841—March 2012 Contents 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 1.1 KeyStone Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 1.2 Device Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 1.3 Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 2 Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 2.1 2.2 2.3 2.4 2.5 Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 DSP Core Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Memory Map Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Boot Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Boot Modes Supported and PLL Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 2.5.1 Boot Device Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 2.5.2 Device Configuration Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 2.5.3 PLL Boot Configuration Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 2.6 Second-Level Bootloaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 2.7 Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2.7.1 Package Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2.7.2 Pin Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2.8 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 2.9 Development and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 2.9.1 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 2.9.2 Device Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 2.10 Related Documentation from Texas Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3 Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.1 Device Configuration at Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.2 Peripheral Selection After Device Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3 Device State Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.1 Device Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 3.3.2 Device Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 3.3.3 JTAG ID (JTAGID) Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 3.3.4 Kicker Mechanism (KICK0 and KICK1) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 3.3.5 LRESETNMI PIN Status (LRSTNMIPINSTAT) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 3.3.6 LRESETNMI PIN Status Clear (LRSTNMIPINSTAT_CLR) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 3.3.7 Reset Status (RESET_STAT) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 3.3.8 Reset Status Clear (RESET_STAT_CLR) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 3.3.9 Boot Complete (BOOTCOMPLETE) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 3.3.10 Power State Control (PWRSTATECTL) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 3.3.11 NMI Event Generation to CorePac (NMIGRx) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 3.3.12 IPC Generation (IPCGRx) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 3.3.13 IPC Acknowledgement (IPCARx) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 3.3.14 IPC Generation Host (IPCGRH) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 3.3.15 IPC Acknowledgement Host (IPCARH) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 3.3.16 Timer Input Selection Register (TINPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 3.3.17 Timer Output Selection Register (TOUTPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 3.3.18 Reset Mux (RSTMUXx) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 3.3.19 Device Speed (DEVSPEED) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 3.3.20 Pin Control 0 (PIN_CONTROL_0) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 3.3.21 Pin Control 1 (PIN_CONTROL_1) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 3.3.22 UPP Clock Source (UPP_CLOCK) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 3.4 Pullup/Pulldown Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 4 System Interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 4.1 4.2 4.3 4.4 Internal Buses and Switch Fabrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Switch Fabric Connections Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 TeraNet Switch Fabric Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Bus Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 4.4.1 Packet DMA Priority Allocation (PKTDMA_PRI_ALLOC) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 4.4.2 EMAC / UPP Priority Allocation (EMAC_UPP_PRI_ALLOC) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Copyright 2012 Texas Instruments Incorporated Contents 3 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 5 www.ti.com C66x CorePac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 5.1 Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 5.1.1 L1P Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 5.1.2 L1D Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 5.1.3 L2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 5.1.4 MSM Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.1.5 L3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2 Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3 Bandwidth Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.4 Power-Down Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.5 C66x CorePac Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.6 C66x CorePac Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6 Device Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1 6.2 6.3 6.4 7 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply to Peripheral I/O Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Information and Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.1 Recommended Clock and Control Signal Transition Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 Power-Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 Power-Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Power Supply Decoupling and Bulk Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.4 SmartReflex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Power Sleep Controller (PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.1 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.2 Clock Domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 PSC Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 Hard Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.3 Soft Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.4 Local Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.5 Reset Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.6 Reset Controller Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.7 Reset Electrical Data / Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Main PLL and PLL Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.1 Main PLL Controller Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.2 PLL Controller Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.3 Main PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.4 Main PLL and PLL Controller Initialization Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.5 Main PLL Controller/PCIe Clock Input Electrical Data/Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 DD3 PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.1 DDR3 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.2 DDR3 PLL Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.3 DDR3 PLL Initialization Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.4 DDR3 PLL Input Clock Electrical Data/Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Enhanced Direct Memory Access (EDMA3) Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.1 EDMA3 Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.2 EDMA3 Channel Controller Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.3 EDMA3 Transfer Controller Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7.4 EDMA3 Channel Synchronization Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.1 Interrupt Sources and Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.2 CIC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.3 Inter-Processor Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.4 NMI and LRESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.5 External Interrupts Electrical Data/Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 103 104 105 106 Contents 107 107 108 113 113 113 115 115 116 117 119 120 121 122 123 123 123 123 126 127 129 135 136 136 139 139 140 140 141 142 142 143 143 144 146 146 159 164 164 165 Copyright 2012 Texas Instruments Incorporated TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.9 Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.9.1 MPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.9.2 MPU Programmable Range Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.10 DDR3 Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.10.1 DDR3 Memory Controller Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.10.2 DDR3 Memory Controller Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.11 I2C Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.11.1 I2C Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.11.2 I2C Peripheral Register Description(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.11.3 I2C Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.12 SPI Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.12.1 SPI Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.13 UART Peripheral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.14 PCIe Peripheral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.15 EMIF16 Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.15.1 EMIF16 Electrical Data/Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16 Ethernet Media Access Controller (EMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16.1 EMAC Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16.2 EMAC Peripheral Register Description(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16.3 EMAC Electrical Data/Timing (SGMII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.17 Management Data Input/Output (MDIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.17.1 MDIO Peripheral Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.17.2 MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.18 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.18.1 Timers Device-Specific Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.18.2 Timers Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.19 General-Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.19.1 GPIO Device-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.19.2 GPIO Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.20 Semaphore2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.21 Emulation Features and Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.21.1 Advanced Event Triggering (AET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.21.2 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.21.3 IEEE 1149.1 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.22 Multichannel Buffered Serial Port (McBSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.22.1 McBSP Peripheral Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.22.2 McBSP Electrical Data/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.23 Universal Parallel Port (UPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.23.1 UPP Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 169 176 181 181 182 182 182 183 184 187 187 190 191 192 192 195 195 196 200 200 201 201 203 203 203 205 205 205 205 206 206 206 207 208 208 209 212 212 A Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 B Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 B.1 B.2 Thermal Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Copyright 2012 Texas Instruments Incorporated Contents 5 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com List of Figures Figure 1-1 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5 Figure 2-6 Figure 2-7 Figure 2-8 Figure 2-9 Figure 2-10 Figure 2-11 Figure 2-12 Figure 2-13 Figure 2-14 Figure 2-15 Figure 2-16 Figure 2-17 Figure 2-18 Figure 2-19 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 3-5 Figure 3-6 Figure 3-7 Figure 3-8 Figure 3-9 Figure 3-10 Figure 3-11 Figure 3-12 Figure 3-13 Figure 3-14 Figure 3-15 Figure 3-16 Figure 3-17 Figure 3-18 Figure 3-19 Figure 3-20 Figure 3-21 Figure 4-1 Figure 4-2 Figure 4-3 Figure 4-4 Figure 4-5 Figure 4-6 Figure 4-7 Figure 5-1 Figure 5-2 Figure 5-3 6 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 DSP Core Data Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Boot Mode Pin Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 EMIF16 / UART / No Boot Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 No Boot Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 UART Boot Configuration Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 EMIF16 Boot Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Ethernet (SGMII) Device Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 NAND Device Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 PCI Device Configuration Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 I2C Master Mode Device Configuration Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 I2C Passive Mode Device Configuration Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 SPI Device Configuration Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 CZH/GZH 625-Pin BGA Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Pin Map Quadrants (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Upper Left Quadrant—A (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Upper Right Quadrant—B (Bottom View). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Lower Right Quadrant—C (Bottom View). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Lower Left Quadrant—D (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 C66x DSP Device Nomenclature (including the TMS320C6654). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Device Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Device Configuration Register (DEVCFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 JTAG ID (JTAGID) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Reset Status Register (RESET_STAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Reset Status Clear Register (RESET_STAT_CLR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Boot Complete Register (BOOTCOMPLETE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Power State Control Register (PWRSTATECTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 NMI Generation Register (NMIGRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 IPC Generation Registers (IPCGRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 IPC Acknowledgement Registers (IPCARx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 IPC Generation Registers (IPCGRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 IPC Acknowledgement Register (IPCARH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Timer Input Selection Register (TINPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Timer Output Selection Register (TOUTPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Reset Mux Register RSTMUXx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Device Speed Register (DEVSPEED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Pin Control 0 Register (PIN_CONTROL_0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Pin Control 1Register (PIN_CONTROL_1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Pin Control 1Register (PIN_CONTROL_1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 TeraNet 3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 TeraNet 3P_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 TeraNet 3P_B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 TeraNet 3P_Tracer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 TeraNet 6P_B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 Packet DMA Priority Allocation Register (PKTDMA_PRI_ALLOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 EMAC / UPP Priority Allocation Register (EMAC_UPP_PRI_ALLOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 C66x CorePac Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 L1P Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 L1D Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 List of Figures Copyright 2012 Texas Instruments Incorporated TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 5-4 Figure 5-5 Figure 7-1 Figure 7-2 Figure 7-3 Figure 7-4 Figure 7-5 Figure 7-6 Figure 7-7 Figure 7-8 Figure 7-9 Figure 7-10 Figure 7-11 Figure 7-12 Figure 7-13 Figure 7-14 Figure 7-15 Figure 7-16 Figure 7-17 Figure 7-18 Figure 7-19 Figure 7-20 Figure 7-21 Figure 7-22 Figure 7-23 Figure 7-24 Figure 7-25 Figure 7-26 Figure 7-27 Figure 7-28 Figure 7-29 Figure 7-30 Figure 7-31 Figure 7-32 Figure 7-33 Figure 7-34 Figure 7-35 Figure 7-36 Figure 7-37 Figure 7-38 Figure 7-39 Figure 7-40 Figure 7-41 Figure 7-42 Figure 7-43 Figure 7-44 Figure 7-45 Figure 7-46 Figure 7-47 Figure 7-48 Figure 7-49 Figure 7-50 Figure 7-51 Figure 7-52 L2 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 CorePac Revision ID Register (MM_REVID) Address - 0181 2000h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 Core Before IO Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 IO Before Core Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 SmartReflex 4-Pin VID Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 RESETFULL Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Soft/Hard-Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Boot Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Main PLL and PLL Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 PLL Secondary Control Register (SECCTL)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 PLL Controller Divider Register (PLLDIVn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 PLL Controller Clock Align Control Register (ALNCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 PLLDIV Divider Ratio Change Status Register (DCHANGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 SYSCLK Status Register (SYSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 Reset Type Status Register (RSTYPE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 Reset Control Register (RSTCTRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 Reset Configuration Register (RSTCFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 Reset Isolation Register (RSISO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 Main PLL Control Register 0 (MAINPLLCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 Main PLL Control Register 1 (MAINPLLCTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 Main PLL Controller/PCIe Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 Main PLL Clock Input Transition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 DDR3 PLL Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 DDR3 PLL Control Register 0 (DDR3PLLCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 DDR3 PLL Control Register 1 (DDR3PLLCTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 DDR3 PLL DDRCLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 TMS320C6654 Interrupt Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 NMI and Local Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 Programmable Range n Start Address Register (PROGn_MPSAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 Programmable Range n End Address Register (PROGn_MPEAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 I2C Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 I2C Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 I2C Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 SPI Master Mode Timing Diagrams — Base Timings for 3 Pin Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 SPI Additional Timings for 4 Pin Master Mode with Chip Select Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 UART Receive Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 UART CTS (Clear-to-Send Input) — Autoflow Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 UART Transmit Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 UART RTS (Request-to-Send Output) — Autoflow Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 EMIF16 Asynchronous Memory Read Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 EMIF16 Asynchronous Memory Write Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 EMIF16 EM_WAIT Read Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 EMIF16 EM_WAIT Write Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 EMAC, MDIO, and EMAC Control Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 MDIO Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 MDIO Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 Trace Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 JTAG Test-Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 McBSP Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 FSR Timing When GSYNC = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 Copyright 2012 Texas Instruments Incorporated List of Figures 7 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 7-53 Figure 7-54 Figure 7-55 Figure 7-56 8 www.ti.com UPP Single Data Rate (SDR) Receive Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 UPP Double Data Rate (DDR) Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 UPP Single Data Rate (SDR) Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 UPP Double Data Rate (DDR) Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 List of Figures Copyright 2012 Texas Instruments Incorporated TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com List of Tables Table 2-1 Table 2-2 Table 2-3 Table 2-4 Table 2-5 Table 2-6 Table 2-7 Table 2-8 Table 2-9 Table 2-10 Table 2-11 Table 2-12 Table 2-13 Table 2-14 Table 2-15 Table 2-16 Table 2-17 Table 2-18 Table 2-19 Table 2-20 Table 3-1 Table 3-2 Table 3-3 Table 3-4 Table 3-5 Table 3-6 Table 3-7 Table 3-8 Table 3-9 Table 3-10 Table 3-11 Table 3-12 Table 3-13 Table 3-14 Table 3-15 Table 3-16 Table 3-17 Table 3-18 Table 3-19 Table 3-20 Table 3-21 Table 3-22 Table 3-23 Table 4-1 Table 4-2 Table 4-3 Table 4-4 Table 5-1 Table 5-2 Table 6-1 Table 6-2 Characteristics of the TMS320C6654 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Memory Map Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Boot Mode Pins: Boot Device Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 EMIF16 / UART / No Boot Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 No Boot Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 UART Boot Configuration Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 EMIF16 Boot Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Ethernet (SGMII) Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 NAND Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 PCI Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 BAR Config / PCIe Window Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 I2C Master Mode Device Configuration Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 I2C Passive Mode Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 SPI Device Configuration Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 C66x DSP System PLL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 I/O Functional Symbol Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Terminal Functions — Signals and Control by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Terminal Functions — Power and Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Terminal Functions — By Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Terminal Functions — By Ball Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 TMS320C6654 Device Configuration Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Device State Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Device Status Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Device Configuration Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 JTAG ID Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Reset Status Register (RESET_STAT) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Reset Status Clear Register (RESET_STAT_CLR) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Boot Complete Register (BOOTCOMPLETE) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Power State Control Register (PWRSTATECTL) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 NMI Generation Register (NMIGRx) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 IPC Generation Registers (IPCGRx) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 IPC Acknowledgement Registers (IPCARx) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 IPC Generation Registers (IPCGRH) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 IPC Acknowledgement Register (IPCARH) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Timer Input Selection Field Description (TINPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Timer Output Selection Field Description (TOUTPSEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Reset Mux Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Device Speed Register Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Pin Control 0 Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Pin Control 1 Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Pin Control 1 Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Switch Fabric Connection Matrix Section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Switch Fabric Connection Matrix Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Packet DMA Priority Allocation Register (PKTDMA_PRI_ALLOC) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 EMAC / UPP Priority Allocation Register (EMAC_UPP_PRI_ALLOC) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Available Memory Page Protection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 CorePac Revision ID Register (MM_REVID) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Copyright 2012 Texas Instruments Incorporated List of Tables 9 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 6-3 Table 6-4 Table 7-1 Table 7-2 Table 7-3 Table 7-4 Table 7-5 Table 7-6 Table 7-7 Table 7-8 Table 7-9 Table 7-10 Table 7-11 Table 7-12 Table 7-13 Table 7-14 Table 7-15 Table 7-16 Table 7-17 Table 7-18 Table 7-19 Table 7-20 Table 7-21 Table 7-22 Table 7-23 Table 7-24 Table 7-25 Table 7-26 Table 7-27 Table 7-28 Table 7-29 Table 7-30 Table 7-31 Table 7-32 Table 7-33 Table 7-34 Table 7-35 Table 7-36 Table 7-37 Table 7-38 Table 7-39 Table 7-40 Table 7-41 Table 7-42 Table 7-43 Table 7-44 Table 7-45 Table 7-46 Table 7-47 Table 7-48 Table 7-49 Table 7-50 Table 7-51 Table 7-52 10 www.ti.com Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 Power Supply to Peripheral I/O Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 Power Supply Rails on TMS320C6654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 Core Before IO Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 IO Before Core Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 Clock Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 SmartReflex 4-Pin VID Interface Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 Clock Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 PSC Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Reset Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Reset Switching Characteristics Over Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Boot Configuration Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Main PLL Stabilization, Lock, and Reset Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 PLL Controller Registers (Including Reset Controller). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 PLL Secondary Control Register (SECCTL) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 PLL Controller Divider Register (PLLDIVn) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 PLL Controller Clock Align Control Register (ALNCTL) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 PLLDIV Divider Ratio Change Status Register (DCHANGE) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 SYSCLK Status Register (SYSTAT) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 Reset Type Status Register (RSTYPE) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 Reset Control Register (RSTCTRL) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 Reset Configuration Register (RSTCFG) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 Reset Isolation Register (RSISO) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 Main PLL Control Register 0 (MAINPLLCTL0) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 Main PLL Control Register 1 (MAINPLLCTL1) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 Main PLL Controller/PCIe Clock Input Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 DDR3 PLL Control Register 0 Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 DDR3 PLL Control Register 1 Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 DDR3 PLL DDRSYSCLK1(N|P) Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 EDMA3 Channel Controller Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 EDMA3 Transfer Controller Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 EDMA3_CC Events for C6654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 TMS320C6654 System Event Mapping — C66x CorePac Primary Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 CIC0 Event Inputs (Secondary Interrupts for C66x CorePacs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 CIC1 Event Inputs (Secondary Events for EDMA3_CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 CIC0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 CIC1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 IPC Generation Registers (IPCGRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 LRESET and NMI Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 NMI and Local Reset Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 MPU Default Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 MPU Memory Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Privilege ID Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Master ID Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 MPU0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 MPU1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 MPU2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 MPU3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 MPU4 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 Configuration Register (CONFIG) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 List of Tables Copyright 2012 Texas Instruments Incorporated TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-53 Table 7-54 Table 7-55 Table 7-56 Table 7-57 Table 7-58 Table 7-59 Table 7-60 Table 7-61 Table 7-62 Table 7-63 Table 7-64 Table 7-65 Table 7-66 Table 7-67 Table 7-68 Table 7-69 Table 7-70 Table 7-71 Table 7-72 Table 7-73 Table 7-74 Table 7-75 Table 7-76 Table 7-77 Table 7-78 Table 7-79 Table 7-80 Table 7-81 Table 7-82 Table 7-83 Table 7-84 Table 7-85 Table 7-86 Table B-1 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Field Descriptions . . . . . . . . . . . .178 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Reset Values . . . . . . . . . . . . . . . . .180 I2C Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 I2C Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 I2C Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 SPI Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 SPI Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 UART Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 UART Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 EMIF16 Asynchronous Memory Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 Ethernet MAC (EMAC) Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 EMAC Statistics Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 EMAC Descriptor Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 SGMII Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 EMIC Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 MDIO Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 MDIO Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 MDIO Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 Timer Input Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 Timer Output Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 GPIO Input Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 GPIO Output Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 Trace Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 JTAG Test Port Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 JTAG Test Port Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 McBSP/FIFO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 McBSP Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 McBSP Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 McBSP Timing Requirements for FSR When GSYNC = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 Universal Parallel Port (UPP) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 UPP Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 UPP Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 Thermal Resistance Characteristics (PBGA Package) [CZH/GZH] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 Copyright 2012 Texas Instruments Incorporated List of Tables 11 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 12 List of Tables www.ti.com Copyright 2012 Texas Instruments Incorporated TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com • One TMS320C66x™ DSP Core Subsystem (CorePac) With – 850 MHz C66x Fixed/Floating-Point CPU Core › 27.2 GMAC/Core for Fixed Point @ 850 MHz › 13.6 GFLOP/Core for Floating Point @ 850 MHz – Memory › 32K Byte L1P Per Core › 32K Byte L1D Per Core › 1024K Byte Local L2 Per Core • Multicore Shared Memory Controller (MSMC) – Memory Protection Unit for DDR3_EMIF • Multicore Navigator – 8192 Multipurpose Hardware Queues with Queue Manager – Packet-Based DMA for Zero-Overhead Transfers • Peripherals – PCIe Gen2 › Single Port Supporting 1 or 2 Lanes › Supports Up To 5 GBaud Per Lane – Gigabit Ethernet (GbE) Subsystem › One SGMII Port › Supports 10/100/1000 Mbps Operation – 32-Bit DDR3 Interface › DDR3-1066 › 8G Byte Addressable Memory Space – 16-Bit EMIF › Support For Up To 256MB NAND Flash and 128MB NOR Flash › Support For Asynchronous SRAM up to 1MB – Universal Parallel Port › Two Channels of 8 bits or 16 bits Each › Supports SDR and DDR Transfers – Two UART Interfaces – Two Multichannel Buffered Serial Ports (McBSP) – I2C Interface – 32 GPIO Pins – SPI Interface – Semaphore Module – Eight 64-Bit Timers – Two On-Chip PLLs – SoC Security Support • Commercial Temperature: – 0°C to 85°C • Extended Temperature: – - 40°C to 100°C • Extended Low Temperature: – - 55°C to 100°C PRODUCT PREVIEW information applies to products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Copyright 2012 Texas Instruments Incorporated PRODUCT PREVIEW 1 Features TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 1.1 KeyStone Architecture TI’s KeyStone Multicore Architecture provides a high performance structure for integrating RISC and DSP cores with application specific coprocessors and I/O. KeyStone is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink. PRODUCT PREVIEW Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller enables processing cores to access shared memory directly without drawing from TeraNet’s capacity, so packet movement cannot be blocked by memory access. HyperLink provides a 40-Gbaud chip-level interconnect that allows SoCs to work in tandem. Its low-protocol overhead and high throughput make HyperLink an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources. 1.2 Device Description The TMS320C6654 DSP is a highest-performance fixed/floating-point DSP that is based on TI's KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 850 MHz. For developers of a broad range of applications, such as mission critical, medical imaging, test and automation, and other applications requiring high performance, TI's TMS320C6654 DSP offers up to 850 MHz cumulative DSP and enables a platform that is power-efficient and easy to use. In addition, it is fully backward compatible with all existing C6000 family of fixed and floating point DSPs. TI's KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intra-device and inter-device communication that allows the various DSP resources to operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a non-blocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity. For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating point capability and the per core raw computational performance is an industry-leading 32 MACS/cycle and 16 flops/cycle. It can execute 8 single precision floating point MAC operations per cycle and can perform double- and mixed-precision operations and is IEEE754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backwards code compatible with TI's previous generation C6000 fixed and floating point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware. The C6654 DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, there is 1024KB of dedicated memory per core that can be configured as mapped RAM or cache. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 32-bit DDR-3 external memory interface (EMIF) running at 1066 MHz and has ECC DRAM support. 14 Features Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor www.ti.com SPRS841—March 2012 This family supports a number of high speed standard interfaces, PCI Express Gen2, and Gigabit Ethernet. It also includes I2C, UART, Multichannel Buffered Serial Port (McBSP), Universal Parallel Port, and a 16-bit asynchronous EMIF, along with general purpose CMOS IO. PRODUCT PREVIEW The C6654 device has a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Features 15 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 1.3 Functional Block Diagram Figure 1-1 shows the functional block diagram of the device. Figure 1-1 Functional Block Diagram C6654 Memory Subsystem 32-Bit DDR3 EMIF MSMC Debug & Trace Boot ROM PRODUCT PREVIEW Semaphore C66x™ CorePac Timers Security / Key Manager Power Management PLL 32KB L1 P-Cache ´2 32KB L1 D-Cache 1024KB L2 Cache EDMA 1 Core @ 850 MHz TeraNet Multicore Navigator PCIe ´2 McBSP ´2 SPI UART ´2 I2C UPP GPIO EMIF16 Queue Manager Packet DMA Ethernet MAC SGMII 16 Features Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2 Device Overview 2.1 Device Characteristics Characteristics of the TMS320C6654 Processor HARDWARE FEATURES DDR3 Memory Controller (32-bit bus width) [1.5 V I/O] (clock source = DDRREFCLKN|P) DDR3 Maximum Data Rate Peripheral TMS320C6654 1 1066 EDMA3 (64 independent channels) [DSP/3 clock rate] 1 PCIe (2 lanes) 1 10/100/1000 Ethernet 1 Management Data Input/Output (MDIO) 1 EMIF16 1 McBSP 2 SPI 1 UART 2 UPP 1 I2 C 1 64-Bit Timers (configurable) (internal clock source = CPU/6 clock frequency) General-Purpose Input/Output port (GPIO) PRODUCT PREVIEW Table 2-1 8 (each configurable as two 32-bit timers) 32 32KB L1 Program Memory [SRAM/Cache] On-Chip Memory CorePac Memory 32KB L1 Data Memory [SRAM/Cache] 1024KB L2 Unified Memory/Cache ROM Memory 128KB L3 ROM C66x CorePac Revision ID CorePac Revision ID Register (address location: 0181 2000h) See Section 5.5 ‘‘C66x CorePac Revision’’ on page 102. JTAG BSDL_ID JTAGID register (address location: 0262 0018h) See Section 3.3.3 ‘‘JTAG ID (JTAGID) Register Description’’ on page 71 Frequency MHz Cycle Time ns Core (V) Voltage I/O (V) Process Technology μm BGA Package 21 mm × 21mm Product Status Product Preview (PP), Advance Information (AI), or Production Data (PD) (1) 850 (0.85 GHz) 1.175 (0.85 GHz) SmartReflex variable supply 1.0 V, 1.5 V, and 1.8 V 0.040 μm 625-Pin Flip-Chip Plastic BGA (CZH or GZH) PP End of Table 2-1 1 PRODUCT PREVIEW information applies to products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 17 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.2 DSP Core Description The C66x Digital Signal Processor (DSP) extends the performance of the C64x+ and C674x DSPs through enhancements and new features. Many of the new features target increased performance for vector processing. The C64x+ and C674x DSPs support 2-way SIMD operations for 16-bit data and 4-way SIMD operations for 8-bit data. On the C66x DSP, the vector processing capability is improved by extending the width of the SIMD instructions. C66x DSPs can execute instructions that operate on 128-bit vectors. For example the QMPY32 instruction is able to perform the element-to-element multiplication between two vectors of four 32-bit data each. The C66x DSP also supports SIMD for floating-point operations. Improved vector processing capability (each instruction can process multiple data in parallel) combined with the natural instruction level parallelism of C6000 architecture (e.g execution of up to 8 instructions per cycle) results in a very high level of parallelism that can be exploited by DSP programmers through the use of TI's optimized C/C++ compiler. PRODUCT PREVIEW The C66x DSP consists of eight functional units, two register files, and two data paths as shown in Figure 2-1. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Multiplies also support 128-bit data. 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). 128-bit data values are stored in register quadruplets, with the 32 LSBs of data placed in a register that is a multiple of 4 and the remaining 96 MSBs in the next 3 upper registers. The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. Each C66x .M unit can perform one of the following fixed-point operations each clock cycle: four 32 × 32 bit multiplies, sixteen 16 × 16 bit multiplies, four 16 × 32 bit multiplies, four 8 × 8 bit multiplies, four 8 × 8 bit multiplies with add operations, and four 16 × 16 multiplies with add/subtract capabilities. There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. Each C66x .M unit can perform one 16 × 16 bit complex multiply with or without rounding capabilities, two 16 × 16 bit complex multiplies with rounding capability, and a 32 × 32 bit complex multiply with rounding capability. The C66x can also perform two 16 × 16 bit and one 32 × 32 bit complex multiply instructions that multiply a complex number with a complex conjugate of another number with rounding capability. Communication signal processing also requires an extensive use of matrix operations. Each C66x .M unit is capable of multiplying a [1 × 2] complex vector by a [2 × 2] complex matrix per cycle with or without rounding capability. A version also exists allowing multiplication of the conjugate of a [1 × 2] vector with a [2 × 2] complex matrix. Each C66x .M unit also includes IEEE floating-point multiplication operations from the C674x DSP, which includes one single-precision multiply each cycle and one double-precision multiply every 4 cycles. There is also a mixed-precision multiply that allows multiplication of a single-precision value by a double-precision value and an operation allowing multiplication of two single-precision numbers resulting in a double-precision number. The C66x DSP improves the performance over the C674x double-precision multiplies by adding a instruction allowing one double-precision multiply per cycle and also reduces the number of delay slots from 10 down to 4. Each C66x .M unit can also perform one the following floating-point operations each clock cycle: one, two, or four single-precision multiplies or a complex single-precision multiply. The .L and .S units can now support up to 64-bit operands. This allows for new versions of many of the arithmetic, logical, and data packing instructions to allow for more parallel operations per cycle. Additional instructions were added yielding performance enhancements of the floating point addition and subtraction instructions, including the ability to perform one double precision addition or subtraction per cycle. Conversion to/from integer and single-precision values can now be done on both .L and .S units on the C66x. Also, by taking advantage of the larger 18 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor www.ti.com SPRS841—March 2012 The MFENCE instruction is a new instruction introduced on the C66x DSP. This instruction will create a DSP stall until the completion of all the DSP-triggered memory transactions, including: • Cache line fills • Writes from L1D to L2 or from the CorePac to MSMC and/or other system endpoints • Victim write backs • Block or global coherence operations • Cache mode changes • Outstanding XMC prefetch requests This is useful as a simple mechanism for programs to wait for these requests to reach their endpoint. It also provides ordering guarantees for writes arriving at a single endpoint via multiple paths, multiprocessor algorithms that depend on ordering, and manual coherence operations. For more details on the C66x DSP and its enhancements over the C64x+ and C674x architectures, see the following documents: • C66x CPU and Instruction Set Reference Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. • C66x DSP Cache User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. • C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 19 PRODUCT PREVIEW operands, instructions were also added to double the number of these conversions that can be done. The .L unit also has additional instructions for logical AND and OR instructions, as well as, 90 degree or 270 degree rotation of complex numbers (up to two per cycle). Instructions have also been added that allow for the computing the conjugate of a complex number. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 2-1 shows the DSP core functional units and data paths. Figure 2-1 DSP Core Data Paths Note: Default bus width is 64 bits (i.e. a register pair) src1 .L1 Register File A (A0, A1, A2, ...A31) src2 dst ST1 src1 .S1 src2 dst src1 src1_hi PRODUCT PREVIEW Data Path A .M1 src2 src2_hi dst2 dst1 LD1 32 src1 DA1 32 .D1 dst 32 src2 32 32 2´ 1´ src2 DA2 32 .D2 dst src1 Register File B (B0, B1, B2, ...B31) 32 32 32 32 32 LD2 dst1 dst2 src2_hi .M2 src2 src1_hi src1 Data Path B dst .S2 src2 src1 ST2 dst .L2 src2 src1 32 Control Register 32 20 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.3 Memory Map Summary Table 2-2 shows the memory map address ranges of the TMS320C6654 device. Memory Map Summary (Part 1 of 5) Logical 32-bit Address Physical 36-bit Address Start End Start End Bytes Description 00000000 007FFFFF 0 00000000 0 007FFFFF 8M Reserved 00800000 008FFFFF 0 00800000 0 008FFFFF 1M Local L2 SRAM 00900000 00DFFFFF 0 00900000 0 00DFFFFF 5M Reserved 00E00000 00E07FFF 0 00E00000 0 00E07FFF 32K Local L1P SRAM 00E08000 00EFFFFF 0 00E08000 0 00EFFFFF 1M-32K Reserved 00F00000 00F07FFF 0 00F00000 0 00F07FFF 32K Local L1D SRAM 00F08000 017FFFFF 0 00F08000 0 017FFFFF 9M-32K Reserved 01800000 01BFFFFF 0 01800000 0 01BFFFFF 4M C66x CorePac Registers 01C00000 01CFFFFF 0 01C00000 0 01CFFFFF 1M Reserved 01D00000 01D0007F 0 01D00000 0 01D0007F 128 Trace 0 01D00080 01D07FFF 0 01D00080 0 01D07FFF 32K-128 Reserved 01D08000 01D0807F 0 01D08000 0 01D0807F 128 Reserved 01D08080 01D3FFFF 0 01D08080 0 01D3FFFF 224K-128 Reserved 01D40000 01D4007F 0 01D40000 0 01D4007F 128 Trace 1 01D40080 01D47FFF 0 01D40080 0 01D47FFF 32K-128 Reserved 01D48000 01D4807F 0 01D48000 0 01D4807F 128 Trace 2 01D48080 01D4FFFF 0 01D48080 0 01D4FFFF 32K-128 Reserved 01D50000 01D5007F 0 01D50000 0 01D5007F 128 Reserved 01D50080 01D57FFF 0 01D50080 0 01D57FFF 32K-128 Reserved 01D58000 01D5807F 0 01D58000 0 01D5807F 128 Trace 3 01D58080 01D5FFFF 0 01D58080 0 01D5FFFF 4464K -128 Reserved 021B4000 021B47FF 0 021B4000 0 021B47FF 2K McBSP0 Registers 021B4800 021B5FFF 0 021B4800 0 021B5FFF 6K Reserved 021B6000 021B67FF 0 021B6000 0 021B67FF 2K McBSP0 FIFO Registers 021B6800 021B7FFF 0 021B6800 0 021B7FFF 6K Reserved 021B8000 021B87FF 0 021B8000 0 021B87FF 2K McBSP1 Registers 021B8800 021B9FFF 0 021B8800 0 021B9FFF 6K Reserved 021BA000 021BA7FF 0 021BA000 0 021BA7FF 2K McBSP1 FIFO Registers 021BA800 021BFFFF 0 021BA800 0 021BFFFF 22K Reserved 021C0000 021C03FF 0 021C0000 0 021C03FF 1K Reserved 021C0400 021CFFFF 0 021C0400 0 021CFFFF 63K Reserved 021D0000 021D00FF 0 021D0000 0 021D00FF 256 Reserved 021D0100 021D3FFF 0 021D0100 0 021D3FFF 16K - 256 Reserved 021D4000 021D40FF 0 021D4000 0 021D40FF 256 Reserved 021D4100 021FFFFF 0 021D4100 0 021FFFFF 176K - 256 Reserved 02200000 0220007F 0 02200000 0 0220007F 128 Timer0 02200080 0220FFFF 0 02200080 0 0220FFFF 64K-128 Reserved 02210000 0221007F 0 02210000 0 0221007F 128 Timer1 02210080 0221FFFF 0 02210080 0 0221FFFF 64K-128 Reserved 02220000 0222007F 0 02220000 0 0222007F 128 Timer2 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PRODUCT PREVIEW Table 2-2 Device Overview 21 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-2 www.ti.com Memory Map Summary (Part 2 of 5) Logical 32-bit Address Physical 36-bit Address PRODUCT PREVIEW Start End Start End Bytes Description 02220080 0222FFFF 0 02220080 0 0222FFFF 64K-128 Reserved 02230000 0223007F 0 02230000 0 0223007F 128 Timer3 02230080 0223FFFF 0 02230080 0 0223FFFF 64K-128 Reserved 02240000 0224007F 0 02240000 0 0224007F 128 Timer4 02240080 0224FFFF 0 02240080 0 0224FFFF 64K-128 Reserved 02250000 0225007F 0 02250000 0 0225007F 128 Timer5 02250080 0225FFFF 0 02250080 0 0225FFFF 64K-128 Reserved 02260000 0226007F 0 02260000 0 0226007F 128 Timer6 02260080 0226FFFF 0 02260080 0 0226FFFF 64K-128 Reserved 02270000 0227007F 0 02270000 0 0227007F 128 Timer7 02270080 0230FFFF 0 02270080 0 0230FFFF 640K - 128 Reserved 02310000 023101FF 0 02310000 0 023101FF 512 PLL Controller 02310200 0231FFFF 0 02310200 0 0231FFFF 64K-512 Reserved 02320000 023200FF 0 02320000 0 023200FF 256 GPIO 02320100 0232FFFF 0 02320100 0 0232FFFF 64K-256 Reserved 02330000 023303FF 0 02330000 0 023303FF 1K SmartReflex 02330400 0234FFFF 0 02330400 0 0234FFFF 127K Reserved 02350000 02350FFF 0 02350000 0 02350FFF 4K Power Sleep Controller (PSC) 02351000 0235FFFF 0 02351000 0 0235FFFF 64K-4K Reserved 02360000 023603FF 0 02360000 0 023603FF 1K Memory Protection Unit (MPU) 0 02360400 02367FFF 0 02360400 0 02367FFF 31K Reserved 02368000 023683FF 0 02368000 0 023683FF 1K Memory Protection Unit (MPU) 1 02368400 0236FFFF 0 02368400 0 0236FFFF 31K Reserved 02370000 023703FF 0 02370000 0 023703FF 1K Memory Protection Unit (MPU) 2 02370400 02377FFF 0 02370400 0 02377FFF 31K Reserved 02378000 023783FF 0 02378000 0 023783FF 1K Memory Protection Unit (MPU) 3 02378400 0237FFFF 0 02378400 0 0237FFFF 31K Reserved 02380000 023803FF 0 02380000 0 023803FF 1K Memory Protection Unit (MPU) 4 02380400 0243FFFF 0 02380400 0 0243FFFF 767K Reserved 02440000 02443FFF 0 02440000 0 02443FFF 16K DSP trace formatter 0 02444000 0244FFFF 0 02444000 0 0244FFFF 48K Reserved 02450000 02453FFF 0 02450000 0 02453FFF 16K Reserved 02454000 02521FFF 0 02454000 0 02521FFF 824K Reserved 02522000 02522FFF 0 02522000 0 02522FFF 4K Efuse 02523000 0252FFFF 0 02523000 0 0252FFFF 52K Reserved 02530000 0253007F 0 02530000 0 0253007F 128 I C data & control 02530080 0253FFFF 0 02530080 0 0253FFFF 64K-128 Reserved 02540000 0254003F 0 02540000 0 0254003F 64 UART 0 02540400 0254FFFF 0 02540400 0 0254FFFF 64K-64 Reserved 02550000 0255003F 0 02550000 0 0255003F 64 UART 1 02550040 0257FFFF 0 02550040 0 0257FFFF 192K-64 Reserved 02580000 02580FFF 0 02580000 0 02580FFF 4K UPP 02581000 025FFFFF 0 02581000 0 025FFFFF 508K Reserved 22 Device Overview 2 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Memory Map Summary (Part 3 of 5) Logical 32-bit Address Physical 36-bit Address Start End Start End Bytes Description 02600000 02601FFF 0 02600000 0 02601FFF 8K Chip Interrupt Controller (CIC) 0 02602000 02603FFF 0 02602000 0 02603FFF 8K Reserved 02604000 02605FFF 0 02604000 0 02605FFF 8K Chip Interrupt Controller (CIC) 1 02606000 02607FFF 0 02606000 0 02607FFF 8K Reserved 02608000 02609FFF 0 02608000 0 02609FFF 8K Reserved 0260A000 0261FFFF 0 0260A000 0 0261FFFF 88K Reserved 02620000 026207FF 0 02620000 0 026207FF 2K Chip-Level Registers 02620800 0263FFFF 0 02620800 0 0263FFFF 126K Reserved 02640000 026407FF 0 02640000 0 026407FF 2K Semaphore 02640800 0273FFFF 0 02640800 0 0273FFFF 1022K Reserved 02740000 02747FFF 0 02740000 0 02747FFF 32K EDMA Channel Controller (EDMA3CC) 02748000 0278FFFF 0 02748000 0 0278FFFF 288K Reserved 02790000 027903FF 0 02790000 0 027903FF 1K EDMA3CC Transfer Controller EDMA3TC0 02790400 02797FFF 0 02790400 0 02797FFF 31K Reserved 02798000 027983FF 0 02798000 0 027983FF 1K EDMA3CC Transfer Controller EDMA3TC1 02798400 0279FFFF 0 02798400 0 0279FFFF 31K Reserved 027A0000 027A03FF 0 027A0000 0 027A03FF 1K EDMA3CC Transfer Controller EDMA3TC2 027A0400 027A7FFF 0 027A0400 0 027A7FFF 31K Reserved 027A8000 027A83FF 0 027A8000 0 027A83FF 1K EDMA3CC Transfer Controller EDMA3TC3 027A8400 027CFFFF 0 027A8400 0 027CFFFF 159K Reserved 027D0000 027D0FFF 0 027D0000 0 027D0FFF 4K TI embedded trace buffer (TETB) - CorePac0 027D1000 027DFFFF 0 027D1000 0 027DFFFF 60K Reserved 027E0000 027E0FFF 0 027E0000 0 027E0FFF 4K Reserved 027E1000 0284FFFF 0 027E1000 0 0284FFFF 444K Reserved 02850000 02857FFF 0 02850000 0 02857FFF 32K TI embedded trace buffer (TETB) — system 02858000 028FFFFF 0 02858000 0 028FFFFF 672K Reserved 02900000 02920FFF 0 02900000 0 02920FFF 132K Reserved 02921000 029FFFFF 0 02921000 0 029FFFFF 1M-132K Reserved 02A00000 02AFFFFF 0 02A00000 0 02AFFFFF 1M Queue manager subsystem configuration 02B00000 02C07FFF 0 02B00000 0 02C07FFF 1056K Reserved 02C08000 02C8BFFF 0 02C08000 0 02C8BFFF 16K EMAC subsystem configuration 02C0C000 07FFFFFF 0 02C0C000 0 07FFFFFF 84M - 48K Reserved 08000000 0800FFFF 0 08000000 0 0800FFFF 64K Extended memory controller (XMC) configuration 08010000 0BBFFFFF 0 08010000 0 0BBFFFFF 60M-64K Reserved 0BC00000 0BCFFFFF 0 0BC00000 0 0BCFFFFF 1M Multicore shared memory controller (MSMC) config 0BD00000 0BFFFFFF 0 0BD00000 0 0BFFFFFF 3M Reserved 0C000000 0C1FFFFF 0 0C000000 0 0C1FFFFF 1M Reserved 0C200000 107FFFFF 0 0C200000 0 107FFFFF 71 M Reserved 10800000 108FFFFF 0 10800000 0 108FFFFF 1M CorePac0 L2 SRAM 10900000 10DFFFFF 0 10900000 0 10DFFFFF 5M Reserved 10E00000 10E07FFF 0 10E00000 0 10E07FFF 32K CorePac0 L1P SRAM 10E08000 10EFFFFF 0 10E08000 0 10EFFFFF 1M-32K Reserved 10F00000 10F07FFF 0 10F00000 0 10F07FFF 32K CorePac0 L1D SRAM Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview PRODUCT PREVIEW Table 2-2 23 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-2 www.ti.com Memory Map Summary (Part 4 of 5) Logical 32-bit Address Physical 36-bit Address Start End Start End Bytes Description 10F08000 117FFFFF 0 10F08000 0 117FFFFF 9M-32K Reserved 11800000 118FFFFF 0 11800000 0 118FFFFF 1M Reserved 11900000 11DFFFFF 0 11900000 0 11DFFFFF 5M Reserved 11E00000 11E07FFF 0 11E00000 0 11E07FFF 32K Reserved 11E08000 11EFFFFF 0 11E08000 0 11EFFFFF 1M-32K Reserved 11F00000 11F07FFF 0 11F00000 0 11F07FFF 32K Reserved PRODUCT PREVIEW 11F08000 1FFFFFFF 0 11F08000 0 1FFFFFFF 225M-32K Reserved 20000000 200FFFFF 0 20000000 0 200FFFFF 1M System trace manager (STM) configuration 20100000 207FFFFF 0 20100000 0 207FFFFF 7M Reserved 20800000 208FFFFF 0 20080000 0 208FFFFF 1M Reserved 20900000 20AFFFFF 0 20900000 0 20AFFFFF 2M Reserved 20B00000 20B1FFFF 0 20B00000 0 20B1FFFF 128K Boot ROM 20B20000 20BEFFFF 0 20B20000 0 20BEFFFF 832K Reserved 20BF0000 20BF01FF 0 20BF0000 0 20BF01FF 512 SPI 20BF0400 20BFFFFF 0 20BF0400 0 20BFFFFF 64K -512 Reserved 20C00000 20C000FF 0 20C00000 0 20C000FF 256 EMIF16 configuration 20C00100 20FFFFFF 0 20C00100 0 20FFFFFF 4M - 256 Reserved 21000000 210001FF 1 00000000 1 000001FF 512 DDR3 EMIF configuration 21000200 213FFFFF 0 21000200 0 213FFFFF 4M-512 Reserved 21400000 214000FF 0 21400000 0 214000FF 256 Reserved 21400100 217FFFFF 0 21400100 0 217FFFFF 4M-256 Reserved 21800000 21807FFF 0 21800000 0 21807FFF 32K PCIe config 21808000 33FFFFFF 0 21808000 0 33FFFFFF 8M-32K Reserved 22000000 22000FFF 0 22000000 0 22000FFF 4K McBSP0 FIFO Data 22000100 223FFFFF 0 22000100 0 223FFFFF 4M-4K Reserved 22400000 22400FFF 0 22400000 0 22400FFF 4K McBSP1 FIFO Data 22400100 229FFFFF 0 22400100 0 229FFFFF 6M-4K Reserved 22A00000 22A0FFFF 0 22A00000 0 22A0FFFF 64K Reserved 22A01000 22AFFFFF 0 22A01000 0 22AFFFFF 1M-64K Reserved 22B00000 22B0FFFF 0 22B00000 0 22B0FFFF 64K Reserved 22B01000 33FFFFFF 0 22B01000 0 33FFFFFF 277M-64K Reserved 34000000 341FFFFF 0 34000000 0 341FFFFF 2M Queue manager subsystem data 34200000 3FFFFFFF 0 34200000 0 3FFFFFFF 190M Reserved 40000000 4FFFFFFF 0 40000000 0 4FFFFFFF 256M Reserved 50000000 5FFFFFFF 0 50000000 0 5FFFFFFF 256M Reserved 60000000 6FFFFFFF 0 60000000 0 6FFFFFFF 256M PCIe data 70000000 73FFFFFF 0 70000000 0 73FFFFFF 64M EMIF16 CS2 data space, supports NAND, NOR, or SRAM memory (1) 74000000 77FFFFFF 0 74000000 0 77FFFFFF 64M EMIF16 CS3 data space, supports NAND, NOR, or SRAM (1) memory 78000000 7BFFFFFF 0 78000000 0 7BFFFFFF 64M EMIF16 CS4 data space, supports NAND, NOR, or SRAM (1) memory 24 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 2-2 Memory Map Summary (Part 5 of 5) Logical 32-bit Address Physical 36-bit Address Start End Start End Bytes Description 7C000000 7FFFFFFF 0 7C000000 0 7FFFFFFF 64M EMIF16 CS5 data space, supports NAND, NOR or SRAM (1) memory 80000000 FFFFFFFF 8 00000000 8 7FFFFFFF 2G DDR3 EMIF data End of Table 2-2 1 32MB per chip select for 16-bit NOR and SRAM. 16MB per chip select for 8-bit NOR and SRAM. More than 32MB allowed by NAND flash The boot sequence is a process by which the DSP's internal memory is loaded with program and data sections. The DSP's internal registers are programmed with predetermined values. The boot sequence is started automatically after each power-on reset, warm reset, and system reset. A local reset to an individual C66x CorePac should not affect the state of the hardware boot controller on the device. For more details on the initiators of the resets, see section 7.4 ‘‘Reset Controller’’ on page 119. The bootloader uses a section of the L2 SRAM (start address 0x0087 2DC0 and end address 0x0087 FFFF) during initial booting of the device. For more details on the type of configurations stored in this reserved L2 section see the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. The C6654 supports several boot processes that begins execution at the ROM base address, which contains the bootloader code necessary to support various device boot modes. The boot processes are software-driven and use the BOOTMODE[12:0] device configuration inputs to determine the software configuration that must be completed. For more details on Boot Sequence see the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 2.5 Boot Modes Supported and PLL Settings The device supports several boot processes, which leverage the internal boot ROM. Most boot processes are software driven, using the BOOTMODE[2:0] device configuration inputs to determine the software configuration that must be completed. From a hardware perspective, there are two possible boot modes: • Public ROM Boot - C66x CorePac0 is released from reset and begins executing from the L3 ROM base address. After performing the boot process (e.g., from I2C ROM, Ethernet, or RapidIO), C66x CorePac0 then begins execution from the provided boot entry point. For C6657 only, the other C66x CorePac is released from reset and begins executing an IDLE from the L3 ROM. It is then released from IDLE based on interrupts generated by C66x CorePac0. See the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64 for more details. • Secure ROM Boot - On secure devices, the C66x CorePac0 is released from reset and begin executing from secure ROM. Software in the secure ROM will free up internal RAM pages, after which C66x CorePac0 initiates the boot process. The C66x CorePac0 performs any authentication and decryption required on the bootloaded image prior to beginning execution. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 25 PRODUCT PREVIEW 2.4 Boot Sequence TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com The boot process performed by the C66x CorePac0 in public ROM boot and secure ROM boot are determined by the BOOTMODE[12:0] value in the DEVSTAT register. The C66x CorePac0 reads this value, and then executes the associated boot process in software. Figure 2-2 shows the bits associated with BOOTMODE[12:0]. Figure 2-2 Boot Mode Pin Decoding Boot Mode Pins 12 11 10 9 8 7 2 PLL Mult I C /SPI Ext Dev Cfg 6 5 4 3 2 Device Configuration 1 0 Boot Device 2.5.1 Boot Device Field PRODUCT PREVIEW The Boot Device field BOOTMODE[2:0] defines the boot device that is chosen. Table 2-3 shows the supported boot modes. Table 2-3 Boot Mode Pins: Boot Device Values Bit Field Description 2-0 Boot Device Device boot mode 0 = EMIF16 / UART / No Boot 1 = Reserved 2 = Ethernet (SGMII) 3 = NAND 4 = PCIe 5 = I2C 6 = SPI 7 = Reserved End of Table 2-3 2.5.2 Device Configuration Field The device configuration fields BOOTMODE[9:3] are used to configure the boot peripheral and, therefore, the bit definitions depend on the boot mode. 2.5.2.1 EMIF16 / UART / No Boot Device Configuration Figure 2-3 EMIF16 / UART / No Boot Configuration Fields 9 8 7 6 Sub-Mode Specific Configuration Table 2-4 5 4 3 Sub-Mode EMIF16 / UART / No Boot Configuration Field Descriptions Bit Field Description 9-6 Sub-Mode Specific Configuration Configures the selected sub-mode. See sections 2.5.2.1.1 ‘‘No Boot Mode’’, 2.5.2.1.2 ‘‘UART Boot Mode’’, and 2.5.2.1.3 ‘‘EMIF16 Boot Mode’’ 5-3 Sub-Mode Sub mode selection. 0 = No boot 1 = UART port 0 boot 2 - 3 = Reserved 4 = EMIF16 boot 5 = UART port 1 boot 6 - 7 = Reserved End of Table 2-4 26 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.5.2.1.1 No Boot Mode Figure 2-4 No Boot Configuration Fields 9 8 7 6 7 6 Reserved Table 2-5 No Boot Configuration Field Descriptions Bit Field 9-6 Reserved Description Reserved PRODUCT PREVIEW End of Table 2-5 2.5.2.1.2 UART Boot Mode Figure 2-5 UART Boot Configuration Fields 9 8 Speed Table 2-6 Parity UART Boot Configuration Field Descriptions Bit Field Description 9-8 Speed UART interface speed. 0 = 115200 baud 1 = 38400 baud 2 = 19200 baud 3 = 9600 baud 7-6 Parity UART parity used during boot. 0 = None 1 = Odd 2 = Even 4 = None End of Table 2-6 2.5.2.1.3 EMIF16 Boot Mode Figure 2-6 EMIF16 Boot Configuration Fields 9 8 Wait Enable Width Select Table 2-7 7 6 Chip Select EMIF16 Boot Configuration Field Descriptions (Part 1 of 2) Bit Field Description 9 Wait Enable Extended Wait mode for EMIF16. 0 = Wait enable disabled (EMIF16 sub mode) 1 = Wait enable enabled (EMIF16 sub mode) Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 27 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-7 www.ti.com EMIF16 Boot Configuration Field Descriptions (Part 2 of 2) Bit Field Description 8 Width Select EMIF data width for EMIF16. 0 = 8-bit wide EMIF (EMIF16 sub mode) 1 = 16-bit wide EMIF (EMIF16 sub mode) 7-6 Chip Select EMIF Chip Select used during EMIF 16 boot. 0 = CS2 1 = CS3 2 = CS4 4 = CS5 End of Table 2-7 PRODUCT PREVIEW 2.5.2.2 Ethernet (SGMII) Boot Device Configuration Figure 2-7 Ethernet (SGMII) Device Configuration Fields 9 8 7 SerDes Clock Mult Table 2-8 6 5 4 Ext connection 3 Device ID Ethernet (SGMII) Configuration Field Descriptions Bit Field Description 9-8 SerDes Clock Mult SGMII SerDes input clock. The output frequency of the PLL must be 1.25 GBs. 0 = ×8 for input clock of 156.25 MHz 1 = ×5 for input clock of 250 MHz 2 = ×4 for input clock of 312.5 MHz 3 = Reserved 7-6 Ext connection External connection mode 0 = MAC to MAC connection, master with auto negotiation 1 = MAC to MAC connection, slave, and MAC to PHY 2 = MAC to MAC, forced link 3 = MAC to fiber connection 5-3 Device ID This value can range from 0 to 7 is used in the device ID field of the Ethernet-ready frame. End of Table 2-8 2.5.2.3 NAND Boot Device Configuration Figure 2-8 NAND Device Configuration Fields 9 8 7 6 st 1 Block Table 2-9 Bit 9-5 28 5 4 3 2 Reserved IC NAND Configuration Field Descriptions (Part 1 of 2) Field st 1 Block Device Overview Description NAND Block to be read first by the boot ROM. 0 = Block 0 ... 31 = Block 31 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 2-9 Bit NAND Configuration Field Descriptions (Part 2 of 2) Field Description 2 4 IC NAND parameters read from I2C EEPROM 2 0 = Parameters are not read from I C 1 = Parameters are read from I2C 3 Reserved Reserved End of Table 2-9 2.5.2.4 PCI Boot Device Configuration Extra device configuration is provided in the PCI bits in the DEVSTAT register. PCI Device Configuration Fields 9 8 7 Ref Clock Table 2-10 6 5 4 PRODUCT PREVIEW Figure 2-9 3 BAR Config Reserved PCI Device Configuration Field Descriptions Bit Field Description 9 Ref Clock PCIe reference clock configuration 0 = 100 MHz 1 = 250 MHz 8-5 BAR Config PCIe BAR registers configuration 4-3 Reserved Reserved This value can range from 0 to 0xf. See Table 2-11. End of Table 2-10 Table 2-11 BAR Config / PCIe Window Sizes 32-Bit Address Translation BAR1 BAR2 BAR3 BAR4 0b0000 BAR cfg BAR0 32 32 32 32 0b0001 16 16 32 64 0b0010 16 32 32 64 0b0011 32 32 32 64 0b0100 16 16 64 64 0b0101 16 32 64 64 0b0110 32 32 64 64 32 32 64 128 64 64 128 256 0b1001 4 128 128 128 0b1010 4 128 128 256 0b1011 4 128 256 256 64-Bit Address Translation BAR2/3 BAR4/5 0b1100 256 256 0b1101 512 512 0b1110 1024 1024 0b1111 2048 2048 0b0111 0b1000 PCIe MMRs BAR5 Clone of BAR4 End of Table 2-11 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 29 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2 2.5.2.5 I C Boot Device Configuration 2.5.2.5.1 I2C Master Mode 2 In master mode, the I C device configuration uses ten bits of device configuration instead of seven as used in other boot modes. In this mode, the device will make the initial read of the I2C EEPROM while the PLL is in bypass mode. The initial read will contain the desired clock multiplier, which will be set up prior to any subsequent reads. I2C Master Mode Device Configuration Bit Fields Figure 2-10 12 11 Mode Table 2-12 10 Address 9 8 7 Speed 6 5 4 3 Parameter Index I2C Master Mode Device Configuration Field Descriptions PRODUCT PREVIEW Bit Field Description 12 Mode I C operation mode 0 = Master mode 2 1 = Passive mode (see section 2.5.2.5.2 ‘‘I C Passive Mode’’) 11 - 10 Address I2C bus address configuration 2 2 0 = Boot from I C EEPROM at I C bus address 0x50 1 = Boot from I2C EEPROM at I2C bus address 0x51 2 2 2= Boot from I C EEPROM at I C bus address 0x52 2 3= Boot from I C EEPROM at I2C bus address 0x53 9 Speed I C data rate configuration 0 = I2C slow mode. Initial data rate is SYSCLKIN / 5000 until PLLs and clocks are programmed 2 1 = I C fast mode. Initial data rate is SYSCLKIN / 250 until PLLs and clocks are programmed 8-3 Parameter Index Identifies the index of the configuration table initially read from the I C EEPROM 2 2 2 This value can range from 0 to 31. End of Table 2-12 2.5.2.5.2 I2C Passive Mode In passive mode, the device does not drive the clock, but simply acks data received on the specified address. I2C Passive Mode Device Configuration Bit Fields Figure 2-11 12 11 10 Mode Table 2-13 9 8 7 6 Address 5 4 3 Reserved I2C Passive Mode Device Configuration Field Descriptions Bit Field Description 12 Mode I C operation mode 2 0 = Master mode (see section 2.5.2.5.1 ‘‘I C Master Mode’’) 1 = Passive mode 11 - 5 Address I2C bus address accepted during boot. Value may range from 0x00 to 0x7F 4-3 Reserved Reserved 2 End of Table 2-13 30 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.5.2.6 SPI Boot Device Configuration In SPI boot mode, the SPI device configuration uses ten bits of device configuration instead of seven as used in other boot modes. SPI Device Configuration Bit Fields 12 11 Mode Table 2-14 10 9 4, 5 Pin Addr Width 8 7 Chip Select 6 5 4 3 Parameter Table Index SPI Device Configuration Field Descriptions Bit Field Description 12-11 Mode Clk Pol / Phase 0 = Data is output on the rising edge of SPICLK. Input data is latched on the falling edge. 1 = Data is output one half-cycle before the first rising edge of SPICLK and on subsequent falling edges. Input data is latched on the rising edge of SPICLK. 2 = Data is output on the falling edge of SPICLK. Input data is latched on the rising edge. 3 = Data is output one half-cycle before the first falling edge of SPICLK and on subsequent rising edges. Input data is latched on the falling edge of SPICLK. 10 4, 5 Pin SPI operation mode configuration 0 = 4-pin mode used 1 = 5-pin mode used 9 Addr Width SPI address width configuration 0 = 16-bit address values are used 1 = 24-bit address values are used 8-7 Chip Select The chip select field value 6-3 Parameter Table Index Specifies which parameter table is loaded End of Table 2-14 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 31 PRODUCT PREVIEW Figure 2-12 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.5.3 PLL Boot Configuration Settings The PLL default settings are determined by the BOOTMODE[12:10] bits. The following table shows settings for various input clock frequencies. Table 2-15 C66x DSP System PLL Configuration (1) 850 MHz Device PRODUCT PREVIEW BOOTMODE [12:10] Input Clock Freq (MHz) 0b000 50.00 0 PLLD 33 PLLM 850 DSP ƒ 0b001 66.67 1 50 850.04 0b010 80.00 3 84 850 0b011 100.00 0 16 850 0b100 156.25 49 543 850 0b101 250.00 4 33 850 0b110 312.50 49 271 850 0b111 122.88 5 82 849.92 End of Table 2-15 1 The PLL boot configuration table above may not include all the frequency values that the device supports. OUTPUT_DIVIDE is the value of the field of SECCTL[22:19]. This will set the PLL to the maximum clock setting for the device (with OUTPUT_DIVIDE=2, by default). CLK = CLKIN × (PLLM+1) ÷ (OUTPUT_DIVIDE × (PLLD+1)) The Main PLL is controlled using a PLL controller and a chip-level MMR. The DDR3 PLL is controlled by chip level MMRs. For details on how to set up the PLL see section 7.5 ‘‘Main PLL and PLL Controller’’ on page 126. For details on the operation of the PLL controller module, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 2.6 Second-Level Bootloaders Any of the boot modes can be used to download a second-level bootloader. A second-level bootloader allows for any level of customization to current boot methods as well as the definition of a completely customized boot. 32 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.7 Terminals 2.7.1 Package Terminals Figure 2-13 shows the TMS320C6654CZH and GZH ball grid area (BGA) packages (bottom view). Figure 2-13 CZH/GZH 625-Pin BGA Package (Bottom View) AD AB Y AE AC AA W V T U R P N PRODUCT PREVIEW M L K J H F D G E C B A 3 1 2 5 4 9 7 6 8 11 13 15 17 19 21 23 25 10 12 14 16 18 20 22 24 2.7.2 Pin Map Figure 2-15 through Figure 2-18 show the TMS320C6654 pin assignments in four quadrants (A, B, C, and D). Figure 2-14 Pin Map Quadrants (Bottom View) Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions A B D C Device Overview 33 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 2-15 www.ti.com Upper Left Quadrant—A (Bottom View) PRODUCT PREVIEW 1 2 3 4 5 6 7 8 9 10 11 12 13 AE VSS SGMII0 RXN SGMII0 RXP VSS RIORXN2 RIORXP2 VSS RIORXP0 RIORXN0 VSS PCIERXP0 PCIERXN0 VSS AD VSS VSS VSS RIORXN3 RIORXP3 VSS RIORXP1 RIORXN1 VSS PCIERXN1 PCIERXP1 VSS SRIOSGMII CLKP AC VSS SGMII0 TXN SGMII0 TXP VSS RIOTXN2 RIOTXP2 VSS RIOTXP0 RIOTXN0 VSS PCIETXP0 PCIETXN0 VSS AB EMIFD14 VSS RSV19 RIOTXN3 RIOTXP3 VSS RIOTXN1 RIOTXP1 VSS PCIETXP1 PCIETXN1 VSS SPIDOUT AA EMIFD13 EMIFD15 VDDR3 VSS VDDR4 VSS RSV17 VSS VDDR2 VSS RSV18 SPISCS0 SPICLK Y EMIFD09 EMIFD11 DVDD18 RSV13 RSV12 VSS VDDT2 VSS VDDT2 VSS VDDT2 VSS DVDD18 W EMIFD06 EMIFD08 VSS EMIFD10 EMIFD12 DVDD18 VSS VDDT2 VSS VDDT2 VSS VDDT2 VSS V EMIFD02 EMIFD03 EMIFD04 EMIFD05 EMIFD07 VSS DVDD18 VSS CVDD VSS CVDD VSS CVDD U EMIFA21 EMIFA22 EMIFA23 EMIFD00 EMIFD01 DVDD18 VSS CVDD1 VSS CVDD VSS CVDD VSS T EMIFA19 VSS DVDD18 EMIFA18 EMIFA20 VSS DVDD18 VSS CVDD1 VSS CVDD VSS CVDD R EMIFA17 EMIFA16 EMIFA14 EMIFA15 EMIFA13 DVDD18 VSS VSS VSS CVDD VSS CVDD VSS P EMIFA12 EMIFA11 EMIFA09 EMIFA05 EMIFA03 VSS DVDD18 VSS CVDD VSS CVDD VSS CVDD N EMIFA10 EMIFA08 DVDD18 VSS EMIF WAIT0 DVDD18 VSS CVDD VSS CVDD VSS CVDD VSS A 34 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Upper Right Quadrant—B (Bottom View) 14 15 16 17 18 19 20 21 22 23 24 25 SRIOSGMII CLKN PCIECLKN UARTCTS1 TDI TMS CORECLKN TIMO1 TIMI1 DX1 FSX1 CLKX1 VSS AE PCIECLKP UARTRTS1 VSS TCK CORECLKP TDO TIMI0 DR1 FSR1 CLKR1 FSR0 EMU16 AD UARTRXD1 UARTTXD1 DVDD18 UARTCTS RSV04 TIMO0 DVDD18 CLKS1 DX0 CLKS0 EMU17 EMU13 AC SPIDIN UARTRXD MDIO UARTRTS RSV05 TRST VSS DR0 EMU15 DVDD18 VSS EMU12 AB SPISCS1 UARTTXD MDCLK SCL SDA SYSCLKOUT FSX0 CLKR0 RSV01 EMU14 EMU10 EMU11 AA VSS AVDDA1 VSS DVDD18 POR RSV08 CLKX0 EMU18 EMU09 EMU07 EMU06 EMU05 Y DVDD18 VSS DVDD18 VSS DVDD18 VSS DVDD18 GPIO14 EMU08 EMU03 EMU04 EMU02 W VSS CVDD VSS CVDD VSS DVDD18 VSS GPIO15 GPIO13 GPIO10 EMU00 EMU01 V CVDD VSS CVDD VSS CVDD1 VSS DVDD18 GPIO11 GPIO08 GPIO09 GPIO05 GPIO03 U VSS CVDD VSS CVDD1 VSS DVDD18 VSS GPIO12 GPIO06 GPIO04 DVDD18 GPIO00 T CVDD VSS CVDD VSS CVDD VSS DVDD18 GPIO07 VSS GPIO02 VSS GPIO01 R VSS CVDD VSS CVDD VSS CVDD VSS VSS MCMTXN0 VSS MCMRXN0 VSS P CVDD VSS CVDD VSS CVDD VSS VDDT1 MCMTXN1 MCMTXP0 VSS MCMRXP0 MCMRXP1 N PRODUCT PREVIEW Figure 2-16 B Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 35 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 2-17 www.ti.com Lower Right Quadrant—C (Bottom View) C PRODUCT PREVIEW VSS CVDD VSS CVDD VSS VDDT1 VDDR1 MCM TXP1 VSS VSS VSS MCMRXN1 M CVDD VSS CVDD VSS CVDD VSS VDDT1 VSS MCMTXP2 VSS MCMRXP3 VSS L VSS CVDD VSS CVDD1 VSS VDDT1 VSS MCMTXP3 MCMTXN2 VSS MCMRXN3 MCMRXP2 K CVDD VSS CVDD VSS CVDD1 VSS RSV16 MCMTXN3 VSS VSS VSS MCMRXN2 J VSS CVDD VSS CVDD VSS DVDD18 VSS VSS RSV11 VSS DVDD18 VSS H DVDD15 VSS DVDD15 VSS DVDD15 RSV0A RSV0B RSV15 RSV10 VCNTL3 MCMTX PMDAT MCMREF CLKOUTP G VSS PTV15 VSS DVDD15 VSS DVDD15 AVDDA2 RSV14 RSV20 VCNTL2 MCMTX PMCLK MCMREF CLKOUTN F DDRODT0 DDRA03 DDRA02 DDRA15 DDRA14 DDRA10 DDRA09 DVDD18 VCNTL0 VCNTL1 MCMRX PMCLK MCMTX FLCLK E DDRCAS DVDD15 DDRA00 DDRBA1 DDRA12 DVDD15 DDRA08 VSS DDRSL RATE1 RSV21 MCMRX PMDAT MCMTX FLDAT D DDRCE1 VSS DDRA06 DVDD15 DDRBA0 VSS DDRA13 DVDD15 DDRSL RATE0 RSV09 MCMRX FLDAT MCMCLKP C DDRCLK OUTN0 DDRCE0 DDRRESET VSS DDRA04 DDRBA2 DDRA11 DDRCLK OUTN1 DDRCLKN RSV06 MCMRX FLCLK MCMCLKN B DDRCLK OUTP0 DDRRAS DDRCKE0 DDRA05 DDRA07 DDRA01 DDRCKE1 DDRCLK OUTP1 DDRCLKP RSV07 DVDD18 VSS A 14 15 16 17 18 19 20 21 22 23 24 25 36 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 2-18 Lower Left Quadrant—D (Bottom View) M EMIFA07 EMIFA06 EMIFA01 EMIFWAIT1 EMIFCE3 VSS DVDD18 VSS CVDD VSS CVDD VSS CVDD L EMIFA04 EMIFA02 EMIFBE1 EMIFOE EMIF RNW DVDD18 VSS CVDD VSS CVDD VSS CVDD VSS K EMIFA00 VSS DVDD18 EMIFWE EMIFCE0 VSS DVDD18 VSS CVDD1 VSS CVDD VSS CVDD J EMIFBE0 EMIFCE2 RSV02 DVDD18 VSS CVDD1 VSS CVDD VSS CVDD VSS H NMI RSV03 BOOT COMPLETE RESET RESETSTAT VSS DVDD18 VSS CVDD VSS CVDD VSS CVDD G EMIFCE1 HOUT DVDD18 LRESET CORESEL1 DVDD18 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS F LRESET NMIEN DDRD25 VSS DDRD18 DDRDQM2 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 E DDRDQM3 DDRD24 DDRD31 DDRD19 DDRD16 DDRD08 DDR DQM1 DDRD09 DDRD04 DDRD05 VSS VREFSSTL DDRWE D DDRD28 DVDD15 DDRD29 DVDD15 DDRD23 DDRD12 DDRD14 DVDD15 DDRD02 DDR DQS0P DDRCB00 DDRODT1 DVDD15 C DDRD27 VSS DDRD30 VSS DDRD22 DVDD15 DDRD13 VSS DDRD01 DDR DQS0N DDRCB02 DDRDQM8 VSS B DDRD26 DDR DQS3N DDRD17 DDR DQS2P DDRD21 VSS DDR DQS1P DDRD15 DDRD03 DVDD15 DDRD07 DDRCB01 DDR DQS8P A VSS DDR DQS3P DDRD20 DDR DQS2N DDRD11 DDRD10 DDR DQS1N DDR DQM0 DDRD00 VSS DDRD06 DDRCB03 DDR DQS8N 1 2 3 4 5 6 7 8 9 10 11 12 13 RESETFULL CORESEL0 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview PRODUCT PREVIEW D 37 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.8 Terminal Functions The terminal functions table (Table 2-17) identifies the external signal names, the associated pin (ball) numbers, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors, and gives functional pin descriptions. This table is arranged by function. The power terminal functions table (Table 2-18) lists the various power supply pins and ground pins and gives functional pin descriptions. Table 2-19 shows all pins arranged by signal name. Table 2-20 shows all pins arranged by ball number. There are 73 pins that have a secondary function as well as a primary function. The secondary function is indicated with a dagger (†). There is one pin that has a tertiary function as well as primary and secondary functions. The tertiary function is indicated with a double dagger (‡). PRODUCT PREVIEW For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and pullup/pulldown resistors, see section 3.4 ‘‘Pullup/Pulldown Resistors’’ on page 86. Use the symbol definitions in Table 2-16 when reading Table 2-17. Table 2-16 I/O Functional Symbol Definitions Functional Symbol IPD or IPU A Table 2-17 Column Heading Definition Internal 100-μA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 64. IPD/IPU Analog signal Type Ground Type Input terminal Type O Output terminal Type S Supply voltage Type Z Three-state terminal or high impedance Type GND I End of Table 2-16 Table 2-17 Terminal Functions — Signals and Control by Function (Part 1 of 13) Signal Name Ball No. Type IPD/IPU Description LENDIAN † T25 IOZ UP Endian configuration pin (Pin shared with GPIO[0]) BOOTMODE00 † R25 IOZ Down BOOTMODE01† R23 IOZ Down BOOTMODE02 † U25 IOZ Down BOOTMODE03 † T23 IOZ Down BOOTMODE04 † U24 IOZ Down BOOTMODE05 † T22 IOZ Down BOOTMODE06 † R21 IOZ Down BOOTMODE07 † U22 IOZ Down BOOTMODE08 † U23 IOZ Down BOOTMODE09 † V23 IOZ Down BOOTMODE10 † U21 IOZ Down BOOTMODE11 † T21 IOZ Down BOOTMODE12 † V22 IOZ Down Boot Configuration Pins 38 Device Overview See Section 2.5 ‘‘Boot Modes Supported and PLL Settings’’ on page 25 for more details (Pins shared with GPIO[1:13]) Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 2-17 Terminal Functions — Signals and Control by Function (Part 2 of 13) Signal Name Ball No. Type IPD/IPU PCIESSMODE0 † W21 IOZ Down Description PCIESSMODE1 † V21 IOZ Down PCIESSEN ‡ AD20 I Down CORECLKP AD18 I CORECLKN AE19 I SRIOSGMIICLKP AD13 I SRIOSGMIICLKN AE14 I DDRCLKP A22 I DDRCLKN B22 I PCIECLKP AD14 I PCIECLKN AE15 I MCMCLKP C25 I MCMCLKN B25 I AVDDA1 Y15 P AVDDA2 F20 P SYSCLKOUT AA19 OZ Down System Clock Output to be used as a general purpose output clock for debug purposes HOUT G2 OZ UP Interrupt output pulse created by IPCGRH NMI H1 I UP Non-maskable Interrupt LRESET G4 I UP Warm Reset LRESETNMIEN F1 I UP Enable for core selects Select for the target core for LRESET and NMI. For more details see Table 7-40‘‘NMI and Local Reset Timing Requirements’’ on page 165 PCIe Mode selection pins (Pins shared with GPIO[14:15]) PCIe module enable (Pin shared with TIMI0 and GPIO16) Clock / Reset Core Clock Input to main PLL. SGMII Reference Clock to drive the SGMII SerDes PCIe Clock Input to drive PCIe SerDes Reserved SYS_CLK PLL Power Supply Pin DDR_CLK PLL Power Supply Pin CORESEL0 J5 I Down CORESEL1 G5 I Down RESETFULL J4 I UP Full Reset RESET H4 I UP Warm Reset of non isolated portion on the IC POR Y18 I RESETSTAT H5 O UP Reset Status Output BOOTCOMPLETE H3 OZ Down Boot progress indication output PTV15 F15 A Power-on Reset PTV Compensation NMOS Reference Input. A precision resistor placed between the PTV15 pin and ground is used to closely tune the output impedance of the DDR interface drivers to 50ohms. Presently the recommended value for this 1% resistor is 45.3 ohms. DDR DDRDQM0 A8 OZ DDRDQM1 E7 OZ DDRDQM2 F5 OZ DDRDQM3 E1 OZ DDRDQM8 C12 OZ Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions DDR EMIF Data Masks Device Overview 39 PRODUCT PREVIEW DDR Reference Clock Input to DDR PLL TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-17 www.ti.com Terminal Functions — Signals and Control by Function (Part 3 of 13) PRODUCT PREVIEW Signal Name Ball No. Type DDRDQS0P D10 IOZ DDRDQS0N C10 IOZ DDRDQS1P B7 IOZ DDRDQS1N A7 IOZ DDRDQS2P B4 IOZ DDRDQS2N A4 IOZ DDRDQS3P A2 IOZ DDRDQS3N B2 IOZ DDRDQS8P B13 IOZ DDRDQS8N A13 IOZ DDRCB00 D11 IOZ DDRCB01 B12 IOZ DDRCB02 C11 IOZ DDRCB03 A12 IOZ DDRD00 A9 IOZ DDRD01 C9 IOZ DDRD02 D9 IOZ DDRD03 B9 IOZ DDRD04 E9 IOZ DDRD05 E10 IOZ DDRD06 A11 IOZ DDRD07 B11 IOZ DDRD08 E6 IOZ DDRD09 E8 IOZ DDRD10 A6 IOZ DDRD11 A5 IOZ DDRD12 D6 IOZ DDRD13 C7 IOZ DDRD14 D7 IOZ DDRD15 B8 IOZ DDRD16 E5 IOZ DDRD17 B3 IOZ DDRD18 F4 IOZ DDRD19 E4 IOZ DDRD20 A3 IOZ DDRD21 B5 IOZ DDRD22 C5 IOZ DDRD23 D5 IOZ DDRD24 E2 IOZ DDRD25 F2 IOZ DDRD26 B1 IOZ DDRD27 C1 IOZ DDRD28 D1 IOZ DDRD29 D3 IOZ 40 Device Overview IPD/IPU Description DDR EMIF Data Strobe DDR EMIF Check Bits DDR EMIF Data Bus Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Terminal Functions — Signals and Control by Function (Part 4 of 13) Signal Name Ball No. Type DDRD30 C3 IOZ DDRD31 E3 IOZ DDRCE0 B15 OZ DDRCE1 C14 OZ DDRBA0 C18 OZ DDRBA1 D17 OZ DDRBA2 B19 OZ DDRA00 D16 OZ DDRA01 A19 OZ DDRA02 E16 OZ DDRA03 E15 OZ DDRA04 B18 OZ DDRA05 A17 OZ IPD/IPU Description DDR EMIF Data Bus DDR EMIF Chip Enables DDR EMIF Bank Address DDRA06 C16 OZ DDRA07 A18 OZ DDRA08 D20 OZ DDRA09 E20 OZ DDRA10 E19 OZ DDRA11 B20 OZ DDRA12 D18 OZ DDRA13 C20 OZ DDRA14 E18 OZ DDRA15 E17 OZ DDRCAS D14 OZ DDR EMIF Column Address Strobe DDRRAS A15 OZ DDR EMIF Row Address Strobe DDRWE E13 OZ DDR EMIF Write Enable DDRCKE0 A16 OZ DDR EMIF Clock Enable DDR EMIF Clock Enable DDRCKE1 A20 OZ DDRCLKOUTP0 A14 OZ DDRCLKOUTN0 B14 OZ DDRCLKOUTP1 A21 OZ DDRCLKOUTN1 B21 OZ DDRODT0 E14 OZ PRODUCT PREVIEW Table 2-17 DDR EMIF Address Bus DDR EMIF Output Clocks to drive SDRAMs (one clock pair per SDRAM) DDR EMIF On Die Termination Outputs used to set termination on the SDRAMs DDRODT1 D12 OZ DDR EMIF On Die Termination Outputs used to set termination on the SDRAMs DDRRESET B16 OZ DDR Reset signal DDRSLRATE0 C22 I Down DDRSLRATE1 D22 I Down VREFSSTL E12 P Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions DDR Slew rate control Reference Voltage Input for SSTL15 buffers used by DDR EMIF (VDDS15 ÷ 2) Device Overview 41 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-17 Signal Name www.ti.com Terminal Functions — Signals and Control by Function (Part 5 of 13) Ball No. Type IPD/IPU Description EMIF16 PRODUCT PREVIEW EMIFRW L5 OZ UP EMIFCE0 K5 OZ UP EMIFCE1 G1 OZ UP EMIFCE2 J2 OZ UP EMIFCE3 M5 OZ UP EMIFOE L4 OZ UP EMIFWE K4 OZ UP EMIFBE0 J1 OZ UP EMIFBE1 L3 OZ UP EMIFWAIT0 N5 I Down EMIFWAIT1 M4 I Down EMIF16 Control Signals EMIF16 Control Signal This EMIF16 pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘UPP’’ on page 43 EMIFA00 K1 OZ Down EMIFA01 M3 OZ Down EMIFA02 L2 OZ Down EMIFA03 P5 OZ Down EMIFA04 L1 OZ Down EMIFA05 P4 OZ Down EMIFA06 M2 OZ Down EMIFA07 M1 OZ Down EMIFA08 N2 OZ Down EMIFA09 P3 OZ Down EMIFA10 N1 OZ Down EMIFA11 P2 OZ Down EMIFA12 P1 OZ Down EMIFA13 R5 OZ Down EMIFA14 R3 OZ Down EMIFA15 R4 OZ Down EMIFA16 R2 OZ Down EMIFA17 R1 OZ Down EMIFA18 T4 OZ Down EMIFA19 T1 OZ Down EMIFA20 T5 OZ Down EMIFA21 U1 OZ Down EMIFA22 U2 OZ Down EMIFA23 U3 OZ Down 42 Device Overview EMIF16 Address These EMIF16 pins have secondary functions assigned to them as mentioned elsewhere in this table: ‘‘UPP’’ on page 43 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Terminal Functions — Signals and Control by Function (Part 6 of 13) Signal Name Ball No. Type IPD/IPU EMIFD00 U4 IOZ Down Description EMIFD01 U5 IOZ Down EMIFD02 V1 IOZ Down EMIFD03 V2 IOZ Down EMIFD04 V3 IOZ Down EMIFD05 V4 IOZ Down EMIFD06 W1 IOZ Down EMIF16 Data EMIFD07 V5 IOZ Down EMIFD08 W2 IOZ Down These EMIF16 pins have secondary functions assigned to them as mentioned elsewhere in this table: ‘‘UPP’’ on page 43. EMIFD09 Y1 IOZ Down EMIFD10 W4 IOZ Down EMIFD11 Y2 IOZ Down EMIFD12 W5 IOZ Down EMIFD13 AA1 IOZ Down EMIFD14 AB1 IOZ Down EMIFD15 AA2 IOZ Down UPP UPP_2XTXCLK † M4 I Down UPP Transmit Reference Clock (2x Transmit Rate) This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP_CH0_CLK † R2 OZ Down UPP Channel 0 Clock This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP_CH0_START † R1 OZ Down UPP Channel 0 Start This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP_CH0_ENABLE † T4 OZ Down UPP Channel 0 Enable This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP_CH0_WAIT † T1 OZ Down UPP Channel 0 Wait This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP_CH1_CLK † T5 OZ Down UPP Channel 1 Clock This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP_CH1_START † U1 OZ Down UPP Channel 1 Start This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP_CH1_ENABLE † U2 OZ Down UPP Channel 1 Enable This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP_CH1_WAIT † U3 OZ Down UPP Channel 1 Wait This UPP pin has a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 43 PRODUCT PREVIEW Table 2-17 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-17 www.ti.com Terminal Functions — Signals and Control by Function (Part 7 of 13) PRODUCT PREVIEW Signal Name Ball No. Type IPD/IPU UPPD00 † U4 IOZ Down UPPD01 † U5 IOZ Down UPPD02 † V1 IOZ Down UPPD03 † V2 IOZ Down UPPD04 † V3 IOZ Down UPPD05 † V4 IOZ Down UPPD06 † W1 IOZ Down UPPD07 † V5 IOZ Down UPPD08 † W2 IOZ Down UPPD09 † Y1 IOZ Down UPPD10 † W4 IOZ Down UPPD11 † Y2 IOZ Down UPPD12 † W5 IOZ Down UPPD13 † AA1 IOZ Down UPPD14 † AB1 IOZ Down UPPD15 † AA2 IOZ Down UPPXD00 † K1 IOZ Down UPPXD01 † M3 IOZ Down UPPXD02 † L2 IOZ Down UPPXD03 † P5 IOZ Down UPPXD04 † L1 IOZ Down UPPXD05 † P4 IOZ Down UPPXD06 † M2 IOZ Down UPPXD07 † M1 IOZ Down UPPXD08 † N2 IOZ Down UPPXD09 † P3 IOZ Down UPPXD10 † N1 IOZ Down UPPXD11 † P2 IOZ Down UPPXD12 † P1 IOZ Down UPPXD13 † R5 IOZ Down UPPXD14 † R3 IOZ Down UPPXD15 † R4 IOZ Down 44 Device Overview Description UPP Data These UPP pins have a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. UPP Extended Data These UPP pins have a primary function assigned to it as mentioned elsewhere in this table: ‘‘EMIF16’’ on page 42. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 2-17 Signal Name Terminal Functions — Signals and Control by Function (Part 8 of 13) Ball No. Type IPD/IPU Description EMU00 V24 IOZ UP EMU01 V25 IOZ UP EMU02 W25 IOZ UP EMU03 W23 IOZ UP EMU04 W24 IOZ UP EMU05 Y25 IOZ UP EMU06 Y24 IOZ UP EMU07 Y23 IOZ UP EMU08 W22 IOZ UP EMU09 Y22 IOZ UP EMU10 AA24 IOZ UP EMU11 AA25 IOZ UP EMU12 AB25 IOZ UP EMU13 AC25 IOZ UP EMU14 AA23 IOZ UP EMU15 AB22 IOZ UP EMU16 AD25 IOZ UP EMU17 AC24 IOZ UP EMU18 Y21 IOZ UP PRODUCT PREVIEW EMU Emulation and Trace Port General Purpose Input/Output (GPIO) GPIO00 T25 IOZ UP GPIO01 R25 IOZ Down GPIO02 R23 IOZ Down GPIO03 U25 IOZ Down GPIO04 T23 IOZ Down GPIO05 U24 IOZ Down GPIO06 T22 IOZ Down GPIO07 R21 IOZ Down GPIO08 U22 IOZ Down GPIO09 U23 IOZ Down GPIO10 V23 IOZ Down GPIO11 U21 IOZ Down GPIO12 T21 IOZ Down GPIO13 V22 IOZ Down GPIO14 W21 IOZ Down GPIO15 V21 IOZ Down GPIO16 † AD20 IOZ Down General Purpose Input/Output These GPIO pins have secondary functions assigned to them as mentioned elsewhere in this table:‘‘Boot Configuration Pins’’ on page 38. General Purpose Input/Output This GPIO pin has a primary function assigned to it as mentioned elsewhere in this table (‘‘Timer’’ on page 49) and a tertiary function assigned to it as mentioned elsewhere in this table (‘‘Boot Configuration Pins’’ on page 38). GPIO17 † AE21 IOZ Down General Purpose Input/Output GPIO18 † AC19 IOZ Down GPIO19 † AE20 IOZ Down These GPIO pins have primary functions assigned to them as mentioned elsewhere in this table: ‘‘Timer’’ on page 49. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 45 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-17 www.ti.com Terminal Functions — Signals and Control by Function (Part 9 of 13) PRODUCT PREVIEW Signal Name Ball No. Type IPD/IPU GPIO20 † AB15 IOZ Down GPIO21 † AA15 IOZ Down GPIO22 † AC17 IOZ Down GPIO23 † AB17 IOZ Down GPIO24 † AC14 IOZ Down GPIO25 † AC15 IOZ Down GPIO26 † AE16 IOZ Down GPIO27 † AD15 IOZ Down GPIO28 † AA12 IOZ Up GPIO29 † AA14 IOZ Up GPIO30 † AB14 IOZ Down GPIO31 † AB13 IOZ Down MCMRXN0 P24 I MCMRXP0 N24 I MCMRXN1 M25 I MCMRXP1 N25 I MCMRXN2 J25 I MCMRXP2 K25 I MCMRXN3 K24 I MCMRXP3 L24 I MCMTXN0 P22 O MCMTXP0 N22 O MCMTXN1 N21 O MCMTXP1 M21 O MCMTXN2 K22 O MCMTXP2 L22 O MCMTXN3 J21 O MCMTXP3 K21 O Description General Purpose Input/Output These GPIO pins have primary functions assigned to them as mentioned elsewhere in this table: ‘‘UART’’ on page 49. General Purpose Input/Output These GPIO pins have primary functions assigned to them as mentioned elsewhere in this table:‘‘SPI’’ on page 48. Reserved — leave unconnected Reserved — leave unconnected MCMRXFLCLK B24 O Down MCMRXFLDAT C24 O Down MCMTXFLCLK E25 I Down MCMTXFLDAT D25 I Down MCMRXPMCLK E24 I Down MCMRXPMDAT D24 I Down MCMTXPMCLK F24 O Down MCMTXPMDAT G24 O Down MCMREFCLKOUTP G25 O MCMREFCLKOUTN F25 O Reserved — leave unconnected Reserved — leave unconnected 2 I C 2 SCL AA17 IOZ I C Clock SDA AA18 IOZ I2C Data 46 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 2-17 Signal Name Terminal Functions — Signals and Control by Function (Part 10 of 13) Ball No. Type IPD/IPU Description JTAG TCK AD17 I Up JTAG Clock Input TDI AE17 I Up JTAG Data Input TDO AD19 OZ Up JTAG Data Output TMS AE18 I Up JTAG Test Mode Input TRST AB19 I Down JTAG Reset CLKR0 AA21 IOZ Down McBSP Receive Clock CLKX0 Y20 IOZ Down McBSP Transmit Clock CLKS0 AC23 IOZ Down McBSP Slow Clock FSR0 AD24 IOZ Down McBSP Receive Frame Sync FSX0 AA20 IOZ Down McBSP Transmit Frame Sync DR0 AB21 I Down McBSP Receive Data DX0 AC22 OZ Down McBSP Transmit Data CLKR1 AD23 IOZ Down McBSP Receive Clock CLKX1 AE24 IOZ Down McBSP Transmit Clock CLKS1 AC21 IOZ Down McBSP Slow Clock FSR1 AD22 IOZ Down McBSP Receive Frame Sync FSX1 AE23 IOZ Down McBSP Transmit Frame Sync DR1 AD21 I Down McBSP Receive Data DX1 AE22 OZ Down McBSP Transmit Data MDIO AB16 IOZ Up MDIO Data MDCLK AA16 O Down MDIO Clock PRODUCT PREVIEW McBSP MDIO PCIe PCIERXN0 AE12 I PCIERXP0 AE11 I PCIERXN1 AD10 I PCIERXP1 AD11 I PCIETXN0 AC12 O PCIETXP0 AC11 O PCIETXN1 AB11 O PCIETXP1 AB10 O Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PCIexpress Receive Data (2 links) PCIexpress Transmit Data (2 links) Device Overview 47 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-17 www.ti.com Terminal Functions — Signals and Control by Function (Part 11 of 13) PRODUCT PREVIEW Signal Name Ball No. Type RIORXN0 AE9 I RIORXP0 AE8 I RIORXN1 AD8 I RIORXP1 AD7 I RIORXN2 AE5 I RIORXP2 AE6 I RIORXN3 AD4 I RIORXP3 AD5 I RIOTXN0 AC9 O RIOTXP0 AC8 O RIOTXN1 AB7 O RIOTXP1 AB8 O RIOTXN2 AC5 O RIOTXP2 AC6 O RIOTXN3 AB4 O RIOTXP3 AB5 O SGMII0RXN AE2 I SGMII0RXP AE3 I SGMII0TXN AC2 O SGMII0TXP AC3 O IPD/IPU Description Reserved — leave unconnected Reserved — leave unconnected SGMII Ethernet MAC SGMII Receive Data Ethernet MAC SGMII Transmit Data SmartReflex VCNTL0 E22 OZ VCNTL1 E23 OZ VCNTL2 F23 OZ VCNTL3 G23 OZ SPISCS0 AA12 OZ Voltage Control Outputs to variable core power supply SPI Up SPI Interface Enable 0 This SPI pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45. SPISCS1 AA14 OZ Up SPI Interface Enable 1 This SPI pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45. SPICLK AA13 OZ Down SPI Clock SPIDIN AB14 I Down SPI Data In This SPI pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45. SPIDOUT AB13 OZ Down SPI Data Out This SPI pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45. 48 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 2-17 Signal Name Terminal Functions — Signals and Control by Function (Part 12 of 13) Ball No. Type IPD/IPU Description Timer TIMI0 AD20 I Down Timer Inputs TIMI1 AE21 I Down These Timer pins have secondary functions assigned to them as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 TIMO0 AC19 OZ Down Timer Outputs TIMO1 AE20 OZ Down These Timer pins have secondary functions assigned to them as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 UARTRXD AB15 I Down UART Serial Data In UART UARTTXD AA15 OZ Down PRODUCT PREVIEW This UART pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 UART Serial Data Out This UART pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 UARTCTS AC17 I Down UART Clear To Send This UART pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 UARTRTS AB17 OZ Down UART Request To Send This UART pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 UARTRXD1 AC14 I Down UART Serial Data In This UART pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 UARTTXD1 AC15 OZ Down UART Serial Data Out This UART pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 UARTCTS1 AE16 I Down UART Clear To Send This UART pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 UARTRTS1 AD15 OZ Down UART Request To Send This UART pin has a secondary function assigned to it as mentioned elsewhere in this table: ‘‘General Purpose Input/Output (GPIO)’’ on page 45 Reserved RSV01 AA22 IOZ Up Reserved - pullup to DVDD18 RSV02 J3 OZ Down Reserved - leave unconnected RSV03 H2 OZ Down Reserved - leave unconnected RSV04 AC18 O RSV05 AB18 O Reserved - leave unconnected RSV06 B23 O Reserved - leave unconnected RSV07 A23 O RSV08 Y19 OZ Down RSV09 C23 OZ Down RSV10 G22 A RSV11 H22 A Reserved - leave unconnected RSV12 Y5 A Reserved - leave unconnected RSV13 Y4 A Reserved - leave unconnected RSV14 F21 A Reserved - leave unconnected RSV15 G21 A Reserved - leave unconnected Reserved - leave unconnected Reserved - leave unconnected Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Reserved - leave unconnected Reserved - leave unconnected Reserved - connect to GND Device Overview 49 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-17 www.ti.com Terminal Functions — Signals and Control by Function (Part 13 of 13) Signal Name Ball No. Type RSV16 J20 A IPD/IPU Reserved - leave unconnected Description RSV17 AA7 A Reserved - leave unconnected RSV18 AA11 A Reserved - leave unconnected RSV19 AB3 A Reserved - leave unconnected RSV20 F22 IOZ Reserved - leave unconnected RSV21 D23 IOZ Reserved - leave unconnected RSV0A G19 A Reserved - leave unconnected RSV0B G20 A Reserved - leave unconnected End of Table 2-17 PRODUCT PREVIEW 50 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Terminal Functions — Power and Ground Supply Ball No. Volts Description AVDDA1 Y15 1.8 PLL Supply - CORE_PLL AVDDA2 F20 1.8 PLL Supply - DDR3_PLL CVDD H9, H11, H13, H15, H17, J10, J12, J14, J16, K11, K13, K15, L8, L10, L12, L14, L16, L18, M9, M11, 0.85 SmartReflex core supply voltage M13, M15, M17, N8, N10, N12, N14, N16, N18, P9, P11, P13, P15, P17, P19, R10, R12, R14, R16, to 1.1 R18, T11, T13, T15, U10, U12, U14, U16, V9, V11, V13, V15, V17 CVDD1 J8, J18, K9, K17, T9, T17, U8, U18 1.0 Fixed core supply voltage for memory array DVDD15 B10, C6, C17, C21, D2, D4, D8, D13, D15, D19, F7, F9, F11, F13, F17, F19, G8, G10, G12, G14, G16, G18 1.5 DDR IO supply DVDD18 A24, E21, G3, G6, H7, H19, H24, J6, K3, K7, L6, M7, N3, N6, P7, R6, R20, T3, T7, T19, T24, U6, U20, V7, V19, W6, W14, W16, W18, W20, Y3, Y13, Y17, AB23, AC16, AC20 1.8 IO supply VDDR1 M20 1.5 Reserved — connect to DVDD15 VDDR2 AA9 1.5 PCIe SerDes regulator supply VDDR3 AA3 1.5 SGMII SerDes regulator supply VDDR4 AA5 1.5 Reserved — connect to DVDD15 VDDT1 K19, L20, M19, N20 1.0 Reserved — connect to CVDD1 VDDT2 W8, W10, W12, Y7, Y9, Y11 1.0 SGMII/PCIe SerDes termination supply VREFSSTL E12 0.75 VSS A1, A10, A25, B6, B17, C2, C4, C8, C13, C15, C19, D21, E11, F3, F6, F8, F10, F12, F14, F16, F18, GND G7, G9, G11, G13, G15, G17, H6, H8, H10, H12, H14, H16, H18, H20, H21, H23, H25, J7, J9, J11, J13, J15, J17, J19, J22, J23, J24, K2, K6, K8, K10, K12, K14, K16, K18, K20, K23, L7, L9, L11, L13, L15, L17, L19, L21, L23, L25, M6, M8, M10, M12, M14, M16, M18, M22, M23, M24, N4, N7, N9, N11, N13, N15, N17, N19, N23, P6, P8, P10, P12, P14, P16, P18, P20, P21, P23, P25, R7, R8, R9, R11, R13, R15, R17, R19, R22, R24, T2, T6, T8, T10, T12, T14, T16, T18, T20, U7, U9, U11, U13, U15, U17, U19, V6, V8, V10, V12, V14, V16, V18, V20, W3, W7, W9, W11, W13, W15, W17, W19, Y6, Y8, Y10, Y12, Y14, Y16, AA4, AA6, AA8, AA10, AB2, AB6, AB9, AB12, AB20, AB24, AC1, AC4, AC7, AC10, AC13, AD1, AD2, AD3, AD6, AD9, AD12, AD16, AE1, AE4, AE7, AE10, AE13, AE25 DDR3 reference voltage Ground End of Table 2-18 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview 51 PRODUCT PREVIEW Table 2-18 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-19 www.ti.com Terminal Functions — By Signal Name (Part 1 of 11) Table 2-19 Terminal Functions — By Signal Name (Part 2 of 11) Table 2-19 Terminal Functions — By Signal Name (Part 3 of 11) Ball Number Signal Name Ball Number Signal Name Ball Number AVDDA1 Y15 DDRA04 B18 DDRD12 D6 AVDDA2 F20 DDRA05 A17 DDRD13 C7 D7 Signal Name BOOTCOMPLETE BOOTMODE00 † BOOTMODE01 † BOOTMODE02 † BOOTMODE03 † PRODUCT PREVIEW H3 DDRA06 C16 DDRD14 R25 DDRA07 A18 DDRD15 B8 DDRA08 D20 DDRD16 E5 DDRA09 E20 DDRD17 B3 DDRA10 E19 DDRD18 F4 DDRA11 B20 DDRD19 E4 DDRA12 D18 DDRD20 A3 DDRA13 C20 DDRD21 B5 DDRA14 E18 DDRD22 C5 DDRA15 E17 DDRD23 D5 E2 R23 U25 T23 BOOTMODE04 † U24 BOOTMODE05 † T22 BOOTMODE06 † R21 BOOTMODE07 † U22 BOOTMODE08 † U23 DDRBA0 C18 DDRD24 BOOTMODE09 † V23 DDRBA1 D17 DDRD25 F2 BOOTMODE10 † U21 DDRBA2 B19 DDRD26 B1 BOOTMODE11 † T21 DDRCAS D14 DDRD27 C1 D1 BOOTMODE12 † CLKR0 V22 DDRCB00 D11 DDRD28 AA21 DDRCB01 B12 DDRD29 D3 C3 CLKR1 AD23 DDRCB02 C11 DDRD30 CLKS0 AC23 DDRCB03 A12 DDRD31 E3 DDRCE0 B15 DDRDQM0 A8 DDRCE1 C14 DDRDQM1 E7 DDRCKE0 A16 DDRDQM2 F5 DDRCKE1 A20 DDRDQM3 E1 DDRCLKN B22 DDRDQM8 C12 DDRCLKOUTN0 B14 DDRDQS0N C10 DDRCLKOUTN1 B21 DDRDQS0P D10 DDRCLKOUTP0 A14 DDRDQS1N A7 DDRCLKOUTP1 A21 DDRDQS1P B7 DDRCLKP A22 DDRDQS2N A4 DDRD00 A9 DDRDQS2P B4 DDRD01 C9 DDRDQS3N B2 DDRD02 D9 DDRDQS3P A2 DDRD03 B9 DDRDQS8N A13 DDRD04 E9 DDRDQS8P B13 DDRD05 E10 DDRODT0 E14 DDRD06 A11 DDRODT1 D12 DDRD07 B11 DDRRAS A15 DDRD08 E6 DDRRESET B16 DDRD09 E8 DDRSLRATE0 C22 DDRD10 A6 DDRSLRATE1 D22 DDRD11 A5 DDRWE E13 CLKS1 AC21 CLKX0 Y20 CLKX1 AE24 CORECLKN AE19 CORECLKP AD18 CORESEL0 J5 CORESEL1 G5 CVDD H9, H11, H13, H15, H17, J10, J12, J14, J16, K11, K13, K15, L8, L10, L12, L14, L16, L18, M9, M11, M13, M15, M17, N8, N10, N12, N14, N16, N18, P9, P11, P13, P15, P17, P19, R10, R12, R14, R16, R18, T11, T13, T15, U10, U12, U14, U16, V9, V11, V13, V15, V17 CVDD1 J8, J18, K9, K17, T9, T17, U8, U18 DDRA00 D16 DDRA01 A19 DDRA02 DDRA03 52 Device Overview E16 E15 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-19 Signal Name Terminal Functions — By Signal Name (Part 4 of 11) Table 2-19 Terminal Functions — By Signal Name (Part 5 of 11) Table 2-19 Terminal Functions — By Signal Name (Part 6 of 11) Ball Number Signal Name Ball Number Signal Name Ball Number DR0 AB21 EMIFCE2 J2 FSR0 AD24 DR1 AD21 EMIFCE3 M5 FSR1 AD22 DVDD15 B10, C6, C17, C21, D2, D4, D8, D13, D15, D19, F7, F9, F11, F13, F17, F19, G8, G10, G12, G14, G16, G18 EMIFD00 U4 FSX0 AA20 EMIFD01 U5 FSX1 AE23 EMIFD02 V1 GPIO00 T25 EMIFD03 V2 GPIO01 R25 