HUF76639S3ST_F085 July 2012 50A, 100V, 0.026 Ohm, N-Channel, Logic Level UltraFET® Power MOSFET Packaging JEDEC TO-263AB DRAIN (FLANGE) Features • Ultra Low On-Resistance - rDS(ON) = 0.026Ω, VGS = 10V • Simulation Models - Temperature Compensated PSPICE® and SABER™ Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com GATE SOURCE HUF76639S3S • Peak Current vs Pulse Width Curve • UIS Rating Curve • Switching Time vs RGS Curves Symbol D Ordering Information PART NUMBER G HUF76639S3ST_F085 S Absolute Maximum Ratings PACKAGE BRAND TO-263AB 76639S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76639S3ST. TC = 25oC, Unless Otherwise Specified HUF76639S3ST_F085 UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 100 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 100 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±16 V Drain Current Continuous (TC = 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 50 51 35 34 Figure 4 A A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 1.2 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC NOTES: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html For severe environments, see our Automotive HUFA series. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2012 Fairchild Semiconductor Corporation HUF76639S3ST_F085 Rev. C1 HUF76639S3ST_F085 Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 100 - - V ID = 250µA, VGS = 0V , T C = -40oC (Figure 12) 90 - - V VDS = 95V, VGS = 0V - - 1 µA VDS = 90V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 51A, VGS = 10V (Figures 9, 10) - 0.023 0.026 Ω TO-263 - - 0.83 oC/W - - 62 oC/W THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time tON td(ON) - 336 ns 17 - ns tr - 207 - ns - 83 - ns tf - 136 - ns tOFF - - 328 ns - - 96 ns Fall Time Turn-Off Time - td(OFF) Rise Time Turn-Off Delay Time VDD = 50V, ID = 34A VGS = 4.5V, RGS = 12Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON VDD = 50V, ID = 51A VGS = 10V, RGS = 12Ω (Figures 16, 21, 22) - 10 - ns tr - 55 - ns td(OFF) - 151 - ns tf - 110 - ns tOFF - - 392 ns td(ON) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 50V, ID = 35A, Ig(REF) = 1.0mA - 71 86 nC - 39 47 nC - 2.0 2.4 nC Gate to Source Gate Charge Qgs - 6 - nC Gate to Drain “Miller” Charge Qgd - 19 - nC - 2400 - pF - 520 - pF - 140 - pF MIN TYP MAX UNITS (Figures 14, 19, 20) CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2012 Fairchild Semiconductor Corporation SYMBOL TEST CONDITIONS ISD = 35A - - 1.25 V ISD = 15A - - 1.0 V trr ISD = 35A, dISD/dt = 100A/µs - - 137 ns QRR ISD = 35A, dISD/dt = 100A/µs - - 503 nC VSD HUF76639S3ST_F085 Rev. C1 HUF76639S3ST_F085 1.2 60 1.0 50 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves 0.8 0.6 0.4 0.2 VGS = 10V 40 VGS = 4.5V 30 20 10 0 0 0 25 50 75 100 125 150 25 175 50 TC , CASE TEMPERATURE (oC) 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 1000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I25 150 VGS = 10V 100 50 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10-4 VGS = 5V 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2012 Fairchild Semiconductor Corporation HUF76639S3ST_F085 Rev. C1 HUF76639S3ST_F085 Typical Performance Curves (Continued) 500 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 300 100 100µs OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 1ms 1 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC 1 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 10 100 300 0.01 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VGS = 10V VGS = 5V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 100 75 50 TJ = 175oC 25 TJ = 25oC 50 VGS = 3V 25 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC TJ = -55oC 0 0 1.5 2.0 2.5 3.0 3.5 0 4.0 1 VGS, GATE TO SOURCE VOLTAGE (V) 2 3 4 5 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 40 3.0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC ID = 51A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 3.5V VGS = 4V 75 35 30 ID = 35A ID = 15A 25 