FAIRCHILD IRFP150N

IRFP150N
Data Sheet
January 2002
44A, 100V, 0.030 Ohm, N-Channel Power MOSFET
Packaging
Features
JEDEC TO-247
SOURCE
DRAIN
GATE
• Ultra Low On-Resistance
- rDS(ON) = 0.030Ω, VGS = 10V
• Simulation Models
- Temperature Compensated PSPICE™ and SABER©
Electrical Models
- Spice and SABER© Thermal Impedance Models
- www.fairchildsemi.com
• Peak Current vs Pulse Width Curve
DRAIN
(TAB)
• UIS Rating Curve
Ordering Information
Symbol
PART NUMBER
PACKAGE
BRAND
D
IRFP150N
TO-247
IRFP150N
G
S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
IRFP150N
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
100
V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
100
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±20
V
Drain Current
Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
44
31
Figure 4
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS
Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
155
1.03
W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
-55 to 175
oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
300
260
oC
oC
NOTES:
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
©2002 Fairchild Semiconductor Corporation
IRFP150N Rev. B
IRFP150N
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
100
-
-
V
VDS = 95V, VGS = 0V
-
-
1
µA
VDS = 90V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
BVDSS
IDSS
IGSS
ID = 250µA, VGS = 0V (Figure 11)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
Drain to Source On Resistance
rDS(ON)
ID = 44A, VGS = 10V (Figure 9)
-
0.0255
0.030
Ω
TO-247
-
-
0.97
oC/W
-
-
30
oC/W
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to
Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
Turn-On Delay Time
Rise Time
tON
-
-
130
ns
11
-
ns
-
75
-
ns
td(OFF)
-
37
-
ns
tf
-
61
-
ns
tOFF
-
-
150
ns
-
90
108
nC
-
48
58
nC
-
3.1
3.8
nC
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 50V, ID = 44A
VGS = 10V,
RGS = 6.2Ω
(Figures 18, 19)
-
td(ON)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
VDD = 50V,
ID = 44A,
Ig(REF) = 1.0mA
(Figures 13, 16, 17)
Gate to Source Gate Charge
Qgs
-
6.5
-
nC
Gate to Drain "Miller" Charge
Qgd
-
17
-
nC
-
1700
-
pF
-
460
-
pF
-
145
-
pF
MIN
TYP
MAX
UNITS
ISD = 44A
-
-
1.25
V
ISD = 22A
-
-
1.00
V
trr
ISD = 44A, dISD/dt = 100A/µs
-
-
105
ns
QRR
ISD = 44A, dISD/dt = 100A/µs
-
-
305
nC
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
Source to Drain Diode Voltage
Reverse Recovery Time
Reverse Recovered Charge
©2002 Fairchild Semiconductor Corporation
SYMBOL
VSD
TEST CONDITIONS
IRFP150N Rev. B
IRFP150N
Typical Performance Curves
50
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
40
VGS = 10V
30
20
20
0.2
0
0
25
50
75
100
150
125
0
175
25
TC , CASE TEMPERATURE (oC)
50
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs
CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
IDM, PEAK CURRENT (A)
600
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
150
VGS = 10V
100
30
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
©2002 Fairchild Semiconductor Corporation
IRFP150N Rev. B
IRFP150N
Typical Performance Curves
(Continued)
300
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
100
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
300
100
100µs
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1ms
STARTING TJ = 25oC
STARTING TJ = 150oC
10ms
10
0.001
1
1
10
100
VDS, DRAIN TO SOURCE VOLTAGE (V)
0.1
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
80
80
VGS = 20V
VGS = 10V
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
60
40
TJ = 175oC
20
TJ = -55oC
VGS = 7V
VGS = 6V
60
VGS =5V
40
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