A24, E21, G3, G6, H7, H19, H24, J6, K3, K7, L6, M7, N3, N6, P7, R6, R20, T3, T7, T19, T24, U6, U20, V7, V19, W6, W14, W16, W18, W20, Y3, Y13, Y17, AB23, AC16, AC20 EMIFD04 V3 GPIO02 R23 EMIFD05 V4 GPIO03 U25 EMIFD06 W1 GPIO04 T23 EMIFD07 V5 GPIO05 U24 EMIFD08 W2 GPIO06 T22 EMIFD09 Y1 GPIO07 R21 EMIFD10 W4 GPIO08 U22 EMIFD11 Y2 GPIO09 U23 EMIFD12 W5 GPIO10 V23 EMIFD13 AA1 GPIO11 U21 EMIFD14 AB1 GPIO12 T21 EMIFD15 AA2 GPIO13 V22 EMIFOE L4 GPIO14 W21 EMIFRNW L5 GPIO15 V21 EMIFWAIT0 N5 GPIO16 † AD20 EMIFWAIT1 M4 GPIO17 † AE21 EMIFWE K4 GPIO18 † AC19 EMU00 V24 GPIO19 † AE20 EMU01 V25 GPIO20 † AB15 EMU02 W25 GPIO21 † AA15 EMU03 W23 GPIO22 † AC17 EMU04 W24 GPIO23 † AB17 EMU05 Y25 GPIO24 † AC14 EMU06 Y24 GPIO25 † AC15 EMU07 Y23 GPIO26 † AE16 EMU08 W22 GPIO27 † AD15 EMU09 Y22 GPIO28 † AA12 EMU10 AA24 GPIO29 † AA14 EMU11 AA25 GPIO30 † AB14 EMU12 AB25 GPIO31 † AB13 EMU13 AC25 HOUT G2 EMU14 AA23 LENDIAN † T25 EMU15 AB22 LRESETNMIEN F1 EMU16 AD25 LRESET G4 EMU17 AC24 MCMCLKN B25 EMU18 Y21 MCMCLKP C25 DVDD18 DX0 AC22 DX1 AE22 EMIFA00 K1 EMIFA01 M3 EMIFA02 L2 EMIFA03 P5 EMIFA04 L1 EMIFA05 P4 EMIFA06 M2 EMIFA07 M1 EMIFA08 N2 EMIFA09 P3 EMIFA10 N1 EMIFA11 P2 EMIFA12 P1 EMIFA13 R5 EMIFA14 R3 EMIFA15 R4 EMIFA16 R2 EMIFA17 R1 EMIFA18 T4 EMIFA19 T1 EMIFA20 T5 EMIFA21 U1 EMIFA22 U2 EMIFA23 U3 EMIFBE0 J1 EMIFBE1 L3 EMIFCE0 K5 EMIFCE1 G1 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview PRODUCT PREVIEW www.ti.com 53 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-19 www.ti.com Terminal Functions — By Signal Name (Part 7 of 11) Table 2-19 Terminal Functions — By Signal Name (Part 8 of 11) Table 2-19 Terminal Functions — By Signal Name (Part 9 of 11) PRODUCT PREVIEW Signal Name Ball Number Signal Name Ball Number Signal Name Ball Number MCMREFCLKOUTN F25 RESETFULL J4 SCL AA17 MCMREFCLKOUTP G25 RESETSTAT H5 SDA AA18 MCMRXFLCLK B24 RESET H4 SGMII0RXN AE2 MCMRXFLDAT C24 RIORXN0 AE9 SGMII0RXP AE3 MCMRXN0 P24 RIORXN1 AD8 SGMII0TXN AC2 MCMRXN1 M25 RIORXN2 AE5 SGMII0TXP AC3 MCMRXN2 J25 RIORXN3 AD4 SPICLK AA13 MCMRXN3 K24 RIORXP0 AE8 SPIDIN AB14 MCMRXP0 N24 RIORXP1 AD7 SPIDOUT AB13 MCMRXP1 N25 RIORXP2 AE6 SPISCS0 AA12 MCMRXP2 K25 RIORXP3 AD5 SPISCS1 AA14 MCMRXP3 L24 RIOTXN0 AC9 SRIOSGMIICLKN AE14 MCMRXPMCLK E24 RIOTXN1 AB7 SRIOSGMIICLKP AD13 MCMRXPMDAT D24 RIOTXN2 AC5 SYSCLKOUT AA19 MCMTXFLCLK E25 RIOTXN3 AB4 TCK AD17 MCMTXFLDAT D25 RIOTXP0 AC8 TDI AE17 MCMTXN0 P22 RIOTXP1 AB8 TDO AD19 MCMTXN1 N21 RIOTXP2 AC6 TIMI0 AD20 MCMTXN2 K22 RIOTXP3 AB5 TIMI1 AE21 MCMTXN3 J21 RSV01 AA22 TIMO0 AC19 MCMTXP0 N22 RSV02 J3 TIMO1 AE20 MCMTXP1 M21 RSV03 H2 TMS AE18 MCMTXP2 L22 RSV04 AC18 TRST AB19 MCMTXP3 K21 RSV05 AB18 UARTCTS AC17 MCMTXPMCLK F24 RSV06 B23 UARTCTS1 AE16 MCMTXPMDAT G24 RSV07 A23 UARTRTS AB17 MDCLK AA16 RSV08 Y19 UARTRTS1 AD15 MDIO AB16 RSV09 C23 UARTRXD AB15 NMI H1 RSV0A G19 UARTRXD1 AC14 PCIECLKN AE15 RSV0B G20 UARTTXD AA15 PCIECLKP AD14 RSV10 G22 UARTTXD1 AC15 PCIERXN0 AE12 RSV11 H22 UPP_2XTXCLK † M4 PCIERXN1 AD10 RSV12 Y5 UPP_CH0_CLK † R2 PCIERXP0 AE11 RSV13 Y4 UPP_CH0_ENABLE † T4 PCIERXP1 AD11 RSV14 F21 UPP_CH0_START † R1 PCIESSEN ‡ AD20 RSV15 G21 UPP_CH0_WAIT † T1 PCIETXN0 AC12 RSV16 J20 UPP_CH1_CLK † T5 PCIETXN1 AB11 RSV17 AA7 UPP_CH1_ENABLE † U2 PCIETXP0 AC11 RSV18 AA11 UPP_CH1_START † U1 PCIETXP1 AB10 RSV19 AB3 UPP_CH1_WAIT † U3 POR Y18 RSV20 F22 UPPD00 † U4 PTV15 F15 RSV21 D23 UPPD01 † U5 54 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Terminal Functions — By Signal Name (Part 10 of 11) Table 2-19 Terminal Functions — By Signal Name (Part 11 of 11) Signal Name Ball Number Signal Name Ball Number UPPD02 † V1 VDDT2 W8 UPPD03 † V2 VDDT2 W10 UPPD04 † V3 VDDT2 W12 UPPD05 † V4 VDDT2 Y7 UPPD06 † W1 VDDT2 Y9 UPPD07 † V5 VDDT2 Y11 UPPD08 † W2 VREFSSTL E12 UPPD09 † Y1 VSS UPPD10 † W4 UPPD11 † Y2 A1, A10, A25, B6, B17, C2, C4, C8, C13, C15, C19, D21, E11, F3, F6, F8, F10, F12, F14, F16, F18, G7, G9, G11, G13, G15, G17, H6, H8, H10, H12, H14, H16, H18, H20, H21, H23, H25, J7, J9, J11, J13, J15, J17, J19, J22, J23, J24, K2, K6, K8, K10, K12, K14, K16, K18, K20, K23, L7, L9, L11, L13, L15, L17, L19, L21, L23, L25, M6, M8, M10, M12, M14, M16, M18, M22, M23, M24, N4, N7, N9, N11, N13, N15, N17, N19, N23, P6, P8, P10, P12, P14, P16, P18, P20, P21, P23, P25, R7, R8, R9, R11, R13, R15, R17, R19, R22, R24, T2, T6, T8, T10, T12, T14, T16, T18, T20, U7, U9, U11, U13, U15, U17, U19, V6, V8, V10, V12, V14, V16, V18, V20, W3, W7, W9, W11, W13, W15, W17, W19, Y6, Y8, Y10, Y12, Y14, Y16, AA4, AA6, AA8, AA10, AB2, AB6, AB9, AB12, AB20, AB24, AC1, AC4, AC7, AC10, AC13, AD1, AD2, AD3, AD6, AD9, AD12, AD16, AE1, AE4, AE7, AE10, AE13, AE25 UPPD12 † W5 UPPD13 † AA1 UPPD14 † AB1 UPPD15 † AA2 UPPXD00 † K1 UPPXD01 † M3 UPPXD02 † L2 UPPXD03 † P5 UPPXD04 † L1 UPPXD05 † P4 UPPXD06 † M2 UPPXD07 † M1 UPPXD08 † N2 UPPXD09 † P3 UPPXD10 † N1 UPPXD11 † P2 UPPXD12 † P1 UPPXD13 † R5 UPPXD14 † R3 UPPXD15 † R4 VCNTL0 E22 VCNTL1 E23 VCNTL2 F23 VCNTL3 G23 VDDR1 M20 VDDR2 AA9 VDDR3 AA3 VDDR4 AA5 VDDT1 K19, L20, M19, N20 VDDT2 W8, W10, W12, Y7, Y9, Y11 VDDT1 M19 VDDT1 N20 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PRODUCT PREVIEW Table 2-19 End of Table 2-19 Device Overview 55 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-20 Terminal Functions — By Ball Number (Part 1 of 17) www.ti.com Table 2-20 Terminal Functions — By Ball Number (Part 2 of 17) Table 2-20 Terminal Functions — By Ball Number (Part 3 of 17) Signal Name Ball Number Signal Name Ball Number Signal Name A1 VSS B18 DDRA04 D10 DDRDQS0P A2 DDRDQS3P B19 DDRBA2 D11 DDRCB00 A3 DDRD20 B20 DDRA11 D12 DDRODT1 A4 DDRDQS2N B21 DDRCLKOUTN1 D13 DVDD15 A5 DDRD11 B22 DDRCLKN D14 DDRCAS A6 DDRD10 B23 RSV06 D15 DVDD15 A7 DDRDQS1N B24 MCMRXFLCLK D16 DDRA00 A8 DDRDQM0 B25 MCMCLKN D17 DDRBA1 A9 DDRD00 C1 DDRD27 D18 DDRA12 A10 VSS C2 VSS D19 DVDD15 A11 DDRD06 C3 DDRD30 D20 DDRA08 A12 DDRCB03 C4 VSS D21 VSS A13 DDRDQS8N C5 DDRD22 D22 DDRSLRATE1 A14 DDRCLKOUTP0 C6 DVDD15 D23 RSV21 A15 DDRRAS C7 DDRD13 D24 MCMRXPMDAT A16 DDRCKE0 C8 VSS D25 MCMTXFLDAT A17 DDRA05 C9 DDRD01 E1 DDRDQM3 A18 DDRA07 C10 DDRDQS0N E2 DDRD24 A19 DDRA01 C11 DDRCB02 E3 DDRD31 A20 DDRCKE1 C12 DDRDQM8 E4 DDRD19 A21 DDRCLKOUTP1 C13 VSS E5 DDRD16 A22 DDRCLKP C14 DDRCE1 E6 DDRD08 A23 RSV07 C15 VSS E7 DDRDQM1 A24 DVDD18 C16 DDRA06 E8 DDRD09 A25 VSS C17 DVDD15 E9 DDRD04 B1 DDRD26 C18 DDRBA0 E10 DDRD05 B2 DDRDQS3N C19 VSS E11 VSS B3 DDRD17 C20 DDRA13 E12 VREFSSTL B4 DDRDQS2P C21 DVDD15 E13 DDRWE B5 DDRD21 C22 DDRSLRATE0 E14 DDRODT0 B6 VSS C23 RSV09 E15 DDRA03 B7 DDRDQS1P C24 MCMRXFLDAT E16 DDRA02 B8 DDRD15 C25 MCMCLKP E17 DDRA15 B9 DDRD03 D1 DDRD28 E18 DDRA14 B10 DVDD15 D2 DVDD15 E19 DDRA10 B11 DDRD07 D3 DDRD29 E20 DDRA09 B12 DDRCB01 D4 DVDD15 E21 DVDD18 B13 DDRDQS8P D5 DDRD23 E22 VCNTL0 B14 DDRCLKOUTN0 D6 DDRD12 E23 VCNTL1 B15 DDRCE0 D7 DDRD14 E24 MCMRXPMCLK B16 DDRRESET D8 DVDD15 E25 MCMTXFLCLK B17 VSS D9 DDRD02 F1 LRESETNMIEN Ball Number PRODUCT PREVIEW 56 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Ball Number Terminal Functions — By Ball Number (Part 4 of 17) Table 2-20 Terminal Functions — By Ball Number (Part 5 of 17) Table 2-20 Terminal Functions — By Ball Number (Part 6 of 17) Signal Name Ball Number Signal Name Ball Number Signal Name F2 DDRD25 G19 RSV0A J11 VSS F3 VSS G20 RSV0B J12 CVDD F4 DDRD18 G21 RSV15 J13 VSS F5 DDRDQM2 G22 RSV10 J14 CVDD F6 VSS G23 VCNTL3 J15 VSS F7 DVDD15 G24 MCMTXPMDAT J16 CVDD F8 VSS G25 MCMREFCLKOUTP J17 VSS F9 DVDD15 H1 NMI J18 CVDD1 F10 VSS H2 RSV03 J19 VSS F11 DVDD15 H3 BOOTCOMPLETE J20 RSV16 F12 VSS H4 RESET J21 MCMTXN3 F13 DVDD15 H5 RESETSTAT J22 VSS F14 VSS H6 VSS J23 VSS F15 PTV15 H7 DVDD18 J24 VSS F16 VSS H8 VSS J25 MCMRXN2 F17 DVDD15 H9 CVDD K1 EMIFA00 F18 VSS H10 VSS K1 UPPXD00 † F19 DVDD15 H11 CVDD K2 VSS F20 AVDDA2 H12 VSS K3 DVDD18 F21 RSV14 H13 CVDD K4 EMIFWE F22 RSV20 H14 VSS K5 EMIFCE0 F23 VCNTL2 H15 CVDD K6 VSS F24 MCMTXPMCLK H16 VSS K7 DVDD18 F25 MCMREFCLKOUTN H17 CVDD K8 VSS G1 EMIFCE1 H18 VSS K9 CVDD1 G2 HOUT H19 DVDD18 K10 VSS G3 DVDD18 H20 VSS K11 CVDD G4 LRESET H21 VSS K12 VSS G5 CORESEL1 H22 RSV11 K13 CVDD G6 DVDD18 H23 VSS K14 VSS G7 VSS H24 DVDD18 K15 CVDD G8 DVDD15 H25 VSS K16 VSS G9 VSS J1 EMIFBE0 K17 CVDD1 G10 DVDD15 J2 EMIFCE2 K18 VSS G11 VSS J3 RSV02 K19 VDDT1 G12 DVDD15 J4 RESETFULL K20 VSS G13 VSS J5 CORESEL0 K21 MCMTXP3 G14 DVDD15 J6 DVDD18 K22 MCMTXN2 G15 VSS J7 VSS K23 VSS G16 DVDD15 J8 CVDD1 K24 MCMRXN3 G17 VSS J9 VSS K25 MCMRXP2 G18 DVDD15 J10 CVDD L1 EMIFA04 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Overview PRODUCT PREVIEW Table 2-20 57 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-20 Ball Number Terminal Functions — By Ball Number (Part 7 of 17) www.ti.com Table 2-20 Signal Name Ball Number L1 UPPXD04 † L2 EMIFA02 L2 UPPXD02 † L3 EMIFBE1 L4 EMIFOE L5 EMIFRNW L6 L7 Terminal Functions — By Ball Number (Part 8 of 17) Table 2-20 Terminal Functions — By Ball Number (Part 9 of 17) PRODUCT PREVIEW Signal Name Ball Number M13 CVDD P2 EMIFA11 M14 VSS P2 UPPXD11 † M15 CVDD P3 EMIFA09 M16 VSS P3 UPPXD09 † M17 CVDD P4 EMIFA05 M18 VSS P4 UPPXD05 † DVDD18 M19 VDDT1 P5 EMIFA03 VSS M20 VDDR1 P5 UPPXD03 † L8 CVDD M21 MCMTXP1 P6 VSS L9 VSS M22 VSS P7 DVDD18 L10 CVDD M23 VSS P8 VSS L11 VSS M24 VSS P9 CVDD L12 CVDD M25 MCMRXN1 P10 VSS L13 VSS N1 EMIFA10 P11 CVDD L14 CVDD N1 UPPXD10 † P12 VSS L15 VSS N2 EMIFA08 P13 CVDD L16 CVDD N2 UPPXD08 † P14 VSS L17 VSS N3 DVDD18 P15 CVDD L18 CVDD N4 VSS P16 VSS L19 VSS N5 EMIFWAIT0 P17 CVDD L20 VDDT1 N6 DVDD18 P18 VSS L21 VSS N7 VSS P19 CVDD L22 MCMTXP2 N8 CVDD P20 VSS L23 VSS N9 VSS P21 VSS L24 MCMRXP3 N10 CVDD P22 MCMTXN0 L25 VSS N11 VSS P23 VSS M1 EMIFA07 N12 CVDD P24 MCMRXN0 M1 UPPXD07 † N13 VSS P25 VSS M2 EMIFA06 N14 CVDD R1 EMIFA17 M2 UPPXD06 † N15 VSS R1 UPP_CH0_START † M3 EMIFA01 N16 CVDD R2 EMIFA16 M3 UPPXD01 † N17 VSS R2 UPP_CH0_CLK † M4 EMIFWAIT1 N18 CVDD R3 EMIFA14 M4 UPP2XTXCLK † N19 VSS R3 UPPXD14 † M5 EMIFCE3 N20 VDDT1 R4 EMIFA15 M6 VSS N21 MCMTXN1 R4 UPPXD15 † M7 DVDD18 N22 MCMTXP0 R5 EMIFA13 M8 VSS N23 VSS R5 UPPXD13 † M9 CVDD N24 MCMRXP0 R6 DVDD18 M10 VSS N25 MCMRXP1 R7 VSS M11 CVDD P1 EMIFA12 R8 VSS M12 VSS P1 UPPXD12 † R9 VSS 58 Device Overview Signal Name Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Ball Number Terminal Functions — By Ball Number (Part 10 of 17) Table 2-20 Terminal Functions — By Ball Number (Part 11 of 17) Table 2-20 Terminal Functions — By Ball Number (Part 12 of 17) Signal Name Ball Number Signal Name Ball Number R10 CVDD T21 GPIO12 U25 GPIO03 R11 VSS T21 BOOTMODE11 † U25 BOOTMODE02 † R12 CVDD T22 GPIO06 V1 EMIFD02 R13 VSS T22 BOOTMODE05 † V1 UPPD02 † R14 CVDD T23 GPIO04 V2 EMIFD03 R15 VSS T23 BOOTMODE03 † V2 UPPD03 † R16 CVDD T24 DVDD18 V3 EMIFD04 R17 VSS T25 GPIO00 V3 UPPD04 † R18 CVDD T25 LENDIAN † V4 EMIFD05 R19 VSS U1 EMIFA21 V4 UPPD05 † R20 DVDD18 U1 UPP_CH1_START † V5 EMIFD07 R21 GPIO07 U2 EMIFA22 V5 UPPD07 † R21 BOOTMODE06 † U2 UPP_CH1_ENABLE † V6 VSS R22 VSS U3 EMIFA23 V7 DVDD18 R23 GPIO02 U3 UPP_CH1_WAIT † V8 VSS R23 BOOTMODE01 † U4 EMIFD00 V9 CVDD R24 VSS U4 UPPD00 † V10 VSS R25 GPIO01 U5 EMIFD01 V11 CVDD R25 BOOTMODE00 † U5 UPPD01 † V12 VSS T1 EMIFA19 U6 DVDD18 V13 CVDD T1 UPP_CH0_WAIT † U7 VSS V14 VSS T2 VSS U8 CVDD1 V15 CVDD T3 DVDD18 U9 VSS V16 VSS T4 EMIFA18 U10 CVDD V17 CVDD T4 UPP_CH0_ENABLE † U11 VSS V18 VSS T5 EMIFA20 U12 CVDD V19 DVDD18 T5 UPP_CH1_CLK † U13 VSS V20 VSS T6 VSS U14 CVDD V21 GPIO15 T7 DVDD18 U15 VSS V21 PCIESSMODE1 † T8 VSS U16 CVDD V22 GPIO13 T9 CVDD1 U17 VSS V22 BOOTMODE12 † T10 VSS U18 CVDD1 V23 GPIO10 T11 CVDD U19 VSS V23 BOOTMODE09 † T12 VSS U20 DVDD18 V24 EMU00 T13 CVDD U21 GPIO11 V25 EMU01 T14 VSS U21 BOOTMODE10 † W1 EMIFD06 T15 CVDD U22 GPIO08 W1 UPPD06 † T16 VSS U22 BOOTMODE07 † W2 EMIFD08 T17 CVDD1 U23 GPIO09 W2 UPPD08 † T18 VSS U23 BOOTMODE08 † W3 VSS T19 DVDD18 U24 GPIO05 W4 EMIFD10 T20 VSS U24 BOOTMODE04 † W4 UPPD10 † Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Signal Name Device Overview PRODUCT PREVIEW Table 2-20 59 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 2-20 Ball Number Terminal Functions — By Ball Number (Part 13 of 17) www.ti.com Table 2-20 Signal Name Ball Number W5 EMIFD12 W5 UPPD12 † W6 DVDD18 W7 VSS W8 W9 Terminal Functions — By Ball Number (Part 14 of 17) Table 2-20 Terminal Functions — By Ball Number (Part 15 of 17) PRODUCT PREVIEW Signal Name Ball Number Signal Name Y18 POR AB4 RIOTXN3 Y19 RSV08 AB5 RIOTXP3 Y20 CLKX0 AB6 VSS Y21 EMU18 AB7 RIOTXN1 VDDT2 Y22 EMU09 AB8 RIOTXP1 VSS Y23 EMU07 AB9 VSS W10 VDDT2 Y24 EMU06 AB10 PCIETXP1 W11 VSS Y25 EMU05 AB11 PCIETXN1 W12 VDDT2 AA1 EMIFD13 AB12 VSS W13 VSS AA1 UPPD13 † AB13 SPIDOUT W14 DVDD18 AA2 EMIFD15 AB13 GPIO31 † W15 VSS AA2 UPPD15 † AB14 SPIDIN W16 DVDD18 AA3 VDDR3 AB14 GPIO30 † W17 VSS AA4 VSS AB15 UARTRXD W18 DVDD18 AA5 VDDR4 AB15 GPIO20 † W19 VSS AA6 VSS AB16 MDIO W20 DVDD18 AA7 RSV17 AB17 UARTRTS W21 GPIO14 † AA8 VSS AB17 GPIO23 † W21 PCIESSMODE0 † AA9 VDDR2 AB18 RSV05 W22 EMU08 AA10 VSS AB19 TRST W23 EMU03 AA11 RSV18 AB20 VSS W24 EMU04 AA12 SPISCS0 AB21 DR0 W25 EMU02 AA12 GPIO28 † AB22 EMU15 Y1 EMIFD09 AA13 SPICLK AB23 DVDD18 Y1 UPPD09 † AA14 SPISCS1 AB24 VSS Y2 EMIFD11 AA14 GPIO29 † AB25 EMU12 Y2 UPPD11 † AA15 UARTTXD AC1 VSS Y3 DVDD18 AA15 GPIO21 † AC2 SGMII0TXN Y4 RSV13 AA16 MDCLK AC3 SGMII0TXP Y5 RSV12 AA17 SCL AC4 VSS Y6 VSS AA18 SDA AC5 RIOTXN2 Y7 VDDT2 AA19 SYSCLKOUT AC6 RIOTXP2 Y8 VSS AA20 FSX0 AC7 VSS Y9 VDDT2 AA21 CLKR0 AC8 RIOTXP0 Y10 VSS AA22 RSV01 AC9 RIOTXN0 Y11 VDDT2 AA23 EMU14 AC10 VSS Y12 VSS AA24 EMU10 AC11 PCIETXP0 Y13 DVDD18 AA25 EMU11 AC12 PCIETXN0 Y14 VSS AB1 EMIFD14 AC13 VSS Y15 AVDDA1 AB1 UPPD14 † AC14 UARTRXD1 Y16 VSS AB2 VSS AC14 GPIO24 † Y17 DVDD18 AB3 RSV19 AC15 UARTTXD1 60 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Ball Number Terminal Functions — By Ball Number (Part 16 of 17) Table 2-20 Terminal Functions — By Ball Number (Part 17 of 17) Signal Name Ball Number Signal Name AC15 GPIO25 † AE2 SGMII0RXN AC16 DVDD18 AE3 SGMII0RXP AC17 UARTCTS AE4 VSS AC17 GPIO22 † AE5 RIORXN2 AC18 RSV04 AE6 RIORXP2 AC19 TIMO0 AE7 VSS AC19 GPIO18 † AE8 RIORXP0 AC20 DVDD18 AE9 RIORXN0 AC21 CLKS1 AE10 VSS AC22 DX0 AE11 PCIERXP0 AC23 CLKS0 AE12 PCIERXN0 AC24 EMU17 AE13 VSS AC25 EMU13 AE14 SRIOSGMIICLKN AD1 VSS AE15 PCIECLKN AD2 VSS AE16 UARTCTS1 AD3 VSS AE16 GPIO26 † AD4 RIORXN3 AE17 TDI AD5 RIORXP3 AE18 TMS AD6 VSS AE19 CORECLKN AD7 RIORXP1 AE20 TIMO1 AD8 RIORXN1 AE20 GPIO19 † AD9 VSS AE21 TIMI1 AD10 PCIERXN1 AE21 GPIO17 † AD11 PCIERXP1 AE22 DX1 AD12 VSS AE23 FSX1 AD13 SRIOSGMIICLKP AE24 CLKX1 AD14 PCIECLKP AE25 VSS AD15 UARTRTS1 End of Table 2-20 AD15 GPIO27 † AD16 VSS AD17 TCK AD18 CORECLKP AD19 TDO AD20 TIMI0 AD20 GPIO16 † AD20 PCIESSEN ‡ AD21 DR1 AD22 FSR1 AD23 CLKR1 AD24 FSR0 AD25 EMU16 AE1 VSS Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PRODUCT PREVIEW Table 2-20 Device Overview 61 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.9 Development and Support 2.9.1 Development Support In case the customer would like to develop their own features and software on the C6654 device, TI offers an extensive line of development tools for the TMS320C6000™ DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). PRODUCT PREVIEW The following products support development of C6000™ DSP-based applications: • Software Development Tools: – Code Composer Studio™ Integrated Development Environment (IDE), including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools. – Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any DSP application. • Hardware Development Tools: – Extended Development System (XDS™) Emulator (supports C6000™ DSP multiprocessor system debug) – EVM (Evaluation Module) 2.9.2 Device Support 2.9.2.1 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMX320CMH). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: • TMX: Experimental device that is not necessarily representative of the final device's electrical specifications • TMP: Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification • TMS: Fully qualified production device Support tool development evolutionary flow: • TMDX: Development-support product that has not yet completed Texas Instruments internal qualification testing. • TMDS: Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped with the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. 62 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, CZH), the temperature range (for example, blank is the default case temperature range), and the device speed range, in Megahertz (for example, blank is 1000 MHz [1 GHz]). For device part numbers and further ordering information for TMS320C6654 in the CZH or GZH package type, see the TI website www.ti.com or contact your TI sales representative. Figure 2-19 provides a legend for reading the complete device name for any C66x KeyStone device. C66x DSP Device Nomenclature (including the TMS320C6654) TMX 320 C6654 PREFIX TMX = Experimental device TMS = Qualified device DEVICE FAMILY 320 = TMS320 DSP family DEVICE C66x DSP: C6654 SILICON REVISION Blank = Initial Silicon 1.0 SECURITY Blank = General purpose device S = Secure device Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions ( ) ( ) CZH ( ) ( ) DEVICE SPEED RANGE 8 = 850 MHz PRODUCT PREVIEW Figure 2-19 TEMPERATURE RANGE Blank = 0°C to +85°C (default case temperature) A = Extended temperature range (-40°C to +100°C) L = Extended low temperature range (-55°C to +100°C) PACKAGE TYPE CZH = 625-pin plastic ball grid array, with Pb-free die bumps and solder balls GZH = 625-pin plastic ball grid array Device Overview 63 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2.10 Related Documentation from Texas Instruments These documents describe the TMS320C6654 Fixed and Floating-Point Digital Signal Processor. Copies of these documents are available on the Internet at www.ti.com PRODUCT PREVIEW 64-bit Timer (Timer 64) for KeyStone Devices User Guide SPRUGV5 Bootloader for the C66x DSP User Guide SPRUGY5 C66x CorePac User Guide SPRUGW0 C66x CPU and Instruction Set Reference Guide SPRUGH7 C66x DSP Cache User Guide SPRUGY8 DDR3 Design Guide for KeyStone Devices SPRABI1 DDR3 Memory Controller for KeyStone Devices User Guide SPRUGV8 DSP Power Consumption Summary for KeyStone Devices SPRABL4 Embedded Trace for KeyStone Devices User Guide SPRUGZ2 Emulation and Trace Headers Technical Reference SPRU655 Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide SPRUGS5 External Memory Interface (EMIF16) for KeyStone Devices User Guide SPRUGZ3 General Purpose Input/Output (GPIO) for KeyStone Devices User Guide SPRUGV1 Gigabit Ethernet (GbE) Subsystem for KeyStone Devices User Guide SPRUGV9 Hardware Design Guide for KeyStone Devices SPRABI2 Inter Integrated Circuit (I2C) for KeyStone Devices User Guide SPRUGV3 Chip Interrupt Controller (CIC) for KeyStone Devices User Guide SPRUGW4 Memory Protection Unit (MPU) for KeyStone Devices User Guide SPRUGW5 Multichannel Buffered Serial Port (McBSP) for KeyStone Devices User Guide Multicore Navigator for KeyStone Devices User Guide SPRUGR9 Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide SPRUGW7 Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide SPRUGS6 Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide SPRUGV2 Power Sleep Controller (PSC) for KeyStone Devices User Guide SPRUGV4 Semaphore2 Hardware Module for KeyStone Devices User Guide SPRUGS3 Serial Peripheral Interface (SPI) for KeyStone Devices User Guide SPRUGP2 Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices User Guide SPRUGP1 Universal Parallel Port (UPP) for KeyStone Devices User Guide Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems SPRA387 Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs SPRA753 Using IBIS Models for Timing Analysis SPRA839 64 Device Overview Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3 Device Configuration On the TMS320C6654 device, certain device configurations like boot mode and endianess, are selected at device power-on reset. The status of the peripherals (enabled/disabled) is determined after device power-on reset. Table 3-1 describes the device configuration pins. The logic level is latched at power-on reset to determine the device configuration. The logic level on the device configuration pins can be set by using external pullup/pulldown resistors or by using some control device (e.g., FPGA/CPLD) to intelligently drive these pins. When using a control device, care should be taken to ensure there is no contention on the lines when the device is out of reset. The device configuration pins are sampled during power-on reset and are driven after the reset is removed. To avoid contention, the control device must stop driving the device configuration pins of the DSP. And when driving by a control device, the control device must be fully powered and out of reset itself and driving the pins before the DSP can be taken out of reset. Also, please note that most of the device configuration pins are shared with other function pins (LENDIAN/GPIO[0], BOOTMODE[12:0]/GPIO[13:1], PCIESSMODE[1:0]/GPIO[15:14] and PCIESSEN/TIMI0), some time must be given following the rising edge of reset in order to drive these device configuration input pins before they assume an output state (those GPIO pins should not become outputs during boot). Another caution that needs to be noted is that systems using TIMI0 (pin shared with PCIESSEN) as a clock input must assure that the clock itself is disabled from the input until after reset is released and a control device is no longer driving that input. Note—If a configuration pin must be routed out from the device and it is not driven (Hi-Z state), the internal pullup/pulldown (IPU/IPD) resistor should not be relied upon. TI recommends the use of an external pullup/pulldown resistor. For more detailed information on pullup/pulldown resistors and situations in which external pullup/pulldown resistors are required, see Section 3.4 ‘‘Pullup/Pulldown Resistors’’ on page 86. Table 3-1 TMS320C6654 Device Configuration Pins Configuration Pin LENDIAN (1) (2) BOOTMODE[12:0] PCIESSMODE[1:0] PCIESSEN (1) (2) (1) (2) (1) (2) Pin No. IPD/IPU (1) Functional Description T25 IPU Device endian mode (LENDIAN). 0 = Device operates in big endian mode 1 = Device operates in little endian mode R25, R3, U25, T23, U24, T22, R21, U22, U23, V23, U21, T21, V22 IPD Method of boot. W21, V21 IPD PCIe Subsystem mode selection. 00 = PCIe in end point mode 01 = PCIe legacy end point (support for legacy INTx) 10 = PCIe in root complex mode 11 = Reserved AD20 IPD PCIe subsystem enable/disable. 0 = PCIE Subsystem is disabled 1 = PCIE Subsystem is enabled Some pins may not be used by bootloader and can be used as general purpose config pins. Refer to the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64 for how to determine the device enumeration ID value. End of Table 3-1 1 Internal 100-μA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see Section 3.4 ‘‘Pullup/Pulldown Resistors’’ on page 86. 2 These signal names are the secondary functions of these pins. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 65 PRODUCT PREVIEW 3.1 Device Configuration at Device Reset TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.2 Peripheral Selection After Device Reset Several of the peripherals on the TMS320C6654 are controlled by the Power Sleep Controller (PSC). By default, the PCIe is held in reset and clock-gated. The memory in this module is also in a low-leakage sleep mode. Software is required to turn this memory on. The software enables the module (turns on clocks and de-asserts reset) before this module can be used. If one of the above modules is used in the selected ROM boot mode, the ROM code will automatically enable the module. All other modules come up enabled by default and there is no special software sequence to enable. For more detailed information on the PSC usage, see the Power Sleep Controller (PSC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. PRODUCT PREVIEW 3.3 Device State Control Registers The TMS320C6654 device has a set of registers that are used to provide the status or configure certain parts of its peripherals. These registers are shown in Table 3-2. Table 3-2 Device State Control Registers (Part 1 of 4) Address Start Address End Size Field 0x02620000 0x02620007 8B Reserved 0x02620008 0x02620017 16B Reserved 0x02620018 0x0262001B 4B JTAGID 0x0262001C 0x0262001F 4B Reserved 0x02620020 0x02620023 4B DEVSTAT 0x02620024 0x02620037 20B Reserved 0x02620038 0x0262003B 4B KICK0 0x0262003C 0x0262003F 4B KICK1 0x02620040 0x02620043 4B DSP_BOOT_ADDR0 The boot address for C66x DSP CorePac0 0x02620044 0x02620047 4B Reserved Reserved 0x02620048 0x0262004B 4B Reserved 0x0262004C 0x0262004F 4B Reserved 0x02620050 0x02620053 4B Reserved 0x02620054 0x02620057 4B Reserved 0x02620058 0x0262005B 4B Reserved 0x0262005C 0x0262005F 4B Reserved 0x02620060 0x026200DF 128B Reserved 0x026200E0 0x0262010F 48B Reserved 0x02620110 0x02620117 8B MACID 0x02620118 0x0262012F 24B Reserved 0x02620130 0x02620133 4B LRSTNMIPINSTAT_CLR See section 3.3.6 0x02620134 0x02620137 4B RESET_STAT_CLR See section 3.3.8 0x02620138 0x0262013B 4B Reserved 0x0262013C 0x0262013F 4B BOOTCOMPLETE 0x02620140 0x02620143 4B Reserved 0x02620144 0x02620147 4B RESET_STAT 0x02620148 0x0262014B 4B LRSTNMIPINSTAT See section 3.3.5 0x0262014C 0x0262014F 4B DEVCFG See section 3.3.2 66 Device Configuration Description See section 3.3.3 See section 3.3.1 See section 3.3.4 See section 7.16 ‘‘Ethernet Media Access Controller (EMAC)’’ on page 195 See section 3.3.9 See section 3.3.7 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 3-2 Device State Control Registers (Part 2 of 4) Address Start Address End Size Field Description 0x02620150 0x02620153 4B PWRSTATECTL See section 3.3.10 0x02620154 0x02620157 4B Reserved 0x02620158 0x0262015B 4B SMGII_SERDES_STS 0x0262015C 0x0262015F 4B PCIE_SERDES_STS 0x02620160 0x02620163 4B Reserved 0x02620164 0x02620167 4B Reserved 0x02620168 0x0262016B 4B Reserved 0x0262016F 4B UPP_CLOCK 0x02620170 0x02620183 20B Reserved 0x02620184 0x0262018F 12B Reserved 0x02620190 0x02620193 4B Reserved 0x02620194 0x02620197 4B Reserved 0x02620198 0x0262019B 4B Reserved 0x0262019C 0x0262019F 4B Reserved 0x026201A0 0x026201A3 4B Reserved 0x026201A4 0x026201A7 4B Reserved 0x026201A8 0x026201AB 4B Reserved 0x026201AC 0x026201AF 4B Reserved 0x026201B0 0x026201B3 4B Reserved 0x026201B4 0x026201B7 4B Reserved 0x026201B8 0x026201BB 4B Reserved 0x026201BC 0x026201BF 4B Reserved 0x026201C0 0x026201C3 4B Reserved 0x026201C4 0x026201C7 4B Reserved 0x026201C8 0x026201CB 4B Reserved 0x026201CC 0x026201CF 4B Reserved 0x026201D0 0x026201FF 48B Reserved 0x02620200 0x02620203 4B NMIGR0 0x02620204 0x02620207 4B Reserved 0x02620208 0x0262020B 4B Reserved 0x0262020C 0x0262020F 4B Reserved 0x02620210 0x02620213 4B Reserved 0x02620214 0x02620217 4B Reserved 0x02620218 0x0262021B 4B Reserved 0x0262021C 0x0262021F 4B Reserved 0x02620220 0x0262023F 32B Reserved 0x02620240 0x02620243 4B IPCGR0 0x02620244 0x02620247 4B Reserved 0x02620248 0x0262024B 4B Reserved 0x0262024C 0x0262024F 4B Reserved 0x02620250 0x02620253 4B Reserved 0x02620254 0x02620257 4B Reserved 0x02620258 0x0262025B 4B Reserved Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions See section 3.3.22 PRODUCT PREVIEW 0x0262016C See ‘‘Related Documentation from Texas Instruments’’ on page 64 See section 3.3.11 See section 3.3.12 Device Configuration 67 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 3-2 www.ti.com Device State Control Registers (Part 3 of 4) Address Start Address End Size Field 0x0262025C 0x0262025F 4B Reserved 0x02620260 0x0262027B 28B Reserved Description PRODUCT PREVIEW 0x0262027C 0x0262027F 4B IPCGRH See section 3.3.14 0x02620280 0x02620283 4B IPCAR0 See section 3.3.13 0x02620284 0x02620287 4B Reserved 0x02620288 0x0262028B 4B Reserved 0x0262028C 0x0262028F 4B Reserved 0x02620290 0x02620293 4B Reserved 0x02620294 0x02620297 4B Reserved 0x02620298 0x0262029B 4B Reserved 0x0262029C 0x0262029F 4B Reserved 0x026202A0 0x026202BB 28B Reserved 0x026202BC 0x026202BF 4B IPCARH 0x026202C0 0x026202FF 64B Reserved 0x02620300 0x02620303 4B TINPSEL See section 3.3.16 See section 3.3.15 0x02620304 0x02620307 4B TOUTPSEL See section 3.3.17 0x02620308 0x0262030B 4B RSTMUX0 See section 3.3.18 0x0262030C 0x0262030F 4B Reserved 0x02620310 0x02620313 4B Reserved 0x02620314 0x02620317 4B Reserved 0x02620318 0x0262031B 4B Reserved 0x0262031C 0x0262031F 4B Reserved 0x02620320 0x02620323 4B Reserved 0x02620324 0x02620327 4B Reserved 0x02620328 0x0262032B 4B MAINPLLCTL0 0x0262032C 0x0262032F 4B MAINPLLCTL1 0x02620330 0x02620333 4B DDR3PLLCTL 0x02620334 0x02620337 4B Reserved 0x02620338 0x0262033B 4B Reserved 0x0262033C 0x0262033F 4B Reserved 0x02620340 0x02620343 4B SGMII_SERDES_CFGPLL 0x02620344 0x02620347 4B SGMII_SERDES_CFGRX0 0x02620348 0x0262034B 4B SGMII_SERDES_CFGTX0 0x0262034C 0x0262034F 4B Reserved 0x02620350 0x02620353 4B Reserved 0x02620354 0x02620357 4B Reserved 0x02620358 0x0262035B 4B PCIE_SERDES_CFGPLL 0x0262035C 0x0262035F 4B Reserved 68 Device Configuration See section 7.5 ‘‘Main PLL and PLL Controller’’ on page 126 See section 7.6 ‘‘DD3 PLL’’ on page 139 See ‘‘Related Documentation from Texas Instruments’’ on page 64 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Device State Control Registers (Part 4 of 4) Address Start Address End Size Field 0x02620360 0x02620363 4B Reserved 0x02620364 0x02620367 4B Reserved 0x02620368 0x0262036B 4B Reserved 0x0262036C 0x0262036F 4B Reserved 0x02620370 0x02620373 4B Reserved 0x02620374 0x02620377 4B Reserved 0x02620378 0x0262037B 4B Reserved 0x0262037C 0x0262037F 4B Reserved 0x02620380 0x02620383 4B Reserved 0x02620384 0x02620387 4B Reserved 0x02620388 0x026203AF 28B Reserved 0x026203B0 0x026203B3 4B Reserved 0x026203B4 0x026203B7 4B Reserved 0x026203B8 0x026203BB 4B Reserved 0x026203BC 0x026203BF 4B Reserved 0x026203C0 0x026203C3 4B Reserved 0x026203C4 0x026203C7 4B Reserved 0x026203C8 0x026203CB 4B Reserved 0x026203CC 0x026203CF 4B Reserved 0x026203D0 0x026203D3 4B Reserved 0x026203D4 0x026203D7 4B Reserved 0x026203D8 0x026203DB 4B Reserved 0x026203DC 0x026203F7 28B Reserved 0x026203F8 0x026203FB 4B DEVSPEED 0x026203FC 0x026203FF 4B Reserved Description PRODUCT PREVIEW Table 3-2 See section 3.3.19 0x02620400 0x02620403 4B PKTDMA_PRI_ALLOC 0x02620404 0x02620467 100B Reserved See section 4.4 ‘‘Bus Priorities’’ on page 94 0x02620468 0x0262057f 280B Reserved 0x02620580 0x02620583 4B PIN_CONTROL_0 See section 3.3.20 0x02620584 0x02620587 4B PIN_CONTROL_1 See section 3.3.21 0x02620588 0x0262058B 4B EMAC_UPP_PRI_ALLOC See section 4.4 ‘‘Bus Priorities’’ on page 94 End of Table 3-2 3.3.1 Device Status Register The Device Status Register depicts the device configuration selected upon a power-on reset by either the POR or RESETFULL pin. Once set, these bits will remain set until the next power-on reset. The Device Status Register is shown in Figure 3-1 and described in Table 3-3. Figure 3-1 Device Status Register 31 17 Reserved 16 15 14 13 1 0 PCIESSEN PCIESSMODE[1:0 BOOTMODE[12:0] LENDIAN R-x R/W-xx R/W-xxxxxxxxxxxx R-x (1) R-0 Legend: R = Read only; RW = Read/Write; -n = value after reset 1 x indicates the bootstrap value latched via the external pin Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 69 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 3-3 Bit www.ti.com Device Status Register Field Descriptions Field Description PRODUCT PREVIEW 31-17 Reserved Reserved. Read only, writes have no effect. 16 PCIESSEN PCIe module enable 0 = PCIe module disabled 1 = PCIe module enabled 15-14 PCIESSMODE[1:0] PCIe Mode selection pins 00b = PCIe in End-point mode 01b = PCIe in Legacy End-point mode (support for legacy INTx) 10b = PCIe in Root complex mode 11b = Reserved 13-1 BOOTMODE[12:0] Determines the bootmode configured for the device. For more information on bootmode, refer to Section 2.5 ‘‘Boot Modes Supported and PLL Settings’’ on page 25 and see the Bootloader for the C66x DSP User Guide in 2.10 ‘‘Related Documentation from Texas Instruments’’ on page 64 0 LENDIAN Device Endian mode (LENDIAN) — Shows the status of whether the system is operating in Big Endian mode or Little Endian mode. 0 = System is operating in Big Endian mode 1 = System is operating in Little Endian mode End of Table 3-3 3.3.2 Device Configuration Register The Device Configuration Register is one-time writeable through software. The register is reset on all hard resets and is locked after the first write. The Device Configuration Register is shown in Figure 3-2 and described in Table 3-4. Figure 3-2 Device Configuration Register (DEVCFG) 31 1 0 Reserved SYSCLKOUTEN R-0 R/W-1 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-4 Device Configuration Register Field Descriptions Bit Field Description 31-1 Reserved Reserved. Read only, writes have no effect. 0 SYSCLKOUTEN SYSCLKOUT Enable 0 = No clock output 1 = Clock output enabled (default) End of Table 3-4 70 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.3 JTAG ID (JTAGID) Register Description The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x0262 0018. The JTAG ID Register is shown in Figure 3-3 and described in Table 3-5. Figure 3-3 JTAG ID (JTAGID) Register 31 28 27 12 11 1 0 VARIANT PART NUMBER MANUFACTURER LSB R-xxxxb R-1011 1001 0111 1010b 0000 0010 111b R-1 Legend: RW = Read/Write; R = Read only; -n = value after reset JTAG ID Register Field Descriptions Bit Field Value Description 31-28 VARIANT xxxxb Variant (4-Bit) value. 27-12 PART NUMBER 1011 1001 0111 1010b Part Number for boundary scan 11-1 MANUFACTURER 0000 0010 111b Manufacturer 0 LSB 1b This bit is read as a 1 for TMS320C6654 PRODUCT PREVIEW Table 3-5 End of Table 3-5 Note—The value of the VARIANT and PART NUMBER fields depend on the silicon revision being used. See the Silicon Errata for details. 3.3.4 Kicker Mechanism (KICK0 and KICK1) Register The Bootcfg module contains a kicker mechanism to prevent any spurious writes from changing any of the Bootcfg MMR values. When the kicker is locked (which it is initially after power on reset) none of the Bootcfg MMRs are writable (they are only readable). On the C6654, the exception to this are the IPC registers such as IPCGRx and IPCARx. These registers are not protected by the kicker mechanism. This mechanism requires two MMR writes to the KICK0 and KICK1 registers with exact data values before the kicker lock mechanism is un-locked. See Table 3-2 ‘‘Device State Control Registers’’ on page 66 for the address location. Once released then all the Bootcfg MMRs having write permissions are writable (the read only MMRs are still read only). The first KICK0 data is 0x83e70b13. The second KICK1 data is 0x95a4f1e0. Writing any other data value to either of these kick MMRs will lock the kicker mechanism and block any writes to Bootcfg MMRs. To ensure protection to all Bootcfg MMRs, software must always re-lock the kicker mechanism after completing the MMR writes. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 71 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.5 LRESETNMI PIN Status (LRSTNMIPINSTAT) Register The LRSTNMIPINSTAT Register is created in Boot Configuration to latch the status of LRESET and NMI based on CORESEL. The LRESETNMI PIN Status Register is shown and described in the following tables. Figure 3-4 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) 31 18 17 16 Reserved Reserved NMI0 R, +0000 0000 R-0 R-0 15 2 1 0 Reserved Reserved LR0 R, +0000 0000 R-0 R-0 Legend: R = Read only; -n = value after reset; Table 3-6 Bit LRESETNMI PIN Status Register (LRSTNMIPINSTAT) Field Descriptions PRODUCT PREVIEW Field Description 31-18 Reserved Reserved 17 Reserved Reserved 16 NMI0 CorePac0 in NMI 15-2 Reserved Reserved 1 Reserved Reserved 0 LR0 CorePac0 in Local Reset End of Table 3-6 3.3.6 LRESETNMI PIN Status Clear (LRSTNMIPINSTAT_CLR) Register The LRSTNMIPINSTAT_CLR Register is used to clear the status of LRESET and NMI based on CORESEL. The LRESETNMI PIN Status Clear Register is shown and described in the following tables. Figure 3-5 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) 31 18 17 16 Reserved Reserved NMI0 R, +0000 0000 WC,+0 WC,+0 15 2 1 0 Reserved Reserved LR0 R, +0000 0000 WC,+0 WC,+0 Legend: R = Read only; -n = value after reset; WC = Write 1 to Clear Table 3-7 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT_CLR) Field Descriptions Bit Field Description 31-18 Reserved Reserved 17 Reserved Reserved 16 NMI0 CorePac0 in NMI Clear 15-2 Reserved Reserved 1 Reserved Reserved 0 LR0 CorePac0 in Local Reset Clear End of Table 3-7 72 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.7 Reset Status (RESET_STAT) Register The reset status register (RESET_STAT) captures the status of Local reset (LRx) for each of the cores and also the global device reset (GR). Software can use this information to take different device initialization steps, if desired. • In case of Local reset: The LRx bits are written as 1 and GR bit is written as 0 only when the CorePac receives an local reset without receiving a global reset. • In case of Global reset: The LRx bits are written as 0 and GR bit is written as 1 only when a global reset is asserted. The Reset Status Register is shown and described in the following tables. 31 Reset Status Register (RESET_STAT) 30 2 1 0 GR Reserved Reserved LR0 R, +1 R, + 000 0000 0000 0000 0000 0000 R,+0 R,+0 PRODUCT PREVIEW Figure 3-6 Legend: R = Read only; -n = value after reset Table 3-8 Reset Status Register (RESET_STAT) Field Descriptions Bit Field Description 31 GR Global reset status 0 = Device has not received a global reset. 1 = Device received a global reset. 30-2 Reserved Reserved. 1 Reserved Reserved. 0 LR0 CorePac0 reset status 0 = CorePac0 has not received a local reset. 1 = CorePac0 received a local reset. End of Table 3-8 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 73 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.8 Reset Status Clear (RESET_STAT_CLR) Register The RESET_STAT bits can be cleared by writing 1 to the corresponding bit in the RESET_STAT_CLR register. The Reset Status Clear Register is shown and described in the following tables. Figure 3-7 31 Reset Status Clear Register (RESET_STAT_CLR) 30 2 1 0 GR Reserved Reserved LR0 RW, +0 R, + 000 0000 0000 0000 0000 0000 RW,+0 RW,+0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-9 Reset Status Clear Register (RESET_STAT_CLR) Field Descriptions PRODUCT PREVIEW Bit Field Description 31 GR Global reset clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the GR bit clears the corresponding bit in the RESET_STAT register. 30-2 Reserved Reserved. 1 Reserved Reserved. 0 LR0 CorePac0 reset clear bit 0 = Writing a 0 has no effect. 1 = Writing a 1 to the LR0 bit clears the corresponding bit in the RESET_STAT register. End of Table 3-9 3.3.9 Boot Complete (BOOTCOMPLETE) Register The BOOTCOMPLETE register controls the BOOTCOMPLETE pin status. The purpose is to indicate the completion of the ROM booting process. The Boot Complete Register is shown and described in the following tables. Figure 3-8 Boot Complete Register (BOOTCOMPLETE) 31 2 1 0 Reserved Reserved BC0 R, + 0000 0000 0000 0000 0000 0000 RW,+0 RW,+0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-10 Boot Complete Register (BOOTCOMPLETE) Field Descriptions Bit Field Description 31-2 Reserved Reserved. 1 Reserved Reserved 0 BC0 CorePac0 boot status 0 = CorePac0 boot NOT complete 1 = CorePac0 boot complete End of Table 3-10 The BCx bit indicates the boot complete status of the corresponding core. All BCx bits will be sticky bits — that is they can be set only once by the software after device reset and they will be cleared to 0 on all device resets. 74 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Boot ROM code will be implemented such that each core will set its corresponding BCx bit immediately before branching to the predefined location in memory. 3.3.10 Power State Control (PWRSTATECTL) Register The PWRSTATECTL register is controlled by the software to indicate the power-saving mode. ROM code reads this register to differentiate between the various power saving modes. This register is cleared only by POR and will survive all other device resets. See the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 64 for more information. The Power State Control Register is shown in Figure 3-9 and described in Table 3-11. Power State Control Register (PWRSTATECTL) 31 3 2 1 0 GENERAL_PURPOSE HIBERNATION_MODE HIBERNATION STANDBY RW, +0000 0000 0000 0000 0000 0000 0000 0 RW,+0 RW,+0 RW,+0 Legend: RW = Read/Write; -n = value after reset Table 3-11 Power State Control Register (PWRSTATECTL) Field Descriptions Bit Field Description 31-3 GENERAL_PURPOSE Used to provide a start address for execution out of the hibernation modes. See the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 2 HIBERNATION_MODE Indicates whether the device is in hibernation mode 1 or mode 2. 0 = Hibernation mode 1 1 = Hibernation mode 2 1 HIBERNATION Indicates whether the device is in hibernation mode or not. 0 = Not in hibernation mode 1 = Hibernation mode 0 STANDBY Indicates whether the device is in standby mode or not. 0 = Not in standby mode 1 = Standby mode End of Table 3-11 3.3.11 NMI Event Generation to CorePac (NMIGRx) Register NMIGRx registers are used for generating NMI events to the CorePac. The C6654 has only NMIGR0, which generates an NMI event to the CorePac. Writing a 1 to the NMIG field generates a NMI pulse. Writing a 0 has no effect and reads return 0 and have no other effect. The NMI Even Generation to CorePac Register is shown in Figure 3-10 and described in Table 3-12. Figure 3-10 NMI Generation Register (NMIGRx) 31 1 0 Reserved NMIG R, +0000 0000 0000 0000 0000 0000 0000 000 RW,+0 Legend: RW = Read/Write; -n = value after reset Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 75 PRODUCT PREVIEW Figure 3-9 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 3-12 www.ti.com NMI Generation Register (NMIGRx) Field Descriptions Bit Field Description 31-1 Reserved Reserved 0 NMIG NMI pulse generation. Reads return 0 Writes: 0 = No effect 1 = Sends an NMI pulse to the CorePac End of Table 3-12 3.3.12 IPC Generation (IPCGRx) Registers PRODUCT PREVIEW IPCGRx are the IPC interrupt generation registers to facilitate inter CorePac interrupts. The C6654 has only IPCGR0. This register can be used by external hosts to generate interrupts to the CorePac. A write of 1 to the IPCG field of the IPCGRx register will generate an interrupt pulse to the CorePac. This register also provides a Source ID facility by which up to 28 different sources of interrupts can be identified. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are given in the following tables. Virtually anything can be a source for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Generation Register is shown in Figure 3-11 and described in Table 3-13. Figure 3-11 IPC Generation Registers (IPCGRx) 31 30 29 28 SRCS27 SRCS26 SRCS25 SRCS24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 1 0 SRCS23 – SRCS4 SRCS3 SRCS2 SRCS1 SRCS0 Reserved IPCG RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R, +000 RW +0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-13 IPC Generation Registers (IPCGRx) Field Descriptions Bit Field Description 31-4 SRCSx Interrupt source indication. Reads return current value of internal register bit. Writes: 0 = No effect 1 = Sets both SRCSx and the corresponding SRCCx. 3-1 Reserved Reserved 0 IPCG Inter-DSP interrupt generation. Reads return 0. Writes: 0 = No effect 1 = Creates an Inter-DSP interrupt. End of Table 3-13 76 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.13 IPC Acknowledgement (IPCARx) Registers IPCARx are the IPC interrupt-acknowledgement registers to facilitate inter-CorePac core interrupts. The C6654 has only IPCAR0. This register also provides a Source ID facility by which up to 28 different sources of interrupts can be identified. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are shown in the following tables. Virtually anything can be a source for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Acknowledgement Register is shown in Figure 3-12 and described in Table 3-14. IPC Acknowledgement Registers (IPCARx) 31 30 29 28 SRCC27 SRCC26 SRCC25 SRCC24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 0 SRCC23 – SRCC4 SRCC3 SRCC2 SRCC1 SRCC0 Reserved RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R, +0000 PRODUCT PREVIEW Figure 3-12 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-14 IPC Acknowledgement Registers (IPCARx) Field Descriptions Bit Field Description 31-4 SRCCx Interrupt source acknowledgement. Reads return current value of internal register bit. Writes: 0 = No effect 1 = Clears both SRCCx and the corresponding SRCSx 3-0 Reserved Reserved End of Table 3-14 3.3.14 IPC Generation Host (IPCGRH) Register IPCGRH register is provided to facilitate host DSP interrupt. Operation and use of IPCGRH is the same as other IPCGR registers. Interrupt output pulse created by IPCGRH is driven on a device pin, host interrupt/event output (HOUT). The host interrupt output pulse should be stretched. It should be asserted for 4 bootcfg clock cycles (CPU/6) followed by a deassertion of 4 bootcfg clock cycles. Generating the pulse will result in 8 CPU/6 cycle pulse blocking window. Write to IPCGRH with IPCG bit (bit 0) set will only generate a pulse if they are beyond 8 CPU/6 cycle period. The IPC Generation Host Register is shown in Figure 3-13 and described in Table 3-15. Figure 3-13 IPC Generation Registers (IPCGRH) 31 30 29 28 SRCS27 SRCS26 SRCS25 SRCS24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 1 0 SRCS23 – SRCS4 SRCS3 SRCS2 SRCS1 SRCS0 Reserved IPCG RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R, +000 RW +0 Legend: R = Read only; RW = Read/Write; -n = value after reset Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 77 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 3-15 www.ti.com IPC Generation Registers (IPCGRH) Field Descriptions Bit Field Description 31-4 SRCSx Interrupt source indication. Reads return current value of internal register bit. Writes: 0 = No effect 1 = Sets both SRCSx and the corresponding SRCCx. 3-1 Reserved Reserved 0 IPCG Host interrupt generation. Reads return 0. PRODUCT PREVIEW Writes: 0 = No effect 1 = Creates an interrupt pulse on device pin (host interrupt/event output in HOUT pin) End of Table 3-15 3.3.15 IPC Acknowledgement Host (IPCARH) Register IPCARH registers are provided to facilitate host DSP interrupt. Operation and use of IPCARH is the same as other IPCAR registers. The IPC Acknowledgement Host Register is shown in Figure 3-14 and described in Table 3-16. Figure 3-14 IPC Acknowledgement Register (IPCARH) 31 30 29 28 SRCC27 SRCC26 SRCC25 SRCC24 RW +0 RW +0 RW +0 RW +0 27 8 7 6 5 4 3 0 SRCC23 – SRCC4 SRCC3 SRCC2 SRCC1 SRCC0 Reserved RW +0 (per bit field) RW +0 RW +0 RW +0 RW +0 R, +0000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-16 IPC Acknowledgement Register (IPCARH) Field Descriptions Bit Field Description 31-4 SRCCx Interrupt source acknowledgement. Reads return current value of internal register bit. Writes: 0 = No effect 1 = Clears both SRCCx and the corresponding SRCSx 3-0 Reserved Reserved End of Table 3-16 78 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.16 Timer Input Selection Register (TINPSEL) Timer input selection is handled within the control register TINPSEL. The Timer Input Selection Register is shown in Figure 3-15 and described in Table 3-17 Figure 3-15 Timer Input Selection Register (TINPSEL) 31 16 Reserved R, +1010 1010 1010 1010 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TINPH SEL7 TINPL SEL7 TINPH SEL6 TINPL SEL6 TINPH SEL5 TINPL SEL5 TINPH SEL4 TINPL SEL4 TINPH SEL3 TINPL SEL3 TINPH SEL2 TINPL SEL2 TINPH SEL1 TINPL SEL1 TINPH SEL0 TINPL SEL0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 RW, +0 RW, +1 RW, +0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-17 Bit Timer Input Selection Field Description (TINPSEL) (Part 1 of 2) Field 31-16 Reserved Description Reserved 15 TINPHSEL7 Input select for TIMER7 high. 0 = TIMI0 1 = TIMI1 14 TINPLSEL7 Input select for TIMER7 low. 0 = TIMI0 1 = TIMI1 13 TINPHSEL6 Input select for TIMER6 high. 0 = TIMI0 1 = TIMI1 12 TINPLSEL6 Input select for TIMER6 low. 0 = TIMI0 1 = TIMI1 11 TINPHSEL5 Input select for TIMER5 high. 0 = TIMI0 1 = TIMI1 10 TINPLSEL5 Input select for TIMER5 low. 0 = TIMI0 1 = TIMI1 9 TINPHSEL4 Input select for TIMER4 high. 0 = TIMI0 1 = TIMI1 8 TINPLSEL4 Input select for TIMER4 low. 0 = TIMI0 1 = TIMI1 7 TINPHSEL3 Input select for TIMER3 high. 0 = TIMI0 1 = TIMI1 6 TINPLSEL3 Input select for TIMER3 low. 0 = TIMI0 1 = TIMI1 5 TINPHSEL2 Input select for TIMER2 high. 0 = TIMI0 1 = TIMI1 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 79 PRODUCT PREVIEW spacer TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 3-17 www.ti.com Timer Input Selection Field Description (TINPSEL) (Part 2 of 2) PRODUCT PREVIEW Bit Field Description 4 TINPLSEL2 Input select for TIMER2 low. 0 = TIMI0 1 = TIMI1 3 TINPHSEL1 Input select for TIMER1 high. 0 = TIMI0 1 = TIMI1 2 TINPLSEL1 Input select for TIMER1 low. 0 = TIMI0 1 = TIMI1 1 TINPHSEL0 Input select for TIMER0 high. 0 = TIMI0 1 = TIMI1 0 TINPLSEL0 Input select for TIMER0 low. 0 = TIMI0 1 = TIMI1 80 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.17 Timer Output Selection Register (TOUTPSEL) The timer output selection is handled within the control register TOUTSEL. The Timer Output Selection Register is shown in Figure 3-16 and described in Table 3-18. Figure 3-16 Timer Output Selection Register (TOUTPSEL) 31 10 9 5 4 0 Reserved TOUTPSEL1 TOUTPSEL0 R,+000000000000000000000000 RW,+00001 RW,+00000 Legend: R = Read only; RW = Read/Write; -n = value after reset Timer Output Selection Field Description (TOUTPSEL) Bit Field Description 31-10 Reserved Reserved 9-5 TOUTPSEL1 Output select for TIMO1 0x0: TOUTL0 0x1: TOUTH0 0x2: TOUTL1 0x3: TOUTH1 0x4: TOUTL2 0x5: TOUTH2 0x6: TOUTL3 0x7: TOUTH3 0x8: TOUTL4 0x9: TOUTH4 0xA: TOUTL5 0xB: TOUTH5 0xC: TOUTL6 0xD: TOUTH6 0xE: TOUTL7 0xF: TOUTH7 0x10 to 0x1F: Reserved Output select for TIMO0 0x0: TOUTL0 0x1: TOUTH0 0x2: TOUTL1 0x3: TOUTH1 0x4: TOUTL2 0x5: TOUTH2 0x6: TOUTL3 0x7: TOUTH3 0x8: TOUTL4 0x9: TOUTH4 0xA: TOUTL5 0xB: TOUTH5 0xC: TOUTL6 0xD: TOUTH6 0xE: TOUTL7 0xF: TOUTH7 0x10 to 0x1F: Reserved 4-0 TOUTPSEL0 PRODUCT PREVIEW Table 3-18 End of Table 3-18 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 81 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.18 Reset Mux (RSTMUXx) Register The software controls the Reset Mux block through the reset multiplex registers using RSTMUX0. This register is located in Bootcfg memory space. The Reset Mux Register is shown in Figure 3-17 and described in Table 3-19. Figure 3-17 Reset Mux Register RSTMUXx 31 10 9 8 7 5 4 3 1 0 Reserved EVTSTATCLR Reserved DELAY EVTSTAT OMODE LOCK R, +0000 0000 0000 0000 0000 00 RC, +0 R, +0 RW, +100 R, +0 RW, +000 RW, +0 Legend: R = Read only; RW = Read/Write; -n = value after reset; RC = Read only and write 1 to clear Table 3-19 Reset Mux Register Field Descriptions PRODUCT PREVIEW Bit Field Description 31-10 Reserved Reserved 9 EVTSTATCLR Clear event status 0 = Writing 0 has no effect 1 = Writing 1 clears the EVTSTAT bit 8 Reserved Reserved 7-5 DELAY Delay cycles between NMI & local reset 000b = 256 CPU/6 cycles delay between NMI & local reset, when OMODE = 100b 001b = 512 CPU/6 cycles delay between NMI & local reset, when OMODE=100b 010b = 1024 CPU/6 cycles delay between NMI & local reset, when OMODE=100b 011b = 2048 CPU/6 cycles delay between NMI & local reset, when OMODE=100b 100b = 4096 CPU/6 cycles delay between NMI & local reset, when OMODE=100b (Default) 101b = 8192 CPU/6 cycles delay between NMI & local reset, when OMODE=100b 110b = 16384 CPU/6 cycles delay between NMI & local reset, when OMODE=100b 111b = 32768 CPU/6 cycles delay between NMI & local reset, when OMODE=100b 4 EVTSTAT Event status. 