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 51A 2.5 2.0 1.5 1.0 0.5 20 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT ©2012 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE HUF76639S3ST_F085 Rev. C1 HUF76639S3ST_F085 Typical Performance Curves (Continued) 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 ID = 250µA 1.1 1.0 0.9 0.4 -80 -40 0 40 80 120 160 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE COSS ≅ CDS + CGD CRSS = CGD 100 VGS = 0V, f = 1MHz 40 0.1 1 80 120 160 200 10 CISS = CGS + CGD 1000 40 10 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 5000 0 TJ , JUNCTION TEMPERATURE (oC) VDD = 50V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 51A ID = 35A ID = 15A 2 0 100 0 15 30 45 60 75 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 400 600 VGS = 4.5V, VDD = 50V, ID = 34A VGS = 10V, VDD = 50V, ID = 51A SWITCHING TIME (ns) SWITCHING TIME (ns) 500 300 tr 200 tf td(OFF) 100 td(OFF) 400 300 tf 200 tr 100 td(ON) td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE ©2012 Fairchild Semiconductor Corporation 50 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 16. SWITCHING TIME vs GATE RESISTANCE HUF76639S3ST_F085 Rev. C1 HUF76639S3ST_F085 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2012 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76639S3ST_F085 Rev. C1 HUF76639S3ST_F085 PSPICE Electrical Model .SUBCKT HUF76639 2 1 3 ; rev 26 July 1999 CA 12 8 4.2e-9 CB 15 14 4.2e-9 CIN 6 8 2.27e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP EBREAK 11 7 17 18 118.2 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 10 DBREAK + RSLC2 5 51 ESLC 11 - RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE MMED 16 6 8 8 MMEDMOD GATE MSTRO 16 6 8 8 MSTROMOD 1 MWEAK 16 21 8 8 MWEAKMOD + 50 - LDRAIN 2 5 1.0e-9 LGATE 1 9 5.1e-9 LSOURCE 3 7 3.1e-9 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD RLDRAIN RSLC1 51 IT 8 17 1 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 15.8e-3 RGATE 9 20 1.94 RLDRAIN 2 5 10 RLGATE 1 9 51 RLSOURCE 3 7 31 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.6e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 DRAIN 2 5 LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - VBAT 22 19 DC 1 - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*99),3.5))} .MODEL DBODYMOD D (IS = 2.6e-12 RS = 2.65e-3 IKF = 6 TRS1 = 1.5e-3 TRS2 = 3.5e-6 CJO = 2.1e-9 TT = 5.6e-8 M = 0.52) .MODEL DBREAKMOD D (RS = 2.5e-1 TRS1 = 1e-4 TRS2 = -1e-6) .MODEL DPLCAPMOD D (CJO = 2.6e-9 IS = 1e-30 M = 0.89 N = 10) .MODEL MMEDMOD NMOS (VTO = 1.77 KP = 7 IS = 1e-30 N = 10 TOX = 1 L = 1U W = 1U RG = 1.94) .MODEL MSTROMOD NMOS (VTO = 2.06 KP = 95 IS = 1e-30 N = 10 TOX = 1 L = 1U W = 1U) .MODEL MWEAKMOD NMOS (VTO = 1.48 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1U W = 1U RG = 19.4 RS = .1) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 8.5e-3 TC2 = 2.3e-5) .MODEL RSLCMOD RES (TC1 = 3.4e-3 TC2 = 2.5e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -4.5e-6) .MODEL RVTEMPMOD RES (TC1 = -1.7e-3 TC2 = 1.5e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.5 VOFF = -2.0) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.0 VOFF = -4.5) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF = 0.3) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.3 VOFF = -0.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2012 Fairchild Semiconductor Corporation HUF76639S3ST_F085 Rev. C1 HUF76639S3ST_F085 SABER Electrical Model REV 26 July 1999 template huf76639 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 2.6e-12, cjo = 2.1e-9, tt = 5.6e-8, m = 0.52, n=10) d..model dbreakmod = () d..model dplcapmod = (cjo = 2.6e-9, is = 1e-30, m = 0.89) m..model mmedmod = (type=_n, vto = 1.77, kp = 7, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.06,kp = 95, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.48, kp = 0.12,is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -2.0) sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -2.0, voff = -4.