TJ = 25oC
0
0
2
0
6
3
4
5
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
3.0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
4
1
2
3
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 8. SATURATION CHARACTERISTICS
1.2
VGS = 10V, ID = 44A
VGS = VDS, ID = 250µA
2.5
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
1
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
ID, DRAIN CURRENT (A)
0.01
300
2.0
1.5
1.0
0.8
1.0
0.6
0.5
-80
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
160
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
©2002 Fairchild Semiconductor Corporation
200
-80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
IRFP150N Rev. B
IRFP150N
Typical Performance Curves
(Continued)
6000
VGS = 0V, f = 1MHz
ID = 250µA
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
1.1
1.0
CISS = CGS + CGD
1000
COSS ≅ CDS + CGD
100
0.9
-80
-40
0
40
80
120
160
CRSS = CGD
30
0.1
200
1.0
TJ , JUNCTION TEMPERATURE (oC)
10
100
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
VGS , GATE TO SOURCE VOLTAGE (V)
10
VDD = 50V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 44A
ID = 22A
2
0
10
0
20
30
Qg, GATE CHARGE (nC)
40
50
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
©2002 Fairchild Semiconductor Corporation
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
IRFP150N Rev. B
IRFP150N
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
VGS = 10V
VGS
DUT
VGS = 2V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tr
RL
VDS
tf
90%
90%
+
VGS
VDD
-
10%
0
10%
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
©2002 Fairchild Semiconductor Corporation
10%
50%
50%
PULSE WIDTH
FIGURE 19. SWITCHING TIME WAVEFORM
IRFP150N Rev. B
IRFP150N
PSPICE Electrical Model
.SUBCKT IRFP150N 2 1 3 ;
rev 15 Jan 2000
CA 12 8 2.70e-9
CB 15 14 2.70e-9
CIN 6 8 1.56e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
LDRAIN
DPLCAP
DRAIN
2
5
10
5
51
ESLC
11
-
RDRAIN
6
8
EVTHRES
+ 19 8
+
LGATE
GATE
1
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
+
17
EBREAK 18
50
-
IT 8 17 1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.68e-2
RGATE 9 20 0.86
RLDRAIN 2 5 10
RLGATE 1 9 26
RLSOURCE 3 7 11
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 1.65e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
DBREAK
+
RSLC2
ESG
LDRAIN 2 5 1.0e-9
LGATE 1 9 6.5e-9
LSOURCE 3 7 2.3e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 113.5
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RLSOURCE
S1A
12
S2A
13
8
S1B
CA
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
-
IT
14
+
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
RBREAK
15
14
13
-
+
8
22
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*98),3.5))}
.MODEL DBODYMOD D (IS = 1.30e-12 IKF = 19 RS = 2.86e-3 XTI = 5 TRS1 = 2.25e-3 TRS2 = 1.00e-6 CJO = 1.90e-9 TT = 6.5e-8 M = 0.55)
.MODEL DBREAKMOD D (RS = 3.05e-1 IKF = 1 TRS1 = 8e-4 TRS2 = 3e-6)
.MODEL DPLCAPMOD D (CJO = 2.20e-9 IS = 1e-30 M = 0.83)
.MODEL MMEDMOD NMOS (VTO = 3.21 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.86)
.MODEL MSTROMOD NMOS (VTO = 3.58 KP = 37.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.81 KP = 0.07 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.60 )
.MODEL RBREAKMOD RES (TC1 =1.08e-3 TC2 = -8.6e-7)
.MODEL RDRAINMOD RES (TC1 = 7.70e-3 TC2 = 2.20e-5)
.MODEL RSLCMOD RES (TC1 = 4.25e-3 TC2 = 1.00e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -2.07e-3 TC2 = -6.65e-6)
.MODEL RVTEMPMOD RES (TC1 = -3.20e-3 TC2 =9.67e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -6.2 VOFF= -2.4)
VON = -2.4 VOFF= -6.2)
VON = -1.8 VOFF= 0.5)
VON = 0.5 VOFF= -1.8)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2002 Fairchild Semiconductor Corporation
