FAIRCHILD HUFA76445P3

HUFA76445P3, HUFA76445S3S
Data Sheet
November 2000
File Number
4987
75A, 60V, 0.0075 Ohm, N-Channel, Logic
Level UltraFET® Power MOSFET
Packaging
JEDEC TO-220AB
JEDEC TO-263AB
DRAIN
(FLANGE)
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN
(FLANGE)
HUFA76445P3
HUFA76445S3S
Features
• Ultra Low On-Resistance
- rDS(ON) = 0.0065Ω, VGS = 10V
- rDS(ON) = 0.0075Ω, VGS = 5V
• Simulation Models
- Temperature Compensated PSPICE® and SABER™
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.Intersil.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Symbol
• Switching Time vs RGS Curves
D
Ordering Information
PART NUMBER
G
S
PACKAGE
BRAND
HUFA76445P3
TO-220AB
76445P
HUFA76445S3S
TO-263AB
76445S
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUFA76445S3ST.
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
HUFA76445P3, HUFA76445S3S
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
60
60
V
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS
Drain Current
Continuous (TC = 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
±16
V
75
75
75
75
Figure 4
A
A
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
NOTES:
Figures 6, 17, 18
310
2.08
-55 to 175
W
W/oC
oC
300
260
oC
oC
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy
of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.mtp.intersil.com/automotive.html.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
©2001 Fairchild Semiconductor Corporation
HUFA76445P3, HUFA76445S3S Rev. A
HUFA76445P3, HUFA76445S3S
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
ID = 250µA, VGS = 0V (Figure 12)
60
-
-
V
ID = 250µA, VGS = 0V , TC = -40oC (Figure 12)
55
-
-
V
VDS = 55V, VGS = 0V
-
-
1
µA
VDS = 50V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±16V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
BVDSS
IDSS
IGSS
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 11)
1
-
3
V
Drain to Source On Resistance
rDS(ON)
ID = 75A, VGS = 10V (Figures 9, 10)
-
0.0054
0.0065
Ω
ID = 75A, VGS = 5V (Figure 9)
-
0.0063
0.0075
Ω
ID = 75A, VGS = 4.5V (Figure 9)
-
0.0066
0.008
Ω
TO-220 and TO-263
-
-
0.48
oC/W
-
-
62
oC/W
-
-
515
ns
-
18
-
ns
ns
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to
Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Time
Turn-On Delay Time
tON
td(ON)
Rise Time
Turn-Off Delay Time
tr
-
325
-
td(OFF)
-
39
-
ns
tf
-
135
-
ns
tOFF
-
-
260
ns
-
-
205
ns
-
12
-
ns
ns
Fall Time
Turn-Off Time
VDD = 30V, ID = 75A
VGS = 4.5V, RGS = 2.2Ω
(Figures 15, 21, 22)
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
Turn-On Delay Time
Rise Time
tON
td(ON)
-
126
-
td(OFF)
-
62
-
ns
tf
-
135
-
ns
tOFF
-
-
295
ns
-
124
150
nC
-
68
81
nC
-
5
6
nC
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 30V, ID = 75A
VGS = 10V,
RGS = 2.4Ω
(Figures 16, 21, 22)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Gate Charge at 5V
Threshold Gate Charge
Qg(TOT)
VGS = 0V to 10V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
VDD = 30V,
ID = 75A,
Ig(REF) = 1.0mA
(Figures 14, 19, 20)
Gate to Source Gate Charge
Qgs
-
14
-
nC
Gate to Drain “Miller” Charge
Qgd
-
30
-
nC
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 13)
-
4965
-
pF
-
1250
-
pF
-
150
-
pF
Source to Drain Diode Specifications
PARAMETER
Source to Drain Diode Voltage
Reverse Recovery Time
Reverse Recovered Charge
©2001 Fairchild Semiconductor Corporation
SYMBOL
MIN
TYP
MAX
UNITS
ISD = 75A
-
-
1.25
V
ISD = 35A
-
-
1.00
V
trr
ISD = 75A, dISD/dt = 100A/µs
-
-
100
ns
QRR
ISD = 75A, dISD/dt = 100A/µs
-
-
260
nC
VSD
TEST CONDITIONS
HUFA76445P3, HUFA76445S3S Rev. A
HUFA76445P3, HUFA76445S3S
Typical Performance Curves
80
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
VGS = 10V
60
VGS = 4.5V
40
20
0.2
0
0
25
50
75
100
150
125
0
175
25
50
75
TC , CASE TEMPERATURE (oC)
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
IDM, PEAK CURRENT (A)
2000
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
1000
175 - TC
I = I25
150
VGS = 10V
VGS = 5V
100
50
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