0 = No event received (Default) 1 = WD timer event received by Reset Mux block 3-1 OMODE Timer event operation mode 000b = WD timer event input to the reset mux block does not cause any output event (default) 001b = Reserved 010b = WD timer event input to the reset mux block causes local reset input to CorePac 011b = WD timer event input to the reset mux block causes NMI input to CorePac 100b = WD timer event input to the reset mux block causes NMI input followed by local reset input to CorePac. Delay between NMI and local reset is set in DELAY bit field. 101b = WD timer event input to the reset mux block causes device reset to C6654 110b = Reserved 111b = Reserved 0 LOCK Lock register fields 0 = Register fields are not locked (default) 1 = Register fields are locked until the next timer reset End of Table 3-19 82 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.19 Device Speed (DEVSPEED) Register The Device Speed Register indicates the device speed grade. The Device Speed Register is shown in Figure 3-18 and described in Table 3-20. Figure 3-18 Device Speed Register (DEVSPEED) 31 30 23 22 0 Reserved DEVSPEED Reserved R-n R-n R-n Legend: R = Read only; RW = Read/Write; -n = value after reset Device Speed Register Field Descriptions Bit Field Description 31 Reserved Reserved. Read only 30-23 DEVSPEED Indicates the speed of the device (Read Only) 1xxx xxxxb = 850 MHz 01xx xxxxb = Reserved 001x xxxxb = Reserved 0001 xxxxb = Reserved 0000 1xxxb = Reserved 0000 01xxb = Reserved 0000 001xb = Reserved 0000 0001b = 850 MHz 0000 0000b = 850 MHz 22-0 Reserved Reserved. Read only PRODUCT PREVIEW Table 3-20 End of Table 3-20 3.3.20 Pin Control 0 (PIN_CONTROL_0) Register The Pin Control 0 Register controls the pin muxing between GPIO[16:31] and TIMER / UART / SPI pins. The Pin Control 0 Register is shown in Figure 3-19 and described in Table 3-21. Figure 3-19 Pin Control 0 Register (PIN_CONTROL_0) 31 30 29 28 27 26 25 24 GPIO31_SPIDOU GPIO30_SPIDIN_ GPIO29_SPICS1_ GPIO28_SPICS0_ GPIO27_UARTRT GPIO26_UARTCT GPIO25_UARTTX GPIO24_UARTRX T_MUX MUX MUX MUX S1_MUX S1_MUX 1_MUX 1_MUX RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 22 21 20 19 18 17 16 GPIO18_TIMO0_ MUX GPIO17_TIMI1_ MUX GPIO16_TIMI0_ MUX RW-0 RW-0 RW-0 spacer 23 GPIO23_UARTRT GPIO22_UARTCT GPIO21_UARTTX GPIO20_UARTRX GPIO19_TIMO1_ S0_MUX S0_MUX 0_MUX 0_MUX MUX RW-0 RW-0 RW-0 RW-0 RW-0 spacer 15 0 Reserved R-0 Legend: R = Read only; RW = Read/Write; -n = value after reset Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 83 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 3-21 www.ti.com Pin Control 0 Register Field Descriptions PRODUCT PREVIEW Bit Field Description 31 GPIO31_SPIDOUT_MUX SPI or GPIO mux control 0 = SPIDOUT pin enabled 1 = GPIO31 pin enabled 30 GPIO30_SPIDIN_MUX SPI or GPIO mux control 0 = SPIDIN pin enabled 1 = GPIO30 pin enabled 29 GPIO29_SPICS1_MUX SPI or GPIO mux control 0 = SPICS1 pin enabled 1 = GPIO29 pin enabled 28 GPIO28_SPICS0_MUX SPI or GPIO mux control 0 = SPICS0 pin enabled 1 = GPIO28 pin enabled 27 GPIO27_UARTRTS1_MUX UART or GPIO mux control 0 = UARTRTS1 pin enabled 1 = GPIO27 pin enabled 26 GPIO26_UARTCTS1_MUX UART or GPIO mux control 0 = UARTCTS1 pin enabled 1 = GPIO26 pin enabled 25 GPIO25_UARTTX1_MUX UART or GPIO mux control 0 = UARTTX1 pin enabled 1 = GPIO25 pin enabled 24 GPIO24_UARTRX1_MUX UART or GPIO mux control 0 = UARTRX1 pin enabled 1 = GPIO24 pin enabled 23 GPIO23_UARTRTS0_MUX UART or GPIO mux control 0 = UARTRTS0 pin enabled 1 = GPIO23 pin enabled 22 GPIO22_UARTCTS0_MUX UART or GPIO mux control 0 = UARTCTS0 pin enabled 1 = GPIO22 pin enabled 21 GPIO21_UARTTX0_MUX UART or GPIO mux control 0 = UARTTX0 pin enabled 1 = GPIO21 pin enabled 20 GPIO20_UARTRX0_MUX UART or GPIO mux control 0 = UARTRX0 pin enabled 1 = GPIO20 pin enabled 19 GPIO19_TIMO1_MUX TIMER or GPIO mux control 0 = TIMO1 pin enabled 1 = GPIO19 pin enabled 18 GPIO18_TIMO0_MUX TIMER or GPIO mux control 0 = TIMO0 pin enabled 1 = GPIO18 pin enabled 17 GPIO17_TIMI1_MUX TIMER or GPIO mux control 0 = TIMI1 pin enabled 1 = GPIO17 pin enabled 16 GPIO16_TIMI0_MUX TIMER or GPIO mux control 0 = TIMI0 pin enabled 1 = GPIO16 pin enabled 15-0 Reserved Reserved End of Table 3-21 84 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.3.21 Pin Control 1 (PIN_CONTROL_1) Register The Pin Control 0 Register controls the pin muxing between UPP and EMIF16 pins. The Pin Control 1 Register is shown in Figure 3-20 and described in Table 3-22. Figure 3-20 Pin Control 1Register (PIN_CONTROL_1) 31 1 0 Reserved UPP_EMIF16_MUX R-0 RW-0 Legend: R = Read only; RW = Read/Write; -n = value after reset Pin Control 1 Register Field Descriptions Bit Field Description 31-1 Reserved Reserved 0 UPP_EMIF_MUX UPP or EMIF16 mux control 0 = EMIF16 pins enabled 1 = UPP pins enabled PRODUCT PREVIEW Table 3-22 End of Table 3-22 3.3.22 UPP Clock Source (UPP_CLOCK) Register The UPP Clock Source Register controls whether the UPP transmit clock is internally or externally sourced. The UPP Clock Source Register is shown in Figure 3-21 and described in Table 3-23. Figure 3-21 Pin Control 1Register (PIN_CONTROL_1) 31 1 0 Reserved UPP_TX_CLKSRC R-0 RW-0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 3-23 Pin Control 1 Register Field Descriptions Bit Field Description 31-1 Reserved Reserved 0 UPP_TX_CLKSRC UPP clock source selection 0 = from internal SYSCLK4 (CPU/3) 1 = from external UPP_2XTXCLK pin End of Table 3-23 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Configuration 85 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 3.4 Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Device Configuration Pins: If the pin is both routed out and are not driven (in Hi-Z state), an external pullup/pulldown resistor must be used, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. PRODUCT PREVIEW For the device configuration pins (listed in Table 3-1), if they are both routed out and are not driven (in Hi-Z state), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device configuration pins. In addition, applying external pullup/pulldown resistors on the device configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value that can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration that sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the DVDD rail. For most systems: • A 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • A 20-kΩ resistor can be used to compliment the IPU/IPD on the device configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. For more detailed information on input current (II), and the low-level/high-level input voltages (VIL and VIH) for the TMS320C6654 device, see Section 6.3 ‘‘Electrical Characteristics’’ on page 105. To determine which pins on the device include internal pullup/pulldown resistors, see Table 2-17 ‘‘Terminal Functions — Signals and Control by Function’’ on page 38. 86 Device Configuration Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor www.ti.com SPRS841—March 2012 4 System Interconnect On the TMS320C6654 device, the C66x CorePac, the EDMA3 transfer controller, and the system peripherals are interconnected through the TeraNet, which is a non-blocking switch fabric enabling fast and contention-free internal data movement. The TeraNet allows for low-latency, concurrent data transfers between master peripherals and slave peripherals. The TeraNet also allows for seamless arbitration between the system masters when accessing system slaves. 4.1 Internal Buses and Switch Fabrics The C66x CorePac, the EDMA3 traffic controller, and the various system peripherals can be classified into two categories: masters and slaves. Masters are capable of initiating read and write transfers in the system and do not rely on the EDMA3 for their data transfers. Slaves, on the other hand, rely on the masters to perform transfers to and from them. Examples of masters include the EDMA3 traffic controller and PCI Express. Examples of slaves include 2 the SPI, UART, and I C. The masters and slaves in the device are communicating through the TeraNet (switch fabric). The device contains two switch fabrics. The data switch fabric (data TeraNet) and the configuration switch fabric (configuration TeraNet). The data TeraNet, is a high-throughput interconnect mainly used to move data across the system. The data TeraNet connects masters to slaves via data buses. The configuration TeraNet, is mainly used to access peripheral registers. The configuration TeraNet connects masters to slaves via configuration buses. Note that the data TeraNet also connects to the configuration TeraNet. For more details see 4.2 ‘‘Switch Fabric Connections Matrix’’ on page 88. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions System Interconnect 87 PRODUCT PREVIEW Two types of buses exist in the device: data buses and configuration buses. Some peripherals have both a data bus and a configuration bus interface, while others have only one type of interface. Further, the bus interface width and speed varies from peripheral to peripheral. Configuration buses are mainly used to access the register space of a peripheral and the data buses are used mainly for data transfers. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 4.2 Switch Fabric Connections Matrix The tables below list the master and slave end point connections. Intersecting cells may contain one of the following: • Y — There is a connection between this master and that slave. • - — There is NO connection between this master and that slave. • n — A numeric value indicates that the path between this master and that slave goes through bridge n. Table 4-1 Switch Fabric Connection Matrix Section 1 - 1 - Timer Y Tracer - QMSS__CFG - Semaphore - EDMA3TC(0-3) Y EDMA3CC Mcbsp1_FIFO_Data Y TETB0 Mcbsp0_FIFO_Data Y TETB_D EMIF16 Y STM SPI Y MSMC_SES Boot_ROM EDMA3CC_TC0_RD QM_Slave PCIe0_Slave PRODUCT PREVIEW Masters CorePac0_SDMA Slaves 1 1 1 1 1 1,4 EDMA3CC_TC0_WR Y Y - Y Y - - - Y 1 - - 1 1 1 1 1 1, 4 EDMA3CC_TC1_RD Y Y Y Y Y 2, 4 2, 4 - Y - - 2 2 2 - - - - EDMA3CC_TC1_WR Y Y - Y Y 2, 4 2, 4 - Y - - - 2 2 - - - - EDMA3CC_TC2_RD Y Y Y Y Y 1, 4 1, 4 - Y - 1 - 1 1 1 1 1 1, 4 EDMA3CC_TC2_WR Y Y - Y Y 1, 4 1, 4 - Y - - - 1 1 1 1 1 1, 4 EDMA3CC_TC3_RD Y Y Y Y Y - - 2 Y - - - 2 2 - - - - EDMA3CC_TC3_WR Y Y - Y Y - - 2 Y 2 - - 2 2 - - - - PCIe_Master Y - - Y Y 1, 4 1, 4 1 Y 1 1 1 1 1 1 1 1 1, 4 EMAC 3 - - - - - - - 3 - - - - - - - - - MSMC_Data_Master Y Y Y Y Y 1, 4 1, 4 1 - 1 - - - - - - - - QM packet DMA Y - - - - - - 1 Y - - - - - - - - - QM_Second Y - Y Y Y - - 1 Y - - - - - - - - - DAP_Master Y Y Y Y Y 1, 4 1, 4 1 Y 1 1 1 1 1 1 1 1 1, 4 CorePac0_CFG - - - - - - - - - - - - - Y - - - - Tracer_Master - - - - - - - - - 1 Y Y Y Y Y Y Y 4 UPP 3 - - - - - - - 3 - - - - - - - End of Table 4-1 88 System Interconnect Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 4-2 Switch Fabric Connection Matrix Section 2 I C 2 SEC_CTL SEC_KEY_MGR Efuse Boot_CFG PSC PLL CIC MPU0-3 MPU4 Debug_SS_CFG SmartReflex UART_CFG (0-1) McBSP_CFG(0-1) McBSP_FIFO_CFG(0-1) EMAC_CFG UPP_CFG EDMA3CC_TC0_RD 1,4 1,4 1,4 1,4 - 1,4 1,4 1,4 1,4 1 1,4 - - 1,4 1,4 1,4 1,4 1 EDMA3CC_TC0_WR 1, 4 1, 4 1, 4 1, 4 - 1, 4 1, 4 1, 4 1, 4 1 1, 4 - - 1, 4 1, 4 1, 4 1, 4 1 EDMA3CC_TC1_RD - - - - - - - - - - - - - - - - - - EDMA3CC_TC1_WR - - - - - - - - - - - - - - - - - - EDMA3CC_TC2_RD 1, 4 1, 4 1, 4 1, 4 - 1, 4 1, 4 1, 4 1, 4 1 1, 4 - - 1, 4 1, 4 1, 4 1, 4 1 EDMA3CC_TC2_WR 1, 4 1, 4 1, 4 1, 4 - 1, 4 1, 4 1, 4 1, 4 1 1, 4 - - 1, 4 1, 4 1, 4 1, 4 1 EDMA3CC_TC3_RD - - - - - - - - - - - - - - - - - - EDMA3CC_TC3_WR PCIe_Master - - - - - - - - - - - - - - - - - - 1, 4 1, 4 1, 4 1, 4 - 1, 4 1, 4 1, 4 1, 4 1 1, 4 1, 4 1, 4 1, 4 1, 4 1, 4 1, 4 1 - EMAC - - - - - - - - - - - - - MSMC_Data_Master - - - - - - - - - - - - - QM packet DMA - - - - - - - - - - - - - QM_Second - - - - - - - - - - - - - DAP_Master - - - - - - - - - - - - - - - - - - 1, 4 1, 4 1, 4 1, 4 1, 4 1, 4 1, 4 1, 4 1, 4 1 1, 4 1, 4 1, 4 1, 4 1, 4 1, 4 1, 4 1 EDMA3CC - - - - - - - - - - - - - - - - - - CorePac0_CFG 4 4 4 4 4 4 4 4 4 Y 4 4 4 4 4 4 4 Y Tracer_Master - - - - - - - - - - - - - - - - - - UPP - - - - - - - - - - - - - - - - - - End of Table 4-2 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions System Interconnect 89 PRODUCT PREVIEW Masters GPIO Slaves TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 4.3 TeraNet Switch Fabric Connections The figures below show the connections between masters and slaves through various sections of the TeraNet. Figure 4-1 TeraNet 3A XMC UPP M PRODUCT PREVIEW PCIe M QM_SS Packet DMA M QM_SS Second M Debug_SS M TC_0 EDMA CC TC_1 TC_2 TC_3 M M M M TNet_3_D CPU/3 S SES Bridge 3 S SMS M S MSMC M DDR3 Tracer_MSMC0 CPU/3 M Tracer_MSMC1 Tracer_MSMC2 Tracer_MSMC3 Tracer_DDR TeraNet 3_A EMAC Tracer_L2_0 MPU_1 Tracer_QM_M TNet_6P_A CPU/3 MPU_4 S CorePac_0 S QM_SS S PCIe S McBSP0 S McBSP1 S SPI S Boot_ROM S EMIF Tracer_TN_6P_A Bridge_1 To TeraNet_3P_A Bridge_2 Figure 4-2 90 TeraNet 3P_A System Interconnect Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor Bridge_2 From TeraNet_3_A M TeraNet 3P_A CorePac_0 MPU0 S MPU1 S MPU2 S MPU3 S TC (× 4) S CC MPU_2 S QM_SS MPU_3 S Semaphore TNet_3P_C CPU/3 Tracer_QM_CFG Tracer_SM TETB (Debug_SS) TETB (core) To TeraNet_3P_Tracer MPU_0 To TeraNet_3P_B Tracer_CFG TeraNet 3P_B From TeraNet_3P_A Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TeraNet 3P_B CPU/3 Figure 4-3 S CPU/3 Bridge_1 PRODUCT PREVIEW SPRS841—March 2012 www.ti.com S Tracer (×11) S UPP To TeraNet_6P_B Bridge_4 System Interconnect 91 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com TeraNet 3P_Tracer From TeraNet_3P_A PRODUCT PREVIEW 92 Tracer_ MSMC_0 M Tracer_ MSMC_1 M Tracer_ MSMC_2 M Tracer_ MSMC_3 M Tracer_CFG M Tracer_DDR M Tracer_SM M Tracer_ QM_M M Tracer_ QM_P M Tracer_L2_0 M Tracer_TN_ 6P_A M System Interconnect TeraNet 3P_Tracer CPU/3 Figure 4-4 S Debug_SS STM S Debug_SS TETB Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com TeraNet 6P_B Bridge_4 TeraNet 6P_B CPU/6 From TeraNet_3P_B Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions S SmartReflex S GPIO S IC S UART (× 2) S BOOTCFG S PSC S PLL_CTL S Debug_SS S CIC (× 3) S Timer (× 8) S MPU4 S EMAC S McBSP × 2 S SEC_CTL S SEC_KEY_MGR S Efuse 2 System Interconnect PRODUCT PREVIEW Figure 4-5 93 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 4.4 Bus Priorities The priority level of all master peripheral traffic is defined at the TeraNet boundary. User programmable priority registers allow software configuration of the data traffic through the TeraNet. Note that a lower number means higher priority - PRI = 000b = urgent, PRI = 111b = low. Most master ports provide their priority directly and do not need a default priority setting. Examples include the CorePacs, whose priorities are set through software in the UMC control registers. All the packet-DMA-based peripherals also have internal registers to define the priority level of their initiated transactions. Some masters do not have apriority allocation register of their own. For these masters, a priority allocation register is provided for them and described in the sections below. For all other modules, see the respective User Guides in “Related Documentation from Texas Instruments” on page 64 for programmable priority registers. PRODUCT PREVIEW 4.4.1 Packet DMA Priority Allocation (PKTDMA_PRI_ALLOC) Register The packet DMA secondary port is one master port that does not have priority allocation register inside the IP. The priority level for transaction from this master port is described by PKTDMA_PRI_ALLOC register in Figure 4-6 and Table 4-3. Figure 4-6 Packet DMA Priority Allocation Register (PKTDMA_PRI_ALLOC) 31 3 2 0 Reserved PKTDMA_PRI R/W-00000000000000000000001000011 RW-000 Legend: R = Read only; R/W = Read/Write; -n = value after reset Table 4-3 Packet DMA Priority Allocation Register (PKTDMA_PRI_ALLOC) Field Descriptions Bit Field Description 31-3 Reserved Reserved. 2-0 PKDTDMA_PRI Control the priority level for the transactions from packet DMA master port, which access the external linking RAM. End of Table 4-3 4.4.2 EMAC / UPP Priority Allocation (EMAC_UPP_PRI_ALLOC) Register The EMAC and UPP are master ports that do not have priority allocation registers inside the IP. The priority level for transaction from these master ports is described by EMAC_UPP_PRI_ALLOC register in Figure 4-7 and Table 4-4. Figure 4-7 31 EMAC / UPP Priority Allocation Register (EMAC_UPP_PRI_ALLOC) 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0 Reserved EMAC_EPRI Reserved EMAC_PRI Reserved UPP_EPRI Reserved UPP_PRI R-00000 RW-110 R-00000 RW-111 R-00000 RW-110 R-00000 RW-111 Legend: R = Read only; R/W = Read/Write; -n = value after reset 94 System Interconnect Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 4-4 Bit EMAC / UPP Priority Allocation Register (EMAC_UPP_PRI_ALLOC) Field Descriptions Field Description 31-27 Reserved Reserved. 26-24 EMAC_EPRI Control the maximum priority level for the transactions from EMAC master port. 23-19 Reserved Reserved. 18-16 EMACA_PRI Control the priority level for the transactions from EMAC master port. 15-11 Reserved Reserved. 10-8 UPP_EPRI Control the maximum priority level for the transactions from UPP master port. 7-3 Reserved Reserved. 2-0 UPP_PRI Control the priority level for the transactions from UPP master port. PRODUCT PREVIEW End of Table 4-4 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions System Interconnect 95 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 5 C66x CorePac The C66x CorePac also provides support for memory protection, bandwidth management (for resources local to the C66x CorePac) and address extension. Figure 5-1 shows a block diagram of the C66x CorePac. Figure 5-1 C66x CorePac Block Diagram Instruction Fetch 16-/32-bit Instruction Dispatch Control Registers In-Circuit Emulation Boot Controller Instruction Decode Data Path B Data Path A PLLC LPSC A Register File B Register File A31-A16 A15-A0 B31-B16 B15-B0 .M1 xx xx .M2 xx xx GPSC .L1 .S1 .D1 .D2 .S2 Data Memory Controller (DMC) With Memory Protect/Bandwidth Mgmt .L2 Extended Memory Controller (XMC) C66x DSP Core L2 Cache/ SRAM 1024KB DDR3 SRAM DMA Switch Fabric External Memory Controller (EMC) Program Memory Controller (PMC) With Memory Protect/Bandwidth Mgmt Unified Memory Controller (UMC) 32KB L1P Interrupt and Exception Controller PRODUCT PREVIEW The C66x CorePac consists of several components: • The C66x DSP and associated C66x CorePac core • Level-one and level-two memories (L1P, L1D, L2) • Data Trace Formatter (DTF) • Embedded Trace Buffer (ETB) • Interrupt Controller • Power-down controller • External Memory Controller • Extended Memory Controller • A dedicated power/sleep controller (LPSC) CFG Switch Fabric 32KB L1D For more detailed information on the TMS320C66x CorePac on the C6654 device, see the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 96 C66x CorePac Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 5.1 Memory Architecture The C66x CorePac in the device contains a 1024KB level-2 memory (L2), a 32KB level-1 program memory (L1P), and a 32KB level-1 data memory (L1D). All memory on the C6654 has a unique location in the memory map (see Table 2-2 ‘‘Memory Map Summary’’ on page 21. After device reset, L1P and L1D cache are configured as all cache, by default. The L1P and L1D cache can be reconfigured via software through the L1PMODE field of the L1P Configuration Register (L1PCFG) and the L1DMODE field of the L1D Configuration Register (L1DCFG) of the C66x CorePac. L1D is a two-way set-associative cache, while L1P is a direct-mapped cache. PRODUCT PREVIEW The on-chip bootloader changes the reset configuration for L1P and L1D. For more information, see the Bootloader for the C66x DSP User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. For more information on the operation L1 and L2 caches, see the C66x DSP Cache User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 5.1.1 L1P Memory The L1P memory configuration for the C6654 device is as follows: • 32K bytes with no wait states Figure 5-2 shows the available SRAM/cache configurations for L1P. Figure 5-2 L1P Memory Configurations L1P mode bits 000 001 010 011 100 1/2 SRAM All SRAM 7/8 SRAM L1P memory Block base address 00E0 0000h 16K bytes 3/4 SRAM direct mapped cache 00E0 4000h 8K bytes dm cache direct mapped cache Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions direct mapped cache 00E0 6000h 4K bytes 00E0 7000h 4K bytes 00E0 8000h C66x CorePac 97 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 5.1.2 L1D Memory The L1D memory configuration for the C6654 device is as follows: • 32K bytes with no wait states Figure 5-3 shows the available SRAM/cache configurations for L1D. Figure 5-3 L1D Memory Configurations L1D mode bits 000 001 010 011 100 PRODUCT PREVIEW 1/2 SRAM All SRAM 7/8 SRAM L1D memory Block base address 00F0 0000h 16K bytes 3/4 SRAM 2-way cache 00F0 4000h 8K bytes 2-way cache 00F0 6000h 4K bytes 2-way cache 2-way cache 00F0 7000h 4K bytes 00F0 8000h 5.1.3 L2 Memory The L2 memory configuration for the C6654 device is as follows: • Total memory is 1024KB • Each core contains 1024KB of memory • Local starting address for each core is 0080 0000h L2 memory can be configured as all SRAM, all 4-way set-associative cache, or a mix of the two. The amount of L2 memory that is configured as cache is controlled through the L2MODE field of the L2 Configuration Register (L2CFG) of the C66x CorePac. Figure 5-4 shows the available SRAM/cache configurations for L2. By default, L2 is configured as all SRAM after device reset. 98 C66x CorePac Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 5-4 L2 Memory Configurations L2 Mode Bits 000 001 010 011 100 101 110 L2 Memory Block Base Address 0080 0000h 1/2 SRAM PRODUCT PREVIEW 512K bytes 3/4 SRAM ALL SRAM 31/32 SRAM 15/16 SRAM 7/8 SRAM 4-Way Cache 0088 0000h 256K bytes 4-Way Cache 008C 0000h 128K bytes 4-Way Cache 4-Way Cache 4-Way Cache 4-Way Cache 008E 0000h 64K bytes 32K bytes 32K bytes 008F 0000h 008F 8000h 008F FFFFh Global addresses are accessible to all masters in the system. In addition, local memory can be accessed directly by the associated processor through aliased addresses, where the eight MSBs are masked to zero. The aliasing is handled within the C66x CorePac and allows for common code to be run unmodified on multiple cores. For example, address location 0x10800000 is the global base address for C66x CorePac Core 0's L2 memory. C66x CorePac Core 0 can access this location by either using 0x10800000 or 0x00800000. Any other master on the device must use 0x10800000 only. Conversely, 0x00800000 can by used by any of the cores as their own L2 base addresses. For C66x CorePac Core 0, address 0x00800000 is equivalent to 0x10800000. Local addresses should be used only for shared code or data, allowing a single image to be included in memory. Any code/data targeted to a specific core, or a memory region allocated during run-time by a particular core should always use the global address only. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions C66x CorePac 99 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 5.1.4 MSM Controller The MSM configuration for the device is as follows: • Allows extension of external addresses from 2GB to up to 8GB • Has built in memory protection features For more details on external memory address extension and memory protection features, see the Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 5.1.5 L3 Memory The L3 ROM on the device is 128KB. The ROM contains software used to boot the device. There is no requirement to block accesses from this portion to the ROM. PRODUCT PREVIEW 5.2 Memory Protection Memory protection allows an operating system to define who or what is authorized to access L1D, L1P, and L2 memory. To accomplish this, the L1D, L1P, and L2 memories are divided into pages. There are 16 pages of L1P (2KB each), 16 pages of L1D (2KB each), and 32 pages of L2 (16KB each). The L1D, L1P, and L2 memory controllers in the C66x CorePac are equipped with a set of registers that specify the permissions for each memory page. Each page may be assigned with fully orthogonal user and supervisor read, write, and execute permissions. In addition, a page may be marked as either (or both) locally accessible or globally accessible. A local access is a direct DSP access to L1D, L1P, and L2, while a global access is initiated by a DMA (either IDMA or the EDMA3) or by other system masters. Note that EDMA or IDMA transfers programmed by the DSP count as global accesses. On a secure device, pages can be restricted to secure access only (default) or opened up for public, non-secure access. The DSP and each of the system masters on the device are all assigned a privilege ID. It is possible to specify whether memory pages are locally or globally accessible. The AIDx and LOCAL bits of the memory protection page attribute registers specify the memory page protection scheme, see Table 5-1. Table 5-1 Available Memory Page Protection Schemes AIDx Bit Local Bit 0 0 Description No access to memory page is permitted. 0 1 Only direct access by DSP is permitted. 1 0 Only accesses by system masters and IDMA are permitted (includes EDMA and IDMA accesses initiated by the DSP). 1 1 All accesses permitted. End of Table 5-1 Faults are handled by software in an interrupt (or an exception, programmable within the C66x CorePac interrupt controller) service routine. A DSP or DMA access to a page without the proper permissions will: • Block the access — reads return 0, writes are ignored • Capture the initiator in a status register — ID, address, and access type are stored • Signal event to DSP interrupt controller The software is responsible for taking corrective action to respond to the event and resetting the error status in the memory controller. For more information on memory protection for L1D, L1P, and L2, see the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 100 C66x CorePac Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor www.ti.com SPRS841—March 2012 5.3 Bandwidth Management The priority level for operations initiated within the C66x CorePac are declared through registers in the C66x CorePac. These operations are: • DSP-initiated transfers • User-programmed cache coherency operations • IDMA-initiated transfers The priority level for operations initiated outside the C66x CorePac by system peripherals is declared through the Priority Allocation Register (PRI_ALLOC), see section 4.4 ‘‘Bus Priorities’’ on page 94 for more details. System peripherals with no fields in the PRI_ALLOC have their own registers to program their priorities. More information on the bandwidth management features of the C66x CorePac can be found in the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 5.4 Power-Down Control The C66x CorePac supports the ability to power down various parts of the C66x CorePac. The power down controller (PDC) of the C66x CorePac can be used to power down L1P, the cache control hardware, the DSP, and the entire C66x CorePac. These power-down features can be used to design systems for lower overall system power requirements. Note—The C6654 does not support power-down modes for the L2 memory at this time. More information on the power-down features of the C66x CorePac can be found in the TMS320C66x CorePac Reference Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions C66x CorePac 101 PRODUCT PREVIEW When multiple requestors contend for a single C66x CorePac resource, the conflict is resolved by granting access to the highest priority requestor. The following four resources are managed by the Bandwidth Management control hardware: • Level 1 Program (L1P) SRAM/Cache • Level 1 Data (L1D) SRAM/Cache • Level 2 (L2) SRAM/Cache • Memory-mapped registers configuration bus TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 5.5 C66x CorePac Revision The version and revision of the C66x CorePac can be read from the CorePac Revision ID Register (MM_REVID) located at address 0181 2000h. The MM_REVID register is shown in Figure 5-5 and described in Table 5-2. The C66x CorePac revision is dependant on the silicon revision being used. Figure 5-5 CorePac Revision ID Register (MM_REVID) Address - 0181 2000h 31 16 15 0 VERSION REVISION R-n R-n Legend: R = Read; -n = value after reset Table 5-2 CorePac Revision ID Register (MM_REVID) Field Descriptions PRODUCT PREVIEW Bit Field Description 31-16 VERSION Version of the C66x CorePac implemented on the device. 15-0 REVISION Revision of the C66x CorePac version implemented on the device. End of Table 5-2 5.6 C66x CorePac Register Descriptions See the C66x CorePac Reference Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64 for register offsets and definitions. 102 C66x CorePac Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 6 Device Operating Conditions 6.1 Absolute Maximum Ratings Table 6-1 Absolute Maximum Ratings (1) Over Operating Case Temperature Range (Unless Otherwise Noted) Supply voltage range : -0.3 V to 1.3 V CVDD1 -0.3 V to 1.3 V DVDD15 -0.3 V to 2.45 V DVDD18 -0.3 V to 2.45 V VREFSSTL 0.49 × DVDD15 to 0.51 × DVDD15 VDDT1, VDDT2 -0.3 V to 1.3 V VDDR1, VDDR2, VDDR3, VDDR4 -0.3 V to 2.45 V AVDDA1, AVDDA2 -0.3 V to 2.45 V VSS Ground 0V LVCMOS (1.8V) Input voltage (VI) range: -0.3 V to DVDD18+0.3 V DDR3 -0.3 V to 2.45 V I2C -0.3 V to 2.45 V LVDS -0.3 V to DVDD18+0.3 V LJCB -0.3 V to 1.3 V SerDes -0.3 V to CVDD1+0.3 V LVCMOS (1.8V) Output voltage (VO) range: -0.3 V to DVDD18+0.3 V DDR3 -0.3 V to 2.45 V 2 IC -0.3 V to 2.45 V SerDes -0.3 V to CVDD1+0.3 V Commercial Operating case temperature range, TC: (3) ESD stress voltage, VESD : 0°C to 85°C Extended HBM (human body model) -40°C to 100°C (4) CDM (charged device model) ±1000 V (5) ±250 V LVCMOS (1.8V) Overshoot/undershoot (6) DDR3 2 20% Overshoot/Undershoot for 20% of Signal Duty Cycle IC Storage temperature range, Tstg: -65°C to 150°C End of Table 6-1 1 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2 All voltage values are with respect to VSS. 3 Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. 4 Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500 V HBM is possible if necessary precautions are taken. Pins listed as 1000 V may actually have higher performance. 5 Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250 V may actually have higher performance. 6 Overshoot/Undershoot percentage relative to I/O operating values - for example the maximum overshoot value for 1.8-V LVCMOS signals is DVDD18 + 0.20 × DVDD18 and maximum undershoot value would be VSS - 0.20 × DVDD18 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Operating Conditions 103 PRODUCT PREVIEW (2) CVDD TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 6.2 Recommended Operating Conditions Recommended Operating Conditions (1) Table 6-2 850MHz - Device (2) Min Nom SRVnom (3) × 0.95 0.85-1.1 CVDD SR Core Supply CVDD1 Core supply voltage for memory array 0.95 DVDD18 1.8-V supply I/O voltage 1.71 Max Unit SRVnom × 1.05 V 1 1.05 V 1.8 1.89 V DVDD15 1.5-V supply I/O voltage 1.425 1.5 1.575 V VREFSSTL DDR3 reference voltage 0.49 × DVDD15 0.5 × DVDD15 0.51 × DVDD15 V SerDes regulator supply VDDRx VDDAx (4) PRODUCT PREVIEW 1.425 1.5 1.575 V PLL analog supply 1.71 1.8 1.89 V 0.95 1 1.05 V 0 0 0 V VDDTx SerDes termination supply VSS Ground VIH High-level input voltage LVCMOS (1.8 V) 2 IC DDR3 EMIF 0.65 × DVDD18 V 0.7 × DVDD18 V VREFSSTL + 0.1 LVCMOS (1.8 V) VIL Low-level input voltage DDR3 EMIF -0.3 2 IC Commercial TC Operating case temperature Extended V 0.35 × DVDD18 V VREFSSTL - 0.1 V 0.3 × DVDD18 V 0 85 °C -40 100 °C End of Table 6-2 1 All differential clock inputs comply with the LVDS Electrical Specification, IEEE 1596.3-1996 and all SERDES I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002. 2 All SERDES I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002. 3 SRVnom refers to the unique SmartReflex core supply voltage between 0.85 V and 1.1 V set from the factory for each individual device. 4 Where x = 1, 2, 3, 4... to indicate all supplies of the same kind. 104 Device Operating Conditions Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 6.3 Electrical Characteristics Table 6-3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) Parameter LVCMOS (1.8 V) VOH High-level output voltage Test Conditions (1) IO = IOH DDR3 Min Typ Max Unit DVDD18 - 0.45 DVDD15 - 0.4 V 2 (2) IC VOL Low-level output voltage 0.45 DDR3 2 II (3) IO = IOL 0.4 IC IO = 3 mA, pulled up to 1.8 V No IPD/IPU -5 LVCMOS (1.8 V) Internal pullup 50 100 170 -170 -100 -50 I2 C 0.1 × DVDD18 V < VI < 0.9 × DVDD18 V Input current [DC] Internal pulldown -10 LVCMOS (1.8 V) IOH V 0.4 5 10 μA μA -6 High-level output current [DC] DDR3 -8 mA 2 (4) IC IOL Low-level output current [DC] LVCMOS (1.8 V) 6 DDR3 8 2 IC IOZ (5) Off-state output current [DC] 3 LVCMOS (1.8 V) -2 2 DDR3 -2 2 -2 2 2 IC mA μA End of Table 6-3 1 2 3 For test conditions shown as MIN, MAX, or TYP, use the appropriate value specified in the recommended operating conditions table. 2 I C uses open collector IOs and does not have a VOH Minimum. II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II includes input leakage current and off-state (Hi-Z) output leakage current. 2 4 I C uses open collector IOs and does not have a IOH Maximum. 5 IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Device Operating Conditions 105 PRODUCT PREVIEW LVCMOS (1.8 V) TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 6.4 Power Supply to Peripheral I/O Mapping Table 6-4 Power Supply to Peripheral I/O Mapping (1) (2) Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) Power Supply I/O Buffer Type Associated Peripheral CORECLK(P|N) PLL input buffer CVDD Supply Core Voltage LJCB SRIOSGMIICLK(P|N) SerDes PLL input buffer DDRCLK(P|N) PLL input buffer PCIECLK(P|N) SERDES PLL input buffer DVDD15 1.5-V supply I/O voltage DDR3 (1.5 V) All DDR3 memory controller peripheral I/O buffer All GPIO peripheral I/O buffer All JTAG and EMU peripheral I/O buffer PRODUCT PREVIEW All Timer peripheral I/O buffer All SPI peripheral I/O buffer All RESETs, NMI, Control peripheral I/O buffer DVDD18 1.8-V supply I/O voltage LVCMOS (1.8 V) All SmartReflex peripheral I/O buffer All MDIO peripheral I/O buffer All UART peripheral I/O buffer All McBSP peripheral I/O buffer All EMIF16 peripheral I/O buffer All UPP peripheral I/O buffer VDDT2 SGMII/PCIE SerDes termination and analogue front-end supply Open-drain (1.8V) All I2C peripheral I/O buffer SerDes/CML SGMII/PCIE SerDes CML IO buffer End of Table 6-4 1 Please note that this table does not attempt to describe all functions of all power supply terminals but only those whose purpose it is to power peripheral I/O buffers and clock input buffers. 2 Please see the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 64 for more information about individual peripheral I/O. 106 Device Operating Conditions Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7 Peripheral Information and Electrical Specifications This chapter covers the various peripherals on the TMS320C6654 DSP. Peripheral-specific information, timing diagrams, electrical specifications, and register memory maps are described in this chapter. 7.1 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner.Odd, indeed.ra44 7.2 Power Supplies Table 7-1 Name Power Supply Rails on TMS320C6654 Primary Function Voltage Notes CVDD SmartReflex core supply voltage 0.85 - 1.1 V Includes core voltage for DDR3 module CVDD1 Core supply voltage for memory array 1.0 V Fixed supply at 1.0 V VDDT1 Reserved 1.0 V Connect to CVDD1 VDDT2 SGMII/PCIE SerDes termination supply 1.0 V Filtered version of CVDD1. Special considerations for noise. Filter is not needed if SGMII/PCIE is not in use. DVDD15 1.5-V DDR3 IO supply 1.5 V VDDR1 Reserved 1.5 V Connect to DVDD15 VDDR2 PCIE SerDes regulator supply 1.5 V Filtered version of DVDD15. Special considerations for noise. Filter is not needed if PCIE is not in use. VDDR3 SGMII SerDes regulator supply 1.5 V Filtered version of DVDD15. Special considerations for noise. Filter is not needed if SGMII is not in use. VDDR4 Reserved 1.5 V Connect to DVDD15 DVDD18 1.8-V IO supply 1.8V AVDDA1 Main PLL supply 1.8 V Filtered version of DVDD18. Special considerations for noise. AVDDA2 DDR3 PLL supply 1.8 V Filtered version of DVDD18. Special considerations for noise. VREFSSTL 0.75-V DDR3 reference voltage 0.75 V Should track the 1.5-V supply. Use 1.5 V as source. VSS Ground GND End of Table 7-1 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 107 PRODUCT PREVIEW The following sections describe the proper power-supply sequencing and timing needed to properly power on the C6654. The various power supply rails and their primary function is listed in Table 7-1. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.2.1 Power-Supply Sequencing This section defines the requirements for a power up sequencing from a power-on reset condition. There are two acceptable power sequences for the device. The first sequence stipulates the core voltages starting before the IO voltages as shown below. 1. CVDD 2. CVDD1, VDDT1-2 3. DVDD18, AVDDA1, AVDDA2 4. DVDD15, VDDR1-4 PRODUCT PREVIEW The second sequence provides compatibility with other TI processors with the IO voltage starting before the core voltages as shown below. 1. DVDD18, AVDDA1, AVDDA2 2. CVDD 3. CVDD1, VDDT1-2 4. DVDD15, VDDR1-4 The clock input buffers for CORECLK, DDRCLK, SRIOSGMIICLK, and PCIECLK use only CVDD as a supply voltage. These clock inputs are not failsafe and must be held in a high-impedance state until CVDD is at a valid voltage level. Driving these clock inputs high before CVDD is valid could cause damage to the device. Once CVDD is valid it is acceptable that the P and N legs of these CLKs may be held in a static state (either high and low or low and high) until a valid clock frequency is needed at that input. To avoid internal oscillation the clock inputs should be removed from the high impedance state shortly after CVDD is present. If a clock input is not used it must be held in a static state. To accomplish this the N leg should be pulled to ground through a 1K ohm resistor. The P leg should be tied to CVDD to ensure it won't have any voltage present until CVDD is active. Connections to the IO cells powered by DVDD18 and DVDD15 are not failsafe and should not be driven high before these voltages are active. Driving these IO cells high before DVDD18 or DVDD15 are valid could cause damage to the device. The device initialization is broken into two phases. The first phase consists of the time period from the activation of the first power supply until the point in which all supplies are active and at a valid voltage level. Either of the sequencing scenarios described above can be implemented during this phase. The figures below show both the core-before-IO voltage sequence and the IO-before-core voltage sequence. POR must be held low for the entire power stabilization phase. This is followed by the device initialization phase. The rising edge of POR followed by the rising edge of RESETFULL will trigger the end of the initialization phase but both must be inactive for the initialization to complete. POR must always go inactive before RESETFULL goes inactive as described below. SYSCLK1 in the following section refers to the clock that is used by the CorePac, see Figure 7-7 for more details. 7.2.1.1 Core-Before-IO Power Sequencing Figure 7-1 shows the power sequencing and reset control of TMS320C6654 for device initialization. POR may be removed after the power has been stable for the required 100 μsec. RESETFULL must be held low for a period after the rising edge of POR but may be held low for longer periods if necessary. The configuration bits shared with the GPIO pins will be latched on the rising edge of RESETFULL and must meet the setup and hold times specified. 108 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com SYSCLK1 must always be active before POR can be removed. Core-before-IO power sequencing is defined in Table 7-2. Note—TI recommends a maximum of 100 ms between one power rail being valid, and the next power rail in the sequence starting to ramp Figure 7-1 Core Before IO Power Sequencing Power Stabilization Phase Device Initialization Phase POR PRODUCT PREVIEW 7 RESETFULL 8 GPIO Config Bits 4b 9 10 RESET 2c 1 CVDD 6 2a CVDD1 3 DVDD18 4a DVDD15 5 SYSCLK1P&N 2b DDRCLKP&N RESETSTAT Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 109 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-2 www.ti.com Core Before IO Power Sequencing PRODUCT PREVIEW Time System State 1 Begin Power Stabilization Phase • CVDD (core AVS) ramps up. • POR must be held low through the power stabilization phase. Because POR is low, all the core logic that has async reset (created from POR) is put into the reset state. 2a • CVDD1 (core constant) ramps at the same time or shortly following CVDD. Although ramping CVDD1 and CVDD simultaneously is permitted, the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage. • The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 should trail CVDD as this will ensure that the WLs in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS), then the worst-case current could be on the order of twice the specified draw of CVDD1. 2b • Once CVDD is valid, the clock drivers should be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or be held in a static state with one leg high and one leg low. 2c • The DDRCLK and SYSCLK1 may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by t6. 3 • Filtered versions of 1.8 V can ramp simultaneously with DVDD18. • RESETSTAT is driven low once the DVDD18 supply is available. • All LVCMOS input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 is valid could cause damage to the device. 4a • DVDD15 (1.5 V) supply is ramped up following DVDD18. Although ramping DVDD18 and DVDD15 simultaneously is permitted, the voltage for DVDD15 must never exceed DVDD18. 4b • RESET may be driven high any time after DVDD18 is at a valid level. In a POR-controlled boot, RESET must be high before POR is driven high. 5 • POR must continue to remain low for at least 100 μs after power has stabilized. End Power Stabilization Phase 6 • Device initialization requires 500 SYSCLK1 periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec, so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. 7 • RESETFULL must be held low for at least 24 transitions of the SYSCLK1 after POR has stabilized at a high level. 8 • The rising edge of the RESETFULL will remove the reset to the efuse farm allowing the scan to begin. • Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. End Device Initialization Phase 9 • GPIO configuration bits must be valid for at least 12 transitions of the SYSCLK1 before the rising edge of RESETFULL 10 • GPIO configuration bits must be held valid for at least 12 transitions of the SYSCLK1 after the rising edge of RESETFULL End of Table 7-2 110 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.2.1.2 IO-Before-Core Power Sequencing The timing diagram for IO-before-core power sequencing is shown in Figure 7-2 and defined in Table 7-3. Note—TI recommends a maximum of 100 ms between one power rail being valid, and the next power rail in the sequence starting to ramp. Figure 7-2 IO Before Core Power Sequencing Power Stabilization Phase Device Initialization Phase POR 5 PRODUCT PREVIEW 7 RESETFULL 8 GPIO Config Bits 2a 9 10 RESET 3c 2b CVDD 6 3a CVDD1 1 DVDD18 4 DVDD15 3b SYSCLK1P&N DDRCLKP&N RESETSTAT Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 111 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-3 www.ti.com IO Before Core Power Sequencing PRODUCT PREVIEW Time System State 1 Begin Power Stabilization Phase • Because POR is low, all the core logic having async reset (created from POR) are put into reset state once the core supply ramps. POR must remain low through Power Stabilization Phase. • Filtered versions of 1.8 V can ramp simultaneously with DVDD18. • RESETSTAT is driven low once the DVDD18 supply is available. • All input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 could cause damage to the device. 2a • RESET may be driven high anytime after DVDD18 is at a valid level. 2b • CVDD (core AVS) ramps up. 3a • CVDD1 (core constant) ramps at the same time or following CVDD. Although ramping CVDD1 and CVDD simultaneously is permitted the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage. • The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 should trail CVDD as this will ensure that the WLs in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS), then the worst case current could be on the order of twice the specified draw of CVDD1. 3b • Once CVDD is valid, the clock drivers should be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or held in a static state with one leg high and one leg low. 3c • The DDRCLK and SYSCLK1 may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by t6. 4 • DVDD15 (1.5 V) supply is ramped up following CVDD1. 5 • POR must continue to remain low for at least 100 μs after power has stabilized. End Power Stabilization Phase 6 Begin Device Initialization • Device initialization requires 500 SYSCLK1 periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. • POR must remain low. 7 • RESETFULL is held low for at least 24 transitions of the SYSCLK1 after POR has stabilized at a high level. • The rising edge of the RESETFULL will remove the reset to the efuse farm allowing the scan to begin. 8 • Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. 9 • GPIO configuration bits must be valid for at least 12 transitions of the SYSCLK1 before the rising edge of RESETFULL 10 • GPIO configuration bits must be held valid for at least 12 transitions of the SYSCLK1 after the rising edge of RESETFULL End Device Initialization Phase End of Table 7-3 7.2.1.3 Prolonged Resets Holding the device in POR, RESETFULL, or RESET for long periods of time will affect the long term reliability of the part. The device should not be held in a reset for times exceeding one hour and should not be held in reset for more the 5% of the time during which power is applied. Exceeding these limits will cause a gradual reduction in the reliability of the part. This can be avoided by allowing the DSP to boot and then configuring it to enter a hibernation state soon after power is applied. This will satisfy the reset requirement while limiting the power consumption of the device. 