IRFP150N Rev. B
IRFP150N
SABER Electrical Model
REV 15 Jan 2000
template IRFP150N n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 1.30e-12, cjo = 1.90e-9, tt = 6.5e-8, xti = 5, m = 0.55)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 2.20e-9, is = 1e-30, vj=1.0, m = 0.83)
m..model mmedmod = (type=_n, vto = 3.21, kp = 5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.58, kp = 37.5, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.81, kp = 0.07, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -2.4)
DPLCAP
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.4, voff = -6.2)
10
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.8, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.8)
c.ca n12 n8 = 2.70e-9
c.cb n15 n14 = 2.70e-9
c.cin n6 n8 = 1.56e-9
DRAIN
2
RSLC1
51
RLDRAIN
RDBREAK
RSLC2
72
ISCL
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
i.it n8 n17 = 1
LGATE
GATE
1
EVTEMP
RGATE + 18 22
9
20
MWEAK
MSTRO
CIN
DBODY
EBREAK
+
17
18
MMED
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
71
11
16
6
RLGATE
res.rbreak n17 n18 = 1, tc1 = 1.08e-3, tc2 = -8.6e-7
res.rdbody n71 n5 = 2.86e-3, tc1 = 2.25e-3, tc2 = 1e-6
res.rdbreak n72 n5 = 3.05e-1, tc1 = 8e-4, tc2 = 3e-6
res.rdrain n50 n16 = 1.68e-2, tc1 = 7.70e-3, tc2 = 2.20e-5
res.rgate n9 n20 = 0.86
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 26
res.rlsource n3 n7 = 11
res.rslc1 n5 n51 = 1e-6, tc1 = 4.25e-3, tc2 = 1.00e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.65e-3, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -3.20e-3, tc2 = 9.67e-7
res.rvthres n22 n8 = 1, tc1 = -2.07e-3, tc2 = -6.65e-6
21
RDBODY
DBREAK
50
-
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 6.5e-9
l.lsource n3 n7 = 2.3e-9
LDRAIN
5
-
8
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 113.5
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/98))** 3.5))
}
}
©2002 Fairchild Semiconductor Corporation
IRFP150N Rev. B
IRFP150N
SPICE Thermal Model
th
REV 15 Jan 2000
JUNCTION
IRFP150NT
CTHERM1 th 6 3.10e-3
CTHERM2 6 5 1.60e-2
CTHERM3 5 4 1.34e-2
CTHERM4 4 3 1.22e-2
CTHERM5 3 2 1.40e-2
CTHERM6 2 tl 1.05e-1
RTHERM1 th 6 1.20e-2
RTHERM2 6 5 3.50e-2
RTHERM3 5 4 5.20e-2
RTHERM4 4 3 1.45e-1
RTHERM5 3 2 2.62e-1
RTHERM6 2 tl 2.64e-1
SABER Thermal Model
RTHERM1
CTHERM1
6
CTHERM2
RTHERM2
5
CTHERM3
RTHERM3
SABER thermal model IRFP150NT
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 3.10e-3
ctherm.ctherm2 6 5 = 1.60e-2
ctherm.ctherm3 5 4 = 1.34e-2
ctherm.ctherm4 4 3 = 1.22e-2
ctherm.ctherm5 3 2 = 1.40e-2
ctherm.ctherm6 2 tl = 1.05e-1
rtherm.rtherm1 th 6 = 1.20e-2
rtherm.rtherm2 6 5 = 3.50e-2
rtherm.rtherm3 5 4 = 5.20e-2
rtherm.rtherm4 4 3 = 1.45e-1
rtherm.rtherm5 3 2 = 2.62e-1
rtherm.rtherm6 2 tl = 2.64e-1
}
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2002 Fairchild Semiconductor Corporation
CASE
IRFP150N Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT™
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
FAST 
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench 
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER 
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET 
VCX™
STAR*POWER is used under license
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
systems which, (a) are intended for surgical implant into
support device or system whose failure to perform can
the body, or (b) support or sustain life, or (c) whose
be reasonably expected to cause the failure of the life
failure to perform when properly used in accordance
support device or system, or to affect its safety or
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4