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.3) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.3, voff = -0.5) LDRAIN DPLCAP 10 RSLC1 51 c.ca n12 n8 = 4.2e-9 c.cb n15 n14 = 4.2e-9 c.cin n6 n8 = 2.27e-9 RLDRAIN RDBREAK RSLC2 72 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model = mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model = mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model = mweakmod, l = 1u, w = 1u 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5e-7 res.rdbody n71 n5 = 2.65e-3, tc1 = 1.5e-3, tc2 = 3.5e-6 res.rdbreak n72 n5 = 2.5e-1, tc1 = 1e-4, tc2 = -1e-6 res.rdrain n50 n16 = 15.8e-3, tc1 = 8.5e-3, tc2 = 2.3e-5 res.rgate n9 n20 = 1.94 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 51 res.rlsource n3 n7 = 31 res.rslc1 n5 n51 = 1e-6, tc1 = 3.4e-3, tc2 = 2.5e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.6e-3, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.7e-3, tc2 = 1.5e-6 res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -4.5e-6 21 RDBODY DBREAK 50 - d.dbody n7 n71 = model = dbodymod d.dbreak n72 n11 = model = dbreakmod d.dplcap n10 n5 = model = dplcapmod l.ldrain n2 n5 = 1.0e-9 l.lgate n1 n9 = 5.1e-9 l.lsource n3 n7 = 3.1e-9 DRAIN 2 5 - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 + 6 8 EGS 19 CB + - - IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 118.2 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model = s1amod sw_vcsp.s1b n13 n12 n13 n8 = model = s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model = s2amod sw_vcsp.s2b n13 n15 n14 n13 = model = s2bmod v.vbat n22 n19 = dc = 1 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/99))** 3.5)) } } ©2012 Fairchild Semiconductor Corporation HUF76639S3ST_F085 Rev. C1 HUF76639S3ST_F085 SPICE Thermal Model th JUNCTION REV 26 July 1999 HUF76639T CTHERM1 th 6 3.2e-3 CTHERM2 6 5 8.5e-3 CTHERM3 5 4 1.2e-2 CTHERM4 4 3 1.6e-2 CTHERM5 3 2 5.5e-2 CTHERM6 2 tl 1.5 RTHERM1 RTHERM1 th 6 8.0e-3 RTHERM2 6 5 6.8e-2 RTHERM3 5 4 9.2e-2 RTHERM4 4 3 2.0e-1 RTHERM5 3 2 2.4e-1 RTHERM6 2 tl 5.2e-2 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76639T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 3.2e-3 ctherm.ctherm2 6 5 = 8.5e-3 ctherm.ctherm3 5 4 = 1.2e-2 ctherm.ctherm4 4 3 = 1.6e-2 ctherm.ctherm5 3 2 = 5.5e-2 ctherm.ctherm6 2 tl = 1.5 rtherm.rtherm1 th 6 = 8.0e-3 rtherm.rtherm2 6 5 = 6.8e-2 rtherm.rtherm3 5 4 = 9.2e-2 rtherm.rtherm4 4 3 = 2.0e-1 rtherm.rtherm5 3 2 = 2.4e-1 rtherm.rtherm6 2 tl = 5.2e-2 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2012 Fairchild Semiconductor Corporation CASE HUF76639S3ST_F085 Rev. C1 TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS™ The Power Franchise® PowerTrench® 2Cool™ ® PowerXS™ FRFET® AccuPower™ Programmable Active Droop™ Global Power ResourceSM AX-CAP™* Green Bridge™ QFET® BitSiC® TinyBoost™ Build it Now™ QS™ Green FPS™ TinyBuck™ CorePLUS™ Quiet Series™ Green FPS™ e-Series™ TinyCalc™ CorePOWER™ RapidConfigure™ Gmax™ TinyLogic® CROSSVOLT™ GTO™ ™ TINYOPTO™ CTL™ IntelliMAX™ TinyPower™ Saving our world, 1mW/W/kW at a time™ Current Transfer Logic™ ISOPLANAR™ TinyPWM™ DEUXPEED® Marking Small Speakers Sound Louder SignalWise™ TinyWire™ Dual Cool™ SmartMax™ and Better™ TranSiC® EcoSPARK® SMART START™ MegaBuck™ TriFault Detect™ EfficentMax™ Solutions for Your Success™ MICROCOUPLER™ TRUECURRENT®* ESBC™ SPM® MicroFET™ μSerDes™ STEALTH™ MicroPak™ ® SuperFET® MicroPak2™ SuperSOT™-3 MillerDrive™ Fairchild® UHC® SuperSOT™-6 MotionMax™ Fairchild Semiconductor® Ultra FRFET™ SuperSOT™-8 Motion-SPM™ FACT Quiet Series™ UniFET™ SupreMOS® mWSaver™ FACT® VCX™ SyncFET™ OptoHiT™ FAST® VisualMax™ Sync-Lock™ OPTOLOGIC® FastvCore™ VoltagePlus™ OPTOPLANAR® ®* FETBench™ XS™ FlashWriter® * ® FPS™ tm tm *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used here in: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Definition Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I61 ©2012 Fairchild Semiconductor Corporation HUF76639S3ST_F085 Rev. C1