7.2.1.4 Clocking During Power Sequencing Some of the clock inputs are required to be present for the device to initialize correctly, but behavior of many of the clocks is contingent on the state of the boot configuration pins. Table 7-4 describes the clock sequencing and the conditions that affect the clock operation. Note that all clock drivers should be in a high-impedance state until CVDD is at a valid level and that all clock inputs either be active or in a static state with one leg pulled low and the other connected to CVDD. 112 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-4 Clock Sequencing Clock Condition DDRCLK None Must be present 16 μsec before POR transitions high. CORECLK None CORECLK used to clock the core PLL. It must be present 16 μsec before POR transitions high. SRIOSGMIICLK PCIECLK Sequencing The SGMII port will be used. SRIOSGMIICLK must be present 16 μsec before POR transitions high. SGMII will not be used. SRIOSGMIICLK is not used and should be tied to a static state. PCIE will be used as a boot device. PCIECLK must be present 16 μsec before POR transitions high. PCIE will be used after boot. PCIECLK is used as a source to the PCIE SERDES PLL. It must be present before the PCIE is removed from reset and programmed. PCIE will not be used. PCIECLK is not used and should be tied to a static state. 7.2.2 Power-Down Sequence The power down sequence is the exact reverse of the power-up sequence described above. The goal is to prevent a large amount of static current and to prevent overstress of the device. A power-good circuit that monitors all the supplies for the device should be used in all designs. If a catastrophic power supply failure occurs on any voltage rail, POR should transition to low to prevent over-current conditions that could possibly impact device reliability. A system power monitoring solution is needed to shut down power to the board if a power supply fails. Long-term exposure to an environment in which one of the power supply voltages is no longer present will affect the reliability of the device. Holding the device in reset is not an acceptable solution because prolonged periods of time with an active reset can also affect long term reliability. 7.2.3 Power Supply Decoupling and Bulk Capacitors In order to properly decouple the supply planes on the PCB from system noise, decoupling and bulk capacitors are required. Bulk capacitors are used to minimize the effects of low frequency current transients and decoupling or bypass capacitors are used to minimize higher frequency noise. For recommendations on selection of Power Supply Decoupling and Bulk capacitors see the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.2.4 SmartReflex Increasing the device complexity increases its power consumption and with the smaller transistor structures responsible for higher achievable clock rates and increased performance, comes an inevitable penalty, increasing the leakage currents. Leakage currents are present in any active circuit, independently of clock rates and usage scenarios. This static power consumption is mainly determined by transistor type and process technology. Higher clock rates also increase dynamic power, the power used when transistors switch. The dynamic power depends mainly on a specific usage scenario, clock rates, and I/O activity. Texas Instruments' SmartReflex technology is used to decrease both static and dynamic power consumption while maintaining the device performance. SmartReflex in the TMS320C6654 device is a feature that allows the core voltage to be optimized based on the process corner of the device. This requires a voltage regulator for each TMS320C6654 device. To guarantee maximizing performance and minimizing power consumption of the device, SmartReflex is required to be implemented whenever the TMS320C6654 device is used. The voltage selection is done using 4 VCNTL pins which are used to select the output voltage of the core voltage regulator. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 113 PRODUCT PREVIEW End of Table 7-4 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com For information on implementation of SmartReflex see the Power Management for KeyStone Devices application report and the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 64. Table 7-5 SmartReflex 4-Pin VID Interface Switching Characteristics (see Figure 7-3) No. 1 Parameter td(VCNTL[2:0]-VCNTL[3]) Min Delay Time - VCNTL[2:0] valid after VCNTL[3] low 2 toh(VCNTL[3] -VCNTL[2:0]) Output Hold Time - VCNTL[2:0] valid after VCNTL[3] low 3 td(VCNTL[2:0]-VCNTL[3]) 4 toh(VCNTL[3] -VCNTL[2:0]) Output Hold Time - VCNTL[2:0] valid after VCNTL[3] high Max ns (1) ms 300.00 ns 172020C ms 0.07 172020C Delay Time - VCNTL[2:0] valid after VCNTL[3] high 0.07 Unit 300.00 End of Table 7-5 PRODUCT PREVIEW 1 C = 1/SYSCLK1 frequency (See Figure 7-9)in ms Figure 7-3 SmartReflex 4-Pin VID Interface Timing 4 VCNTL[3] 1 3 VCNTL[2:0] LSB VID[2:0] MSB VID[5:3] 2 114 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.3 Power Sleep Controller (PSC) The Power Sleep Controller (PSC) controls overall device power by turning off unused power domains and gating off clocks to individual peripherals and modules. The PSC provides the user with an interface to control several important power and clock operations. For information on the Power Sleep Controller, see the Power Sleep Controller (PSC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.3.1 Power Domains The device has several power domains that can be turned on for operation or off to minimize power dissipation. The global power/sleep controller (GPSC) is used to control the power gating of various power domains. Table 7-6 PRODUCT PREVIEW Table 7-6 shows the TMS320C6654 power domains. Power Domains Domain Block(s) Note Power Connection 0 Most peripheral logic Cannot be disabled Always on 1 Per-core TETB and System TETB RAMs can be powered down Software control 2 Reserved Reserved Reserved 3 PCIe Logic can be powered down Software control 4 Reserved Reserved Reserved 5 Reserved Reserved Reserved 6 Reserved Reserved Reserved 7 Reserved Reserved Reserved 8 Reserved Reserved Reserved 9 Reserved Reserved Reserved 10 Reserved Reserved Reserved 11 Reserved Reserved Reserved 12 Reserved Reserved Reserved 13 C66x Core 0, L1/L2 RAMs L2 RAMs can sleep Software control via C66x CorePac. For details, see the C66x CorePac Reference Guide. 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved End of Table 7-6 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 115 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.3.2 Clock Domains Clock gating to each logic block is managed by the local power/sleep controllers (LPSCs) of each module. For modules with a dedicated clock or multiple clocks, the LPSC communicates with the PLL controller to enable and disable that module's clock(s) at the source. For modules that share a clock with other modules, the LPSC controls the clock gating. Table 7-7 shows the TMS320C6654 clock domains. Table 7-7 Clock Domains PRODUCT PREVIEW LPSC Number Module(s) Notes 0 Shared LPSC for all peripherals other than those listed in this table Always on 1 SmartReflex Always on 2 DDR3 EMIF Always on 3 EMAC Software control 4 Reserved Reserved 5 Debug Subsystem and Tracers Software control 6 Per-core TETB and System TETB Software control 7 Reserved Reserved 8 Reserved Reserved 9 Reserved Reserved 10 PCIe Software control 11 Reserved Reserved 12 Reserved Reserved 13 Reserved Reserved 14 Reserved Reserved 15 Reserved Reserved 16 Reserved Reserved 17 Reserved Reserved 18 Reserved Reserved 19 Reserved Reserved 20 Reserved Reserved 21 Reserved Reserved 22 Reserved Reserved 23 C66x CorePac 0 and Timer 0 Software control 24 Timer 1 Software control No LPSC Bootcfg, PSC, and PLL controller These modules do not use LPSC End of Table 7-7 116 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.3.3 PSC Register Memory Map Table 7-8 shows the PSC Register memory map. PSC Register Memory Map (Part 1 of 3) Offset Register Description 0x000 PID Peripheral Identification Register 0x004 - 0x010 Reserved Reserved 0x014 VCNTLID Voltage Control Identification Register 0x018 - 0x11C Reserved Reserved 0x120 PTCMD Power Domain Transition Command Register 0x124 Reserved Reserved 0x128 PTSTAT Power Domain Transition Status Register 0x12C - 0x1FC Reserved Reserved 0x200 PDSTAT0 Power Domain Status Register 0 (AlwaysOn) 0x204 PDSTAT1 Power Domain Status Register 1 (Per-core TETB and System TETB) 0x208 PDSTAT2 Power Domain Status Register 2 (Reserved) 0x20C PDSTAT3 Power Domain Status Register 3 (PCIe) 0x210 PDSTAT4 Power Domain Status Register 4 (Reserved) 0x214 PDSTAT5 Power Domain Status Register 5(Reserved) 0x218 PDSTAT6 Power Domain Status Register 6 (Reserved) 0x21C PDSTAT7 Power Domain Status Register 7(Reserved) 0x220 PDSTAT8 Power Domain Status Register 8 (Reserved) 0x224 PDSTAT9 Power Domain Status Register 9 (Reserved) 0x228 PDSTAT10 Power Domain Status Register 10 (Reserved) 0x22C PDSTAT11 Power Domain Status Register 11(Reserved) 0x230 PDSTAT12 Power Domain Status Register 12 (Reserved) 0x234 PDSTAT13 Power Domain Status Register 13 (C66x CorePac 0) 0x238 PDSTAT14 Power Domain Status Register 14 (Reserved) 0x23C Reserved Reserved 0x240 - 0x2FC Reserved Reserved 0x300 PDCTL0 Power Domain Control Register 0 (AlwaysOn) 0x304 PDCTL1 Power Domain Control Register 1 (Per-core TETB and System TETB) 0x308 PDCTL2 Power Domain Control Register 2 (Reserved) 0x30C PDCTL3 Power Domain Control Register 3 (PCIe) 0x310 PDCTL4 Power Domain Control Register 4 (Reserved) 0x314 PDCTL5 Power Domain Control Register 4 (Reserved) 0x318 PDCTL6 Power Domain Control Register 6 (Reserved) 0x31C PDCTL7 Power Domain Control Register 7 (Reserved) 0x320 PDCTL8 Power Domain Control Register 8 (Reserved) 0x324 PDCTL9 Power Domain Control Register 9 (Reserved) 0x328 PDCTL10 Power Domain Control Register 10 (Reserved) 0x32C PDCTL11 Power Domain Control Register 11(Reserved) 0x330 PDCTL12 Power Domain Control Register 12(Reserved) 0x334 PDCTL13 Power Domain Control Register 13 (C66x CorePac 0) 0x338 PDCTL14 Power Domain Control Register 14 (Reserved) 0x33C Reserved Reserved Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications PRODUCT PREVIEW Table 7-8 117 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-8 www.ti.com PSC Register Memory Map (Part 2 of 3) Offset Register Description 0x340 - 0x7FC Reserved Reserved PRODUCT PREVIEW 0x800 MDSTAT0 Module Status Register 0 (Never Gated) 0x804 MDSTAT1 Module Status Register 1 (SmartReflex) 0x808 MDSTAT2 Module Status Register 2 (DDR3 EMIF) 0x80C MDSTAT3 Module Status Register 3 (EMAC) 0x810 MDSTAT4 Module Status Register 4 (Reserved) 0x814 MDSTAT5 Module Status Register 5 (Debug Subsystem and Tracers) 0x818 MDSTAT6 Module Status Register 6 (Per-core TETB and System TETB) 0x81C MDSTAT7 Module Status Register 7 (Reserved) 0x820 MDSTAT8 Module Status Register 8 (Reserved) 0x824 MDSTAT9 Module Status Register 9 (Reserved) 0x828 MDSTAT10 Module Status Register 10 (PCIe) 0x82C MDSTAT11 Module Status Register 11(Reserved) 0x830 MDSTAT12 Module Status Register 12(Reserved) 0x834 MDSTAT13 Module Status Register 13 (Reserved) 0x838 MDSTAT14 Module Status Register 14 (Reserved) 0x83C MDSTAT15 Module Status Register 15 (Reserved) 0x840 MDSTAT16 Module Status Register 16 (Reserved) 0x844 MDSTAT17 Module Status Register 17 (Reserved) 0x848 MDSTAT18 Module Status Register 18 (Reserved) 0x84C MDSTAT19 Module Status Register 19 (Reserved) 0x850 MDSTAT20 Module Status Register 20 (Reserved) 0x854 MDSTAT21 Module Status Register 11 (Reserved) 0x858 MDSTAT22 Module Status Register 22(Reserved) 0x85C MDSTAT23 Module Status Register 23(C66x CorePac 0 and Timer 0) 0x860 MDSTAT24 Timer 1 0x864 - 0x9FC Reserved Reserved 0xA00 MDCTL0 Module Control Register 0 (Never Gated) 0xA04 MDCTL1 Module Control Register 1 (SmartReflex) 0xA08 MDCTL2 Module Control Register 2 (DDR3 EMIF) 0xA0C MDCTL3 Module Control Register 3 (EMAC) 0xA10 MDCTL4 Module Control Register 4 (Reserved) 0xA14 MDCTL5 Module Control Register 5 (Debug Subsystem and Tracers) 0xA18 MDCTL6 Module Control Register 6 (Per-core TETB and System TETB) 0xA1C MDCTL7 Module Control Register 7 (Reserved) 0xA20 MDCTL8 Module Control Register 8 (Reserved) 0xA24 MDCTL9 Module Control Register 9 (Reserved) 0xA28 MDCTL10 Module Control Register 10 (PCIe) 0xA2C MDCTL11 Module Control Register 11(Reserved) 0xA30 MDCTL12 Module Control Register 12(Reserved) 0xA34 MDCTL13 Module Control Register 13 (Reserved) 0xA38 MDCTL14 Module Control Register 14 (Reserved) 0xA3C MDCTL15 Module Control Register 15 (Reserved) 0xA40 MDCTL16 Module Control Register 16 (Reserved) 118 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com PSC Register Memory Map (Part 3 of 3) Offset Register Description 0xA44 MDCTL17 Module Control Register 17 (Reserved) 0xA48 MDCTL18 Module Control Register 18 (Reserved) 0xA4C MDCTL19 Module Control Register 19 (Reserved) 0xA50 MDCTL20 Module Control Register 20 (Reserved) 0xA54 MDCTL21 Module Control Register 21(Reserved) 0xA58 MDCTL22 Module Control Register 22(Reserved) 0xA5C MDCTL23 Module Control Register 23(C66x CorePac 0 and Timer 0) 0xA60 MDCTL24 Timer 1 0xA5C - 0xFFC Reserved Reserved End of Table 7-8 7.4 Reset Controller The reset controller detects the different type of resets supported on the TMS320C6654 device and manages the distribution of those resets throughout the device. The device has several types of resets: • Power-on reset • Hard reset • Soft reset • CPU local reset Table 7-9 explains further the types of reset, the reset initiator, and the effects of each reset on the device. For more information on the effects of each reset on the PLL controllers and their clocks, see Section ‘‘Reset Electrical Data / Timing’’ on page 123 Table 7-9 Reset Type Reset Types Initiator POR (Power On Reset) POR pin active low RESETFULL pin active low Hard reset RESET pin active low Emulation PLLCTL register (RSCTRL) Watchdog timers Soft reset RESET pin active low PLLCTL register (RSCTRL) Watchdog timers C66x CorePac local reset Software (through LPSC MMR) Watchdog timers LRESET pin Effect on Device When Reset Occurs RESETSTAT Pin Status Toggles RESETSTAT pin Total reset of the chip. Everything on the device is reset to its default state in response to this. Activates the POR signal on chip, which is used to reset test/emu logic. Boot configurations are latched. ROM boot process is initiated. Resets everything except for test/emu logic and reset isolation modules. Emulator and reset Isolation modules stay alive during this reset. This reset is also different from POR in that the PLLCTL assumes power and clocks are stable when device reset is asserted. Boot configurations are not latched. ROM boot process is initiated. Toggles RESETSTAT pin Software can program these initiators to be hard or soft. Hard reset is the default, but can be programmed to be soft reset. Soft reset will behave like hard reset except that EMIF16 MMRs, DDR3 EMIF MMRs, sticky bits in PCIe MMRs, and external memory contents are retained. Boot configurations are not latched. ROM boot process is initiated. Toggles RESETSTAT pin MMR bit in LPSC controls C66x CorePac local reset. Used by watchdog Does not toggle RESETSTAT pin timers (in the event of a timeout) to reset C66x CorePac. Can also be initiated by LRESET device pin. C66x CorePac memory system and slave DMA port are still alive when C66x CorePac is in local reset. Provides a local reset of the C66x CorePac, without destroying clock alignment or memory contents. Does not initiate ROM boot process. End of Table 7-9 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 119 PRODUCT PREVIEW Table 7-8 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.4.1 Power-on Reset Power-on reset is used to reset the entire device, including the test and emulation logic. Power-on reset is initiated by the following 1. POR pin 2. RESETFULL pin PRODUCT PREVIEW During power-up, the POR pin must be asserted (driven low) until the power supplies have reached their normal operating conditions. A RESETFULL pin is also provided to allow the on-board host to reset the entire device including the reset isolated logic. The assumption is that, device is already powered up and hence unlike POR, RESETFULL pin will be driven by the on-board host control other than the power good circuitry. For power-on reset, the Main PLL Controller comes up in bypass mode and the PLL is not enabled. Other resets do not affect the state of the PLL or the dividers in the PLL controller. The following sequence must be followed during a power-on reset: 1. Wait for all power supplies to reach normal operating conditions while keeping the POR pin asserted (driven low). While POR is asserted, all pins except RESETSTAT will be set to high-impedance. After the POR pin is de-asserted (driven high), all Z group pins, low group pins, and high group pins are set to their reset state and will remain at their reset state until otherwise configured by their respective peripheral. All peripherals that are power managed, are disabled after a Power-on Reset and must be enabled through the Device State Control registers (for more details, see Section Table 3-2 ‘‘Device State Control Registers’’ on page 66). 2. Clocks are reset, and they are propagated throughout the chip to reset any logic that was using reset synchronously. All logic is now reset and RESETSTAT will be driven low indicating that the device is in reset. 3. POR must be held active until all supplies on the board are stable then for at least an additional time for the Chip level PLLs to lock. 4. The POR pin can now be de-asserted. Reset sampled pin values are latched at this point. The Chip level PLLs is taken out of reset and begins its locking sequence, and all power-on device initialization also begins. 5. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). By this time, DDR3 PLL has already completed its locking sequence and is outputting a valid clock. The system clocks of both PLL controllers are allowed to finish their current cycles and then paused for 10 cycles of their respective system reference clocks. After the pause, the system clocks are restarted at their default divide by settings. 6. The device is now out of reset and device execution begins as dictated by the selected boot mode. Note—To most of the device, reset is de-asserted only when the POR and RESET pins are both de-asserted (driven high). Therefore, in the sequence described above, if the RESET pin is held low past the low period of the POR pin, most of the device will remain in reset. The RESET pin should not be tied together with the POR pin. 120 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor www.ti.com SPRS841—March 2012 7.4.2 Hard Reset A hard reset will reset everything on the device except the PLLs, test, emulation logic, and reset isolation modules. POR should also remain de-asserted during this time. Hard reset is initiated by the following • RESET pin • RSCTRL register in PLLCTL • Watchdog timer • Emulation The following sequence must be followed during a Hard reset: 1. The RESET pin is pulled active low for a minimum of 24 input clock cycles. During this time the RESET signal is able to propagate to all modules (except those specifically mentioned above). All I/O are Hi-Z for modules affected by RESET, to prevent off-chip contention during the warm reset. 2. Once all logic is reset, RESETSTAT is driven active to denote that the device is in reset. 3. The RESET pin can now be released. A minimal device initialization begins to occur. Note that configuration pins are not re-latched and clocking is unaffected within the device. 4. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). Note—The POR pin should be held inactive (high) throughout the warm reset sequence. Otherwise, if POR is activated (brought low), the minimum POR pulse width must be met. The RESET pin should not be tied together with the POR pin. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 121 PRODUCT PREVIEW All the above initiators by default are configured to act as hard reset. Except emulation, all the other 3 initiators can be configured as Soft resets in the RSCFG register in PLLCTL. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.4.3 Soft Reset A soft reset will behave like a hard reset except that the PCIe MMR sticky bits and DDR3 EMIF MMRs contents are retained. POR should also remain de-asserted during this time. Soft reset is initiated by the following • RESET pin • RSCTRL register in PLLCTL • Watchdog timer All the above initiators by default are configured to act as hard reset. Except emulation, all the other 3 initiators can be configured as soft resets in the RSCFG register in PLLCTL. PRODUCT PREVIEW In the case of a soft reset, the clock logic or the power control logic of the peripherals are not affected, and, therefore, the enabled/disabled state of the peripherals is not affected. On a soft reset, the DDR3 memory controller registers are not reset. In addition, the DDR3 SDRAM memory content is retained if the user places the DDR3 SDRAM in self-refresh mode before invoking the soft reset. During a soft reset, the following happens: 1. The RESETSTAT pin goes low to indicate an internal reset is being generated. The reset is allowed to propagate through the system. Internal system clocks are not affected. PLLs also remain locked. 2. After device initialization is complete, the RESETSTAT pin is deasserted (driven high). In addition, the PLL controllers pause their system clocks for about 8 cycles. At this point: › The state of the peripherals before the soft reset is not changed. › The I/O pins are controlled as dictated by the DEVSTAT register. › The DDR3 MMRs and PCIe MMR sticky bits retain their previous values. Only the DDR3 Memory Controller and PCIe state machines are reset by the soft reset. › The PLL controllers are operating in the mode prior to soft reset. System clocks are unaffected. The boot sequence is started after the system clocks are restarted. Since the configuration pins are not latched with a System Reset, the previous values, as shown in the DEVSTAT register, are used to select the boot mode. 122 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.4.4 Local Reset Local reset is initiated by the following (for more details see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64: • LRESET pin • Watchdog timer should cause one of the below based on the setting of the CORESEL[2:0] and RSTCFG register in the PLL controller. See ‘‘Reset Configuration Register (RSTCFG)’’ on page 134 and ‘‘CIC Registers’’ on page 159: – Local Reset – NMI – NMI followed by a time delay and then a local reset for the CorePac selected – Hard Reset by requesting reset via PLLCTL • LPSC MMRs (memory-mapped registers) 7.4.5 Reset Priority If any of the above reset sources occur simultaneously, the PLLCTL processes only the highest priority reset request. The reset request priorities are as follows (high to low): • Power-on reset • Hard/Soft reset 7.4.6 Reset Controller Register The reset controller register are part of the PLLCTL MMRs. All C6654 device-specific MMRs are covered in Section 7.5.3 ‘‘Main PLL Control Register’’ on page 135. For more details on these registers and how to program them, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.4.7 Reset Electrical Data / Timing Table 7-10 Reset Timing Requirements (1) (see Figure 7-4 and Figure 7-5) No. Min Max Unit RESETFULL Pin Reset 1 tw(RESETFULL) Pulse width - Pulse width RESETFULL low 500C ns 500C ns Soft/Hard-Reset 2 Pulse width - Pulse width RESET low tw(RESET) End of Table 7-10 1 C = 1 ÷ CORECLK(N|P) frequency in ns. Table 7-11 Reset Switching Characteristics Over Recommended Operating Conditions (1) (see Figure 7-4 and Figure 7-5) No. Parameter Min Max Unit RESETFULL Pin Reset 3 td(RESETFULLH-RESETSTATH) Delay time - RESETSTAT high after RESETFULL high Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions 50000C ns Peripheral Information and Electrical Specifications 123 PRODUCT PREVIEW The local reset can be used to reset a particular CorePac without resetting any other chip components. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Reset Switching Characteristics Over Recommended Operating Conditions (1) Table 7-11 (see Figure 7-4 and Figure 7-5) No. Parameter Min Max Unit Soft/Hard Reset 4 td(RESETH-RESETSTATH) Delay time - RESETSTAT high after RESET high 50000C ns End of Table 7-11 1 C = 1 ÷ CORECLK(N|P) frequency in ns. Figure 7-4 RESETFULL Reset Timing POR 1 PRODUCT PREVIEW RESETFULL RESET 3 RESETSTAT Figure 7-5 Soft/Hard-Reset Timing POR RESETFULL 2 RESET 4 RESETSTAT Table 7-12 Boot Configuration Timing Requirements (1) (See Figure 7-6) No. Min Max Unit 1 tsu(GPIOn-RESETFULL) Setup time - GPIO valid before RESETFULL asserted 12C ns 2 th(RESETFULL-GPIOn) Hold time - GPIO valid after RESETFULL asserted 12C ns End of Table 7-12 1 C = 1 ÷ CORECLK(N|P) frequency in ns. 124 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 7-6 Boot Configuration Timing POR 1 RESETFULL GPIO[15:0] PRODUCT PREVIEW 2 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 125 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.5 Main PLL and PLL Controller This section provides a description of the Main PLL and the PLL controller. For details on the operation of the PLL controller module, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. The Main PLL is controlled by the standard PLL controller. The PLL controller manages the clock ratios, alignment, and gating for the system clocks to the device. Figure 7-7 shows a block diagram of the main PLL and the PLL controller. Figure 7-7 Main PLL and PLL Controller PLL PLLD xPLLM /2 PRODUCT PREVIEW CORECLK(N|P) 0 PLLOUT OUTPUT DIVIDE 1 BYPASS PLL Controller 1 0 0 1 PLLEN 0 PLLENSRC PLLDIV1 PLLDIV2 PLLDIV3 PLLDIV4 PLLDIV5 PLLDIV6 PLLDIV7 PLLDIV8 PLLDIV9 PLLDIV10 PLLDIV11 126 Peripheral Information and Electrical Specifications /1 SYSCLK1 C66x CorePac /x SYSCLK2 /2 SYSCLK3 /3 SYSCLK4 /y SYSCLK5 /64 SYSCLK6 /6 SYSCLK7 To Switch Fabric, Peripherals, Accelerators /z SYSCLK8 /12 SYSCLK9 /3 SYSCLK10 /6 SYSCLK11 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor www.ti.com SPRS841—March 2012 Note—NOTE: PLLM[5:0] bits of the multiplier are controlled by the PLLM register inside the PLL controller and PLLM[12:6] bits are controlled by the chip level MAINPLLCTL0 register. The complete 13-bit value is latched when the GO operation is initiated in the PLL controller. Only PLLDIV2, PLLDIV5, and PLLDIV8 are programmable on the C6654 device. See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64 for more details on how to program the PLL controller. Main PLL power is supplied externally via the Main PLL power-supply pin (AVDDA1). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 64 for detailed recommendations. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter). The minimum SYSCLK rise and fall times should also be observed. For the input clock timing requirements, see Section 7.5.5 ‘‘Main PLL Controller/PCIe Clock Input Electrical Data/Timing’’. CAUTION—The PLL controller module as described in the see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64 includes a superset of features, some of which are not supported on the TMS320C6654 device. The following sections describe the registers that are supported; it should be assumed that any registers not included in these sections is not supported by the device. Furthermore, only the bits within the registers described here are supported. Avoid writing to any reserved memory location or changing the value of reserved bits. 7.5.1 Main PLL Controller Device-Specific Information 7.5.1.1 Internal Clocks and Maximum Operating Frequencies The Main PLL, used to drive the CorePacs, the switch fabric, and a majority of the peripheral clocks (all but the DDR3) requires a PLL controller to manage the various clock divisions, gating, and synchronization. The Main PLL’s PLL controller has several SYSCLK outputs that are listed below, along with the clock description. Each SYSCLK has a corresponding divider that divides down the output clock of the PLL. Note that dividers are not programmable unless explicitly mentioned in the description below. • SYSCLK1: Full-rate clock for the CorePac. • SYSCLK2: 1/x-rate clock for CorePac emulation. Default rate for this will be 1/3. This is programmable from /1 to /32, where this clock does not violate the max of 350 MHz. The SYSCLK2 can be turned off by software. • SYSCLK3: 1/2-rate clock used to clock the MSMC and DDR EMIF. • SYSCLK4: 1/3-rate clock for the switch fabrics and fast peripherals. The Debug_SS and ETBs will use this as well. • SYSCLK5: 1/y-rate clock for system trace module only. Default rate for this will be 1/5. It is configurable and the max configurable clock is 210 MHz and min configuration clock is 32 MHz. The SYSCLK5 can be turned off by software. • SYSCLK6: 1/64-rate clock. 1/64 rate clock (emif_ptv) used to clock the PVT compensated buffers for DDR3 EMIF. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 127 PRODUCT PREVIEW The inputs, multiply and division factor within the PLL, post-division for each of the chip-level clocks is achieved using the combination of this PLL and the PLL Controller. The PLL controller also controls reset propagation through the chip, clock alignment, and test points. The PLL controller monitors the PLL status and provides an output signal indicating when the PLL is locked. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 • • • • www.ti.com SYSCLK7: 1/6-rate clock for slow peripherals and sources the SYSCLKOUT output pin. SYSCLK8: 1/z-rate clock. This clock is used as slow_sysclk in the system. Default for this will be 1/64. This is programmable from /24 to /80. SYSCLK9: 1/12-rate clock for SmartReflex. SYSCLK11: 1/6-rate clock for PSC only. Only SYSCLK2, SYSCLK5 and SYSCLK8 are programmable on theTMS320C6654 device. Note—In case any of the other programmable SYSCLKs are set slower than 1/64 rate, then SYSCLK8 (SLOW_SYSCLK) needs to be programmed to either match, or be slower than, the slowest SYSCLK in the system. PRODUCT PREVIEW 7.5.1.2 Main PLL Controller Operating Modes The Main PLL controller has two modes of operation: bypass mode and PLL mode. The mode of operation is determined by BYPASS bit of the PLL Secondary control register (SECCTL). In PLL mode, SYSCLK1 is generated from the PLL output using the values set in PLLM and PLLD bit fields in the MAINPLLCTL0 register. In bypass mode, PLL input is fed directly out as SYSCLK1. All hosts must hold off accesses to the DSP while the frequency of its internal clocks is changing. A mechanism must be in place such that the DSP notifies the host when the PLL configuration has completed. 7.5.1.3 Main PLL Stabilization, Lock, and Reset Times The PLL stabilization time is the amount of time that must be allotted for the internal PLL regulators to become stable after device powerup. The PLL should not be operated until this stabilization time has expired. The PLL reset time is the amount of wait time needed when resetting the PLL (writing PLLRST = 1), in order for the PLL to properly reset, before bringing the PLL out of reset (writing PLLRST = 0). For the Main PLL reset time value, see Table 7-13. The PLL lock time is the amount of time needed from when the PLL is taken out of reset (PLLRST = 1 with PLLEN = 0) to when to when the PLL controller can be switched to PLL mode (PLLEN = 1). The Main PLL lock time is given in Table 7-13. Table 7-13 Main PLL Stabilization, Lock, and Reset Times Min PLL stabilization time Max 100 PLL lock time PLL reset time Typ μs 500 ×(PLLD 1000 Unit (1) +1) × C (2) ns End of Table 7-13 1 PLLD is the value in PLLD bit fields of MAINPLLCTL0 register 2 C = SYSCLK1(N|P) cycle time in ns. 128 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.5.2 PLL Controller Memory Map The memory map of the PLL controller is shown in Table 7-14. TMS320C6654-specific PLL Controller register definitions can be found in the sections following Table 7-14. For other registers in the table, see the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. Table 7-14 PRODUCT PREVIEW CAUTION—Note that only registers documented here are accessible on the TMS320C6654. Other addresses in the PLL controller memory map including the reserved registers should not be modified. Furthermore, only the bits within the registers described here are supported. Avoid writing to any reserved memory location or changing the value of reserved bits. It is recommended to use read-modify-write sequence to make any changes to the valid bits in the register. PLL Controller Registers (Including Reset Controller) (Part 1 of 2) Hex Address Range Field Register Name 0231 0000 - 0231 00E3 - Reserved 0231 00E4 RSTYPE Reset Type Status Register (Reset Controller) 0231 00E8 RSTCTRL Software Reset Control Register (Reset Controller) 0231 00EC RSTCFG Reset Configuration Register (Reset Controller) 0231 00F0 RSISO Reset Isolation Register (Reset Controller) 0231 00F0 - 0231 00FF - Reserved 0231 0100 PLLCTL PLL Control Register 0231 0104 - Reserved 0231 0108 SECCTL PLL Secondary Control Register 0231 010C - Reserved 0231 0110 PLLM PLL Multiplier Control Register 0231 0114 - Reserved 0231 0118 PLLDIV1 Reserved 0231 011C PLLDIV2 PLL Controller Divider 2 Register 0231 0120 PLLDIV3 Reserved 0231 0124 - Reserved 0231 0128 - Reserved 0231 012C - 0231 0134 - Reserved 0231 0138 PLLCMD PLL Controller Command Register 0231 013C PLLSTAT PLL Controller Status Register 0231 0140 ALNCTL PLL Controller Clock Align Control Register 0231 0144 DCHANGE PLLDIV Ratio Change Status Register 0231 0148 CKEN Reserved 0231 014C CKSTAT Reserved 0231 0150 SYSTAT SYSCLK Status Register 0231 0154 - 0231 015C - Reserved 0231 0160 PLLDIV4 Reserved 0231 0164 PLLDIV5 PLL Controller Divider 5 Register 0231 0168 PLLDIV6 Reserved 0231 016C PLLDIV7 Reserved 0231 0170 PLLDIV8 PLL Controller Divider 8 Register Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 129 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-14 www.ti.com PLL Controller Registers (Including Reset Controller) (Part 2 of 2) Hex Address Range Field Register Name 0231 0174 - 0231 0193 PLLDIV9 - PLLDIV16 Reserved 0231 0194 - 0231 01FF - Reserved End of Table 7-14 7.5.2.1 PLL Secondary Control Register (SECCTL) The PLL Secondary Control Register contains extra fields to control the Main PLL and is shown in Figure 7-8 and described in Table 7-15. Figure 7-8 PLL Secondary Control Register (SECCTL)) 31 24 23 22 19 18 0 PRODUCT PREVIEW Reserved BYPASS OUTPUT_DIVIDE Reserved R-0000 0000 RW-0 RW-0001 RW-001 0000 0000 0000 0000 Legend: R/W = Read/Write; R = Read only; -n = value after reset Table 7-15 PLL Secondary Control Register (SECCTL) Field Descriptions Bit Field Description 31-24 Reserved Reserved 23 BYPASS 22-19 OUTPUT_DIVIDE Output Divider ratio bits. 0h = ÷1. Divide frequency by 1. 1h = ÷2. Divide frequency by 2. 2h - Fh = Reserved. 18-0 Reserved Reserved Main PLL Bypass Enable 0 = Main PLL Bypass disabled 1 = Main PLL Bypass enabled End of Table 7-15 130 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.5.2.2 PLL Controller Divider Register (PLLDIV2, PLLDIV5, PLLDIV8) The PLL controller divider registers (PLLDIV2, PLLDIV5, and PLLDIV8) are shown in Figure 7-9 and described in Table 7-16. The default values of the RATIO field on a reset for PLLDIV2, PLLDIV5, and PLLDIV8 are different and mentioned in the footnote of Figure 7-9. Figure 7-9 PLL Controller Divider Register (PLLDIVn) 31 16 Reserved 15 Dn R-0 (1) 14 8 EN 7 Reserved R/W-1 0 RATIO R-0 R/W-n (2) Legend: R/W = Read/Write; R = Read only; -n = value after reset Table 7-16 PRODUCT PREVIEW 1 D2EN for PLLDIV2; D5EN for PLLDIV5; D8EN for PLLDIV8 2 n=02h for PLLDIV2; n=04h for PLLDIV5; n=3Fh for PLLDIV8 PLL Controller Divider Register (PLLDIVn) Field Descriptions Bit Field Description 31-16 Reserved Reserved. 15 DnEN Divider Dn enable bit. (see footnote of Figure 7-9) 0 = Divider n is disabled. 1 = No clock output. Divider n is enabled. 14-8 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 7-0 RATIO Divider ratio bits. (see footnote of Figure 7-9) 0h = ÷1. Divide frequency by 1. 1h = ÷2. Divide frequency by 2. 2h = ÷3. Divide frequency by 3. 3h = ÷4. Divide frequency by 4. 4h - 4Fh = ÷5 to ÷80. Divide frequency by 5 to divide frequency by 80. End of Table 7-16 7.5.2.3 PLL Controller Clock Align Control Register (ALNCTL) The PLL controller clock align control register (ALNCTL) is shown in Figure 7-10 and described in Table 7-17. Figure 7-10 PLL Controller Clock Align Control Register (ALNCTL) 31 8 7 6 5 4 3 2 1 0 Reserved ALN8 Reserved ALN5 Reserved ALN2 Reserved R-0 R/W-1 R-0 R/W-1 R-0 R/W-1 R-0 Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value Table 7-17 Bit PLL Controller Clock Align Control Register (ALNCTL) Field Descriptions Field Description Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 7 ALN8 4 ALN5 1 ALN2 SYSCLKn alignment. Do not change the default values of these fields. 0 = Do not align SYSCLKn to other SYSCLKs during GO operation. If SYSn in DCHANGE is set, SYSCLKn switches to the new ratio immediately after the GOSET bit in PLLCMD is set. 1 = Align SYSCLKn to other SYSCLKs selected in ALNCTL when the GOSET bit in PLLCMD is set and SYSn in DCHANGE is 1. The SYSCLKn rate is set to the ratio programmed in the RATIO bit in PLLDIVn. 31-8 6-5 3-2 0 End of Table 7-17 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 131 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.5.2.4 PLLDIV Divider Ratio Change Status Register (DCHANGE) When a different ratio is written to the PLLDIVn registers, the PLLCTL flags the change in the DCHANGE status register. During the GO operation, the PLL controller will change only the divide ratio of the SYSCLKs with the bit set in DCHANGE. Note that the ALNCTL register determines if that clock also needs to be aligned to other clocks. The PLLDIV divider ratio change status register is shown in Figure 7-11 and described in Table 7-18. Figure 7-11 PLLDIV Divider Ratio Change Status Register (DCHANGE) 31 8 7 6 5 4 3 2 1 0 Reserved SYS8 Reserved SYS5 Reserved SYS2 Reserved R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value PRODUCT PREVIEW Table 7-18 Bit PLLDIV Divider Ratio Change Status Register (DCHANGE) Field Descriptions Field Description Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 7 SYS8 4 SYS5 1 SYS2 Identifies when the SYSCLKn divide ratio has been modified. 0 = SYSCLKn ratio has not been modified. When GOSET is set, SYSCLKn will not be affected. 1 = SYSCLKn ratio has been modified. When GOSET is set, SYSCLKn will change to the new ratio. 31-8 6-5 3-2 0 End of Table 7-18 7.5.2.5 SYSCLK Status Register (SYSTAT) The SYSCLK status register (SYSTAT) shows the status of SYSCLK[11:1]. SYSTAT is shown in Figure 7-12 and described in Table 7-19. SYSCLK Status Register (SYSTAT) Figure 7-12 31 11 Reserved 10 9 SYS11ON SYS10ON R-n R-1 R-1 8 7 6 5 4 3 2 1 0 SYS9ON SYS8ON SYS7ON SYS6ON SYS5ON SYS4ON SYS3ON SYS2ON SYS1ON R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1 Legend: R/W = Read/Write; R = Read only; -n = value after reset Table 7-19 SYSCLK Status Register (SYSTAT) Field Descriptions Bit Field Description 31-11 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 10-0 SYS[N (1)]ON SYSCLK[N] on status. 0 = SYSCLK[N] is gated. 1 = SYSCLK[N] is on. End of Table 7-19 1 Where N = 1, 2, 3,....N (Not all these output clocks may be used on a specific device. For more information, see the device-specific data manual) 132 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.5.2.6 Reset Type Status Register (RSTYPE) The reset type status (RSTYPE) register latches the cause of the last reset. If multiple reset sources occur simultaneously, this register latches the highest priority reset source. The Reset Type Status Register is shown in Figure 7-13 and described in Table 7-20. Figure 7-13 31 Reset Type Status Register (RSTYPE) 29 28 27 12 11 8 7 3 2 1 0 Reserved EMU-RST Reserved WDRST[N] Reserved PLLCTRLRST RESET POR R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 Legend: R = Read only; -n = value after reset Reset Type Status Register (RSTYPE) Field Descriptions Bit Field Description 31-29 Reserved Reserved. Read only. Always reads as 0. Writes have no effect. 28 EMU-RST Reset initiated by emulation. 0 = Not the last reset to occur. 1 = The last reset to occur. 27-12 Reserved Reserved. Read only. Always reads as 0. Writes have no effect. 11 WDRST3 10 WDRST2 9 WDRST1 Reset initiated by watchdog timer[N]. 0 = Not the last reset to occur. 1 = The last reset to occur. 8 WDRST0 7-3 Reserved Reserved. Read only. Always reads as 0. Writes have no effect. 2 PLLCTLRST Reset initiated by PLLCTL. 0 = Not the last reset to occur. 1 = The last reset to occur. 1 RESET RESET reset. 0 = RESET was not the last reset to occur. 1 = RESET was the last reset to occur. 0 POR Power-on reset. 0 = Power-on reset was not the last reset to occur. 1 = Power-on reset was the last reset to occur. PRODUCT PREVIEW Table 7-20 End of Table 7-20 7.5.2.7 Reset Control Register (RSTCTRL) This register contains a key that enables writes to the MSB of this register and the RSTCFG register. The key value is 0x5A69. A valid key will be stored as 0x000C, any other key value is invalid. When the RSTCTRL or the RSTCFG is written, the key is invalidated. Every write must be set up with a valid key. The Software Reset Control Register (RSTCTRL) is shown in Figure 7-14 and described in Table 7-21. Figure 7-14 Reset Control Register (RSTCTRL) 31 17 Reserved R-0x0000 16 15 SWRST R/W-0x (1) 0 KEY R/W-0x0003 Legend: R = Read only; -n = value after reset; 1 Writes are conditional based on valid key. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 133 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-21 Bit www.ti.com Reset Control Register (RSTCTRL) Field Descriptions Field Description 31-17 Reserved Reserved. 16 SWRST Software reset 0 = Reset 1 = Not reset 15-0 KEY Key used to enable writes to RSTCTRL and RSTCFG. End of Table 7-21 7.5.2.8 Reset Configuration Register (RSTCFG) PRODUCT PREVIEW This register is used to configure the type of reset initiated by RESET, watchdog timer and the PLL controller’s RSTCTRL Register; i.e., a Hard reset or a Soft reset. By default, these resets will be hard resets. The Reset Configuration Register (RSTCFG) is shown in Figure 7-15 and described in Table 7-22. Figure 7-15 Reset Configuration Register (RSTCFG) 31 14 Reserved 13 12 PLLCTLRSTTYPE R-0 R/W-0 (2) 11 RESETTYPE R/W-0 2 4 Reserved R-0 3 0 WDTYPE[N (1) ] 2 R/W-0 Legend: R = Read only; R/W = Read/Write; -n = value after reset 1 Where N = 1, 2, 3,....N (Not all these output may be used on a specific device. For more information, see the device-specific data manual) 2 Writes are conditional based on valid key. For details, see Section 7.5.2.7 ‘‘Reset Control Register (RSTCTRL)’’. Table 7-22 Bit Reset Configuration Register (RSTCFG) Field Descriptions Field Description 31-14 Reserved Reserved. 13 PLLCTLRSTTYPE PLL controller initiates a software-driven reset of type: 0 = Hard reset (default) 1 = Soft reset 12 RESETTYPE RESET initiates a reset of type: 0 = Hard Reset (default) 1 = Soft Reset 11-4 Reserved Reserved. 3 WDTYPE3 2 WDTYPE2 1 WDTYPE1 Watchdog timer [N] initiates a reset of type: 0 = Hard Reset (default) 1 = Soft Reset 0 WDTYPE0 End of Table 7-22 7.5.2.9 Reset Isolation Register (RSISO) This register is used to select the module clocks that must maintain their clocking without pausing through non power-on reset. Setting any of these bits effectively blocks reset to all PLLCTL registers in order to maintain current values of PLL multiplier, divide ratios and other settings. Along with setting module specific bit in RSISO, the corresponding MDCTLx[12] bit also needs to be set in PSC to reset isolate a particular module. For more 134 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com information on MDCTLx register see the Power Sleep Controller (PSC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. The Reset Isolation Register (RSTCTRL) is shown below. Figure 7-16 Reset Isolation Register (RSISO) 31 10 9 8 7 0 Reserved Reserved SRISO Reserved R-0 R/W-0 R/W-0 R-0 Legend: R = Read only; R/W = Read/Write; -n = value after reset Bit Reset Isolation Register (RSISO) Field Descriptions Field Description 31-10 Reserved Reserved. 9 Reserved Reserved. 8 SRISO Isolate SmartReflex 0 = Not reset isolated 1 = Reset Isolated 7-0 Reserved Reserved. End of Table 7-23 7.5.3 Main PLL Control Register The Main PLL uses two chip-level registers (MAINPLLCTL0 and MAINPLLCTL1) along with the PLL controller for its configuration. These MMRs exist inside the Bootcfg space. To write to these registers, software should go through an unlocking sequence using KICK0/KICK1 registers. For valid configurable values into the MAINPLLCTL0 and MAINPLLCTL1 registers see Section 2.5.3 ‘‘PLL Boot Configuration Settings’’ on page 32. See section 3.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 71 for the address location of the registers and locking and unlocking sequences for accessing the registers. The registers are reset on POR only. Figure 7-17 Main PLL Control Register 0 (MAINPLLCTL0) 31 24 23 19 18 12 11 6 5 0 BWADJ[7:0] Reserved PLLM[12:6] Reserved PLLD RW-0000 0101 RW-0000 0 RW-0000000 RW-000000 RW-000000 Legend: RW = Read/Write; -n = value after reset Table 7-24 Main PLL Control Register 0 (MAINPLLCTL0) Field Descriptions Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located in separate registers. The combination (BWADJ[11:0]) should be programmed to a value equal to half of PLLM[12:0] if PLLM has even values or to be rounded half down of PLLM[12:0] if PLLM has odd values. Example: PLLM=15, then BWADJ=7 23-19 Reserved Reserved 18-12 PLLM[12:6] A 13-bit bus that selects the values for the multiplication factor (see Note below) 11-6 Reserved Reserved 5-0 PLLD A 6-bit bus that selects the values for the reference divider End of Table 7-24 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 135 PRODUCT PREVIEW Table 7-23 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 7-18 www.ti.com Main PLL Control Register 1 (MAINPLLCTL1) 31 7 6 5 4 3 0 Reserved ENSAT Reserved BWADJ[11:8] RW-0000000000000000000000000 RW-0 RW-00 RW-0000 Legend: RW = Read/Write; -n = value after reset Table 7-25 Main PLL Control Register 1 (MAINPLLCTL1) Field Descriptions PRODUCT PREVIEW Bit Field Description 31-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper operation of PLL 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in separate registers. The combination (BWADJ[11:0]) should be programmed to a value equal to half of PLLM[12:0] if PLLM has even values or to be rounded half down of PLLM[12:0] if PLLM has odd values. Example: PLLM=15, then BWADJ=7 End of Table 7-25 Note—PLLM[5:0] bits of the multiplier is controlled by the PLLM register inside the PLL controller and PLLM[12:6] bits are controlled by the MAINPLLCTL0 chip-level register. The MAINPLLCTL0 register PLLM[12:6] bits should be written just before writing to the PLLM register PLLM[5:0] bits in the controller to have the complete 13 bit value latched when the GO operation is initiated in the PLL controller. See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64 for the recommended programming sequence. Output Divide ratio and Bypass enable/disable of the Main PLL is controlled by the SECCTL register in the PLL Controller. See the 7.5.2.1 ‘‘PLL Secondary Control Register (SECCTL)’’ for more details. 7.5.4 Main PLL and PLL Controller Initialization Sequence See the Phase Locked Loop (PLL) Controller for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64 for details on the initialization sequence for Main PLL and PLL Controller. 