©2001 Fairchild Semiconductor Corporation
HUFA76445P3, HUFA76445S3S Rev. A
HUFA76445P3, HUFA76445S3S
Typical Performance Curves
(Continued)
1000
100µs
100
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
1000
STARTING TJ = 25oC
100
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
10ms
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
1
1
10
STARTING TJ = 150oC
10
0.01
100
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
VDS, DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
150
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
120
90
60
TJ = 175oC
30
120
TJ = 25oC
TJ = -55oC
0
1.5
VGS = 4V
VGS = 3.5V
90
60
VGS = 3V
30
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
0
2
2.5
3
3.5
VGS, GATE TO SOURCE VOLTAGE (V)
0
4
FIGURE 7. TRANSFER CHARACTERISTICS
2.5
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
ID = 75A
4
1
2
3
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 8. SATURATION CHARACTERISTICS
25
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
VGS = 10V
VGS = 5V
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
150
ID = 35A
15
10
ID = 20A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 75A
2.0
1.5
1.0
0.5
5
2
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
10
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
©2001 Fairchild Semiconductor Corporation
-80
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
160
200
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
HUFA76445P3, HUFA76445S3S Rev. A
HUFA76445P3, HUFA76445S3S
Typical Performance Curves
(Continued)
1.2
1.2
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
1.0
0.8
0.6
1.1
1.0
0.4
0.9
-80
-40
0
40
80
120
160
200
-80
-40
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
CISS = CGS + CGD
VGS , GATE TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
40
80
200
160
120
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
10000
0
TJ , JUNCTION TEMPERATURE (oC)
CRSS = CGD
1000
COSS ≅ CDS + CGD
VGS = 0V, f = 1MHz
VDD = 30V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 75A
ID = 35A
2
0
100
0.1
1.0
10
0
60
30
60
90
120
150
Qg, GATE CHARGE (nC)
VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
800
1200
VGS = 10V, VDD = 30V, ID = 75A
VGS = 4.5V, VDD = 30V, ID = 75A
td(OFF)
tr
SWITCHING TIME (ns)
SWITCHING TIME (ns)
1000
800
600
tf
400
td(OFF)
600
tf
400
tr
200
200
td(ON)
td(ON)
0
0
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
©2001 Fairchild Semiconductor Corporation
50
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
50
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
HUFA76445P3, HUFA76445S3S Rev. A
HUFA76445P3, HUFA76445S3S
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tr
RL
VDS
tf
90%
90%
+
VGS
VDD
-
10%
0
10%
DUT
90%
RGS
VGS
VGS
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT
©2001 Fairchild Semiconductor Corporation
10%
50%
50%
PULSE WIDTH
FIGURE 22. SWITCHING TIME WAVEFORM
HUFA76445P3, HUFA76445S3S Rev. A
HUFA76445P3, HUFA76445S3S
PSPICE Electrical Model
.SUBCKT HUFA76445 2 1 3 ;
rev 23 April1999
CA 12 8 6.50e-9
CB 15 14 6.50e-9
CIN 6 8 4.71e-9
LDRAIN
DPLCAP
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
10
DBREAK
+
RSLC2
5
51
ESLC
11
-
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
+
17
EBREAK 18
50
-
IT 8 17 1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
8
SOURCE
3
7
RSOURCE
RLSOURCE
S1A
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.90e-3
RGATE 9 20 0.87
RLDRAIN 2 5 10
RLGATE 1 9 50.5
RLSOURCE 3 7 26.4
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 3.0e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 66.30
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
LDRAIN 2 5 1e-9
LGATE 1 9 5.05e-9
LSOURCE 3 7 2.64e-9
DRAIN
2
5
12
S2A
14
13
13
8
S1B
17
18
RVTEMP
S2B
13
CA
RBREAK
15
CB
6
8
EGS
19
-
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*453),3))}
.MODEL DBODYMOD D (IS = 4.45e-12 RS = 2.08e-3 TRS1 = 1.75e-3 TRS2 = 1.03e-6 CJO = 7.22e-9 TT = 7.21e-8 M = 0.60)
.MODEL DBREAKMOD D (RS = 1.23e-1 TRS1 = 0 TRS2 = 0)
.MODEL DPLCAPMOD D (CJO = 4.13e-9 IS = 1e-30 Vj = 1.0 M = 0.85)