7.5.5 Main PLL Controller/PCIe Clock Input Electrical Data/Timing Table 7-26 Main PLL Controller/PCIe Clock Input Timing Requirements (Part 1 of 2) (see Figure 7-19 and Figure 7-20) No. Min Max 3.2 25 Unit CORECLK[P:N] 1 tc(CORCLKN) 1 tc(CORECLKP) Cycle time _ CORECLKP cycle time 3.2 25 ns 3 tw(CORECLKN) Pulse width _ CORECLKN high 0.45*tc(CORECLKN) 0.55*tc(CORECLKN) ns 2 tw(CORECLKN) Pulse width _ CORECLKN low 0.45*tc(CORECLKN) 0.55*tc(CORECLKN) ns 2 tw(CORECLKP) Pulse width _ CORECLKP high 0.45*tc(CORECLKP) 0.55*tc(CORECLKP) ns 3 tw(CORECLKP) Pulse width _ CORECLKP low 0.45*tc(CORECLKP) 0.55*tc(CORECLKP) ns 4 tr(CORECLKN_250mv) Transition time _ CORECLKN rise time (250 mV) 50 350 ps 136 Cycle time _ CORECLKN cycle time Peripheral Information and Electrical Specifications ns Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-26 Main PLL Controller/PCIe Clock Input Timing Requirements (Part 2 of 2) (see Figure 7-19 and Figure 7-20) No. Min Max Unit 4 tf(CORECLKN_250mv) Transition time _ CORECLKN fall time (250 mV) 50 350 ps 4 tr(CORECLKP_250mv) Transition time _ CORECLKP rise time (250 mV) 50 350 ps 50 4 tf(CORECLKP_250mv) Transition time _ CORECLKP fall time (250 mV) 350 ps 5 tj(CORECLKN) Jitter, peak_to_peak _ periodic CORECLKN 100 ps 5 tj(CORECLKP) Jitter, peak_to_peak _ periodic CORECLKP 100 ps 1 tc(SRIOSMGMIICLKN) Cycle time _ SRIOSMGMIICLKN cycle time 3.2 6.4 ns 1 tc(SRIOSMGMIICLKP) Cycle time _ SRIOSMGMIICLKP cycle time 3.2 6.4 ns 3 tw(SRIOSMGMIICLKN) Pulse width _ SRIOSMGMIICLKN high 0.45*tc(SRIOSGMIICLKN) 0.55*tc(SRIOSGMIICLKN) ns 2 tw(SRIOSMGMIICLKN) Pulse width _ SRIOSMGMIICLKN low 0.45*tc(SRIOSGMIICLKN) 0.55*tc(SRIOSGMIICLKN) ns 2 tw(SRIOSMGMIICLKP) Pulse width _ SRIOSMGMIICLKP high 0.45*tc(SRIOSGMIICLKP) 0.55*tc(SRIOSGMIICLKP) ns 3 tw(SRIOSMGMIICLKP) Pulse width _ SRIOSMGMIICLKP low 0.45*tc(SRIOSGMIICLKP) 0.55*tc(SRIOSGMIICLKP) ns 4 tr(SRIOSMGMIICLKN_25 Transition time _ SRIOSMGMIICLKN rise time (250 mV) 0mv) 50 350 ps 4 tf(SRIOSMGMIICLKN_25 Transition time _ SRIOSMGMIICLKN fall time (250 mV) 0mv) 50 350 ps 4 tr(SRIOSMGMIICLKP_25 Transition time _ SRIOSMGMIICLKP rise time (250 mV) 0mv) 50 350 ps 4 tf(SRIOSMGMIICLKP_25 Transition time _ SRIOSMGMIICLKP fall time (250 mV) 0mv) 50 350 ps 5 tj(SRIOSMGMIICLKN) Jitter, peak_to_peak _ periodic SRIOSMGMIICLKN 4 ps,RMS 5 tj(SRIOSMGMIICLKP) Jitter, peak_to_peak _ periodic SRIOSMGMIICLKP 4 ps,RMS 5 tj(SRIOSMGMIICLKN) Jitter, peak_to_peak _ periodic SRIOSMGMIICLKN (SRIO not used) 8 ps,RMS 5 tj(SRIOSMGMIICLKP) Jitter, peak_to_peak _ periodic SRIOSMGMIICLKP (SRIO not used) 8 ps,RMS PCIECLK[P:N] 1 tc(PCIECLKN) Cycle time _ PCIECLKN cycle time 3.2 10 ns 1 tc(PCIECLKP) Cycle time _ PCIECLKP cycle time 3.2 10 ns 3 tw(PCIECLKN) Pulse width _ PCIECLKN high 0.45*tc(PCIECLKN) 0.55*tc(PCIECLKN) ns 2 tw(PCIECLKN) Pulse width _ PCIECLKN low 0.45*tc(PCIECLKN) 0.55*tc(PCIECLKN) ns 2 tw(PCIECLKP) Pulse width _ PCIECLKP high 0.45*tc(PCIECLKP) 0.55*tc(PCIECLKP) ns 3 tw(PCIECLKP) Pulse width _ PCIECLKP low 0.45*tc(PCIECLKP) 0.55*tc(PCIECLKP) ns 4 tr(PCIECLKN_250mv) Transition time _ PCIECLKN rise time (250 mV) 50 350 ps 4 tf(PCIECLKN_250mv) Transition time _ PCIECLKN fall time (250 mV) 50 350 ps 4 tr(PCIECLKP_250mv) Transition time _ PCIECLKP rise time (250 mV) 50 350 ps 4 tf(PCIECLKP_250mv) Transition time _ PCIECLKP fall time (250 mV) 50 350 ps 5 tj(PCIECLKN) Jitter, peak_to_peak _ periodic PCIECLKN 4 ps,RMS 5 tj(PCIECLKP) Jitter, peak_to_peak _ periodic PCIECLKP 4 ps,RMS End of Table 7-26 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 137 PRODUCT PREVIEW SRIOSGMIICLK[P:N] TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 7-19 www.ti.com Main PLL Controller/PCIe Clock Input Timing 1 2 3 <CLK_NAME>CLKN <CLK_NAME>CLKP 4 Figure 7-20 5 Main PLL Clock Input Transition Time PRODUCT PREVIEW peak-to-peak differential input voltage (250 mV to 2 V) 0 250 mV peak-to-peak TR = 50 ps min to 350 ps max (10% to 90 %) for the 250 mV peak-to-peak centered at zero crossing 138 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.6 DD3 PLL The DDR3 PLL generates interface clocks for the DDR3 memory controller. When coming out of power-on reset, DDR3 PLL is programmed to a valid frequency during the boot config before being enabled and used. DDR3 PLL power is supplied externally via the Main PLL power-supply pin (AVDDA2). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone Devices in ‘‘Related Documentation from Texas Instruments’’ on page 64. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter). Figure 7-21 DDR3 PLL Block Diagram DDR3 PLL PLLD xPLLM /2 0 DDRCLK(N|P) PLLOUT DDR3 PHY 1 BYPASS 7.6.1 DDR3 PLL Control Register The DDR3 PLL, which is used to drive the DDR PHY for the EMIF, does not use a PLL controller. DDR3 PLL can be controlled using the DDR3PLLCTL0 and DDR3PLLCTL1 registers located in the Bootcfg module. These MMRs exist inside the Bootcfg space. To write to these registers, software should go through an un-locking sequence using KICK0/KICK1 registers. For suggested configurable values see section 3.3.4 ‘‘Kicker Mechanism (KICK0 and KICK1) Register’’ on page 71 for the address location of the registers and locking and unlocking sequences for accessing the registers. This register is reset on POR only . DDR3 PLL Control Register 0 (DDR3PLLCTL0) (1) Figure 7-22 31 24 23 22 19 18 6 5 0 BWADJ[7:0] BYPASS Reserved PLLM PLLD RW,+0000 1001 RW,+0 RW,+0001 RW,+0000000010011 RW,+000000 Legend: RW = Read/Write; -n = value after reset 1 This register is Reset on POR only. The regreset, reset and bgreset from PLL are all tied to a common pll0_ctrl_rst_n The pwrdn, regpwrdn, bgpwrdn are all tied to common pll0_ctrl_to_pll_pwrdn. Table 7-27 DDR3 PLL Control Register 0 Field Descriptions (Part 1 of 2) Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located in DDR3PLLCTL0 and DDR3PLLCTL1 registers. The combination (BWADJ[11:0]) should be programmed to a value equal to half of PLLM[12:0] if PLLM has even values or to be rounded half down of 23 BYPASS Enable bypass mode 0 = Bypass disabled 1 = Bypass enabled 22-19 Reserved Reserved PLLM[12:0] if PLLM has odd values. Example: PLLM=15, then BWADJ=7 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 139 PRODUCT PREVIEW Figure 7-21 shows the DDR3 PLL. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-27 www.ti.com DDR3 PLL Control Register 0 Field Descriptions (Part 2 of 2) Bit Field Description 18-6 PLLM A 13-bit bus that selects the values for the multiplication factor 5-0 PLLD A 6-bit bus that selects the values for the reference divider End of Table 7-27 Figure 7-23 DDR3 PLL Control Register 1 (DDR3PLLCTL1) 31 14 13 12 7 6 5 4 3 0 Reserved PLLRST Reserved ENSAT Reserved BWADJ[11:8] RW-000000000000000000 RW-0 RW-000000 RW-0 R-0 RW-0000 PRODUCT PREVIEW Legend: RW = Read/Write; -n = value after reset Table 7-28 Bit DDR3 PLL Control Register 1 Field Descriptions Field Description 31-14 Reserved Reserved 13 PLLRST PLL reset bit. 0 = PLL reset is released. 1 = PLL reset is asserted. 12-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper operation of PLL 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in separate registers. The combination (BWADJ[11:0]) should be programmed to a value equal to half of PLLM[12:0] if PLLM has even values or to be rounded half down of PLLM[12:0] if PLLM has odd values. Example: PLLM=15, then BWADJ=7 End of Table 7-28 7.6.2 DDR3 PLL Device-Specific Information As shown in Figure 7-21, the output of DDR3 PLL (PLLOUT) is divided by 2 and directly fed to the DDR3 memory controller. The DDR3 PLL is affected by power-on reset. During power-on resets, the internal clocks of the DDR3 PLL are affected as described in Section 7.4 ‘‘Reset Controller’’ on page 119. DDR3 PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any of the other resets. 7.6.3 DDR3 PLL Initialization Sequence The Main PLL and PLL Controller must always be initialized prior to the DDR3 PLL. The sequence shown below must be followed to initialize the DDR3 PLL. 1. In DDR3PLLCTL1, write ENSAT = 1 (for optimal PLL operation) 2. In DDR3PLLCTL0, write BYPASS = 1 (set the PLL in Bypass) 3. In DDR3PLLCTL1, write PLLRST = 1 (PLL is reset) 4. Program PLLM and PLLD in DDR3PLLCTL0 register 5. Program BWADJ[7:0] in DDR3PLLCTL0 and BWADJ[11:8] in DDR3PLLCTL1 register. BWADJ value must be set to ((PLLM + 1) >> 1) - 1) 6. Wait for at least 5 μs based on the reference clock (PLL reset time) 7. In DDR3PLLCTL1, write PLLRST = 0 (PLL reset is released) 8. Wait for at least 500 *REFCLK cycles * (PLLD + 1) (PLL lock time) 9. In DDR3PLLCTL0, write BYPASS = 0 (switch to PLL mode) 140 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.6.4 DDR3 PLL Input Clock Electrical Data/Timing Table 7-29 DDR3 PLL DDRSYSCLK1(N|P) Timing Requirements (see Figure 7-24 and Figure 7-20) No. Min Max 3.2 25 Unit DDRCLK[P:N] tc(DDRCLKN) Cycle time _ DDRCLKN cycle time ns 1 tc(DDRCLKP) Cycle time _ DDRCLKP cycle time 3.2 25 ns 3 tw(DDRCLKN) Pulse width _ DDRCLKN high 0.45*tc(DDRCLKN) 0.55*tc(DDRCLKN) ns 2 tw(DDRCLKN) Pulse width _ DDRCLKN low 0.45*tc(DDRCLKN) 0.55*tc(DDRCLKN) ns 2 tw(DDRCLKP) Pulse width _ DDRCLKP high 0.45*tc(DDRCLKP) 0.55*tc(DDRCLKP) ns 3 tw(DDRCLKP) Pulse width _ DDRCLKP low 0.45*tc(DDRCLKP) 0.55*tc(DDRCLKP) ns 4 tr(DDRCLKN_250mv) Transition time _ DDRCLKN rise time (250 mV) 50 350 ps 4 tf(DDRCLKN_250mv) Transition time _ DDRCLKN fall time (250 mV) 50 350 ps 4 tr(DDRCLKP_250mv) Transition time _ DDRCLKP rise time (250 mV) 50 350 ps 4 tf(DDRCLKP_250mv) Transition time _ DDRCLKP fall time (250 mV) 50 350 ps 5 tj(DDRCLKN) Jitter, peak_to_peak _ periodic DDRCLKN 0.025*tc(DDRCLKN) ps 5 tj(DDRCLKP) Jitter, peak_to_peak _ periodic DDRCLKP 0.025*tc(DDRCLKP) ps Peripheral Information and Electrical Specifications 141 End of Table 7-29 Figure 7-24 DDR3 PLL DDRCLK Timing 1 2 3 DDRCLKN DDRCLKP 4 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions 5 PRODUCT PREVIEW 1 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.7 Enhanced Direct Memory Access (EDMA3) Controller The primary purpose of the EDMA3 is to service user-programmed data transfers between two memory-mapped slave endpoints on the device. The EDMA3 services software-driven paging transfers (e.g., data movement between external memory and internal memory), performs sorting or subframe extraction of various data structures, services event driven peripherals, and offloads data transfers from the device CPU. There is one EDMA Channel Controller on the C6654 DSP, EDMA3_CC. It has four transfer controllers: TC0, TC1, TC2, and TC3. In the context of this document, TCx associated with CC is referred to as EDMA3_CC_TCx. Each of the transfer controllers has a direct connection to the switch fabric. Section 4.2 ‘‘Switch Fabric Connections Matrix’’ lists the peripherals that can be accessed by the transfer controllers. PRODUCT PREVIEW The EDMA3 Channel Controller includes the following features: • Fully orthogonal transfer description – 3 transfer dimensions: › Array (multiple bytes) › Frame (multiple arrays) › Block (multiple frames) – Single event can trigger transfer of array, frame, or entire block – Independent indexes on source and destination • Flexible transfer definition: – Increment or FIFO transfer addressing modes – Linking mechanism allows for ping-pong buffering, circular buffering, and repetitive/continuous transfers, all with no CPU intervention – Chaining allows multiple transfers to execute with one event • 512 PaRAM entries – Used to define transfer context for channels – Each PaRAM entry can be used as a DMA entry, QDMA entry, or link entry • 64 DMA channels – Manually triggered (CPU writes to channel controller register), external event triggered, and chain triggered (completion of one transfer triggers another) • 8 Quick DMA (QDMA) channels – Used for software-driven transfers – Triggered upon writing to a single PaRAM set entry • 4 transfer controllers and 4 event queues with programmable system-level priority • Interrupt generation for transfer completion and error conditions • Debug visibility – Queue watermarking/threshold allows detection of maximum usage of event queues – Error and status recording to facilitate debug 7.7.1 EDMA3 Device-Specific Information The EDMA supports two addressing modes: constant addressing and increment addressing mode. Constant addressing mode is applicable to a very limited set of use cases; for most applications increment mode must be used. On the C6654 DSP, the EDMA can use constant addressing mode only with the Enhanced Viterbi-Decoder Coprocessor (VCP) and the Enhanced Turbo Decoder Coprocessor (TCP). Constant addressing mode is not supported by any other peripheral or internal memory in the DSP. Note that increment mode is supported by all peripherals, including VCP and TCP. For more information on these two addressing modes, see the Enhanced Direct 142 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Memory Access 3 (EDMA3) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. For the range of memory addresses that include EDMA3 channel controller (EDMA3_CC) control registers and EDMA3 transfer controller (TC) control register see Section Table 2-2‘‘Memory Map Summary’’ on page 21. For memory offsets and other details on EDMA3_CC and TC control registers entries, see the Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.7.2 EDMA3 Channel Controller Configuration Table 7-30 provides the configuration of the EDMA3 channel controller present on the device. EDMA3 Channel Controller Configuration Description EDMA3 CC Number of DMA channels in Channel Controller 64 Number of QDMA channels 8 Number of interrupt channels 64 Number of PaRAM set entries 512 Number of event queues 4 Number of Transfer Controllers 4 Memory Protection Existence Yes Number of Memory Protection and Shadow Regions 8 End of Table 7-30 7.7.3 EDMA3 Transfer Controller Configuration Each transfer controller on a device is designed differently based on considerations like performance requirements, system topology (like main TeraNet bus width, external memory bus width), etc. The parameters that determine the transfer controller configurations are: • FIFOSIZE: Determines the size in bytes for the Data FIFO that is the temporary buffer for the in-flight data. The data FIFO is where the read return data read by the TC read controller from the source endpoint is stored and subsequently written out to the destination endpoint by the TC write controller. • BUSWIDTH: The width of the read and write data buses in bytes, for the TC read and write controller, respectively. This is typically equal to the bus width of the main TeraNet interface. • Default Burst Size (DBS): The DBS is the maximum number of bytes per read/write command issued by a transfer controller. • DSTREGDEPTH: This determines the number of Destination FIFO register set. The number of Destination FIFO register set for a transfer controller determines the maximum number of outstanding transfer requests. All four parameters listed above are specified by the design of the device. Table 7-31 provides the configuration of the EDMA3 transfer controller present on the device. Table 7-31 EDMA3 Transfer Controller Configuration (Part 1 of 2) EDMA3 CC Parameter TC0 TC1 TC2 TC3 FIFOSIZE BUSWIDTH 1024 bytes 512 bytes 512 bytes 1024 bytes 16 bytes 16 bytes 16 bytes 16 bytes Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 143 PRODUCT PREVIEW Table 7-30 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-31 www.ti.com EDMA3 Transfer Controller Configuration (Part 2 of 2) EDMA3 CC Parameter TC0 TC1 TC2 TC3 DSTREGDEPTH DBS 4 entries 4 entries 4 entries 4 entries 64 bytes 64 bytes 64 bytes 64 bytes End of Table 7-31 7.7.4 EDMA3 Channel Synchronization Events PRODUCT PREVIEW The EDMA3 supports up to 64 DMA channels for EDMA3_CC that can be used to service system peripherals and to move data between system memories. DMA channels can be triggered by synchronization events generated by system peripherals. The following tables lists the source of the synchronization event associated with each of the EDMA3_CC DMA channels. On the C6654, the association of each synchronization event and DMA channel is fixed and cannot be reprogrammed. For more detailed information on the EDMA3 module and how EDMA3 events are enabled, captured, processed, prioritized, linked, chained, and cleared, etc., see the Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. Table 7-32 EDMA3_CC Events for C6654 (Part 1 of 2) Event Number Event 0 Reserved 1 Reserved 2 TINT2L Timer2 interrupt low 3 TINT2H Timer2 interrupt high 4 URXEVT UART0 receive event 5 UTXEVT UART0 transmit event 6 GPINT0 GPIO interrupt 7 GPINT1 GPIO interrupt 8 GPINT2 GPIO Interrupt 9 GPINT3 GPIO interrupt 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 URXEVT_B UART1 receive event 15 UTXEVT_B UART1 transmit event 16 SPIINT0 SPI interrupt 17 SPIINT1 SPI interrupt 18 SEMINT0 Semaphore interrupt 19 SEMINT1 Semaphore interrupt 20 SEMINT2 Semaphore interrupt 21 SEMINT3 Semaphore interrupt 22 TINT4L Timer4 interrupt low 23 TINT4H Timer4 interrupt high 24 TINT5L Timer5 interrupt low 25 TINT5H Timer5 interrupt high 26 TINT6L Timer6 interrupt low 144 Event Description Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com EDMA3_CC Events for C6654 (Part 2 of 2) Event Number Event Event Description 27 TINT6H Timer6 interrupt high 28 TINT7L Timer7 interrupt low 29 TINT7H Timer7 interrupt high 30 SPIXEVT SPI transmit event 31 SPIREVT SPI receive event 32 I2CREVET I2C receive event 33 I2CXEVT I2C transmit event 34 TINT3L Timer3 interrupt low 35 TINT3H Timer3 interrupt high 36 MCBSP0_REVT McBSP_0 receive event 37 MCBSP0_XEVT McBSP_0 transmit event 38 MCBSP1_REVT McBSP_1 receive event 39 MCBSP1_XEVT McBSP_1 transmit event 40 TETBHFULLINT TETB half full interrupt 41 TETBHFULLINT0 TETB half full interrupt 42 TETBHFULLINT1 TETB half full interrupt 43 CIC1_OUT0 Interrupt Controller output 44 CIC1_OUT1 Interrupt Controller output 45 CIC1_OUT2 Interrupt Controller output 46 CIC1_OUT3 Interrupt Controller output 47 CIC1_OUT4 Interrupt Controller output 48 CIC1_OUT5 Interrupt Controller output 49 CIC1_OUT6 Interrupt Controller output 50 CIC1_OUT7 Interrupt Controller output 51 CIC1_OUT8 Interrupt Controller output 52 CIC1_OUT9 Interrupt Controller output 53 CIC1_OUT10 Interrupt Controller output 54 CIC1_OUT11 Interrupt Controller output 55 CIC1_OUT12 Interrupt Controller output 56 CIC1_OUT13 Interrupt Controller output 57 CIC1_OUT14 Interrupt Controller output 58 CIC1_OUT15 Interrupt Controller output 59 CIC1_OUT16 Interrupt Controller output 60 CIC1_OUT17 Interrupt Controller output 61 TETBFULLINT TETB full interrupt 62 TETBFULLINT0 TETB full interrupt 63 TETBFULLINT1 TETB full interrupt PRODUCT PREVIEW Table 7-32 End of Table 7-32 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 145 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.8 Interrupts 7.8.1 Interrupt Sources and Interrupt Controller The CPU interrupts on the C6654 device are configured through the C66x CorePac Interrupt Controller. The interrupt controller allows for up to 128 system events to be programmed to any of the twelve CPU interrupt inputs (CPUINT4 - CPUINT15), the CPU exception input (EXCEP), or the advanced emulation logic. The 128 system events consist of both internally-generated events (within the CorePac) and chip-level events. Additional system events are routed to each of the C66x CorePacs to provide chip-level events that are not required as CPU interrupts/exceptions to be routed to the interrupt controller as emulation events. Additionally, error-class events or infrequently used events are also routed through the system event router to offload the C66x CorePac interrupt selector. This is accomplished through CIC blocks, CIC[1:0]. This is clocked using CPU/6. PRODUCT PREVIEW The event controllers consist of simple combination logic to provide additional events to the C66x CorePacs, plus the EDMA3_CC and CIC0 provide 12 additional events as well as 8 broadcast events to the C66x CorePacs, CIC1 provides 18 additional events to EDMA3_CC. There are a large amount of events on the chip level. The chip level CIC provides a flexible way to combine and remap those events. Multiple events can be combined to a single event through chip level CIC. However, an event can only be mapped to a single event output from the chip level CIC. The chip level CIC also allows the software to trigger system event through memory writes. The broadcast events to C66x CorePacs can be used for synchronization among multiple cores, inter-processor communication purposes, etc. For more details on the CIC features, please refer to the Chip Interrupt Controller (CIC) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. Note—Modules such as MPU, Tracer, and BOOT_CFG have level interrupts and EOI handshaking interface. The EOI value is 0 for MPU, Tracer, and BOOT_CFG. Figure 7-25 shows the C6654 interrupt topology. Figure 7-25 TMS320C6654 Interrupt Topology 16 Reserved Secondary Events 58 Reserved Secondary Events 102 Primary Events 92 Core-only Secondary Events CIC0 12 Secondary Events Core0 6 Reserved Primary Events 58 Common Events 8 Broadcast Events from CIC0 58 Common Events 56 Reserved Secondary Events 11 Reserved Secondary Events CIC1 40 Primary Events 18 Secondary Events 46 EDMA3_CC-only Secondary Events 146 Peripheral Information and Electrical Specifications EDMA3 CC 6 Reserved Primary Events Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-33 shows the mapping of system events. For more information on the Interrupt Controller, see the C66x CorePac User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. TMS320C6654 System Event Mapping — C66x CorePac Primary Interrupts (Part 1 of 4) Event Number Interrupt Event Description 0 EVT0 Event combiner 0 output 1 EVT1 Event combiner 1 output 2 EVT2 Event combiner 2 output 3 EVT3 Event combiner 3 output 4 TETBHFULLINTn (1) 5 TETBFULLINTn 6 TETBACQINTn TETB is half full (1) TETB is full (1) Acquisition has been completed 7 TETBOVFLINTn (1) 8 TETBUNFLINTn (1) 9 EMU_DTDMA 10 MSMC_mpf_errorn 11 EMU_RTDXRX RTDX receive complete 12 EMU_RTDXTX RTDX transmit complete 13 IDMA0 IDMA channel 0 interrupt 14 IDMA1 Overflow condition interrupt Underflow condition interrupt PRODUCT PREVIEW Table 7-33 ECM interrupt for: 1. Host scan access 2. DTDMA transfer complete 3. AET interrupt (2) Memory protection fault indicators for local core IDMA channel 1 interrupt 15 SEMERRn 16 SEMINTn (3) Semaphore error interrupt (3) Semaphore interrupt 17 PCIExpress_MSI_INTn (4) Message signaled interrupt mode 18 PCIExpress_MSI_INTn+4 Message signaled interrupt mode 19 MACINTn 20 Reserved 21 Reserved 22 CIC0_OUT(0+20*n) Interrupt Controller Output 23 CIC0_OUT(1+20*n) Interrupt Controller Output 24 CIC0_OUT(2+20*n) Interrupt Controller Output 25 CIC0_OUT(3+20*n) Interrupt Controller Output 26 CIC0_OUT(4+20*n) Interrupt Controller Output 27 CIC0_OUT(5+20*n) Interrupt Controller Output 28 CIC0_OUT(6+20*n) Interrupt Controller Output 29 CIC0_OUT(7+20*n) Interrupt Controller Output 30 CIC0_OUT(8+20*n) Interrupt Controller Output (5) EMAC interrupt 31 CIC0_OUT(9+20*n) Interrupt Controller Output 32 QM_INT_LOW_0 QM Interrupt for 0~31 Queues 33 QM_INT_LOW_1 QM Interrupt for 32~63 Queues 34 QM_INT_LOW_2 QM Interrupt for 64~95 Queues 35 QM_INT_LOW_3 QM Interrupt for 96~127 Queues 36 QM_INT_LOW_4 QM Interrupt for 128~159 Queues 37 QM_INT_LOW_5 QM Interrupt for 160~191 Queues 38 QM_INT_LOW_6 QM Interrupt for 192~223 Queues Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 147 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-33 www.ti.com TMS320C6654 System Event Mapping — C66x CorePac Primary Interrupts (Part 2 of 4) Event Number Interrupt Event Description 39 QM_INT_LOW_7 QM Interrupt for 224~255 Queues 40 QM_INT_LOW_8 QM Interrupt for 256~287 Queues 41 QM_INT_LOW_9 QM Interrupt for 288~319 Queues 42 QM_INT_LOW_10 QM Interrupt for 320~351 Queues 43 QM_INT_LOW_11 QM Interrupt for 352~383 Queues 44 QM_INT_LOW_12 QM Interrupt for 384~415 Queues 45 QM_INT_LOW_13 QM Interrupt for 416~447 Queues 46 QM_INT_LOW_14 QM Interrupt for 448~479 Queues 47 QM_INT_LOW_15 QM Interrupt for 480~511 Queues PRODUCT PREVIEW 48 QM_INT_HIGH_n (5) (5) 49 QM_INT_HIGH_(n+4) 50 QM_INT_HIGH_(n+8) (5) QM Interrupt for Queue 704+n 8 QM Interrupt for Queue 708+n 8 QM Interrupt for Queue 712+n8 51 QM_INT_HIGH_(n+12) (5) QM Interrupt for Queue 716+n 8 52 QM_INT_HIGH_(n+16) (5) QM Interrupt for Queue 720+n 53 QM_INT_HIGH_(n+20) (5) 8 QM Interrupt for Queue 724+n8 54 QM_INT_HIGH_(n+24) (5) QM Interrupt for Queue 728+n 55 QM_INT_HIGH_(n+28) (5) QM Interrupt for Queue 732+n8 56 CIC0_OUT40 Interrupt Controller Output 57 CIC0_OUT41 Interrupt Controller Output 58 CIC0_OUT42 Interrupt Controller Output 59 CIC0_OUT43 Interrupt Controller Output 60 CIC0_OUT44 Interrupt Controller Output 61 CIC0_OUT45 Interrupt Controller Output 62 CIC0_OUT46 Interrupt Controller Output 63 CIC0_OUT47 Interrupt Controller Output (6) Local timer interrupt low (6) Local timer interrupt high 64 TINTLn 65 TINTHn 66 TINT2L Timer2 interrupt low 67 TINT2H Timer2 interrupt high 8 68 TINT3L Timer3 interrupt low 69 TINT3H Timer3 interrupt high 70 PCIExpress_MSI_INTn+2 Message signaled interrupt mode 71 PCIExpress_MSI_INTn+6 Message signaled interrupt mode 72 GPINT2 GPIO interrupt 73 GPINT3 GPIO interrupt (5) 74 MACINTn+2 75 MACTXINTn+2 EMAC interrupt (5) EMAC interrupt (5) EMAC interrupt (5) EMAC interrupt 76 MACTRESHn+2 77 MACRXINTn+2 78 GPINT4 GPIO interrupt 79 GPINT5 GPIO interrupt 80 GPINT6 GPIO interrupt 81 GPINT7 GPIO interrupt 82 GPINT8 GPIO interrupt 148 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com TMS320C6654 System Event Mapping — C66x CorePac Primary Interrupts (Part 3 of 4) Event Number Interrupt Event Description 83 GPINT9 GPIO interrupt 84 GPINT10 GPIO interrupt 85 GPINT11 GPIO interrupt 86 GPINT12 GPIO interrupt 87 GPINT13 GPIO interrupt 88 GPINT14 GPIO interrupt 89 GPINT15 GPIO interrupt 90 IPC_LOCAL Inter DSP interrupt from IPCGRn 91 GPINTn (7) Local GPIO interrupt 92 CIC0_OUT(10+20*n) Interrupt Controller Output 93 CIC0_OUT(11+20*n) Interrupt Controller Output (5) EMAC interrupt (5) EMAC interrupt 94 MACTXINTn 95 MACTRESHn 96 INTERR Dropped CPU interrupt event 97 EMC_IDMAERR Invalid IDMA parameters 98 Reserved 99 MACRXINTn (5) EMAC interrupt 100 EFIINTA EFI Interrupt from side A 101 EFIINTB EFI Interrupt from side B QM_INT_HIGH_(n+2) (8) QM Interrupt for Queue 706+n8 103 QM_INT_HIGH_(n+6) (5) QM Interrupt for Queue 710+n 8 104 QM_INT_HIGH_(n+10) (5) QM Interrupt for Queue 714+n 8 105 QM_INT_HIGH_(n+14) (5) QM Interrupt for Queue 718+n8 106 QM_INT_HIGH_(n+18) (5) QM Interrupt for Queue 722+n 8 107 QM_INT_HIGH_(n+22) (5) QM Interrupt for Queue 726+n 8 108 QM_INT_HIGH_(n+26) (5) 109 QM_INT_HIGH_(n+30) (5) 110 MDMAERREVT 111 Reserved 102 112 Reserved 113 PMC_ED 114 Reserved 115 EDMA3_CC_AETEVT PRODUCT PREVIEW Table 7-33 QM Interrupt for Queue 730+n8 QM Interrupt for Queue 734+n 8 VbusM error event Single bit error detected during DMA read EDMA3 CC AET Event 116 UMC_ED1 Corrected bit error detected 117 UMC_ED2 Uncorrected bit error detected 118 PDC_INT Power down sleep interrupt 119 SYS_CMPA SYS CPU memory protection fault event 120 PMC_CMPA PMC CPU memory protection fault event 121 PMC_DMPA PMC DMA memory protection fault event 122 DMC_CMPA DMC CPU memory protection fault event 123 DMC_DMPA DMC DMA memory protection fault event 124 UMC_CMPA UMC CPU memory protection fault event 125 UMC_DMPA UMC DMA memory protection fault event Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 149 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-33 www.ti.com TMS320C6654 System Event Mapping — C66x CorePac Primary Interrupts (Part 4 of 4) Event Number Interrupt Event Description 126 EMC_CMPA EMC CPU memory protection fault event 127 EMC_BUSERR EMC bus error interrupt End of Table 7-33 1 2 3 4 5 6 7 8 CorePac[n] will receive TETBHFULLINTn, TETBFULLINTn, TETBACQINTn, TETBOVFLINTn, and TETBUNFLINTn CorePac[n] will receive MSMC_mpf_errorn. CorePac[n] will receive SEMINTn and SEMERRn. CorePac[n] will receive PCIEXpress_MSI_INTn. n is core number. CorePac[n] will receive TINTLn and TINTHn. CorePac[n] will receive GPINTn. n is core number. PRODUCT PREVIEW Table 7-34 CIC0 Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 1 of 6) Input Event# on CIC System Interrupt Description 0 GPINT16 GPIO interrupt 1 GPINT17 GPIO interrupt 2 GPINT18 GPIO interrupt 3 GPINT19 GPIO interrupt 4 GPINT20 GPIO interrupt 5 GPINT21 GPIO interrupt 6 GPINT22 GPIO interrupt 7 GPINT23 GPIO interrupt 8 GPINT24 GPIO interrupt 9 GPINT25 GPIO interrupt 10 GPINT26 GPIO interrupt 11 GPINT27 GPIO interrupt 12 GPINT28 GPIO interrupt 13 GPINT29 GPIO interrupt 14 GPINT30 GPIO interrupt 15 GPINT31 GPIO interrupt 16 EDMA3_CC_ERRINT EDMA3_CC error interrupt 17 EDMA3_CC_MPINT EDMA3_CC memory protection interrupt 18 EDMA3_TC_ERRINT0 EDMA3_CC TC0 error interrupt 19 EDMA3_TC_ERRINT1 EDMA3_CC TC1 error interrupt 20 EDMA3_TC_ERRINT2 EDMA3_CC TC2 error interrupt 21 EDMA3_TC_ERRINT3 EDMA3_CC TC3 error interrupt 22 EDMA3_CC_GINT EDMA3_CC GINT 23 Reserved 24 EDMA3_CC_INT0 EDMA3_CC individual completion interrupt 25 EDMA3_CC_INT1 EDMA3_CC individual completion interrupt 26 EDMA3_CC_INT2 EDMA3_CC individual completion interrupt 27 EDMA3_CC_INT3 EDMA3_CC individual completion interrupt 28 EDMA3_CC_INT4 EDMA3_CC individual completion interrupt 29 EDMA3_CC_INT5 EDMA3_CC individual completion interrupt 30 EDMA3_CC_INT6 EDMA3_CC individual completion interrupt 31 EDMA3_CC_INT7 EDMA3_CC individual completion interrupt 150 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com CIC0 Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 2 of 6) Input Event# on CIC System Interrupt Description 32 MCBSP0_RINT McBSP0 interrupt 33 MCBSP0_XINT McBSP0 interrupt 34 MCBSP0_REVT McBSP0 interrupt 35 MCBSP0_XEVT McBSP0 interrupt 36 MCBSP1_RINT McBSP1 interrupt 37 MCBSP1_XINT McBSP1 interrupt 38 MCBSP1_REVT McBSP1 interrupt 39 MCBSP1_XEVT McBSP1 interrupt 40 UARTINT_B UART_1 interrupt 41 URXEVT_B UART_1 interrupt 42 UTXEVT_B UART_1 interrupt 43 Reserved 44 Reserved 45 Reserved 46 Reserved 47 Reserved 48 PCIEXpress_ERR_INT Protocol error interrupt 49 PCIEXpress_PM_INT Power management interrupt 50 PCIEXpress_Legacy_INTA Legacy interrupt mode 51 PCIEXpress_Legacy_INTB Legacy interrupt mode 52 PCIEXpress_Legacy_CIC Legacy interrupt mode 53 PCIEXpress_Legacy_INTD Legacy interrupt mode 54 SPIINT0 SPI interrupt0 55 SPIINT1 SPI interrupt1 56 SPIXEVT Transmit event 57 SPIREVT Receive event 58 I2CINT I2C interrupt 59 I2CREVT I C receive event 60 I2CXEVT I C transmit event 61 Reserved 62 Reserved 63 TETBHFULLINT TETB is half full 64 TETBFULLINT TETB is full 2 2 65 TETBACQINT Acquisition has been completed 66 TETBOVFLINT Overflow condition occur 67 TETBUNFLINT Underflow condition occur 68 SEMINT2 Semaphore interrupt 69 SEMINT3 Semaphore interrupt 70 SEMERR2 Semaphore interrupt 71 SEMERR3 Semaphore interrupt 72 Reserved 73 Tracer_core_0_INTD 74 Reserved 75 Reserved Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PRODUCT PREVIEW Table 7-34 Tracer sliding time window interrupt for individual core Peripheral Information and Electrical Specifications 151 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-34 www.ti.com CIC0 Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 3 of 6) PRODUCT PREVIEW Input Event# on CIC System Interrupt 76 Reserved Description 77 Tracer_DDR_INTD Tracer sliding time window interrupt for DDR3 EMIF1 78 Tracer_MSMC_0_INTD Tracer sliding time window interrupt for MSMC SRAM bank0 79 Tracer_MSMC_1_INTD Tracer sliding time window interrupt for MSMC SRAM bank1 80 Tracer_MSMC_2_INTD Tracer sliding time window interrupt for MSMC SRAM bank2 81 Tracer_MSMC_3_INTD Tracer sliding time window interrupt for MSMC SRAM bank3 81 Tracer_CFG_INTD Tracer sliding time window interrupt for CFG0 TeraNet 82 Tracer_QM_SS_CFG_INTD Tracer sliding time window interrupt for QM_SS CFG 84 Tracer_QM_SS_DMA_INTD Tracer sliding time window interrupt for QM_SS slave 85 Tracer_SEM_INTD Tracer sliding time window interrupt for semaphore 86 PSC_ALLINT Power/sleep controller interrupt 87 Reserved 88 BOOTCFG_INTD Chip-level MMR error register 89 po_vcon_smpserr_intr SmartReflex VolCon error status 90 MPU0_INTD (MPU0_ADDR_ERR_INT and MPU0 addressing violation interrupt and protection violation interrupt. MPU0_PROT_ERR_INT combined) 91 Reserved 92 MPU1_INTD (MPU1_ADDR_ERR_INT and MPU1 addressing violation interrupt and protection violation interrupt. MPU1_PROT_ERR_INT combined) 93 Reserved 94 MPU2_INTD (MPU2_ADDR_ERR_INT and MPU2 addressing violation interrupt and protection violation interrupt. MPU2_PROT_ERR_INT combined) 95 Reserved 96 MPU3_INTD (MPU3_ADDR_ERR_INT and MPU3 addressing violation interrupt and protection violation interrupt. MPU3_PROT_ERR_INT combined) 97 Reserved 98 Reserved 99 Reserved 100 Reserved 101 Reserved 102 MSMC_mpf_error8 Memory protection fault indicators for each system master PrivID 103 MSMC_mpf_error9 Memory protection fault indicators for each system master PrivID 104 MSMC_mpf_error10 Memory protection fault indicators for each system master PrivID 105 MSMC_mpf_error11 Memory protection fault indicators for each system master PrivID 105 MSMC_mpf_error12 Memory protection fault indicators for each system master PrivID 107 MSMC_mpf_error13 Memory protection fault indicators for each system master PrivID 108 MSMC_mpf_error14 Memory protection fault indicators for each system master PrivID 109 MSMC_mpf_error15 Memory protection fault indicators for each system master PrivID 110 DDR3_ERR DDR3 EMIF error interrupt 111 Reserved 112 Reserved 113 Reserved 114 Reserved 115 Reserved 116 Reserved 152 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com CIC0 Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 4 of 6) Input Event# on CIC System Interrupt 117 Reserved 118 Reserved 119 Reserved 120 Reserved 121 Reserved 122 Reserved 123 Reserved 124 Reserved 125 Reserved 126 Reserved 127 Reserved 128 Reserved 129 Reserved 130 po_vp_smpsack_intr 131 Reserved 132 Reserved Description Indicating that Volt_Proc receives the r-edge at its smpsack input 133 Reserved 134 QM_INT_PASS_TXQ_PEND_662 Queue manager pend event 135 QM_INT_PASS_TXQ_PEND_663 Queue manager pend event 136 QM_INT_PASS_TXQ_PEND_664 Queue manager pend event 137 QM_INT_PASS_TXQ_PEND_665 Queue manager pend event 138 QM_INT_PASS_TXQ_PEND_666 Queue manager pend event 139 QM_INT_PASS_TXQ_PEND_667 Queue manager pend event 140 QM_INT_PASS_TXQ_PEND_668 Queue manager pend event 141 QM_INT_PASS_TXQ_PEND_669 Queue manager pend event 142 QM_INT_PASS_TXQ_PEND_670 Queue manager pend event 143 Reserved 144 Reserved 145 TINT4L Timer4 interrupt low 146 TINT4H Timer4 interrupt high 147 Reserved 148 Reserved 149 Reserved 150 Reserved 151 TINT5L Timer5 interrupt low 152 TINT5H Timer5 interrupt high 153 TINT6L Timer6 interrupt low 154 TINT6H Timer6 interrupt high 155 Reserved 156 UPPINT 157 Reserved 158 Reserved 159 Reserved 160 MSMC_mpf_error2 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PRODUCT PREVIEW Table 7-34 UPP interrupt Memory protection fault indicators for each system master PrivID Peripheral Information and Electrical Specifications 153 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-34 www.ti.com CIC0 Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 5 of 6) Input Event# on CIC System Interrupt Description 161 MSMC_mpf_error3 Memory protection fault indicators for each system master PrivID PRODUCT PREVIEW 162 TINT7L Timer7 interrupt low 163 TINT7H Timer7interrupt high 164 UARTINT_A UART_0 interrupt 165 URXEVT_A UART_0 interrupt 166 UTXEVT_A UART_0 interrupt 167 EASYNCERR EMIF16 error interrupt 168 Tracer_SCR_EMIF Tracer sliding time window interrupt for EMIF16 169 Reserved 170 MSMC_mpf_error4 Memory protection fault indicators for each system master PrivID 171 MSMC_mpf_error5 Memory protection fault indicators for each system master PrivID 172 MSMC_mpf_error6 Memory protection fault indicators for each system master PrivID 173 MSMC_mpf_error7 Memory protection fault indicators for each system master PrivID 174 MPU4_INTD (MPU4_ADDR_ERR_INT and MPU4 addressing violation interrupt and protection violation interrupt. MPU4_PROT_ERR_INT combined) 175 QM_INT_PASS_TXQ_PEND_671 Queue manager pend event 176 QM_INT_PKTDMA_0 QM interrupt for CDMA starvation 177 QM_INT_PKTDMA_1 QM interrupt for CDMA starvation 178 Reserved 179 Reserved 180 Reserved 181 SmartReflex_intrreq0 SmartReflex sensor interrupt 182 SmartReflex_intrreq1 SmartReflex sensor interrupt 183 SmartReflex_intrreq2 SmartReflex sensor interrupt 184 SmartReflex_intrreq3 SmartReflex sensor interrupt 185 VPNoSMPSAck VPVOLTUPDATE has been asserted but SMPS has not been responded to in a defined time interval 186 VPEqValue SRSINTERUPT is asserted, but the new voltage is not different from the current SMPS voltage 187 VPMaxVdd The new voltage required is equal to or greater than MaxVdd. 188 VPMinVdd The new voltage required is equal to or less than MinVdd. 189 VPINIDLE Indicating that the FSM of voltage processor is in idle. 190 VPOPPChangeDone Indicating that the average frequency error is within the desired limit. 191 Reserved 192 MACINT4 EMAC interrupt 193 MACRXINT4 EMAC interrupt 194 MACTXINT4 EMAC interrupt 195 MACTRESH4 EMAC interrupt 196 MACINT5 EMAC interrupt 197 MACRXINT5 EMAC interrupt 198 MACTXINT5 EMAC interrupt 199 MACTRESH5 EMAC interrupt 200 MACINT6 EMAC interrupt 201 MACRXINT6 EMAC interrupt 202 MACTXINT6 EMAC interrupt 154 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-34 CIC0 Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 6 of 6) Input Event# on CIC System Interrupt Description 203 MACTRESH6 EMAC interrupt 204 MACINT7 EMAC interrupt 205 MACRXINT7 EMAC interrupt 206 MACTXINT7 EMAC interrupt 207 MACTRESH7 EMAC interrupt End of Table 7-34 CIC1 Event Inputs (Secondary Events for EDMA3_CC) (Part 1 of 4) Input Event # on CIC System Interrupt Description 0 GPINT8 GPIO interrupt 1 GPINT9 GPIO interrupt 2 GPINT10 GPIO interrupt 3 GPINT11 GPIO interrupt 4 GPINT12 GPIO interrupt 5 GPINT13 GPIO interrupt 6 GPINT14 GPIO interrupt 7 GPINT15 GPIO interrupt 8 Reserved 9 Reserved 10 TETBACQINT 11 Reserved 12 Reserved 13 TETBACQINT0 14 Reserved 15 Reserved System TETB acquisition has been completed TETB0 acquisition has been completed 16 Reserved 17 GPINT16 GPIO interrupt 18 GPINT17 GPIO interrupt 19 GPINT18 GPIO interrupt 20 GPINT19 GPIO interrupt 21 GPINT20 GPIO interrupt 22 GPINT21 GPIO interrupt 23 Reserved 24 QM_INT_HIGH_16 QM interrupt 25 QM_INT_HIGH_17 QM interrupt 26 QM_INT_HIGH_18 QM interrupt 27 QM_INT_HIGH_19 QM interrupt 28 QM_INT_HIGH_20 QM interrupt 29 QM_INT_HIGH_21 QM interrupt 30 QM_INT_HIGH_22 QM interrupt 31 QM_INT_HIGH_23 QM interrupt 32 QM_INT_HIGH_24 QM interrupt 33 QM_INT_HIGH_25 QM interrupt Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PRODUCT PREVIEW Table 7-35 Peripheral Information and Electrical Specifications 155 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-35 www.ti.com CIC1 Event Inputs (Secondary Events for EDMA3_CC) (Part 2 of 4) PRODUCT PREVIEW Input Event # on CIC System Interrupt Description 34 QM_INT_HIGH_26 QM interrupt 35 QM_INT_HIGH_27 QM interrupt 36 QM_INT_HIGH_28 QM interrupt 37 QM_INT_HIGH_29 QM interrupt 38 QM_INT_HIGH_30 QM interrupt 39 QM_INT_HIGH_31 QM interrupt 40 Reserved 41 Reserved 42 Reserved 43 Reserved 44 Reserved 45 Tracer_core_0_INTD 46 Reserved Tracer sliding time window interrupt for individual core 47 GPINT22 GPIO interrupt 48 GPINT23 GPIO interrupt 49 Tracer_DDR_INTD Tracer sliding time window interrupt for DDR3 EMIF 50 Tracer_MSMC_0_INTD Tracer sliding time window interrupt for MSMC SRAM bank0 51 Tracer_MSMC_1_INTD Tracer sliding time window interrupt for MSMC SRAM bank1 52 Tracer_MSMC_2_INTD Tracer sliding time window interrupt for MSMC SRAM bank2 53 Tracer_MSMC_3_INTD Tracer sliding time window interrupt for MSMC SRAM bank3 54 Tracer_CFG_INTD Tracer sliding time window interrupt for CFG0 TeraNet 55 Tracer_QM_SS_CFG_INTD Tracer sliding time window interrupt for QM_SS CFG 56 Tracer_QM_SS_DMA_INTD Tracer sliding time window interrupt for QM_SS slave port 57 Tracer_SEM_INTD Tracer sliding time window interrupt for semaphore 58 SEMERR0 Semaphore interrupt 59 SEMERR1 Semaphore interrupt 60 SEMERR2 Semaphore interrupt 61 SEMERR3 Semaphore interrupt 62 BOOTCFG_INTD BOOTCFG interrupt BOOTCFG_ERR and BOOTCFG_PROT 63 UPPINT UPP interrupt 64 MPU0_INTD (MPU0_ADDR_ERR_INT and MPU0_PROT_ERR_INT combined) MPU0 addressing violation interrupt and protection violation interrupt. 65 Reserved 66 MPU1_INTD (MPU1_ADDR_ERR_INT and MPU1_PROT_ERR_INT combined) 67 Reserved 68 MPU2_INTD (MPU2_ADDR_ERR_INT and MPU2_PROT_ERR_INT combined) MPU2 addressing violation interrupt and protection violation interrupt. 69 QM_INT_PKTDMA_0 QM interrupt for packet DMA starvation 70 MPU3_INTD (MPU3_ADDR_ERR_INT and MPU3_PROT_ERR_INT combined) MPU3 addressing violation interrupt and protection violation interrupt. 71 QM_INT_PKTDMA_1 QM interrupt for packet DMA starvation 72 Reserved 73 Reserved 74 Reserved 156 Peripheral Information and Electrical Specifications MPU1 addressing violation interrupt and protection violation interrupt. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com CIC1 Event Inputs (Secondary Events for EDMA3_CC) (Part 3 of 4) Input Event # on CIC System Interrupt 75 Reserved Description 76 MSMC_mpf_error0 Memory protection fault indicators for each system master PrivID 77 MSMC_mpf_error1 Memory protection fault indicators for each system master PrivID 78 MSMC_mpf_error2 Memory protection fault indicators for each system master PrivID 79 MSMC_mpf_error3 Memory protection fault indicators for each system master PrivID 80 MSMC_mpf_error4 Memory protection fault indicators for each system master PrivID 81 MSMC_mpf_error5 Memory protection fault indicators for each system master PrivID 82 MSMC_mpf_error6 Memory protection fault indicators for each system master PrivID 83 MSMC_mpf_error7 Memory protection fault indicators for each system master PrivID 84 MSMC_mpf_error8 Memory protection fault indicators for each system master PrivID 85 MSMC_mpf_error9 Memory protection fault indicators for each system master PrivID 86 MSMC_mpf_error10 Memory protection fault indicators for each system master PrivID 87 MSMC_mpf_error11 Memory protection fault indicators for each system master PrivID 88 MSMC_mpf_error12 Memory protection fault indicators for each system master PrivID 89 MSMC_mpf_error13 Memory protection fault indicators for each system master PrivID 90 MSMC_mpf_error14 Memory protection fault indicators for each system master PrivID 91 MSMC_mpf_error15 Memory protection fault indicators for each system master PrivID 92 Reserved 93 Reserved 94 Reserved 95 Reserved 96 Reserved 97 Reserved 98 Reserved 99 Reserved 100 Reserved 101 Reserved 102 Reserved 103 Reserved 104 Reserved 105 Reserved 106 Reserved 107 Reserved 108 Reserved 109 Reserved 110 Reserved 111 Reserved 112 Reserved 113 Reserved 114 Reserved 115 Reserved 116 Reserved 117 GPINT24 GPIO interrupt 118 GPINT25 GPIO interrupt Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications PRODUCT PREVIEW Table 7-35 157 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-35 www.ti.com CIC1 Event Inputs (Secondary Events for EDMA3_CC) (Part 4 of 4) Input Event # on CIC System Interrupt 119 Reserved Description PRODUCT PREVIEW 120 Reserved 121 GPINT26 GPIO interrupt 122 GPINT27 GPIO interrupt 123 Reserved 124 GPINT28 GPIO interrupt 125 GPINT29 GPIO interrupt 126 GPINT30 GPIO interrupt 127 GPINT31 GPIO interrupt 128 GPINT4 GPIO interrupt 129 GPINT5 GPIO interrupt 130 GPINT6 GPIO interrupt 131 GPINT7 GPIO interrupt 132 Reserved 133 Tracer_SCR_EMIF Tracer sliding time window interrupt for EMIF16 134 EASYNCERR EMIF16 error interrupt 135 MPU4_INTD (MPU4_ADDR_ERR_INT and MPU4_PROT_ERR_INT combined) MPU4 addressing violation interrupt and protection violation interrupt. 136 Reserved 137 QM_INT_HIGH_0 QM interrupt 138 QM_INT_HIGH_1 QM interrupt 139 QM_INT_HIGH_2 QM interrupt 140 QM_INT_HIGH_3 QM interrupt 141 QM_INT_HIGH_4 QM interrupt 142 QM_INT_HIGH_5 QM interrupt 143 QM_INT_HIGH_6 QM interrupt 144 QM_INT_HIGH_7 QM interrupt 145 QM_INT_HIGH_8 QM interrupt 146 QM_INT_HIGH_9 QM interrupt 147 QM_INT_HIGH_10 QM interrupt 148 QM_INT_HIGH_11 QM interrupt 149 QM_INT_HIGH_12 QM interrupt 150 QM_INT_HIGH_13 QM interrupt 151 QM_INT_HIGH_14 QM interrupt 152 QM_INT_HIGH_15 QM interrupt 153 Reserved 154 Reserved 155 Reserved 156 Reserved 157 Reserved 158 Reserved 159 DDR3_ERR DDR3 error interrupt End of Table 7-35 158 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.8.2 CIC Registers This section includes the offsets for CIC registers. The base addresses for interrupt control registers are CIC0 0x0260 0000 and CIC1 - 0x0260 4000. 7.8.2.1 CIC0 Register Map CIC0 Register (Part 1 of 3) Address Offset Register Mnemonic Register Name 0x0 REVISION_REG Revision Register 0x4 CONTROL_REG Control Register 0xc HOST_CONTROL_REG Host Control Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Int Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2c ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Int Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Int Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x208 RAW_STATUS_REG2 Raw Status Register 2 0x20c RAW_STATUS_REG3 Raw Status Register 3 0x210 RAW_STATUS_REG4 Raw Status Register 4 0x214 RAW_STATUS_REG5 Raw Status Register 5 0x218 RAW_STATUS_REG6 Raw Status Register 6 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 0x288 ENA_STATUS_REG2 Enabled Status Register 2 0x28c ENA_STATUS_REG3 Enabled Status Register 3 0x290 ENA_STATUS_REG4 Enabled Status Register 4 0x294 ENA_STATUS_REG5 Enabled Status Register 5 0x298 ENA_STATUS_REG6 Enabled Status Register 6 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x308 ENABLE_REG2 Enable Register 2 0x30c ENABLE_REG3 Enable Register 3 0x310 ENABLE_REG4 Enable Register 4 0x314 ENABLE_REG5 Enable Register 5 0x318 ENABLE_REG6 Enable Register 6 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 0x388 ENABLE_CLR_REG2 Enable Clear Register 2 0x38c ENABLE_CLR_REG3 Enable Clear Register 3 0x390 ENABLE_CLR_REG4 Enable Clear Register 4 0x394 ENABLE_CLR_REG5 Enable Clear Register 5 0x398 ENABLE_CLR_REG6 Enable Clear Register 6 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications PRODUCT PREVIEW Table 7-36 159 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-36 www.ti.com CIC0 Register (Part 2 of 3) PRODUCT PREVIEW Address Offset Register Mnemonic Register Name 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40c CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41c CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42c CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43c CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x440 CH_MAP_REG16 Interrupt Channel Map Register for 64 to 64+3 0x444 CH_MAP_REG17 Interrupt Channel Map Register for 68 to 68+3 0x448 CH_MAP_REG18 Interrupt Channel Map Register for 72 to 72+3 0x44c CH_MAP_REG19 Interrupt Channel Map Register for 76 to 76+3 0x450 CH_MAP_REG20 Interrupt Channel Map Register for 80 to 80+3 0x454 CH_MAP_REG21 Interrupt Channel Map Register for 84 to 84+3 0x458 CH_MAP_REG22 Interrupt Channel Map Register for 88 to 88+3 0x45c CH_MAP_REG23 Interrupt Channel Map Register for 92 to 92+3 0x460 CH_MAP_REG24 Interrupt Channel Map Register for 96 to 96+3 0x464 CH_MAP_REG25 Interrupt Channel Map Register for 100 to 100+3 0x468 CH_MAP_REG26 Interrupt Channel Map Register for 104 to 104+3 0x46c CH_MAP_REG27 Interrupt Channel Map Register for 108 to 108+3 0x470 CH_MAP_REG28 Interrupt Channel Map Register for 112 to 112+3 0x474 CH_MAP_REG29 Interrupt Channel Map Register for 116 to 116+3 0x478 CH_MAP_REG30 Interrupt Channel Map Register for 120 to 120+3 0x47c CH_MAP_REG31 Interrupt Channel Map Register for 124 to 124+3 0x480 CH_MAP_REG32 Interrupt Channel Map Register for 128 to 128+3 0x484 CH_MAP_REG33 Interrupt Channel Map Register for 132 to 132+3 0x488 CH_MAP_REG34 Interrupt Channel Map Register for 136 to 136+3 0x48c CH_MAP_REG35 Interrupt Channel Map Register for 140 to 140+3 0x490 CH_MAP_REG36 Interrupt Channel Map Register for 144 to 144+3 0x494 CH_MAP_REG37 Interrupt Channel Map Register for 148 to 148+3 0x498 CH_MAP_REG38 Interrupt Channel Map Register for 152 to 152+3 0x49c CH_MAP_REG39 Interrupt Channel Map Register for 156 to 156+3 0x4a0 CH_MAP_REG40 Interrupt Channel Map Register for 160 to 160+3 0x4a4 CH_MAP_REG41 Interrupt Channel Map Register for 164 to 164+3 0x4a8 CH_MAP_REG42 Interrupt Channel Map Register for 168 to 168+3 0x4ac CH_MAP_REG43 Interrupt Channel Map Register for 172 to 172+3 0x4b0 CH_MAP_REG44 Interrupt Channel Map Register for 176 to 176+3 160 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com CIC0 Register (Part 3 of 3) Address Offset Register Mnemonic Register Name 0x4b4 CH_MAP_REG45 Interrupt Channel Map Register for 180 to 180+3 0x4b8 CH_MAP_REG46 Interrupt Channel Map Register for 184 to 184+3 0x4bc CH_MAP_REG47 Interrupt Channel Map Register for 188 to 188+3 0x4c0 CH_MAP_REG48 Interrupt Channel Map Register for 192 to 192+3 0x4c4 CH_MAP_REG49 Interrupt Channel Map Register for 196 to 196+3 0x4c8 CH_MAP_REG50 Interrupt Channel Map Register for 200 to 200+3 0x4cc CH_MAP_REG51 Interrupt Channel Map Register for 204 to 204+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80c HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81c HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x82c HINT_MAP_REG11 Host Interrupt Map Register for 44 to 44+3 0x830 HINT_MAP_REG12 Host Interrupt Map Register for 48 to 48+3 0x834 HINT_MAP_REG13 Host Interrupt Map Register for 52 to 52+3 0x838 HINT_MAP_REG14 Host Interrupt Map Register for 56 to 56+3 0x83c HINT_MAP_REG15 Host Interrupt Map Register for 60 to 60+3 0x840 HINT_MAP_REG16 Host Interrupt Map Register for 64 to 64+3 0x844 HINT_MAP_REG17 Host Interrupt Map Register for 68 to 68+3 0x848 HINT_MAP_REG18 Host Interrupt Map Register for 72 to 72+3 0x84c HINT_MAP_REG19 Host Interrupt Map Register for 76 to 76+3 0x850 HINT_MAP_REG20 Host Interrupt Map Register for 80 to 80+3 0x854 HINT_MAP_REG21 Host Interrupt Map Register for 84 to 84+3 0x858 HINT_MAP_REG22 Host Interrupt Map Register for 88 to 88+3 0x860 HINT_MAP_REG23 Host Interrupt Map Register for 92 to 92+3 0x1500 ENABLE_HINT_REG0 Host Int Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Int Enable Register 1 0x1508 ENABLE_HINT_REG2 Host Int Enable Register 2 PRODUCT PREVIEW Table 7-36 End of Table 7-36 7.8.2.2 CIC1 Register Map Table 7-37 CIC1 Register (Part 1 of 3) Address Offset Register Mnemonic Register Name 0x0 REVISION_REG Revision Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Int Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 161 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-37 www.ti.com CIC1 Register (Part 2 of 3) PRODUCT PREVIEW Address Offset Register Mnemonic Register Name 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2c ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Int Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Int Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x208 RAW_STATUS_REG2 Raw Status Register 2 0x20c RAW_STATUS_REG3 Raw Status Register 3 0x210 RAW_STATUS_REG4 Raw Status Register 4 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 0x288 ENA_STATUS_REG2 Enabled Status Register 2 0x28c ENA_STATUS_REG3 Enabled Status Register 3 0x290 ENA_STATUS_REG4 Enabled Status Register 4 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x308 ENABLE_REG2 Enable Register 2 0x30c ENABLE_REG3 Enable Register 3 0x310 ENABLE_REG4 Enable Register 4 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 0x388 ENABLE_CLR_REG2 Enable Clear Register 2 0x38c ENABLE_CLR_REG3 Enable Clear Register 3 0x390 ENABLE_CLR_REG4 Enable Clear Register 4 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40c CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41c CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42c CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43c CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x440 CH_MAP_REG16 Interrupt Channel Map Register for 64 to 64+3 0x444 CH_MAP_REG17 Interrupt Channel Map Register for 68 to 68+3 0x448 CH_MAP_REG18 Interrupt Channel Map Register for 72 to 72+3 0x44c CH_MAP_REG19 Interrupt Channel Map Register for 76 to 76+3 162 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com CIC1 Register (Part 3 of 3) Address Offset Register Mnemonic Register Name 0x450 CH_MAP_REG20 Interrupt Channel Map Register for 80 to 80+3 0x454 CH_MAP_REG21 Interrupt Channel Map Register for 84 to 84+3 0x458 CH_MAP_REG22 Interrupt Channel Map Register for 88 to 88+3 0x45c CH_MAP_REG23 Interrupt Channel Map Register for 92 to 92+3 0x460 CH_MAP_REG24 Interrupt Channel Map Register for 96 to 96+3 0x464 CH_MAP_REG25 Interrupt Channel Map Register for 100 to 100+3 0x468 CH_MAP_REG26 Interrupt Channel Map Register for 104 to 104+3 0x46c CH_MAP_REG27 Interrupt Channel Map Register for 108 to 108+3 0x470 CH_MAP_REG28 Interrupt Channel Map Register for 112 to 112+3 0x474 CH_MAP_REG29 Interrupt Channel Map Register for 116 to 116+3 0x478 CH_MAP_REG30 Interrupt Channel Map Register for 120 to 120+3 0x47c CH_MAP_REG31 Interrupt Channel Map Register for 124 to 124+3 0x480 CH_MAP_REG32 Interrupt Channel Map Register for 128 to 128+3 0x484 CH_MAP_REG33 Interrupt Channel Map Register for 132 to 132+3 0x488 CH_MAP_REG34 Interrupt Channel Map Register for 136 to 136+3 0x48c CH_MAP_REG35 Interrupt Channel Map Register for 140 to 140+3 0x490 CH_MAP_REG36 Interrupt Channel Map Register for 144 to 144+3 0x494 CH_MAP_REG37 Interrupt Channel Map Register for 148 to 148+3 0x498 CH_MAP_REG38 Interrupt Channel Map Register for 152 to 152+3 0x49c CH_MAP_REG39 Interrupt Channel Map Register for 156 to 156+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80c HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81c HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x82c HINT_MAP_REG11 Host Interrupt Map Register for 44 to 44+3 0x830 HINT_MAP_REG12 Host Interrupt Map Register for 48 to 48+3 0x834 HINT_MAP_REG13 Host Interrupt Map Register for 52 to 52+3 0x838 HINT_MAP_REG14 Host Interrupt Map Register for 56 to 56+3 0x83c HINT_MAP_REG15 Host Interrupt Map Register for 60 to 60+3 0x1500 ENABLE_HINT_REG0 Host Int Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Int Enable Register 1 PRODUCT PREVIEW Table 7-37 End of Table 7-37 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 163 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.8.3 Inter-Processor Register Map Table 7-38 IPC Generation Registers (IPCGRx) PRODUCT PREVIEW Address Start Address End Size Register Name Description 0x02620200 0x02620203 4B NMIGR0 NMI Event Generation Register for CorePac0 0x02620204 0x02620207 4B Reserved 0x02620208 0x0262020B 4B Reserved Reserved 0x0262020C 0x0262020F 4B Reserved Reserved 0x02620210 0x02620213 4B Reserved Reserved 0x02620214 0x02620217 4B Reserved Reserved 0x02620218 0x0262021B 4B Reserved Reserved 0x0262021C 0x0262021F 4B Reserved Reserved 0x02620220 0x0262023F 32B Reserved Reserved IPC Generation Register for CorePac 0 0x02620240 0x02620243 4B IPCGR0 0x02620244 0x02620247 4B Reserved 0x02620248 0x0262024B 4B Reserved Reserved 0x0262024C 0x0262024F 4B Reserved Reserved 0x02620250 0x02620253 4B Reserved Reserved 0x02620254 0x02620257 4B Reserved Reserved 0x02620258 0x0262025B 4B Reserved Reserved 0x0262025C 0x0262025F 4B Reserved Reserved 0x02620260 0x0262027B 28B Reserved Reserved 0x0262027C 0x0262027F 4B IPCGRH IPC Generation Register for Host IPC Acknowledgement Register for CorePac 0 0x02620280 0x02620283 4B IPCAR0 0x02620284 0x02620287 4B Reserved 0x02620288 0x0262028B 4B Reserved Reserved 0x0262028C 0x0262028F 4B Reserved Reserved 0x02620290 0x02620293 4B Reserved Reserved 0x02620294 0x02620297 4B Reserved Reserved 0x02620298 0x0262029B 4B Reserved Reserved 0x0262029C 0x0262029F 4B Reserved Reserved 0x026202A0 0x026202BB 28B Reserved Reserved 0x026202BC 0x026202BF 4B IPCARH IPC Acknowledgement Register for Host End of Table 7-38 7.8.4 NMI and LRESET Non-maskable interrupts (NMI) can be generated by chip-level registers and the LRESET can be generated by software writing into LPSC registers. LRESET and NMI can also be asserted by device pins or watchdog timers. One NMI pin and one LRESET pin are shared by all CorePacs on the device. The CORESEL[3:0] pins can be configured to select between the CorePacs available as shown in Table 7-39. Table 7-39 LRESET and NMI Decoding (Part 1 of 2) CORESEL[1:0] Pin Input LRESET Pin Input NMI Pin Input XX X X LRESETNMIEN Pin Input 1 Reset Mux Block Output No local reset or NMI assertion. 00 0 X 0 Assert local reset to CorePac 0 01 0 X 0 Reserved 164 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-39 LRESET and NMI Decoding (Part 2 of 2) CORESEL[1:0] Pin Input LRESET Pin Input NMI Pin Input LRESETNMIEN Pin Input Reset Mux Block Output 1x 0 X 0 Assert local reset to all CorePacs 00 1 1 0 De-assert local reset & NMI to CorePac 0 01 1 1 0 Reserved 1x 1 1 0 De-assert local reset & NMI to all CorePacs 00 1 0 0 Assert NMI to CorePac 0 01 1 0 0 Reserved 1x 1 0 0 Assert NMI to all CorePacs 7.8.5 External Interrupts Electrical Data/Timing Table 7-40 NMI and Local Reset Timing Requirements (1) (see Figure 7-26) No. Min 1 tsu(LRESET-LRESETNMIENL) Setup Time - LRESET valid before LRESETNMIEN low Max Unit 12*P ns 1 tsu(NMI-LRESETNMIENL) Setup Time - NMI valid before LRESETNMIEN low 12*P ns 1 tsu(CORESELn-LRESETNMIENL) Setup Time - CORESEL[2:0] valid before LRESETNMIEN low 12*P ns 2 th(LRESETNMIENL-LRESET) Hold Time - LRESET valid after LRESETNMIEN high 12*P ns 2 th(LRESETNMIENL-NMI) Hold Time - NMI valid after LRESETNMIEN high 12*P ns 2 th(LRESETNMIENL-CORESELn) Hold Time - CORESEL[2:0] valid after LRESETNMIEN high 12*P ns 3 tw(LRESETNMIEN) Pulse Width - LRESETNMIEN low width 12*P ns End of Table 7-40 1 P = 1/SYSCLK1 clock frequency in ns. Figure 7-26 NMI and Local Reset Timing 1 2 CORESEL[3:0]/ LRESET/ NMI 3 LRESETNMIEN Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 165 PRODUCT PREVIEW End of Table 7-39 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.9 Memory Protection Unit (MPU) The C6654 supports five MPUs: • One MPU is used to protect main CORE/3 CFG TeraNet (CFG space of all slave devices on the TeraNet is protected by the MPU). • Two MPUs are used for QM_SS (one for DATA PORT port and another is for CFG PORT port). • One MPU is used for Semaphore. • One MPU is used for EMIF16 This section contains MPU register map and details of device-specific MPU registers only. For MPU features and details of generic MPU registers, see the Memory Protection Unit (MPU) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. PRODUCT PREVIEW The following tables show the configuration of each MPU and the memory regions protected by each MPU. Table 7-41 MPU Default Configuration Setting MPU0 Main CFG TeraNet MPU1 (QM_SS DATA PORT) MPU2 (QM_SS CFG PORT) MPU3 Semaphore MPU4 EMIF16 Default permission Assume allowed Assume allowed Assume allowed Assume allowed Assume allowed Number of allowed IDs supported 16 16 16 16 16 Number of programmable ranges supported 16 5 16 1 16 Compare width 1KB granularity 1KB granularity 1KB granularity 1KB granularity 1KB granularity End of Table 7-41 Table 7-42 MPU Memory Regions Memory Protection Start Address End Address MPU0 Main CFG TeraNet 0x01D00000 0x026203FF MPU1 QM_SS DATA PORT 0x34000000 0x340BFFFF MPU2 QM_SS CFG PORT 0x02A00000 0x02ABFFFF MPU3 Semaphore 0x02640000 0x026407FF MPU4 EMIF16 0x70000000 0x7FFFFFFF Table 7-43 shows the privilege ID of each CORE and every mastering peripheral. Table 7-43 also shows the privilege level (supervisor vs. user), security level (secure vs. non-secure), and access type (instruction read vs. data/DMA read or write) of each master on the device. In some cases, a particular setting depends on software being executed at the time of the access or the configuration of the master peripheral. Table 7-43 Privilege ID Privilege ID Settings (Part 1 of 2) Master Privilege Level Security Level Access Type 0 CorePac0 SW dependant, driven by MSMC SW dependant DMA 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 UPP User Non-secure DMA 7 EMAC User Non-secure DMA 166 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-43 Privilege ID Settings (Part 2 of 2) Privilege ID Master Privilege Level Security Level Access Type 8 QM_PKTDMA User Non-secure DMA User Non-secure DMA 9 Reserved 10 QM_second 11 PCIe Supervisor Non-secure DMA 12 DAP Driven by debug_SS Driven by debug_SS DMA 13 Reserved 14 Reserved 15 Reserved Table 7-44 shows the master ID of each CorePac and every mastering peripheral. Master IDs are used to determine allowed connections between masters and slaves. Unlike privilege IDs, which can be shared across different masters, master IDs are unique to each master. Table 7-44 Master ID Settings (Part 1 of 3) (1) Master ID Master 0 CorePac0 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 7 Reserved 8 CorePac0_CFG 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved 16 Reserved 17 Reserved 18 Reserved 19 Reserved 20 Reserved 21 Reserved 22 Reserved 23 Reserved 24 Reserved 25 Reserved 26 Reserved 27 Reserved Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 167 PRODUCT PREVIEW End of Table 7-43 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-44 www.ti.com Master ID Settings (Part 2 of 3) (1) PRODUCT PREVIEW Master ID Master 28 EDMA_TC0 read 29 EDMA_TC0 write 30 EDMA_TC1 read 31 EDMA_TC1 write 32 EDMA_TC2 read 33 EDMA_TC2 write 34 EDMA_TC3 read 35 EDMA_TC3 write 36 - 37 Reserved 38 - 39 Reserved 40 - 47 Reserved 48 DAP 49 Reserved 50 EDMA3_CC 51 Reserved 52 MSMC (2) 53 PCIe 54 Reserved 55 Reserved 56 EMAC 57 - 87 Reserved 88 - 91 QM_PKTDMA 92 - 93 QM_second 94 Reserved 95 UPP 96 - 127 Reserved 128 Tracer_core_0 (3) 129 Reserved 130 Reserved 131 Reserved 132 Reserved 133 Reserved 134 Reserved 135 Reserved 136 Tracer_MSMC0 137 Tracer_MSMC1 138 Tracer_MSMC2 139 Tracer_MSMC3 140 Tracer_DDR 141 Tracer_SEM 142 Tracer_QM_CFG 143 Tracer_QM_Data 144 Tracer_CFG 145 Reserved 168 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-44 Master ID Settings (Part 3 of 3) (1) Master ID Master 146 Reserved 147 Reserved 148 Tracer_EMIF16 End of Table 7-44 1 Some of the PKTDMA-based peripherals require multiple master IDs. QMS_PKTDMA is assigned with 88,89,90,91, but only 88-89 are actually used. There are two master ID values are assigned for the QM_second master port, one master ID for external linking RAM and the other one for the PDSP/MCDM accesses. 2 The master ID for MSMC is for the transactions initiated by MSMC internally and sent to the DDR. 3 All Tracers are set to the same master ID and bit 7 of the master ID needs to be 1. 7.9.1 MPU Registers PRODUCT PREVIEW This section includes the offsets for MPU registers and definitions for device specific MPU registers. 7.9.1.1 MPU Register Map Table 7-45 MPU0 Registers (Part 1 of 2) Offset Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG0_MPSAR Programmable range 0, start address 204h PROG0_MPEAR Programmable range 0, end address 208h PROG0_MPPA Programmable range 0, memory page protection attributes 210h PROG1_MPSAR Programmable range 1, start address 214h PROG1_MPEAR Programmable range 1, end address 218h PROG1_MPPA Programmable range 1, memory page protection attributes 220h PROG2_MPSAR Programmable range 2, start address 224h PROG2_MPEAR Programmable range 2, end address 228h PROG2_MPPA Programmable range 2, memory page protection attributes 230h PROG3_MPSAR Programmable range 3, start address 234h PROG3_MPEAR Programmable range 3, end address 238h PROG3_MPPA Programmable range 3, memory page protection attributes 240h PROG4_MPSAR Programmable range 4, start address 244h PROG4_MPEAR Programmable range 4, end address 248h PROG4_MPPA Programmable range 4, memory page protection attributes 250h PROG5_MPSAR Programmable range 5, start address 254h PROG5_MPEAR Programmable range 5, end address 258h PROG5_MPPA Programmable range 5, memory page protection attributes 260h PROG6_MPSAR Programmable range 6, start address 264h PROG6_MPEAR Programmable range 6, end address 268h PROG6_MPPA Programmable range 6, memory page protection attributes 270h PROG7_MPSAR Programmable range 7, start address Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 169 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-45 www.ti.com MPU0 Registers (Part 2 of 2) PRODUCT PREVIEW Offset Name Description 274h PROG7_MPEAR Programmable range 7, end address 278h PROG7_MPPA Programmable range 7, memory page protection attributes 280h PROG8_MPSAR Programmable range 8, start address 284h PROG8_MPEAR Programmable range 8, end address 288h PROG8_MPPA Programmable range 8, memory page protection attributes 290h PROG9_MPSAR Programmable range 9, start address 294h PROG9_MPEAR Programmable range 9, end address 298h PROG9_MPPA Programmable range 9, memory page protection attributes 2A0h PROG10_MPSAR Programmable range 10, start address 2A4h PROG10_MPEAR Programmable range 10, end address 2A8h PROG10_MPPA Programmable range 10, memory page protection attributes 2B0h PROG11_MPSAR Programmable range 11, start address 2B4h PROG11_MPEAR Programmable range 11, end address 2B8h PROG11_MPPA Programmable range 11, memory page protection attributes 2C0h PROG12_MPSAR Programmable range 12, start address 2C4h PROG12_MPEAR Programmable range 12, end address 2C8h PROG12_MPPA Programmable range 12, memory page protection attributes 2D0h PROG13_MPSAR Programmable range 13, start address 2D4h PROG13_MPEAR Programmable range 13, end address 2Dh PROG13_MPPA Programmable range 13, memory page protection attributes 2E0h PROG14_MPSAR Programmable range 14, start address 2E4h PROG14_MPEAR Programmable range 14, end address 2E8h PROG14_MPPA Programmable range 14, memory page protection attributes 2F0h PROG15_MPSAR Programmable range 15, start address 2F4h PROG15_MPEAR Programmable range 15, end address 2F8h PROG15_MPPA Programmable range 15, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear End of Table 7-45 Table 7-46 MPU1 Registers (Part 1 of 2) Offset Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG0_MPSAR Programmable range 0, start address 204h PROG0_MPEAR Programmable range 0, end address 208h PROG0_MPPA Programmable range 0, memory page protection attributes 170 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com MPU1 Registers (Part 2 of 2) Offset Name Description 210h PROG1_MPSAR Programmable range 1, start address 214h PROG1_MPEAR Programmable range 1, end address 218h PROG1_MPPA Programmable range 1, memory page protection attributes 220h PROG2_MPSAR Programmable range 2, start address 224h PROG2_MPEAR Programmable range 2, end address 228h PROG2_MPPA Programmable range 2, memory page protection attributes 230h PROG3_MPSAR Programmable range 3, start address 234h PROG3_MPEAR Programmable range 3, end address 238h PROG3_MPPA Programmable range 3, memory page protection attributes 240h PROG4_MPSAR Programmable range 4, start address 244h PROG4_MPEAR Programmable range 4, end address 248h PROG4_MPPA Programmable range 4, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear PRODUCT PREVIEW Table 7-46 End of Table 7-46 Table 7-47 MPU2 Registers (Part 1 of 2) Offset Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG0_MPSAR Programmable range 0, start address 204h PROG0_MPEAR Programmable range 0, end address 208h PROG0_MPPA Programmable range 0, memory page protection attributes 210h PROG1_MPSAR Programmable range 1, start address 214h PROG1_MPEAR Programmable range 1, end address 218h PROG1_MPPA Programmable range 1, memory page protection attributes 220h PROG2_MPSAR Programmable range 2, start address 224h PROG2_MPEAR Programmable range 2, end address 228h PROG2_MPPA Programmable range 2, memory page protection attributes 230h PROG3_MPSAR Programmable range 3, start address 234h PROG3_MPEAR Programmable range 3, end address 238h PROG3_MPPA Programmable range 3, memory page protection attributes 240h PROG4_MPSAR Programmable range 4, start address 244h PROG4_MPEAR Programmable range 4, end address 248h PROG4_MPPA Programmable range 4, memory page protection attributes 250h PROG5_MPSAR Programmable range 5, start address 254h PROG5_MPEAR Programmable range 5, end address Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 171 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-47 www.ti.com MPU2 Registers (Part 2 of 2) Offset Name Description 258h PROG5_MPPA Programmable range 5, memory page protection attributes 260h PROG6_MPSAR Programmable range 6, start address 264h PROG6_MPEAR Programmable range 6, end address 268h PROG6_MPPA Programmable range 6, memory page protection attributes 270h PROG7_MPSAR Programmable range 7, start address PRODUCT PREVIEW 274h PROG7_MPEAR Programmable range 7, end address 278h PROG7_MPPA Programmable range 7, memory page protection attributes 280h PROG8_MPSAR Programmable range 8, start address 284h PROG8_MPEAR Programmable range 8, end address 288h PROG8_MPPA Programmable range 8, memory page protection attributes 290h PROG9_MPSAR Programmable range 9, start address 294h PROG9_MPEAR Programmable range 9, end address 298h PROG9_MPPA Programmable range 9, memory page protection attributes 2A0h PROG10_MPSAR Programmable range 10, start address 2A4h PROG10_MPEAR Programmable range 10, end address 2A8h PROG10_MPPA Programmable range 10, memory page protection attributes 2B0h PROG11_MPSAR Programmable range 11, start address 2B4h PROG11_MPEAR Programmable range 11, end address 2B8h PROG11_MPPA Programmable range 11, memory page protection attributes 2C0h PROG12_MPSAR Programmable range 12, start address 2C4h PROG12_MPEAR Programmable range 12, end address 2C8h PROG12_MPPA Programmable range 12, memory page protection attributes 2D0h PROG13_MPSAR Programmable range 13, start address 2D4h PROG13_MPEAR Programmable range 13, end address 2Dh PROG13_MPPA Programmable range 13, memory page protection attributes 2E0h PROG14_MPSAR Programmable range 14, start address 2E4h PROG14_MPEAR Programmable range 14, end address 2E8h PROG14_MPPA Programmable range 14, memory page protection attributes 2F0h PROG15_MPSAR Programmable range 15, start address 2F4h PROG15_MPEAR Programmable range 15, end address 2F8h PROG15_MPPA Programmable range 15, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear End of Table 7-47 Table 7-48 Offset MPU3 Registers (Part 1 of 2) Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 172 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-48 MPU3 Registers (Part 2 of 2) Offset Name Description 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG0_MPSAR Programmable range 0, start address 204h PROG0_MPEAR Programmable range 0, end address 208h PROG0_MPPA Programmable range 0, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear Table 7-49 PRODUCT PREVIEW End of Table 7-48 MPU4 Registers (Part 1 of 2) Offset Name Description 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG0_MPSAR Programmable range 0, start address 204h PROG0_MPEAR Programmable range 0, end address 208h PROG0_MPPA Programmable range 0, memory page protection attributes 210h PROG1_MPSAR Programmable range 1, start address 214h PROG1_MPEAR Programmable range 1, end address 218h PROG1_MPPA Programmable range 1, memory page protection attributes 220h PROG2_MPSAR Programmable range 2, start address 224h PROG2_MPEAR Programmable range 2, end address 228h PROG2_MPPA Programmable range 2, memory page protection attributes 230h PROG3_MPSAR Programmable range 3, start address 234h PROG3_MPEAR Programmable range 3, end address 238h PROG3_MPPA Programmable range 3, memory page protection attributes 240h PROG4_MPSAR Programmable range 4, start address 244h PROG4_MPEAR Programmable range 4, end address 248h PROG4_MPPA Programmable range 4, memory page protection attributes 250h PROG5_MPSAR Programmable range 5, start address 254h PROG5_MPEAR Programmable range 5, end address 258h PROG5_MPPA Programmable range 5, memory page protection attributes 260h PROG6_MPSAR Programmable range 6, start address 264h PROG6_MPEAR Programmable range 6, end address 268h PROG6_MPPA Programmable range 6, memory page protection attributes 270h PROG7_MPSAR Programmable range 7, start address 274h PROG7_MPEAR Programmable range 7, end address 278h PROG7_MPPA Programmable range 7, memory page protection attributes Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 173 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-49 www.ti.com MPU4 Registers (Part 2 of 2) Offset Name Description 280h PROG8_MPSAR Programmable range 8, start address PRODUCT PREVIEW 284h PROG8_MPEAR Programmable range 8, end address 288h PROG8_MPPA Programmable range 8, memory page protection attributes 290h PROG9_MPSAR Programmable range 9, start address 294h PROG9_MPEAR Programmable range 9, end address 298h PROG9_MPPA Programmable range 9, memory page protection attributes 2A0h PROG10_MPSAR Programmable range 10, start address 2A4h PROG10_MPEAR Programmable range 10, end address 2A8h PROG10_MPPA Programmable range 10, memory page protection attributes 2B0h PROG11_MPSAR Programmable range 11, start address 2B4h PROG11_MPEAR Programmable range 11, end address 2B8h PROG11_MPPA Programmable range 11, memory page protection attributes 2C0h PROG12_MPSAR Programmable range 12, start address 2C4h PROG12_MPEAR Programmable range 12, end address 2C8h PROG12_MPPA Programmable range 12, memory page protection attributes 2D0h PROG13_MPSAR Programmable range 13, start address 2D4h PROG13_MPEAR Programmable range 13, end address 2Dh PROG13_MPPA Programmable range 13, memory page protection attributes 2E0h PROG14_MPSAR Programmable range 14, start address 2E4h PROG14_MPEAR Programmable range 14, end address 2E8h PROG14_MPPA Programmable range 14, memory page protection attributes 2F0h PROG15_MPSAR Programmable range 15, start address 2F4h PROG15_MPEAR Programmable range 15, end address 2F8h PROG15_MPPA Programmable range 15, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear End of Table 7-49 174 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.9.1.2 Device-Specific MPU Registers 7.9.1.2.1 Configuration Register (CONFIG) The configuration register (CONFIG) contains the configuration value of the MPU. Configuration Register (CONFIG) 31 Reset Values 24 23 20 19 16 15 12 11 1 0 ADDR_WIDTH NUM_FIXED NUM_PROG NUM_AIDS Reserved ASSUME_ALLOWED MPU0 R-0 R-0 R-16 R-16 R-0 R-1 MPU1 R-0 R-0 R-5 R-16 R-0 R-1 MPU2 R-0 R-0 R-16 R-16 R-0 R-1 MPU3 R-0 R-0 R-1 R-16 R-0 R-1 MPU4 R-0 R-0 R-16 R-16 R-0 R-1 Legend: R = Read only; -n = value after reset Table 7-50 Configuration Register (CONFIG) Field Descriptions Bit Field Description 31 – 24 ADDR_WIDTH Address alignment for range checking 0 = 1KB alignment 6 = 64KB alignment 23 – 20 NUM_FIXED Number of fixed address ranges 19 – 16 NUM_PROG Number of programmable address ranges 15 – 12 NUM_AIDS Number of supported AIDs 11 – 1 Reserved Reserved. These bits will always reads as 0. 0 ASSUME_ALLOWED Assume allowed bit. When an address is not covered by any MPU protection range, this bit determines whether the transfer is assumed to be allowed or not. 0 = Assume disallowed 1 = Assume allowed Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 175 PRODUCT PREVIEW Figure 7-27 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.9.2 MPU Programmable Range Registers 7.9.2.1 Programmable Range n Start Address Register (PROGn_MPSAR) The programmable address start register holds the start address for the range. This register is writeable by a supervisor entity only. If NS = 0 (non-secure mode) in the associated MPPA register, then the register is also writeable only by a secure entity. The start address must be aligned on a page boundary. The size of the page is 1K byte. The size of the page determines the width of the address field in MPSAR and MPEAR. Figure 7-28 Programmable Range n Start Address Register (PROGn_MPSAR) 31 10 9 0 PRODUCT PREVIEW START_ADDR Reserved R/W R Legend: R = Read only; R/W = Read/Write Table 7-51 Programmable Range n Start Address Register (PROGn_MPSAR) Field Descriptions Bit Field Description 31 – 10 START_ADDR Start address for range n. 9–0 Reserved Reserved and these bits always read as 0. End of Table 7-51 Table 7-52 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values Register MPU0 MPU1 MPU2 MPU3 MPU4 PROG0_MPSAR 0x01D0_0000 0x3400_0000 0x02A0_0000 0x0264_0000 0x7000_0000 PROG1_MPSAR 0x01F0_0000 0x3402_0000 0x02A2_0000 N/A 0x7100_0000 PROG2_MPSAR 0x0200_0000 0x3406_0000 0x02A4_0000 N/A 0x7200_0000 PROG3_MPSAR 0x01E0_0000 0x3406_8000 0x02A6_0000 N/A 0x7300_0000 PROG4_MPSAR 0x021C_0000 0x340B_8000 0x02A6_8000 N/A 0x7400_0000 PROG5_MPSAR 0x021F_0000 N/A 0x02A6_9000 N/A 0x7500_0000 PROG6_MPSAR 0x0220_0000 N/A 0x02A6_A000 N/A 0x7600_0000 PROG7_MPSAR 0x0231_0000 N/A 0x02A6_B000 N/A 0x7700_0000 PROG8_MPSAR 0x0232_0000 N/A 0x02A6_C000 N/A 0x7800_0000 PROG9_MPSAR 0x0233_0000 N/A 0x02A6_E000 N/A 0x7900_0000 PROG10_MPSAR 0x0235_0000 N/A 0x02A8_0000 N/A 0x7A00_0000 PROG11_MPSAR 0x0240_0000 N/A 0x02A9_0000 N/A 0x7B00_0000 PROG12_MPSAR 0x0250_0000 N/A 0x02AA_0000 N/A 0x7C00_0000 PROG13_MPSAR 0x0253_0000 N/A 0x02AA_8000 N/A 0x7D00_0000 PROG14_MPSAR 0x0260_0000 N/A 0x02AB_0000 N/A 0x7E00_0000 PROG15_MPSAR 0x0262_0000 N/A 0x02AB_8000 N/A 0x7F00_0000 End of Table 7-52 176 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.9.2.2 Programmable Range n End Address Register (PROGn_MPEAR) The programmable address end register holds the end address for the range. This register is writeable by a supervisor entity only. If NS = 0 (non-secure mode) in the associated MPPA register then the register is also writeable only by a secure entity. The end address must be aligned on a page boundary. The size of the page depends on the MPU number. The page size for MPU1 is 1K byte and for MPU2 it is 64K bytes. The size of the page determines the width of the address field in MPSAR and MPEAR Programmable Range n End Address Register (PROGn_MPEAR) 31 10 9 0 END_ADDR Reserved R/W R PRODUCT PREVIEW Figure 7-29 Legend: R = Read only; R/W = Read/Write Table 7-53 Programmable Range n End Address Register (PROGn_MPEAR) Field Descriptions Bit Field Description 31 – 10 END_ADDR End address for range n. 9–0 Reserved Reserved and these bits always read as 3FFh. End of Table 7-53 Table 7-54 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values Register MPU0 MPU1 MPU2 MPU3 MPU4 PROG0_MPEAR 0x01D8_007F 0x3401_FFFF 0x02A1_FFFF 0x0264_07FF 0x70FF_FFFF PROG1_MPEAR 0x01F7_FFFF 0x3405_FFFF 0x02A3_FFFF N/A 0x71FF_FFFF PROG2_MPEAR 0x0209_FFFF 0x3406_7FFF 0x02A5_FFFF N/A 0x72FF_FFFF PROG3_MPEAR 0x01EB_FFFF 0x340B_7FFF 0x02A6_7FFF N/A 0x73FF_FFFF PROG4_MPEAR 0x021E_0C3F 0x340B_FFFF 0x02A6_8FFF N/A 0x74FF_FFFF PROG5_MPEAR 0x021F_7FFF N/A 0x02A6_9FFF N/A 0x75FF_FFFF PROG6_MPEAR 0x0227_007F N/A 0x02A6_AFFF N/A 0x76FF_FFFF PROG7_MPEAR 0x0231_03FF N/A 0x02A6_BFFF N/A 0x77FF_FFFF PROG8_MPEAR 0x0232_03FF N/A 0x02A6_DFFF N/A 0x78FF_FFFF PROG9_MPEAR 0x0233_03FF N/A 0x02A6_FFFF N/A 0x79FF_FFFF PROG10_MPEAR 0x0235_0FFF N/A 0x02A8_FFFF N/A 0x7AFF_FFFF PROG11_MPEAR 0x0245_3FFF N/A 0x02A9_FFFF N/A 0x7BFF_FFFF PROG12_MPEAR 0x0252_03FF N/A 0x02AA_7FFF N/A 0x7CFF_FFFF PROG13_MPEAR 0x0255_03FF N/A 0x02AA_FFFF N/A 0x7DFF_FFFF PROG14_MPEAR 0x0260_BFFF N/A 0x02AB_7FFF N/A 0x7EFF_FFFF PROG15_MPEAR 0x0262_07FF N/A 0x02AB_FFFF N/A 0x7FFF_FFFF End of Table 7-54 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 177 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.9.2.3 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) The programmable address memory protection page attribute register holds the permissions for the region. This register is writeable only by a non-debug supervisor entity. If NS = 0 (secure mode) then the register is also only writeable by a non-debug secure entity. The NS bit is writeable only by a non-debug secure entity. For debug accesses the register is writeable only when NS = 1 or EMU = 1. Figure 7-30 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) 31 26 25 24 23 22 21 20 19 18 17 16 15 Reserved AID15 AID14 AID13 AID12 AID11 AID10 AID9 AID8 AID7 AID6 AID5 R R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W PRODUCT PREVIEW 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AID4 AID3 AID2 AID1 AID0 AIDX Reserved NS EMU SR SW SX UR UW UX R/W R/W R/W R/W R/W R/W R R/W R/W R/W R/W R/W R/W R/W R/W Legend: R = Read only; R/W = Read/Write Table 7-55 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Field Descriptions (Part 1 of 2) Bit Field Description 31 – 26 Reserved Reserved. These bits will always reads as 0. 25 AID15 Controls access from ID = 15 0 = Access denied. 1 = Access granted. 24 AID14 Controls access from ID = 14 0 = Access denied. 1 = Access granted. 23 AID13 Controls access from ID = 13 0 = Access denied. 1 = Access granted. 22 AID12 Controls access from ID = 12 0 = Access denied. 1 = Access granted. 21 AID11 Controls access from ID = 11 0 = Access denied. 1 = Access granted. 20 AID10 Controls access from ID = 10 0 = Access denied. 1 = Access granted. 19 AID9 Controls access from ID = 9 0 = Access denied. 1 = Access granted. 18 AID8 Controls access from ID = 8 0 = Access denied. 1 = Access granted. 17 AID7 Controls access from ID = 7 0 = Access denied. 1 = Access granted. 16 AID6 Controls access from ID = 6 0 = Access denied. 1 = Access granted. 178 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-55 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Field Descriptions (Part 2 of 2) Field Description 15 AID5 Controls access from ID = 5 0 = Access denied. 1 = Access granted. 14 AID4 Controls access from ID = 4 0 = Access denied. 1 = Access granted. 13 AID3 Controls access from ID = 3 0 = Access denied. 1 = Access granted. 12 AID2 Controls access from ID = 2 0 = Access denied. 1 = Access granted. 11 AID1 Controls access from ID = 1 0 = Access denied. 1 = Access granted. 10 AID0 Controls access from ID = 0 0 = Access denied. 1 = Access granted. 9 AIDX Controls access from ID > 15 0 = Access denied. 1 = Access granted. 8 Reserved Always reads as 0. 7 NS Non-secure access permission 0 = Only secure access allowed. 1 = Non-secure access allowed. 6 EMU Emulation (debug) access permission. This bit is ignored if NS = 1 0 = Debug access not allowed. 1 = Debug access allowed. 5 SR Supervisor Read permission 0 = Access not allowed. 1 = Access allowed. 4 SW Supervisor Write permission 0 = Access not allowed. 1 = Access allowed. 3 SX Supervisor Execute permission 0 = Access not allowed. 1 = Access allowed. 2 UR User Read permission 0 = Access not allowed. 1 = Access allowed 1 UW User Write permission 0 = Access not allowed. 1 = Access allowed. 0 UX User Execute permission 0 = Access not allowed. 1 = Access allowed. PRODUCT PREVIEW Bit End of Table 7-551 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 179 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-56 www.ti.com Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA) Reset Values Register MPU0 MPU1 MPU2 MPU3 MPU3 PROG0_MPPA 0x03FF_FCB6 0x03FF_FC80 0x03FF_FCA4 0x0003_FCB6 0x03FF_FCB6 PROG1_MPPA 0x03FF_FC80 0x000F_FCB6 0x000F_FCB6 N/A 0x03FF_FCB6 PROG2_MPPA 0x03FF_FCB6 0x03FF_FCB4 0x000F_FCB6 N/A 0x03FF_FCB6 PROG3_MPPA 0x03FF_FCB6 0x03FF_FC80 0x03FF_FCB4 N/A 0x03FF_FCB6 PRODUCT PREVIEW PROG4_MPPA 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG5_MPPA 0x03FF_FCB6 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG6_MPPA 0x03FF_FCB6 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG7_MPPA 0x03FF_FCB4 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG8_MPPA 0x03FF_FCB4 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG9_MPPA 0x03FF_FCB4 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG10_MPPA 0x03FF_FCB4 N/A 0x03FF_FCA4 N/A 0x03FF_FCB6 PROG11_MPPA 0x03FF_FCB6 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG12_MPPA 0x03FF_FCB4 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG13_MPPA 0x03FF_FCB6 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG14_MPPA 0x03FF_FCB4 N/A 0x03FF_FCB4 N/A 0x03FF_FCB6 PROG15_MPPA 0x03FF_FCB4 N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 End of Table 7-56 180 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.10 DDR3 Memory Controller The 32-bit DDR3 Memory Controller bus of the TMS320C6654 is used to interface to JEDEC standard-compliant DDR3 SDRAM devices. The DDR3 external bus interfaces only to DDR3 SDRAM devices; it does not share the bus with any other types of peripherals. 7.10.1 DDR3 Memory Controller Device-Specific Information The TMS320C6654 includes one 32-bit wide 1.5-V DDR3 SDRAM EMIF interface. The DDR3 interface can operate at 800 Mega Transfers per Second (MTS) and 1033 MTS. The DDR3 electrical requirements are fully specified in the DDR Jedec Specification JESD79-3C. Standard DDR3 SDRAMs are available in 8- and 16-bit versions, allowing for the following bank topologies to be supported by the interface: • 36-bit: Three 16-bit SDRAMs (including 4 bits of ECC) • 36-bit: Five 8-bit SDRAMs (including 4 bits of ECC) • 32-bit: Two 16-bit SDRAMs • 32-bit: Four 8-bit SDRAMs • 16-bit: One 16-bit SDRAM • 16-bit: Two 8-bit SDRAM The approach to specifying interface timing for the DDR3 memory bus is different than on other interfaces such as I2C or SPI. For these other interfaces, the device timing was specified in terms of data manual specifications and I/O buffer information specification (IBIS) models. For the DDR3 memory bus, the approach is to specify compatible DDR3 devices and provide the printed circuit board (PCB) solution and guidelines directly to the user. A race condition may exist when certain masters write data to the DDR3 memory controller. For example, if master A passes a software message via a buffer in external memory and does not wait for an indication that the write completes, before signaling to master B that the message is ready, when master B attempts to read the software message, then the master B read may bypass the master A write and, thus, master B may read stale data and, therefore, receive an incorrect message. Some master peripherals (e.g., EDMA3 transfer controllers with TCCMOD=0) will always wait for the write to complete before signaling an interrupt to the system, thus avoiding this race condition. For masters that do not have a hardware specification of write-read ordering, it may be necessary to specify data ordering via software. If master A does not wait for indication that a write is complete, it must perform the following workaround: 1. Perform the required write to DDR3 memory space. 2. Perform a dummy write to the DDR3 memory controller module ID and revision register. 3. Perform a dummy read to the DDR3 memory controller module ID and revision register. 4. Indicate to master B that the data is ready to be read after completion of the read in step 3. The completion of the read in step 3 ensures that the previous write was done. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 181 PRODUCT PREVIEW Due to the complicated nature of the interface, a limited number of topologies will be supported to provide a 16-bit or 32-bit interface. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.10.2 DDR3 Memory Controller Electrical Data/Timing The KeyStone DSP DDR3 Implementation Guidelines in ‘‘Related Documentation from Texas Instruments’’ on page 64 specifies a complete DDR3 interface solution as well as a list of compatible DDR3 devices. The DDR3 electrical requirements are fully specified in the DDR3 Jedec Specification JESD79-3C. TI has performed the simulation and system characterization to ensure all DDR3 interface timings in this solution are met; therefore, no electrical data/timing information is supplied here for this interface. Note—TI supports only designs that follow the board design guidelines outlined in the application report. 7.11 I2C Peripheral 2 PRODUCT PREVIEW The inter-integrated circuit (I C) module provides an interface between DSP and other devices compliant with Philips Semiconductors Inter-IC bus (I2C bus) specification version 2.1 and connected by way of an I2C bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the DSP 2 through the I C module. 2 7.11.1 I C Device-Specific Information 2 The TMS320C6654 device includes an I C peripheral module. 2 Note—When using the I C module, ensure there are external pullup resistors on the SDA and SCL pins. 2 The I C modules on the C6654 may be used by the DSP to control local peripheral ICs (DACs, ADCs, etc.) or may be used to communicate with other controllers in a system or to implement a user interface. 2 2 The I C port is compatible with Philips I C specification revision 2.1 (January 2000) and supports: • Fast mode up to 400 Kbps (no fail-safe I/O buffers) • Noise filter to remove noise 50 ns or less • 7-bit and 10-bit device addressing modes • Multi-master (transmit/receive) and slave (transmit/receive) functionality • Events: DMA, interrupt, or polling • Slew-rate limited open-drain output buffers 182 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2 Figure 7-31 shows a block diagram of the I C module. Figure 7-31 I2C Module Block Diagram 2 I C Module Clock Prescale Peripheral Clock (CPU/6) 2 I CPSC Bit Clock Generator SCL Noise Filter 2 I C Clock I COAR Own Address I2CSAR Slave Address I2CMDR Mode 2 2 I CCLKH PRODUCT PREVIEW Control I2CCLKL 2 I CCNT Transmit I2CXSR 2 I CDXR Transmit Shift I2CEMDR Extended Mode Transmit Buffer SDA Interrupt/DMA Noise Filter I2C Data Data Count I2CDRR 2 I CRSR 2 Interrupt Mask/Status 2 Interrupt Status I CIMR Receive Receive Buffer I CSTR Receive Shift I CIVR 2 Interrupt Vector Shading denotes control/status registers. 2 7.11.2 I C Peripheral Register Description(s) Table 7-57 I2C Registers (Part 1 of 2) Hex Address Range Register Register Name 0253 0000 ICOAR I2C Own Address Register 0253 0004 ICIMR I C Interrupt Mask/Status Register 0253 0008 ICSTR I C Interrupt Status Register 0253 000C ICCLKL I2C Clock Low-Time Divider Register 0253 0010 ICCLKH I C Clock High-Time Divider Register 0253 0014 ICCNT I C Data Count Register 0253 0018 ICDRR I2C Data Receive Register 0253 001C ICSAR I C Slave Address Register 0253 0020 ICDXR I C Data Transmit Register 0253 0024 ICMDR I2C Mode Register 0253 0028 ICIVR I C Interrupt Vector Register 0253 002C ICEMDR I C Extended Mode Register 0253 0030 ICPSC I2C Prescaler Register Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions 2 2 2 2 2 2 2 2 Peripheral Information and Electrical Specifications 183 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-57 www.ti.com I2C Registers (Part 2 of 2) Hex Address Range Register Register Name 0253 0034 ICPID1 I2C Peripheral Identification Register 1 [Value: 0x0000 0105] 0253 0038 ICPID2 I C Peripheral Identification Register 2 [Value: 0x0000 0005] 0253 003C - 0253 007F - Reserved 2 End of Table 7-57 2 7.11.3 I C Electrical Data/Timing 2 7.11.3.1 Inter-Integrated Circuits (I C) Timing Table 7-58 I2C Timing Requirements (1) (see Figure 7-32) PRODUCT PREVIEW Standard Mode No. Min 1 2 3 Max Fast Mode Min Max Units tc(SCL) Cycle time, SCL 10 2.5 μs tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 μs th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 μs 4 tw(SCLL) Pulse duration, SCL low 5 tw(SCLH) Pulse duration, SCL high 6 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 4.7 1.3 μs 4 0.6 μs 250 2 (3) 100 0 (3) μs (5) 300 ns 20 + 0.1Cb (5) 300 ns 20 + 0.1Cb (5) 300 ns 20 + 0.1Cb (5) 300 th(SCLL-SDAV) Hold time, SDA valid after SCL low (For I C bus devices) 0 8 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 9 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 10 tr(SCL) Rise time, SCL 1000 11 tf(SDA) Fall time, SDA 300 tf(SCL) Fall time, SCL 13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 14 tw(SP) 15 Cb (5) 1.3 300 4 μs 0.6 Pulse duration, spike (must be suppressed) Capacitive load for each bus line ns 0.9 (4) 7 12 3.45 (2) 0 400 ns μs 50 ns 400 pF End of Table 7-58 2 1 The I C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down 2 2 2 A Fast-mode I C-bus™ device can be used in a Standard-mode I C-bus™ system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. 3 A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. 4 The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal. 5 Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. 184 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 2 I C Receive Timings Figure 7-32 11 9 SDA 8 6 4 14 13 5 10 SCL 1 3 12 7 Stop Table 7-59 Start Repeated Start 2 I C Switching Characteristics Stop (1) (see Figure 7-33) Standard Mode No. Parameter Min Fast Mode Max Min Max Unit tc(SCL) Cycle time, SCL 10 2.5 ms tsu(SCLH-SDAL) Setup time, SCL high to SDA low (for a repeated START condition) 4.7 0.6 ms th(SDAL-SCLL) Hold time, SDA low after SCL low (for a START and a repeated START condition) 4 0.6 ms 19 tw(SCLL) Pulse duration, SCL low 4.7 1.3 ms 20 tw(SCLH) Pulse duration, SCL high 4 0.6 ms 21 td(SDAV-SDLH) Delay time, SDA valid to SCL high 250 100 ns 16 17 18 2 22 tv(SDLL-SDAV) Valid time, SDA valid after SCL low (For I C bus devices) 23 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 0 0 4.7 1.3 0.9 ms ms 24 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb (1) 300 ns 25 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb (1) 300 ns (1) 300 ns 300 ns 10 pF 26 tf(SDA) Fall time, SDA 300 20 + 0.1Cb 27 tf(SCL) Fall time, SCL 300 20 + 0.1Cb (1) 28 td(SCLH-SDAH) Delay time, SCL high to SDA high (for STOP condition) 29 Cp Capacitance for each I C pin 4 2 0.6 10 ms End of Table 7-59 1 Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 185 PRODUCT PREVIEW 2 3 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 7-33 www.ti.com 2 I C Transmit Timings 26 24 SDA 23 21 19 28 20 25 SCL 16 18 27 22 17 18 PRODUCT PREVIEW Stop 186 Start Peripheral Information and Electrical Specifications Repeated Start Stop Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.12 SPI Peripheral The serial peripheral interconnect (SPI) module provides an interface between the DSP and other SPI-compliant devices. The primary intent of this interface is to allow for connection to an SPI ROM for boot. The SPI module on C6654 is supported only in Master mode. Additional chip-level components can also be included, such as temperature sensors or an I/O expander. 7.12.1 SPI Electrical Data/Timing 7.12.1.1 SPI Timing Table 7-60 SPI Timing Requirements See Figure 7-34) Min Max Unit Master Mode Timing Diagrams — Base Timings for 3 Pin Mode 7 tsu(SOMI-SPC) Input Setup Time, SPIx_SOMI valid before receive edge of SPIx_CLk. Polarity = 0 Phase = 0 2 ns 7 tsu(SOMI-SPC) Input Setup Time, SPIx_SOMI valid before receive edge of SPIx_CLk. Polarity = 0 Phase = 1 2 ns 7 tsu(SOMI-SPC) Input Setup Time, SPIx_SOMI valid before receive edge of SPIx_CLk. Polarity = 1 Phase = 0 2 ns 7 tsu(SOMI-SPC) Input Setup Time, SPIx_SOMI valid before receive edge of SPIx_CLk. Polarity = 1 Phase = 1 2 ns 8 th(SPC-SOMI) Input Hold Time, SPIx_SOMI valid after receive edge of SPIx_CLK. Polarity = 0 Phase = 0 5 ns 8 th(SPC-SOMI) Input Hold Time, SPIx_SOMI valid after receive edge of SPIx_CLK. Polarity = 0 Phase = 1 5 ns 8 th(SPC-SOMI) Input Hold Time, SPIx_SOMI valid after receive edge of SPIx_CLK. Polarity = 1 Phase = 0 5 ns 8 th(SPC-SOMI) Input Hold Time, SPIx_SOMI valid after receive edge of SPIx_CLK. Polarity = 1 Phase = 1 5 ns End of Table 7-60 Table 7-61 SPI Switching Characteristics (Part 1 of 2) (See Figure 7-34 and Figure 7-35) No. Parameter Min Max Unit Master Mode Timing Diagrams — Base Timings for 3 Pin Mode (1) ns 1 tc(SPC) Cycle Time, SPIx_CLK, All Master Modes 3*P2 2 tw(SPCH) Pulse Width High, SPIx_CLK, All Master Modes 0.5*tc - 1 3 tw(SPCL) Pulse Width Low, SPIx_CLK, All Master Modes 0.5*tc - 1 4 td(SIMO-SPC) Setup (Delay), initial data bit valid on SPIx_SIMO to initial edge on SPIx_CLK. Polarity = 0, Phase = 0. 5 ns 4 td(SIMO-SPC) Setup (Delay), initial data bit valid on SPIx_SIMO to initial edge on SPIx_CLK. Polarity = 0, Phase = 1. 5 ns 4 td(SIMO-SPC) Setup (Delay), initial data bit valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 1, Phase = 0 5 ns 4 td(SIMO-SPC) Setup (Delay), initial data bit valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 1, Phase = 1 5 ns 5 td(SPC-SIMO) Setup (Delay), subsequent data bits valid on SPIx_SIMO to initial edge on SPIx_CLK. Polarity = 0 Phase = 0 2 ns 5 td(SPC-SIMO) Setup (Delay), subsequent data bits valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 0 Phase = 1 2 ns 5 td(SPC-SIMO) Setup (Delay), subsequent data bits valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 1 Phase = 0 2 ns 5 td(SPC-SIMO) Setup (Delay), subsequent data bits valid on SPIx_SIMO to initial edge on SPIx_CLK Polarity = 1 Phase = 1 2 ns 6 toh(SPC-SIMO) Output hold time, SPIx_SIMO valid after receive edge of SPIx_CLK except for final bit. Polarity = 0 Phase = 0 0.5*tc - 2 ns 6 toh(SPC-SIMO) Output hold time, SPIx_SIMO valid after receive edge of SPIx_CLK except for final bit. Polarity = 0 Phase = 1 0.5*tc - 2 ns Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions ns ns Peripheral Information and Electrical Specifications 187 PRODUCT PREVIEW No. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-61 www.ti.com SPI Switching Characteristics (Part 2 of 2) (See Figure 7-34 and Figure 7-35) No. Parameter Min Max Unit 6 toh(SPC-SIMO) Output hold time, SPIx_SIMO valid after receive edge of SPIx_CLK except for final bit. Polarity = 1 Phase = 0 0.5*tc - 2 ns 6 toh(SPC-SIMO) Output hold time, SPIx_SIMO valid after receive edge of SPIx_CLK except for final bit. Polarity = 1 Phase = 1 0.5*tc - 2 ns Additional SPI Master Timings — 4 Pin Mode with Chip Select Option PRODUCT PREVIEW 19 td(SCS-SPC) Delay from SPIx_SCS\ active to first SPIx_CLK. Polarity = 0 Phase = 0 2*P2 - 5 19 td(SCS-SPC) Delay from SPIx_SCS\ active to first SPIx_CLK. Polarity = 0 Phase = 1 0.5*tc + (2*P2) - 5 0.5*tc + (2*P2) + 5 ns 2*P2 + 5 19 td(SCS-SPC) Delay from SPIx_SCS\ active to first SPIx_CLK. Polarity = 1 Phase = 0 2*P2 - 5 19 td(SCS-SPC) Delay from SPIx_SCS\ active to first SPIx_CLK. Polarity = 1 Phase = 1 0.5*tc + (2*P2) - 5 0.5*tc + (2*P2) + 5 ns 20 td(SPC-SCS) Delay from final SPIx_CLK edge to master deasserting SPIx_SCS\. Polarity = 0 Phase = 0 1*P2 - 5 20 td(SPC-SCS) Delay from final SPIx_CLK edge to master deasserting SPIx_SCS\. Polarity = 0 Phase = 1 0.5*tc + (1*P2) - 5 0.5*tc + (1*P2) + 5 ns 20 td(SPC-SCS) Delay from final SPIx_CLK edge to master deasserting SPIx_SCS\. Polarity = 1 Phase = 0 1*P2 - 5 20 td(SPC-SCS) Delay from final SPIx_CLK edge to master deasserting SPIx_SCS\. Polarity = 1 Phase = 1 0.5*tc + (1*P2) - 5 0.5*tc + (1*P2) + 5 ns tw(SCSH) Minimum inactive time on SPIx_SCS\ pin between two transfers when SPIx_SCS\ is not held using the CSHOLD feature. 