.MODEL MMEDMOD NMOS (VTO = 1.90 KP = 5.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.87)
.MODEL MSTROMOD NMOS (VTO = 2.31 KP = 275 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.65 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.7 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.16e-3 TC2 = 1.17e-7)
.MODEL RDRAINMOD RES (TC1 = 1.48e-2 TC2 = 2.93e-5)
.MODEL RSLCMOD RES (TC1 = 1.53e-3 TC2 = 0)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -2.87e-3 TC2 = -1.02e-5)
.MODEL RVTEMPMOD RES (TC1 = -1.42e-3 TC2 = 9.21e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -5.7 VOFF= -2.7)
VON = -2.7 VOFF= -5.7)
VON = -1.0 VOFF= 0.5)
VON = 0.5 VOFF= -1.0)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2001 Fairchild Semiconductor Corporation
HUFA76445P3, HUFA76445S3S Rev. A
HUFA76445P3, HUFA76445S3S
SABER Electrical Model
REV 23 April 1999
template ta76445 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 4.45e-12, cjo = 7.22e-9, tt = 7.21e-8, xti = 4.5, m = 0.60)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 4.13e-9, is = 1e-30, vj=1.0, m = 0.85 )
m..model mmedmod = (type=_n, vto = 1.90, kp = 5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.31, kp = 275, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 1.65, kp = 0.12, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.7, voff = -2.7)
DPLCAP
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.7, voff = -5.7)
10
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0)
c.ca n12 n8 = 6.50e-9
c.cb n15 n14 = 6.50e-9
c.cin n6 n8 = 4.71e-9
DRAIN
2
RSLC1
51
RLDRAIN
RDBREAK
RSLC2
72
ISCL
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
i.it n8 n17 = 1
LGATE
GATE
1
EVTEMP
RGATE + 18 22
9
20
MWEAK
MSTRO
CIN
DBODY
EBREAK
+
17
18
MMED
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
71
11
16
6
RLGATE
res.rbreak n17 n18 = 1, tc1 = 1.16e-3, tc2 = 1.17e-7
res.rdbody n71 n5 = 2.08e-3, tc1 = 1.75e-3, tc2 = 1.03e-6
res.rdbreak n72 n5 = 1.23e-1, tc1 = 0, tc2 = 0
res.rdrain n50 n16 = 1.9e-3, tc1 = 1.48e-2, tc2 = 2.93e-5
res.rgate n9 n20 = 0.87
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 50.5
res.rlsource n3 n7 = 26.4
res.rslc1 n5 n51 = 1e-6, tc1 = 1.53e-3, tc2 = 0
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 3.0e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -1.42e-3, tc2 = 9.21e-7
res.rvthres n22 n8 = 1, tc1 = -2.87e-3, tc2 = -1.02e-5
21
RDBODY
DBREAK
50
-
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 5.05e-9
l.lsource n3 n7 = 2.64e-9
LDRAIN
5
-
8
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 66.3
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/453))** 3))
}
}
©2001 Fairchild Semiconductor Corporation
HUFA76445P3, HUFA76445S3S Rev. A
HUFA76445P3, HUFA76445S3S
SPICE Thermal Model
th
JUNCTION
REV 8 April 1999
HUFA76445T
CTHERM1 th 6 6.45e-3
CTHERM2 6 5 3.00e-2
CTHERM3 5 4 1.40e-2
CTHERM4 4 3 1.65e-2
CTHERM5 3 2 4.85e-2
CTHERM6 2 tl 12.55
RTHERM1
RTHERM1 th 6 3.24e-3
RTHERM2 6 5 8.08e-3
RTHERM3 5 4 2.28e-2
RTHERM4 4 3 1.28e-1
RTHERM5 3 2 1.93e-1
RTHERM6 2 tl 2.56e-2
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUFA76445T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 6.45e-3
ctherm.ctherm2 6 5 = 3.00e-2
ctherm.ctherm3 5 4 = 1.40e-2
ctherm.ctherm4 4 3 = 1.65e-2
ctherm.ctherm5 3 2 = 4.85e-2
ctherm.ctherm6 2 tl = 12.55
rtherm.rtherm1 th 6 = 3.24e-3
rtherm.rtherm2 6 5 = 8.08e-3
rtherm.rtherm3 5 4 = 2.28e-2
rtherm.rtherm4 4 3 = 1.28e-1
rtherm.rtherm5 3 2 = 1.93e-1
rtherm.rtherm6 2 tl = 2.56e-2
}
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2001 Fairchild Semiconductor Corporation
CASE
HUFA76445P3, HUFA76445S3S Rev. A
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT™
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
FAST 
FASTr™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
PowerTrench 
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER 
SMART START™
Star* Power™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
UHC™
UltraFET™
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H