2*P2 - 5 2*P2 + 5 1*P2 + 5 1*P2 + 5 ns ns ns ns ns End of Table 7-61 1 P2 = 1/SYSCLK7 188 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 7-34 SPI Master Mode Timing Diagrams — Base Timings for 3 Pin Mode 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI 6 MO(1) MO(n-1) MO(n) 8 MI(0) MI(1) MI(n-1) MI(n) PRODUCT PREVIEW MASTER MODE POLARITY = 0 PHASE = 1 4 SPIx_CLK 6 5 SPIx_SIMO MO(0) 7 SPIx_SOMI MO(1) MO(n-1) MI(1) MI(n-1) MO(n) 8 MI(0) 4 MI(n) MASTER MODE POLARITY = 1 PHASE = 0 SPIx_CLK 5 SPIx_SIMO 6 MO(0) 7 SPIx_SOMI MO(1) MO(n-1) MO(n) 8 MI(0) MI(1) MI(n-1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI Figure 7-35 6 MO(1) MO(n-1) MI(1) MI(n-1) MO(n) 8 MI(0) MI(n) SPI Additional Timings for 4 Pin Master Mode with Chip Select Option MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPIx_CLK SPIx_SIMO SPIx_SOMI MO(0) MI(0) MO(1) MO(n-1) MO(n) MI(1) MI(n-1) MI(n) SPIx_SCS Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 189 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.13 UART Peripheral The universal asynchronous receiver/transmitter (UART) module provides an interface between the DSP and UART terminal interface or other UART-based peripheral. The UART is based on the industry standard TL16C550 asynchronous communications element, which in turn is a functional upgrade of the TL16C450. Functionally similar to the TL16C450 on power up (single character or TL16C450 mode), the UART can be placed in an alternate FIFO (TL16C550) mode. This relieves the DSP of excessive software overhead by buffering received and transmitted characters. The receiver and transmitter FIFOs store up to 16 bytes including three additional bits of error status per byte for the receiver FIFO. PRODUCT PREVIEW The UART performs serial-to-parallel conversions on data received from a peripheral device and parallel-to-serial conversion on data received from the DSP. The DSP can read the UART status at any time. The UART includes control capability and a processor interrupt system that can be tailored to minimize software management of the communications link. For more information on UART, see the Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. Table 7-62 UART Timing Requirements (see Figure 7-36 and Figure 7-37) No. Min Max Unit Receive Timing Pulse width, receive start bit 0.96U (1) 1.05U ns 4 tw(RXSTART) 5 tw(RXH) Pulse width, receive data/parity bit high 0.96U 1.05U ns 5 tw(RXL) Pulse width, receive data/parity bit low 0.96U 1.05U ns 6 tw(RXSTOP1) Pulse width, receive stop bit 1 0.96U 1.05U ns 6 tw(RXSTOP15) Pulse width, receive stop bit 1.5 0.96U 1.05U ns 6 tw(RXSTOP2) Pulse width, receive stop bit 2 0.96U 1.05U ns (2) 5P ns Autoflow Timing Requirements 8 td(CTSL-TX) Delay time, CTS asserted to START bit transmit P End of Table 7-62 1 U = UART baud time = 1/programmed baud rate 2 P = 1/SYSCLK7 Figure 7-36 UART Receive Timing Waveform 5 4 RXD Stop/Idle Figure 7-37 Start 5 Bit 0 Bit 1 Bit N-1 Bit N 6 Parity Stop Idle Start UART CTS (Clear-to-Send Input) — Autoflow Timing Waveform 8 TXD Bit N-1 Bit N Stop Start Bit 0 CTS 190 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-63 UART Switching Characteristics (See Figure 7-38 and Figure 7-39) No. Parameter Min Max Unit Transmit Timing (1) 1 tw(TXSTART) Pulse width, transmit start bit -2 U+2 ns 2 tw(TXH) Pulse width, transmit data/parity bit high U-2 U+2 ns 2 tw(TXL) Pulse width, transmit data/parity bit low U-2 U+2 ns 3 tw(TXSTOP1) Pulse width, transmit stop bit 1 U-2 U+2 ns 3 tw(TXSTOP15) Pulse width, transmit stop bit 1.5 1.5 * (U - 2) 1.5 * ('U + 2) ns 3 tw(TXSTOP2) Pulse width, transmit stop bit 2 U 2 * (U - 2) 2 * ('U + 2) ns P (2) 5P ns 7 Delay time, STOP bit received to RTS deasserted td(RX-RTSH) End of Table 7-63 1 U = UART baud time = 1/programmed baud rate 2 P = 1/SYSCLK7 Figure 7-38 UART Transmit Timing Waveform 1 TXD Figure 7-39 Start Stop/Idle 2 Bit 0 2 Bit 1 Bit N-1 Bit N Parity 3 Stop Idle Start UART RTS (Request-to-Send Output) — Autoflow Timing Waveform 7 RXD Bit N-1 Bit N Stop Start CTS 7.14 PCIe Peripheral The two-lane PCI express (PCIe) module on the device provides an interface between the DSP and other PCIe-compliant devices. The PCI Express module provides low-pin-count, high-reliability, and high-speed data transfer at rates of 5.0 GBaud per lane on the serial links. For more information, see the Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. The PCIe electrical requirements are fully specified in the PCI Express Base Specification Revision 2.0 of PCI-SIG. TI has performed the simulation and system characterization to ensure all PCIe interface timings in this solution are met; therefore, no electrical data/timing information is supplied here for this interface. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 191 PRODUCT PREVIEW Autoflow Timing Requirements TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.15 EMIF16 Peripheral The EMIF16 module provides an interface between DSP and external memories such as NAND and NOR flash. For more information, see the External Memory Interface (EMIF16) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.15.1 EMIF16 Electrical Data/Timing Table 7-64 EMIF16 Asynchronous Memory Timing Requirements (1) (Part 1 of 2) (see Figure 7-40 and Figure 7-41) No. Min Max Unit General Timing PRODUCT PREVIEW 2 tw(WAIT) Pulse duration, WAIT assertion and deassertion minimum time 2E ns 28 td(WAIT-WEH) Setup time, WAIT asserted before WE high 4E + 3 ns 14 td(WAIT-OEH) Setup time, WAIT asserted before OE high 4E + 3 ns Read Timing 3 3 4 tC(CSL) tC(CSL) EMIF read cycle time when ew = 0, meaning not in extended wait mode (RS+RST+RH+3) *E-3 (RS+RST+RH+3) *E+3 ns EMIF read cycle time when ew =1, meaning extended wait mode enabled (RS+RST+RH+3) *E-3 (RS+RST+RH+3) *E+3 ns ns tosu(CSL-OEL) Output setup time from CS low to OE low. SS = 0, not in select strobe mode (RS+1) * E - 3 (RS+1) * E + 3 5 toh(OEH-CSH) Output hold time from OE high to CS high. SS = 0, not in select strobe mode (RH+1) * E - 3 (RH+1) * E + 3 ns 4 tosu(CSL-OEL) Output setup time from CS low to OE low in select strobe mode, SS = 1 (RS+1) * E - 3 (RS+1) * E + 3 ns 5 toh(OEH-CSH) Output hold time from OE high to CS high in select strobe mode, SS = 1 (RH+1) * E - 3 (RH+1) * E + 3 ns 6 tosu(BAV-OEL) Output setup time from BA valid to OE low (RS+1) * E - 3 (RS+1) * E + 3 ns 7 toh(OEH-BAIV) Output hold time from OE high to BA invalid (RH+1) * E - 3 (RH+1) * E + 3 ns 8 tosu(AV-OEL) Output setup time from A valid to OE low (RS+1) * E - 3 (RS+1) * E + 3 ns 9 toh(OEH-AIV) Output hold time from OE high to A invalid (RH+1) * E - 3 (RH+1) * E + 3 ns 10 tw(OEL) OE active time low, when ew = 0. Extended wait mode is disabled. (RST+1) * E - 3 (RST+1) * E + 3 ns 10 tw(OEL) OE active time low, when ew = 1. Extended wait mode is enabled. (RST+1) * E - 3 (RST+1) * E + 3 ns 11 td(WAITH-OEH) Delay time from WAIT deasserted to OE# high 4E + 3 ns 12 tsu(D-OEH) Input setup time from D valid to OE high 13 th(OEH-D) Input hold time from OE high to D invalid 3 ns 0.5 ns Write Timing 15 15 16 (WS+WST+WH+ (WS+WST+WH+ TA+4)*E-3 TA+4)*E+3 ns tc(CSL) EMIF write cycle time when ew =1., meaning extended wait mode is enabled (WS+WST+WH+ (WS+WST+WH+ TA+4)*E-3 TA+4)*E+3 ns tosuCSL-WEL) Output setup time from CS low to WE low. SS = 0, not in select strobe mode (WS+1) * E - 3 ns tc(CSL) EMIF write cycle time when ew = 0, meaning not in extended wait mode 17 toh(WEH-CSH) Output hold time from WE high to CS high. SS = 0, not in select strobe mode (WH+1) * E - 3 ns 16 tosuCSL-WEL) Output setup time from CS low to WE low in select strobe mode, SS = 1 (WS+1) * E - 3 ns 17 toh(WEH-CSH) Output hold time from WE high to CS high in select strobe mode, SS = 1 (WH+1) * E - 3 ns 18 tosu(RNW-WEL) Output setup time from RNW valid to WE low (WS+1) * E - 3 ns 19 toh(WEH-RNW) Output hold time from WE high to RNW invalid (WH+1) * E - 3 ns 20 tosu(BAV-WEL) Output setup time from BA valid to WE low (WS+1) * E - 3 ns 21 toh(WEH-BAIV) Output hold time from WE high to BA invalid (WH+1) * E - 3 ns 22 tosu(AV-WEL) Output setup time from A valid to WE low (WS+1) * E - 3 ns 23 toh(WEH-AIV) Output hold time from WE high to A invalid (WH+1) * E - 3 ns 24 tw(WEL) WE active time low, when ew = 0. Extended wait mode is disabled. (WST+1) * E - 3 ns 192 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-64 EMIF16 Asynchronous Memory Timing Requirements (1) (Part 2 of 2) (see Figure 7-40 and Figure 7-41) No. Min Max Unit 24 tw(WEL) WE active time low, when ew = 1. Extended wait mode is enabled. (WST+1) * E - 3 ns 26 tosu(DV-WEL) Output setup time from D valid to WE low (WS+1) * E - 3 ns 27 toh(WEH-DIV) Output hold time from WE high to D invalid (WH+1) * E - 3 25 td(WAITH-WEH) Delay time from WAIT deasserted to WE# high ns 4E + 3 ns End of Table 7-64 1 E = 1/SYSCLK7 Figure 7-40 EMIF16 Asynchronous Memory Read Timing Diagram PRODUCT PREVIEW 3 EM_CS[5:2] EM_R/W EM_BA[1:0] EM_A[21:0] 5 7 9 4 6 8 10 EM_OE 13 12 EM_D[15:0] EM_WE Figure 7-41 EMIF16 Asynchronous Memory Write Timing Diagram 15 EM_CS[5:2] EM_R/W EM_BA[1:0] EM_A[21:0] 17 19 21 23 16 18 20 22 24 EM_WE 26 27 EM_D[15:0] EM_OE Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 193 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 7-42 www.ti.com EMIF16 EM_WAIT Read Timing Diagram Setup Extended Due to EM_WAIT Strobe Strobe Hold Strobe Hold EM_CS[5:2] EM_BA[1:0] EM_A[21:0] EM_D[15:0] EM_OE 14 11 PRODUCT PREVIEW EM_WAIT Figure 7-43 2 2 Asserted Deasserted EMIF16 EM_WAIT Write Timing Diagram Setup Extended Due to EM_WAIT Strobe EM_CS[5:2] EM_BA[1:0] EM_A[21:0] EM_D[15:0] EM_WE 28 25 EM_WAIT 194 2 2 Asserted Deasserted Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.16 Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) module provides an efficient interface between the TMS320C6654 DSP core processor and the networked community. The EMAC supports 10Base-T (10 Mbits/second [Mbps]), and 100BaseTX (100 Mbps), in half- or full-duplex mode, and 1000BaseT (1000 Mbps) in full-duplex mode, with hardware flow control and quality-of-service (QOS) support. Deviating from this standard, the EMAC module does not use the Transmit Coding Error signal MTXER. Instead of driving the error pin when an underflow condition occurs on a transmitted frame, the EMAC will intentionally generate an incorrect checksum by inverting the frame CRC, so that the transmitted frame will be detected as an error by the network. The EMAC control module is the main interface between the device core processor, the MDIO module, and the EMAC module. The relationship between these three components is shown in Figure 7-44. The EMAC control module contains the necessary components to allow the EMAC to make efficient use of device memory, plus it controls device interrupts. The EMAC control module incorporates 8K-bytes of internal RAM to hold EMAC buffer descriptors. Figure 7-44 EMAC, MDIO, and EMAC Control Modules Interrupt Controller Configuration Bus DMA Memory Transfer Controller Peripheral Bus EMAC Control Module EMAC/MDIO Interrupt EMAC Module MDIO Module Ethernet Bus MDIO Bus For more detailed information on the EMAC/MDIO, see Gigabit Ethernet (GbE) Subsystem for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.16.1 EMAC Device-Specific Information The EMAC module on the device supports Serial Gigabit Media Independent Interface (SGMII). The SGMII interface conforms to version 1.8 of the industry standard specification. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 195 PRODUCT PREVIEW The EMAC module conforms to the IEEE 802.3-2002 standard, describing the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer specifications. The IEEE 802.3 standard has also been adopted by ISO/IEC and re-designated as ISO/IEC 8802-3:2000(E). TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.16.2 EMAC Peripheral Register Description(s) The memory maps of the EMAC are shown in Table 7-65 through Table 7-70. Table 7-65 Ethernet MAC (EMAC) Control Registers (Part 1 of 3) Hex Address PRODUCT PREVIEW 196 Acronym 02C0 8000 TXIDVER 02C0 8004 TXCONTROL 02C0 8008 TXTEARDOWN 02C0 800F - Register Name Transmit Identification and Version Register Transmit Control Register Transmit Teardown register Reserved 02C0 8010 RXIDVER 02C0 8014 RXCONTROL Receive Identification and Version Register 02C0 8018 RXTEARDOWN 02C0 801C - Reserved 02C0 8020 - 02C0 807C - Reserved 02C0 8080 TXINTSTATRAW Receive Control Register Receive Teardown Register Transmit Interrupt Status (Unmasked) Register 02C0 8084 TXINTSTATMASKED 02C0 8088 TXINTMASKSET 02C0 808C TXINTMASKCLEAR 02C0 8090 MACINVECTOR MAC Input Vector Register 02C0 8094 MACEOIVECTOR MAC End of Interrupt Vector Register 02C0 8098 - 02C0 819C - 02C0 80A0 RXINTSTATRAW 02C0 80A4 RXINTSTATMASKED Transmit Interrupt Status (Masked) Register Transmit Interrupt Mask Set Register Transmit Interrupt Mask Clear Register Reserved Receive Interrupt Status (Unmasked) Register Receive Interrupt Status (Masked) Register 02C0 80A8 RXINTMASKSET 02C0 80AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register 02C0 80B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 02C0 80B4 MACINTSTATMASKED 02C0 80B8 MACINTMASKSET 02C0 80BC MACINTMASKCLEAR Receive Interrupt Mask Set Register MAC Interrupt Status (Masked) Register MAC Interrupt Mask Set Register MAC Interrupt Mask Clear Register 02C0 80C0 - 02C0 80FC - 02C0 8100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 02C0 8104 RXUNICASTSET Receive Unicast Enable Set Register 02C0 8108 RXUNICASTCLEAR 02C0 810C RXMAXLEN 02C0 8110 RXBUFFEROFFSET Reserved Receive Unicast Clear Register Receive Maximum Length Register Receive Buffer Offset Register 02C0 8114 RXFILTERLOWTHRESH 02C0 8118 - 02C0 811C - Receive Filter Low Priority Frame Threshold Register 02C0 8120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register 02C0 8124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register Reserved 02C0 8128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 02C0 812C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register 02C0 8130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register 02C0 8134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register 02C0 8138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register 02C0 813C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register 02C0 8140 RX0FREEBUFFER Peripheral Information and Electrical Specifications Receive Channel 0 Free Buffer Count Register Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Ethernet MAC (EMAC) Control Registers (Part 2 of 3) Hex Address Acronym 02C0 8144 RX1FREEBUFFER Register Name Receive Channel 1 Free Buffer Count Register 02C0 8148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 02C0 814C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register 02C0 8150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register 02C0 8154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register 02C0 8158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 02C0 815C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register 02C0 8160 MACCONTROL MAC Control Register 02C0 8164 MACSTATUS MAC Status Register 02C0 8168 EMCONTROL 02C0 816C FIFOCONTROL Emulation Control Register 02C0 8170 MACCONFIG 02C0 8174 SOFTRESET 02C0 81D0 MACSRCADDRLO MAC Source Address Low Bytes Register 02C0 81D4 MACSRCADDRHI MAC Source Address High Bytes Register 02C0 81D8 MACHASH1 MAC Hash Address Register 1 02C0 81DC MACHASH2 MAC Hash Address Register 2 FIFO Control Register MAC Configuration Register Soft Reset Register 02C0 81E0 BOFFTEST Back Off Test Register 02C0 81E4 TPACETEST Transmit Pacing Algorithm Test Register 02C0 81E8 RXPAUSE Receive Pause Timer Register 02C0 81EC TXPAUSE Transmit Pause Timer Register 02C0 8200 - 02C0 82FC - See Table 7-66 ‘‘EMAC Statistics Registers’’ 02C0 8300 - 02C0 84FC - Reserved 02C0 8500 MACADDRLO MAC Address Low Bytes Register (used in Receive Address Matching) 02C0 8504 MACADDRHI MAC Address High Bytes Register (used in Receive Address Matching) 02C0 8508 MACINDEX 02C0 850C - 02C0 85FC - 02C0 8600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 02C0 8604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register MAC Index Register Reserved 02C0 8608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 02C0 860C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 02C0 8610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 02C0 8614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register 02C0 8618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 02C0 861C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 02C0 8620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 02C0 8624 RX1HDP Receive t Channel 1 DMA Head Descriptor Pointer Register 02C0 8628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register 02C0 862C RX3HDP Receive t Channel 3 DMA Head Descriptor Pointer Register 02C0 8630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register 02C0 8634 RX5HDP Receive t Channel 5 DMA Head Descriptor Pointer Register 02C0 8638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 02C0 863C RX7HDP Receive t Channel 7 DMA Head Descriptor Pointer Register 02C0 8640 TX0CP Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PRODUCT PREVIEW Table 7-65 Transmit Channel 0 Completion Pointer (Interrupt Acknowledge) Register Peripheral Information and Electrical Specifications 197 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-65 www.ti.com Ethernet MAC (EMAC) Control Registers (Part 3 of 3) Hex Address Acronym 02C0 8644 TX1CP Register Name Transmit Channel 1 Completion Pointer (Interrupt Acknowledge) Register 02C0 8648 TX2CP Transmit Channel 2 Completion Pointer (Interrupt Acknowledge) Register 02C0 864C TX3CP Transmit Channel 3 Completion Pointer (Interrupt Acknowledge) Register 02C0 8650 TX4CP Transmit Channel 4 Completion Pointer (Interrupt Acknowledge) Register 02C0 8654 TX5CP Transmit Channel 5 Completion Pointer (Interrupt Acknowledge) Register 02C0 8658 TX6CP Transmit Channel 6 Completion Pointer (Interrupt Acknowledge) Register 02C0 865C TX7CP Transmit Channel 7 Completion Pointer (Interrupt Acknowledge) Register 02C0 8660 RX0CP Receive Channel 0 Completion Pointer (Interrupt Acknowledge) Register 02C0 8664 RX1CP Receive Channel 1 Completion Pointer (Interrupt Acknowledge) Register PRODUCT PREVIEW 02C0 8668 RX2CP Receive Channel 2 Completion Pointer (Interrupt Acknowledge) Register 02C0 866C RX3CP Receive Channel 3 Completion Pointer (Interrupt Acknowledge) Register 02C0 8670 RX4CP Receive Channel 4 Completion Pointer (Interrupt Acknowledge) Register 02C0 8674 RX5CP Receive Channel 5 Completion Pointer (Interrupt Acknowledge) Register 02C0 8678 RX6CP Receive Channel 6 Completion Pointer (Interrupt Acknowledge) Register 02C0 867C RX7CP Receive Channel 7 Completion Pointer (Interrupt Acknowledge) Register 02C0 8680 - 02C0 86FC - Reserved 02C0 8700 - 02C0 877C - Reserved 02C0 8780 - 02C0 8FFF - Reserved End of Table 7-65 Table 7-66 EMAC Statistics Registers (Part 1 of 2) Hex Address 198 Acronym Register Name 02C0 8200 RXGOODFRAMES Good Receive Frames Register 02C0 8204 RXBCASTFRAMES Broadcast Receive Frames Register (Total number of Good Broadcast Frames Receive) 02C0 8208 RXMCASTFRAMES Multicast Receive Frames Register (Total number of Good Multicast Frames Received) 02C0 820C RXPAUSEFRAMES Pause Receive Frames Register 02C0 8210 RXCRCERRORS Receive CRC Errors Register (Total number of Frames Received with CRC Errors) 02C0 8214 RXALIGNCODEERRORS Receive Alignment/Code Errors register (Total number of frames received with alignment/code errors) 02C0 8218 RXOVERSIZED 02C0 821C RXJABBER 02C0 8220 RXUNDERSIZED Receive Undersized Frames Register (Total number of Undersized Frames Received) 02C0 8224 RXFRAGMENTS Receive Frame Fragments Register 02C0 8228 RXFILTERED 02C0 822C RXQOSFILTERERED Receive Oversized Frames Register (Total number of Oversized Frames Received) Receive Jabber Frames Register (Total number of Jabber Frames Received) Filtered Receive Frames Register Received QOS Filtered Frames Register 02C0 8230 RXOCTETS 02C0 8234 TXGOODFRAMES Good Transmit Frames Register (Total number of Good Frames Transmitted) Receive Octet Frames Register (Total number of Received Bytes in Good Frames) 02C0 8238 TXBCASTFRAMES Broadcast Transmit Frames Register 02C0 823C TXMCASTFRAMES Multicast Transmit Frames Register 02C0 8240 TXPAUSEFRAMES Pause Transmit Frames Register 02C0 8244 TXDEFERED Deferred Transmit Frames Register Transmit Collision Frames Register 02C0 8248 TXCOLLISION 02C0 824C TXSINGLECOLL Transmit Single Collision Frames Register 02C0 8250 TXMULTICOLL Transmit Multiple Collision Frames Register Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com EMAC Statistics Registers (Part 2 of 2) Hex Address Acronym 02C0 8254 TXEXCESSIVECOLL Register Name Transmit Excessive Collision Frames Register 02C0 8258 TXLATECOLL Transmit Late Collision Frames Register 02C0 825C TXUNDERRUN Transmit Under Run Error Register 02C0 8260 TXCARRIERSENSE 02C0 8264 TXOCTETS Transmit Octet Frames Register Transmit and Receive 64 Octet Frames Register Transmit Carrier Sense Errors Register 02C0 8268 FRAME64 02C0 826C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register 02C0 8270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 02C0 8274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 02C0 8278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 02C0 827C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register 02C0 8280 NETOCTETS 02C0 8284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register PRODUCT PREVIEW Table 7-66 Network Octet Frames Register 02C0 8288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register 02C0 828C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register 02C0 8290 - 02C0 82FC - Reserved End of Table 7-66 Table 7-67 EMAC Descriptor Memory Hex Address Acronym 02C0 A000 - 02C0 BFFF - Register Name EMAC Descriptor Memory End of Table 7-67 Table 7-68 SGMII Control Registers Hex Address Acronym 02C0 8900 IDVER 02C0 8904 SOFT_RESET 02C0 8910 CONTROL Control Register 02C0 8914 STATUS Status Register 02C0 8918 MR_ADV_ABILITY 02C0 891C - 02C0 8920 MR_LP_ADV_ABILITY 02C0 8924 - 02C0 8948 - Register Name Identification and Version register Software Reset Register Advertised Ability Register Reserved Link Partner Advertised Ability Register Reserved End of Table 7-68 Table 7-69 EMIC Control Registers (Part 1 of 2) Hex Address Acronym 02C0 8A00 IDVER 02C0 8A04 SOFT_RESET Register Name Identification and Version register Software Reset Register 02C0 8A08 EM_CONTROL Emulation Control Register 02C0 8A0C INT_CONTROL Interrupt Control Register 02C0 8A10 C0_RX_THRESH_EN 02C0 8A14 C0_RX_EN Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Receive Threshold Interrupt Enable Register for CorePac0 Receive Interrupt Enable Register for CorePac0 Peripheral Information and Electrical Specifications 199 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-69 www.ti.com EMIC Control Registers (Part 2 of 2) Hex Address Acronym Register Name 02C0 8A18 C0_TX_EN Transmit Interrupt Enable Register for CorePac0 02C0 8A1C C0_MISC_EN 02C0 8A10 Reserved 02C0 8A14 Reserved 02C0 8A18 Reserved Misc Interrupt Enable Register for CorePac0 02C0 8A1C Reserved 02C0 8A90 C0_RX_THRESH_STAT Receive Threshold Masked Interrupt Status Register for CorePac0 02C0 8A94 C0_RX_STAT Receive Interrupt Masked Interrupt Status Register for CorePac0 02C0 8A98 C0_TX_STAT Transmit Interrupt Masked Interrupt Status Register for CorePac0 PRODUCT PREVIEW 02C0 8A9C C0_MISC_STAT 02C0 8AA0 Reserved 02C0 8AA4 Reserved 02C0 8AA8 Reserved Misc Interrupt Masked Interrupt Status Register for CorePac0 02C0 8AAC Reserved 02C0 8B10 C0_RX_IMAX Receive Interrupts Per Millisecond for CorePac0 Transmit Interrupts Per Millisecond for CorePac0 02C0 8B14 C0_TX_IMAX 02C0 8B18 Reserved 02C0 8B1C Reserved End of Table 7-69 7.16.3 EMAC Electrical Data/Timing (SGMII) The Hardware Design Guide for KeyStone Devices application report specifies a complete EMAC and SGMII interface solution for the C6654 as well as a list of compatible EMAC and SGMII devices. TI has performed the simulation and system characterization to ensure all EMAC and SGMII interface timings in this solution are met; therefore, no electrical data/timing information is supplied here for this interface. Note—TI supports only designs that follow the board design guidelines outlined in the application report. 7.17 Management Data Input/Output (MDIO) The management data input/output (MDIO) module implements the 802.3 serial management interface to interrogate and controls up to 32 Ethernet PHY(s) connected to the device, using a shared two-wire bus. Application software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the GbE switch subsystem, retrieve the negotiation results, and configure required parameters in the GbE switch subsystem module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. For more information, see the Gigabit Ethernet (GbE) Subsystem for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. The EMAC control module is the main interface between the device core processor, the MDIO module, and the EMAC module. The relationship between these three components is shown in Figure 7-44. For more detailed information on the EMAC/MDIO, see Gigabit Ethernet (GbE) Subsystem for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 200 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.17.1 MDIO Peripheral Registers The memory map of the MDIO is shown in Table 7-70. MDIO Registers Hex Address Acronym Register Name 02C0 8800 VERSION MDIO Version Register 02C0 8804 CONTROL MDIO Control Register 02C0 8808 ALIVE MDIO PHY Alive Status Register 02C0 880C LINK MDIO PHY Link Status Register 02C0 8810 LINKINTRAW 02C0 8814 LINKINTMASKED 02C0 8818 - 02C0 881C - 02C0 8820 USERINTRAW MDIO link Status Change Interrupt (unmasked) Register MDIO link Status Change Interrupt (masked) Register Reserved PRODUCT PREVIEW Table 7-70 MDIO User Command Complete Interrupt (Unmasked) Register 02C0 8824 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register 02C0 8828 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register 02C0 882C USERINTMASKCLEAR 02C0 8830 - 02C0 887C - MDIO User Command Complete Interrupt Mask Clear Register 02C0 8880 USERACCESS0 MDIO User Access Register 0 02C0 8884 USERPHYSEL0 MDIO User PHY Select Register 0 Reserved 02C0 8888 USERACCESS1 MDIO User Access Register 1 02C0 888C USERPHYSEL1 MDIO User PHY Select Register 1 02C0 8890 - 02C0 8FFF - Reserved End of Table 7-70 7.17.2 MDIO Timing Table 7-71 MDIO Timing Requirements See Figure 7-45 No. Min Max Unit 1 tc(MDCLK) Cycle time, MDCLK 400 ns 2 tw(MDCLKH) Pulse duration, MDCLK high 180 ns 3 tw(MDCLKL) Pulse duration, MDCLK low 180 ns 4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 10 ns th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 10 tt(MDCLK) Transition time, MDCLK 5 ns 5 ns End of Table 7-71 Figure 7-45 MDIO Input Timing MDCLK 2 3 4 5 MDIO (Input) Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 201 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-72 www.ti.com MDIO Switching Characteristics See Figure 7-46 No. 6 Parameter td(MDCLKL-MDIO) Min Delay time, MDCLK low to MDIO data output valid Max Unit 100 ns End of Table 7-72 Figure 7-46 MDIO Output Timing 1 MDCLK 6 PRODUCT PREVIEW MDIO (Ouput) 202 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.18 Timers The timers can be used to: time events, count events, generate pulses, interrupt the CPU and send synchronization events to the EDMA3 channel controller. 7.18.1 Timers Device-Specific Information The TMS320C6654 device has eight 64-bit timers in total. Timer0 is dedicated to the CorePac as a watchdog timer and can also be used as a general-purpose timer. Each of the other seven timers can also be configured as a general-purpose timer only, programmed as a 64-bit timer or as two separate 32-bit timers. When operating in 32-bit mode, the timer is split into two independent 32-bit timers. Each timer is made up of two 32-bit counters: a high counter and a low counter. The timer pins, TINPLx and TOUTLx are connected to the low counter. The timer pins, TINPHx and TOUTHx are connected to the high counter. When operating in watchdog mode, the timer counts down to 0 and generates an event. It is a requirement that software writes to the timer before the count expires, after which the count begins again. If the count ever reaches 0, the timer event output is asserted. Reset initiated by a watchdog timer can be set by programming ‘‘Reset Type Status Register (RSTYPE)’’ on page 133 and the type of reset initiated can set by programming ‘‘Reset Configuration Register (RSTCFG)’’ on page 134. For more information, see the 64-bit Timer (Timer 64) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.18.2 Timers Electrical Data/Timing The tables and figure below describe the timing requirements and switching characteristics of Timer0 through Timer7 peripherals. Table 7-73 Timer Input Timing Requirements (1) (see Figure 7-47) No. Min Max Unit 1 tw(TINPH) Pulse duration, high 12C ns 2 tw(TINPL) Pulse duration, low 12C ns End of Table 7-73 1 C = 1 ÷ CORECLK(N|P) frequency in ns. Table 7-74 Timer Output Switching Characteristics (1) (see Figure 7-47) No. Parameter Min Max Unit 3 tw(TOUTH) Pulse duration, high 12C - 3 ns 4 tw(TOUTL) Pulse duration, low 12C - 3 ns End of Table 7-74 1 C = 1 ÷ CORECLK(N|P) frequency in ns. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 203 PRODUCT PREVIEW When operating in 64-bit mode, the timer counts either VBUS clock cycles or input (TINPLx) pulses (rising edge) and generates an output pulse/waveform (TOUTLx) plus an internal event (TINTLx) on a software-programmable period. TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 7-47 www.ti.com Timer Timing 1 2 TIMIx 3 4 TIMOx PRODUCT PREVIEW 204 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.19 General-Purpose Input/Output (GPIO) 7.19.1 GPIO Device-Specific Information On the TMS320C6654, the GPIO peripheral pins GP[15:0] are also used to latch configuration pins. For more detailed information on device/peripheral configuration and the C6654 device pin muxing, see ‘‘Device Configuration’’ on page 65. For more information on GPIO, see the General Purpose Input/Output (GPIO) for KeyStone Devices User Guide ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.19.2 GPIO Electrical Data/Timing GPIO Input Timing Requirements No. Min 1 tw(GPOH) Pulse duration, GPOx high 2 tw(GPOL) Pulse duration, GPOx low Max Unit (1) ns 12C ns 12C End of Table 7-75 1 C = 1 ÷ CORECLK(N|P) frequency in ns. Table 7-76 GPIO Output Switching Characteristics No. (1) Parameter 3 tw(GPOH) Pulse duration, GPOx high 4 tw(GPOL) Pulse duration, GPOx low Min 36C (2) Max Unit -8 ns 36C - 8 ns End of Table 7-76 1 Over recommended operating conditions. 2 C = 1 ÷ CORECLK(N|P) frequency in ns. Figure 7-48 GPIO Timing 1 2 GPIx 3 4 GPOx 7.20 Semaphore2 The device contains an enhanced Semaphore module for the management of shared resources of the DSP C66x CorePacs. The Semaphore enforces atomic accesses to shared chip-level resources so that the read-modify-write sequence is not broken. The semaphore block has unique interrupts to each of the cores to identify when that core has acquired the resource. Semaphore resources within the module are not tied to specific hardware resources. It is a software requirement to allocate semaphore resources to the hardware resource(s) to be arbitrated. The Semaphore module supports 8 masters and contains 32 semaphores to be used within the system. There are two methods of accessing a semaphore resource: • Direct Access: A core directly accesses a semaphore resource. If free, the semaphore will be granted. If not, the semaphore is not granted. • Indirect Access: A core indirectly accesses a semaphore resource by writing it. Once it is free, an interrupt notifies the CPU that it is available. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 205 PRODUCT PREVIEW Table 7-75 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.21 Emulation Features and Capability 7.21.1 Advanced Event Triggering (AET) PRODUCT PREVIEW The TMS320C6654 device supports Advanced Event Triggering (AET). This capability can be used to debug complex problems as well as understand performance characteristics of user applications. AET provides the following capabilities: • Hardware Program Breakpoints: specify addresses or address ranges that can generate events such as halting the processor or triggering the trace capture. • Data Watchpoints: specify data variable addresses, address ranges, or data values that can generate events such as halting the processor or triggering the trace capture. • Counters: count the occurrence of an event or cycles for performance monitoring. • State Sequencing: allows combinations of hardware program breakpoints and data watchpoints to precisely generate events for complex sequences. For more information on AET, see the following documents in ‘‘Related Documentation from Texas Instruments’’ on page 64: • Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs application report • Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems application report 7.21.2 Trace The C6654 device supports Trace. Trace is a debug technology that provides a detailed, historical account of application code execution, timing, and data accesses. Trace collects, compresses, and exports debug information for analysis. Trace works in real-time and does not impact the execution of the system. For more information on board design guidelines for Trace Advanced Emulation, see the 60-Pin Emulation Header Technical Reference in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.21.2.1 Trace Electrical Data/Timing Table 7-77 Trace Switching Characteristics (1) (see Figure 7-49) No. Parameter 1 tw(DPnH) 1 2 Min Max Unit Pulse duration, DPn/EMUn high 2.4 ns tw(DPnH)90% Pulse duration, DPn/EMUn high detected at 90% Voh 1.5 ns tw(DPnL) Pulse duration, DPn/EMUn low 2.4 ns 2 tw(DPnL)10% Pulse duration, DPn/EMUn low detected at 10% Voh 1.5 3 tsko(DPn) Output skew time, time delay difference between DPn/EMUn pins configured as trace tskp(DPn) Pulse skew, magnitude of difference between high-to-low (tphl) and low-to-high (tplh) propagation delays. tσλδπ_ο(DPn) Output slew rate DPn/EMUn -1 ns 1 600 3.3 ns ps V/ns End of Table 7-77 1 Over recommended operating conditions. 206 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 7-49 Trace Timing A TPLH TPHL 1 2 B 3 C The JTAG interface is used to support boundary scan and emulation of the device. The boundary scan supported allows for an asynchronous TRST and only the 5 baseline JTAG signals (e.g., no EMU[1:0]) required for boundary scan. Most interfaces on the device follow the Boundary Scan Test Specification (IEEE1149.1), while all of the SerDes (SGMII) support the AC-coupled net test defined in AC-Coupled Net Test Specification (IEEE1149.6). It is expected that all compliant devices are connected through the same JTAG interface, in daisy-chain fashion, in accordance with the specification. The JTAG interface uses 1.8-V LVCMOS buffers, compliant with the Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuit Specification (EAI/JESD8-5). 7.21.3.1 IEEE 1149.1 JTAG Compatibility Statement For maximum reliability, the C6654 DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the DSP's internal emulation logic will always be properly initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of an external pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the DSP after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. 7.21.3.2 JTAG Electrical Data/Timing Table 7-78 JTAG Test Port Timing Requirements (see Figure 7-50) No. Min Max Unit 1 tc(TCK) Cycle time, TCK 34 ns 1a tw(TCKH) 1b tw(TCKL) Pulse duration, TCK high (40% of tc) 13.6 ns Pulse duration, TCK low(40% of tc) 13.6 ns 3 tsu(TDI-TCK) input setup time, TDI valid to TCK high 3.4 ns 3 tsu(TMS-TCK) input setup time, TMS valid to TCK high 3.4 ns 4 th(TCK-TDI) input hold time, TDI valid from TCK high 17 ns 4 th(TCK-TMS) input hold time, TMS valid from TCK high 17 ns End of Table 7-78 Table 7-79 JTAG Test Port Switching Characteristics (1) (see Figure 7-50) No. 2 Parameter td(TCKL-TDOV) Delay time, TCK low to TDO valid Min Max Unit 13.6 ns End of Table 7-79 1 Over recommended operating conditions. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 207 PRODUCT PREVIEW 7.21.3 IEEE 1149.1 JTAG TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Figure 7-50 www.ti.com JTAG Test-Port Timing 1 1b 1a TCK 2 TDO 4 3 TDI / TMS PRODUCT PREVIEW 7.22 Multichannel Buffered Serial Port (McBSP) The McBSP provides these functions: • Full-duplex communication • Double-buffered data registers, which allow a continuous data stream • Independent framing and clocking for receive and transmit • Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially connected analog-to-digital (A/D) and digital-to-analog (D/A) devices • External shift clock or an internal, programmable frequency shift clock for data transfer • Transmit & receive FIFO buffers allow the McBSP to operate at a higher sample rate by making it more tolerant to DMA latency If an internal clock source is used, the CLKGDV field of the Sample Rate Generator Register (SRGR) must always be set to a value of 1 or greater. For more information, see the Multichannel Buffered Serial Port (McBSP) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.22.1 McBSP Peripheral Register Table 7-80 McBSP0 Byte Address McBSP/FIFO Registers (Part 1 of 2) McBSP1 Byte Address Acronym Register Description McBSP Registers 0x021B 4000 0x021B 8000 DRR McBSP Data Receive Register (read-only) 0x021B 4004 0x021B 8004 DXR McBSP Data Transmit Register 0x021B 4008 0x021B 8008 SPCR McBSP Serial Port Control Register 0x021B 400C 0x021B 800C RCR McBSP Receive Control Register 0x021B 4010 0x021B 8010 XCR McBSP Transmit Control Register 0x021B 4014 0x021B 8014 SRGR McBSP Sample Rate Generator register 0x021B 4018 0x021B 8018 MCR McBSP Multichannel Control Register 0x021B 401C 0x021B 801C RCERE0 McBSP Enhanced Receive Channel Enable Register 0 Partition A/B 0x021B 4020 0x021B 8020 XCERE0 McBSP Enhanced Transmit Channel Enable Register 0 Partition A/B 0x021B 4024 0x021B 8024 PCR McBSP Pin Control Register 208 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Table 7-80 McBSP/FIFO Registers (Part 2 of 2) McBSP0 Byte Address McBSP1 Byte Address Acronym Register Description 0x021B 4028 0x021B 8028 RCERE1 McBSP Enhanced Receive Channel Enable Register 1 Partition C/D 0x021B 402C 0x021B 802C XCERE1 McBSP Enhanced Transmit Channel Enable Register 1 Partition C/D 0x021B 4030 0x021B 8030 RCERE2 McBSP Enhanced Receive Channel Enable Register 2 Partition E/F 0x021B 4034 0x021B 8034 XCERE2 McBSP Enhanced Transmit Channel Enable Register 2 Partition E/F 0x021B 4038 0x021B 8038 RCERE3 McBSP Enhanced Receive Channel Enable Register 3 Partition G/H 0x021B 403C 0x021B 803C XCERE3 McBSP Enhanced Transmit Channel Enable Register 3 Partition G/H 0x021B 6800 0x021B A800 BFIFOREV 0x021B 6810 0x021B A810 WFIFOCTL Write FIFO Control Register 0x021B 6814 0x021B A814 WFIFOSTS Write FIFO Status Register 0x021B 6818 0x021B A818 RFIFOCTL Read FIFO Control Register 0x021B 681C 0x021B A81C RFIFOSTS Read FIFO Status Register 0x2200 0000 0x2240 1000 RBUF McBSP FIFO Receive Buffer 0x2200 0000 0x2240 1000 XBUF McBSP FIFO Transmit Buffer McBSP FIFO Control and Status Registers PRODUCT PREVIEW BFIFO Revision Identification Register McBSP FIFO Data Registers End of Table 7-80 7.22.2 McBSP Electrical Data/Timing The following tables assume testing over recommended operating conditions. 7.22.2.1 McBSP Timing Table 7-81 McBSP Timing Requirements (see Figure 7-51) No. Min Max Unit 2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext TBD TBD ns 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext TBD TBD ns 5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low CLKR int TBD TBD CLKR ext TBD TBD 6 th(CKRL-FRH) Hold time, external FSR high after CLKR low CLKR int TBD TBD CLKR ext TBD TBD 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low CLKR int TBD TBD CLKR ext TBD TBD 8 th(CKRL-DRV) Hold time, DR valid after CLKR low CLKR int TBD TBD CLKR ext TBD TBD 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low CLKR int TBD TBD CLKR ext TBD TBD 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low CLKR int TBD TBD CLKR ext TBD TBD ns ns ns ns ns ns End of Table 7-81 (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 209 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com (4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. Table 7-82 McBSP Switching Characteristics (see Figure 7-51) No. Parameter Min Max Unit TBD TBD PRODUCT PREVIEW 1 td(CKSH-CKRXH) Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input. 2 tc(CKRX) Cycle time, CLKR/X CLKR/X int TBD TBD ns 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X int TBD TBD ns 4 td(CKRH-FRV) Delay time, CLKR high to internal FSR valid CLKR int TBD TBD ns CLKX int TBD TBD CLKX ext TBD TBD CLKX int TBD TBD CLKX ext TBD TBD CLKX int TBD TBD CLKX ext TBD TBD FSX int TBD TBD FSX ext TBD TBD Delay time, CLKX high to internal FSX valid 9 td(CKXH-FXV) 12 tdis(CKXH-DXHZ) Disable time, DX Hi-Z following last data bit from CLKX high 13 td(CKXH-DXV) Delay time, CLKX high to DX valid 14 td(FXH-DXV) Delay time, FSX high to DX valid applies ONLY when in data delay 0 (XDATDLY = 00b) mode ns ns ns ns ns End of Table 7-82 CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) Minimum delay times also represent minimum output hold times. (3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (5) Use whichever value is greater. (6) C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). (7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P (8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P 210 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 7-51 McBSP Timing CLKS 1 2 3 3 CLKR 4 4 FSR (int) 5 6 FSR (ext) 7 8 Bit(n-1) DR (n-2) (n-3) 3 PRODUCT PREVIEW 2 3 CLKX 9 FSX (int) 11 10 FSX (ext) FSX (XDATDLY=00b) 14 (B) 13 Bit(n-1) 12 DX Table 7-83 Bit 0 13 (n-2) (n-3) McBSP Timing Requirements for FSR When GSYNC = 1 (see Figure 7-52) No. Min Max Unit 1 tsu(FRH-CKSH) Setup time, FSR high before CLKS high TBD TBD ns 2 th(CKSH-FRH) Hold time, FSR high after CLKS high TBD TBD ns End of Table 7-83 Figure 7-52 FSR Timing When GSYNC = 1 CLKS 1 2 FSR external CLKR/X (no need to resync) CLKR/X (needs resync) Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 211 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com 7.23 Universal Parallel Port (UPP) The Universal Parallel Port (UPP) peripheral is a multichannel, high-speed parallel interface with dedicated data lines and minimal control signals. It is designed to interface cleanly with high-speed analog-to-digital converters (ADCs) or digital-to-analog converters (DACs) with up to 16-bit data width (per channel). It may also be interconnected with field-programmable gate arrays (FPGAs) or other UPP devices to achieve high-speed digital data transfer. It can operate in receive mode, transmit mode, or duplex mode, in which its individual channels operate in opposite directions. PRODUCT PREVIEW The UPP peripheral includes an internal DMA controller to maximize throughput and minimize CPU overhead during high-speed data transmission. All UPP transactions use the internal DMA to provide data to or retrieve data from the I/O channels. The DMA controller includes two DMA channels, which typically service separate I/O channels. The UPP peripheral also supports data interleave mode, in which all DMA resources service a single I/O channel. In this mode, only one I/O channel may be used. The features of the UPP include: • Programmable data width per channel (from 8 bits to 16 bits inclusive) • Programmable data justification – Right-justify with 0 extend – Right-justify with sign extend – Left-justify with 0 fill • Supports multiplexing of interleaved data during SDR transmit • Optional frame START signal with programmable polarity • Optional data ENABLE signal with programmable polarity • Optional synchronization WAIT signal with programmable polarity • Single Data Rate (SDR) or Double data Rate (DDR, interleaved) interface – Supports multiplexing of interleaved data during SDR transmit – Supports demultiplexing and multiplexing of interleaved data during DDR transfers For more information, see the Universal Parallel Port (UPP) for KeyStone Devices User Guide in ‘‘Related Documentation from Texas Instruments’’ on page 64. 7.23.1 UPP Register Descriptions Table 7-84 Universal Parallel Port (UPP) Registers (Part 1 of 2) Byte Address Acronym Register Description 0x0258 0000 UPPID UPP Peripheral Identification Register 0x0258 0004 UPPCR UPP Peripheral Control Register 0x0258 0008 UPDLB UPP Digital Loopback Register 0x0258 0010 UPCTL UPP Channel Control Register 0x0258 0014 UPICR UPP Interface Configuration Register 0x0258 0018 UPIVR UPP Interface Idle Value Register 0x0258 001C UPTCR UPP Threshold Configuration Register 0x0258 0020 UPISR UPP Interrupt Raw Status Register 0x0258 0024 UPIER UPP Interrupt Enabled Status Register 0x0258 0028 UPIES UPP Interrupt Enable Set Register 0x0258 002C UPIEC UPP Interrupt Enable Clear Register 0x0258 0030 UPEOI UPP End-of-Interrupt Register 0x0258 0040 UPID0 UPP DMA Channel I Descriptor 0 Register 212 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Universal Parallel Port (UPP) Registers (Part 2 of 2) Byte Address Acronym Register Description 0x0258 0044 UPID1 UPP DMA Channel I Descriptor 1 Register 0x0258 0048 UPID2 UPP DMA Channel I Descriptor 2 Register 0x0258 0050 UPIS0 UPP DMA Channel I Status 0 Register 0x0258 0054 UPIS1 UPP DMA Channel I Status 1 Register 0x0258 0058 UPIS2 UPP DMA Channel I Status 2 Register 0x0258 0060 UPQD0 UPP DMA Channel Q Descriptor 0 Register 0x0258 0064 UPQD1 UPP DMA Channel Q Descriptor 1 Register 0x0258 0068 UPQD2 UPP DMA Channel Q Descriptor 2 Register 0x0258 0070 UPQS0 UPP DMA Channel Q Status 0 Register 0x0258 0074 UPQS1 UPP DMA Channel Q Status 1 Register 0x0258 0078 UPQS2 UPP DMA Channel Q Status 2 Register End of Table 7-84 Table 7-85 UPP Timing Requirements (see Figure 7-53, Figure 7-54, Figure 7-55, Figure 7-56) No. Min 1 tc(INCLK) Cycle time, CHn_CLK 2 tw(INCLKH) Pulse width, CHn_CLK high 3 tw(INCLKL) Pulse width, CHn_CLK low 4 tsu(STV-INCLKH) Setup time, CHn_START valid before CHn_CLK high 5 th(INCLKH-STV) Hold time, CHn_START valid after CHn_CLK high 6 tsu(ENV-INCLKH) Setup time, CHn_ENABLE valid before CHn_CLK high 7 th(INCLKH-ENV) Hold time, CHn_ENABLE valid after CHn_CLK high 8 tsu(DV-INCLKH) Setup time, CHn_DATA/XDATA valid before CHn_CLK high 9 th(INCLKH-DV) Hold time, CHn_DATA/XDATA valid after CHn_CLK high 10 tsu(DV-INCLKL) Setup time, CHn_DATA/XDATA valid before CHn_CLK low 11 th(INCLKL-DV) Hold time, CHn_DATA/XDATA valid after CHn_CLK low SDR mode 13.33 DDR mode 26.66 SDR mode 5 DDR mode 10 SDR mode 5 DDR mode 10 Max Unit ns ns ns 4 ns 0.8 ns 4 ns 0.8 ns 4 ns 0.8 ns 4 ns 0.8 ns 19 su(WTV-INCLKL) Setup time, CHn_WAIT valid before CHn_CLK high 10 ns 20 th(INCLKL-WTV) Hold time, CHn_WAIT valid after CHn_CLK high 0.8 ns 21 tc(2xTXCLK) Cycle time, 2xTXCLK input clock (1) 6.66 ns End of Table 7-85 1 2xTXCLK is an alternate transmit clock source that must be at least 2 times the required UPP transmit clock rate (as it is divided down by 2 inside the UPP). 2xTXCLK has no specified skew relationship to the CHn_CLOCK and therefore is not shown in the timing diagram. Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Peripheral Information and Electrical Specifications 213 PRODUCT PREVIEW Table 7-84 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 Table 7-86 www.ti.com UPP Switching Characteristics (see Figure 7-55, Figure 7-56) No. Parameter Min SDR mode 13.33 DDR mode 26.66 SDR mode 5 DDR mode 10 SDR mode 5 DDR mode 10 Max Unit PRODUCT PREVIEW 12 tc(OUTCLK) Cycle time, CHn_CLK ns 13 tw(OUTCLKH) Pulse width, CHn_CLK high 14 tw(OUTCLKL) Pulse width, CHn_CLK low 15 td(OUTCLKH-STV) Delay time, CHn_START valid after CHn_CLK high 16 td(OUTCLKH-ENV) Delay time, CHn_ENABLE valid after CHn_CLK high 1 11 ns 17 td(OUTCLKH-DV) Delay time, CHn_DATA/XDATA valid after CHn_CLK high 1 11 ns 18 td(OUTCLKL-DV) Delay time, CHn_DATA/XDATA valid after CHn_CLK low 1 11 ns ns ns 1 11 ns End of Table 7-86 Figure 7-53 UPP Single Data Rate (SDR) Receive Timing 2 1 3 CHx_CLK 5 4 CHx_START 7 6 CHx_ENABLE CHx_WAIT 8 CHx_DATA[n:0] CHx_XDATA[n:0] Data1 Data3 Data2 Data5 Data4 Data6 Data7 Data8 Data9 9 Figure 7-54 UPP Double Data Rate (DDR) Receive Timing 2 1 3 CHx_CLK 5 4 CHx_START 7 6 CHx_ENABLE CHx_WAIT 10 8 CHx_DATA[n:0] CHx_XDATA[n:0] I1 Q1 I2 Q2 I3 Q3 I4 Q4 I5 9 214 Peripheral Information and Electrical Specifications Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9 11 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com Figure 7-55 UPP Single Data Rate (SDR) Transmit Timing 12 14 13 CHx_CLK 15 CHx_START 16 CHx_ENABLE 20 19 CHx_WAIT 17 Figure 7-56 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 I8 I9 PRODUCT PREVIEW CHx_DATA[n:0] CHx_XDATA[n:0] UPP Double Data Rate (DDR) Transmit Timing 12 14 13 CHx_CLK 15 CHx_START 16 CHx_ENABLE 20 19 CHx_WAIT 17 CHx_DATA[n:0] CHx_XDATA[n:0] I1 18 Q1 I2 Q2 I3 Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Q3 I4 Q4 I5 Q5 I6 Q6 I7 Q7 Q8 Q9 Peripheral Information and Electrical Specifications 215 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com PRODUCT PREVIEW 216 Peripheral Information and Electrical Specifications Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions TMS320C6654 Fixed and Floating-Point Digital Signal Processor www.ti.com SPRS841—March 2012 PRODUCT PREVIEW A Revision History Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions Revision History 217 TMS320C6654 Fixed and Floating-Point Digital Signal Processor SPRS841—March 2012 www.ti.com B Mechanical Data B.1 Thermal Data Table B-1 shows the thermal resistance characteristics for the PBGA - CZH/GZH mechanical package. Table B-1 Thermal Resistance Characteristics (PBGA Package) [CZH/GZH] No. °C/W 1 RθJC Junction-to-case TBD 2 RθJB Junction-to-board TBD End of Table B-1 PRODUCT PREVIEW B.2 Packaging Information The following packaging information reflects the most current released data available for the designated device(s). This data is subject to change without notice and without revision of this document. 218 Mechanical Data Copyright 2012 Texas Instruments Incorporated TI Confidential—NDA Restrictions PACKAGE OPTION ADDENDUM www.ti.com 24-Mar-2012 PACKAGING INFORMATION Orderable Device TMS320C6654CZH8 Status (1) PREVIEW Package Type Package Drawing FCBGA CZH Pins Package Qty Eco Plan 625 TBD (2) Lead/ Ball Finish Call TI MSL Peak Temp (3) Samples (Requires Login) Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated