LTC5567 300MHz to 4GHz Active Downconverting Mixer with Wideband IF Features Description n n n n n n n n n The LTC®5567 is optimized for RF downconverting mixer applications that require wide IF bandwidth. The part is also a pin-compatible upgrade to the LT5557 active mixer, offering higher linearity and 1dB compression, wider bandwidth, and lower output spurious levels. Integrated RF and LO transformers and LO buffer amplifiers allow a very compact solution. n n High IIP3: +26.9dBm at 1950MHz 1.9dB Conversion Gain Low Noise Figure: 11.8dB at 1950MHz 16.5dB NF Under 5dBm Blocking Low Power: 294mW Wide IF Frequency Range Up to 2.5GHz LO Input 50Ω Matched when Shutdown –40°C to 105°C Operation (TC) Very Small Solution Size Pin Compatible with LT5557 16-Lead (4mm × 4mm) QFN package The RF input is 50Ω matched from 1.4GHz to 3GHz, and easily matched for higher or lower RF frequencies with simple external matching. The LO input is 50Ω matched from 1GHz to 4GHz, even when the IC is disabled. The LO input is easily matched for higher or lower frequencies, as low as 300MHz, with simple external matching. The low capacitance differential IF output is usable up to 2.5GHz. Applications Wireless Infrastructure Receivers DPD Observation Receivers n CATV Infrastructure n L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. n Typical Application DPD Observation Receiver Mixer with 500MHz IF Bandwidth and +13dBm Input P1dB into 200Ω Load LO 1.65GHz 0dBm 28 3.9pF 26 LO 200Ω LOAD 330pF 2.7pF LO IF+ 249Ω 390nH 100Ω IF AMP RF RF EN EN 249Ω IF– BIAS VCC 10nF IADJ 390nH 330pF 10nF 3.3V 89mA 100Ω 5567 TA01a GV (dB), IIP3 (dBm), SSB NF (dB) LTC5567 RF 1.69GHz TO 2.24GHz Voltage Conversion Gain, IIP3 and NF vs IF Frequency IIP3 24 22 20 18 16 14 12 RF = 1.69GHz TO 2.24GHz LO = 1.65GHz ZRF = 50Ω ZIF = 200Ω DIFFERENTIAL TC = 25°C NF 10 8 6 4 GV 40 90 140 190 240 290 340 390 440 490 540 590 IF FREQUENCY (MHz) 5567 TA01b 5567f 1 LTC5567 Pin Configuration Supply Voltage (VCC, IF+, IF –)...................................4.0V Enable Input Voltage (EN).................–0.3V to VCC + 0.3V LO Input Power (300MHz to 4.5GHz).................. +10dBm LO Input DC Voltage................................................ ±0.1V RF Input Power (300MHz to 4GHz)..................... +15dBm RF Input DC Voltage................................................ ±0.1V TEMP Monitor Input Current...................................10mA Operating Temperature Range (TC)......... –40°C to 105°C Junction Temperature (TJ)..................................... 150°C Storage Temperature Range................... –65°C to 150°C GND NC LO GND TOP VIEW 16 15 14 13 TEMP 1 12 GND GND 2 11 IF+ 17 GND RF 3 10 IF– GND 4 5 6 7 8 NC IADJ 9 EN (Note 1) VCC Absolute Maximum Ratings GND UF PACKAGE 16-LEAD (4mm × 4mm) PLASTIC QFN TJMAX = 150°C, θJC = 8°C/W EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE LTC5567IUF#PBF LTC5567IUF#TRPBF 5567 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ AC Electrical Characteristics CC = 3.3V, EN = High. Test circuit shown in Figure 1. V (Notes 2, 3, 4) PARAMETER CONDITIONS MIN TYP MAX UNITS RF Input Frequency Range 300 to 4000 MHz LO Input Frequency Range 300 to 4500 MHz 5 to 2500 MHz IF Output Frequency Range External Matching Required RF Input Return Loss ZO = 50Ω, 1400MHz to 3000MHz, C3 = 2.7pF >12 dB LO Input Return Loss ZO = 50Ω, 1000MHz to 4000MHz, C5 = 3.9pF >10 dB IF Output Impedance Differential at 153MHz LO Input Power 532Ω ||1.0pF –6 0 R||C 6 dBm RF to LO Isolation RF = 300MHz to 1000MHz RF = 1000MHz to 4000MHz >59 >50 dB dB RF to IF Isolation RF = 300MHz to 700MHz RF = 700MHz to 1000MHz RF = 1000MHz to 4000MHz >47 >40 >28 dB dB dB 5567f 2 LTC5567 AC Electrical Characteristics CC = 3.3V, EN = High. TC = 25°C, PLO = 0dBm, IF = 153MHz, V PRF = –6dBm (–6dBm/tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4) PARAMETER CONDITIONS MIN TYP Power Conversion Gain RF = 450MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2550MHz, Low Side LO RF = 3500MHz, Low Side LO 0.8 1.5 2.0 1.9 1.7 1.2 dB dB dB dB dB RF = 1950 ±30MHz, LO = 1797MHz, IF = 153 ±30MHz ±0.09 dB Conversion Gain vs Temperature TC = –40°C to 105ºC, RF = 1950MHz, Low Side LO –0.013 dB/°C 2-Tone Input 3rd Order Intercept (∆fRF = 2MHz) RF = 450MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2550MHz, Low Side LO RF = 3500MHz, Low Side LO 26.0 26.7 26.9 26.0 26.5 dBm dBm dBm dBm dBm 67 64 72 71 63 dBm dBm dBm dBm dBm Conversion Gain Flatness 24.2 MAX UNITS 2-Tone Input 2nd Order Intercept (∆fRF = 154MHz = fIM2) RF = 450MHz (527MHz/373MHz), LO = 603MHz RF = 850MHz (927MHz/773MHz), LO = 1003MHz RF = 1950MHz (2027MHz/1873MHz), LO = 1797MHz RF = 2550MHz (2627MHz/2473MHz), LO = 2397MHz RF = 3500MHz (3577MHz/3423MHz), LO = 3347MHz SSB Noise Figure RF = 450MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2550MHz, Low Side LO RF = 3500MHz, Low Side LO 12.5 11.4 11.8 12.6 14.6 SSB Noise Figure Under Blocking RF = 850MHz, High Side LO, 750MHz Blocker at 5dBm RF = 1950MHz, Low Side LO, 2050MHz Blocker at 5dBm 16.5 16.5 dB dB LO to RF Leakage LO = 300MHz to 700MHz LO = 700MHz to 2200MHz LO = 2200MHz to 4500MHz <–62 <–56 <–47 dBm dBm dBm LO to IF Leakage LO = 300MHz to 500MHz LO = 500MHz to 700MHz LO = 700MHz to 4500MHz <–43 <–37 <–41 dBm dBm dBm 1/2IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz) 850MHz: fRF = 926.5MHz at –6dBm, fLO = 1003MHz 1950MHz: fRF = 1873.5MHz at –6dBm, fLO = 1797MHz –78 –73 dBc dBc 1/3IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz) 850MHz: fRF = 952MHz at –6dBm, fLO = 1003MHz 1950MHz: fRF = 1848MHz at –6dBm, fLO = 1797MHz –82 –80 dBc dBc Input 1dB Compression RF = 450MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2550MHz, Low Side LO RF = 3500MHz, Low Side LO 11.0 10.9 10.1 10.2 10.4 dBm dBm dBm dBm dBm 13.5 dB dB dB dB dB 5567f 3 LTC5567 DC Electrical Characteristics CC = 3.3V, TC = 25°C. Test circuit shown in Figure 1. (Note 2) V PARAMETER CONDITIONS Supply Voltage (VCC) Supply Current Enabled Disabled MIN TYP MAX 3.0 3.3 3.6 V 89 105 100 mA µA EN = High EN = Low UNITS Enable Logic Input (EN) Input High Voltage (On) 2.5 V Input Low Voltage (Off) –0.3V to VCC + 0.3V Input Current –30 0.3 V 100 µA Turn-On Time 0.6 µs Turn-Off Time 0.5 µs 2.2 V Pin Shorted to Ground 1.8 mA DC Voltage at TJ = 25°C IIN = 10µA IIN = 80µA 716 773 mV mV Voltage Temperature Coefficient IIN = 10µA IIN = 80µA –1.75 –1.56 Mixer DC Current Adjust (IADJ) Open-Circuit DC Voltage Short-Circuit DC Current Temperature Sensing Diode (TEMP) Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5567 is guaranteed functional over the –40°C to 105°C case temperature range (θJC = 8°C/W). Note 3: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 2dB matching pad on RF input, and bandpass filter on the LO input. Note 4: Specified performance includes 4:1 IF transformer and evaluation PCB losses. Typical DC Performance Characteristics 900 96 850 94 TC = 105°C TC = 85°C TC = 55°C TC = 25°C TC = –10°C TC = –40°C 88 86 84 3.0 TEMP DIODE VOLTAGE (mV) SUPPLY CURRENT (mA) 98 90 EN = High, Test circuit shown in Figure 1. TEMP Diode Voltage vs Junction Temperature Supply Current vs Supply Voltage 92 mV/°C mV/°C 800 IIN = 80µA 750 700 650 IIN = 10µA 600 550 3.1 3.4 3.3 3.5 3.2 VCC SUPPLY VOLTAGE (V) 3.6 500 –45 5 30 55 80 105 –20 JUNCTION TEMPERATURE (°C) 130 5567 G02 5567 G01 5567f 4 LTC5567 Typical Performance Characteristics 1400MHz to 3000MHz application. Test circuit shown in Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz unless otherwise noted. 1950MHz Conversion Gain, IIP3 and NF vs LO Power (Low Side LO) IIP3 4 24 TC = 25°C 3 22 20 18 14 12 10 2 GC 16 1 NF 1.4 1.6 GC (dB) IIP3 (dBm), NF (dB) 26 1.8 2.0 2.2 2.4 2.6 RF FREQUENCY (GHz) 0 3.0 2.8 28 26 24 IIP3 22 20 18 16 NF 14 12 10 8 6 4 GC 2 0 –4 –6 TC = 85°C TC = 25°C TC = –40°C 0 –2 2 LO INPUT POWER (dBm) 4 6 5567 G03 Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO) 5 IIP3 4 24 TC = 25°C 3 22 20 18 16 10 1 NF 1.4 1.6 1.8 2.0 2.2 2.4 2.6 RF FREQUENCY (GHz) 2.8 0 3.0 28 26 24 IIP3 22 20 18 16 NF 14 12 10 8 6 4 GC 2 0 –6 –4 TC = 85°C TC = 25°C TC = –40°C –2 2 0 LO INPUT POWER (dBm) 6 4 RF Isolation vs RF Frequency 65 RF-LO 50 45 40 25 1.4 1.6 1.8 2.0 2.2 2.4 2.6 RF FREQUENCY (GHz) 2550MHz Conversion Gain, IIP3 and NF vs LO Power (High Side LO) 28 26 24 22 IIP3 20 18 16 NF 14 12 10 8 6 4 GC 2 0 –4 –6 TC = 85°C TC = 25°C TC = –40°C 0 –2 2 LO INPUT POWER (dBm) 4 6 5567 G08 TC = 25°C LO-IF –40 –50 LO-RF –60 RF-IF 30 6 –30 55 35 4 LO Leakage vs LO Frequency –20 TC = 25°C 60 0 –2 2 LO INPUT POWER (dBm) 5567 G07 5567 G06 LO LEAKAGE (dBm) 12 RF ISOLATION (dB) 14 2 GC GC (dB) IIP3 (dBm), NF (dB) 26 GC (dB), IIP3 (dBm), SSB NF (dB) 28 TC = 85°C TC = 25°C TC = –40°C 5567 G05 1950MHz Conversion Gain, IIP3 and NF vs LO Power (High Side LO) 30 28 26 24 IIP3 22 20 18 16 NF 14 12 10 8 6 4 GC 2 0 –4 –6 5567 G04 GC (dB), IIP3 (dBm), SSB NF (dB) 28 GC (dB), IIP3 (dBm), SSB NF (dB) 5 30 2550MHz Conversion Gain, IIP3 and NF vs LO Power (Low Side LO) GC (dB), IIP3 (dBm), SSB NF (dB) Conversion Gain, IIP3 and NF vs RF Frequency (Low Side LO) 2.8 3.0 5567 G09 –70 1.2 1.6 2.8 2.0 2.4 LO FREQUENCY (GHz) 3.2 5567 G10 5567f 5 LTC5567 Typical Performance Characteristics 1400MHz to 3000MHz application. Test circuit shown in Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz unless otherwise noted. Single Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 15 10 –20 –30 TC = 25°C RF1 = 1949MHz –40 RF2 = 1951MHz –50 LO = 1797MHz IM3 –90 –12 –45 –75 2RF-2LO (RF = 1873.5MHz) –85 3 6 –15 –12 –9 –6 –3 0 RF INPUT POWER (dBm) 6 3 –9 –3 0 –6 RF INPUT POWER (dBm/TONE) 3RF-3LO (RF = 1848MHz) –55 –65 IM5 –80 –35 SSB Noise Figure vs RF Blocker Level GC AND SSB NF (dB), IIP3 AND P1dB (dBm) SSB NF (dB) TC = 25°C 21 RF = 1950MHz 20 BLOCKER = 2050MHz LO = 1797MHz 19 PLO = –3dBm 16 PLO = 0dBm 15 14 13 PLO = 3dBm 12 11 –25 –20 –15 –10 –5 0 5 RF BLOCKER POWER (dBm) 10 5567 G14 28 26 24 IIP3 22 20 RF = 1950MHz LOW SIDE LO 18 16 14 12 SSB NF 10 8 P1dB 6 4 GC 2 0 75 –45 –15 105 45 15 CASE TEMPERATURE (°C) 105°C 25°C –40°C 25 DISTRIBUTION (%) DISTRIBUTION (%) 35 30 25 20 15 10 –6 –2 0 2 LO INPUT POWER (dBm) –4 4 6 5567 G13 Conversion Gain, IIP3 and NF vs Supply Voltage 30 27 24 IIP3 21 RF = 1950MHz LOW SIDE LO 18 15 TC = 85°C TC = 25°C TC = –40°C NF 12 9 6 GC 3 0 3.0 3.1 3.3 3.4 3.5 3.2 VCC SUPPLY VOLTAGE (V) 3.6 5567 G16 1950MHz SSB NF Distribution 50 RF = 1950MHz, LOW SIDE LO 105°C 25°C –40°C RF = 1950MHz LOW SIDE LO 45 105°C 25°C –40°C 40 20 15 10 35 30 25 20 15 10 5 5 0 3RF-3LO (RF = 1848MHz) –85 1950MHz IIP3 Distribution 30 RF = 1950MHz, LOW SIDE LO 40 –80 5567 G15 1950MHz Conversion Gain Distribution 45 –75 –90 12 2RF-2LO (RF = 1873.5MHz) –70 Conversion Gain, IIP3, NF and RF Input P1dB vs Temperature 22 17 TC = 25°C RF = 1950MHz –65 PRF = –6dBm LO = 1797MHz 5567 G12 5567 G11 18 9 GC (dB), IIP3 (dBm), SSB NF (dB) –70 –15 –25 DISTRIBUTION (%) –60 IFOUT (RF = 1950MHz) –5 RELATIVE SPUR LEVEL (dBc) IFOUT –10 –60 TC = 25°C 5 LO = 1797MHz OUTPUT POWER (dBm) OUTPUT POWER/TONE (dBm) 0 50 2 × 2 and 3 × 3 Spur Suppression vs LO Power 5 0.6 1.0 1.4 1.8 2.2 2.6 CONVERSION GAIN (dB) 3.0 5567 G17 0 24.6 25.2 25.8 26.4 27.0 27.6 28.2 28.8 IIP3 (dBm) 5567 G18 0 10.2 10.8 11.4 12.0 12.6 13.2 SSB NOISE FIGURE (dB) 13.8 5567 G19 5567f 6 LTC5567 Typical Performance Characteristics 700MHz to 1000MHz application. Test circuit shown in Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz unless otherwise noted. 1000 950 28 26 24 IIP3 22 TC = 85°C 20 RF = 850MHz TC = 25°C TC = –40°C 18 HIGH SIDE LO 16 NF 14 12 10 8 6 4 GC 2 0 –4 0 –6 –2 4 6 2 LO INPUT POWER (dBm) 5567 G20 –10 –20 RF-IF ISO 40 –30 –40 30 LO-IF 20 –50 LO-RF 10 0 700 800 900 1000 1100 RF/LO FREQUENCY (MHz) –60 GC (dB), NF (dB), IIP3 (dBm), P1dB (dBm) 50 0 LO LEAKAGE (dBm) RF ISOLATION (dB) 60 –70 1200 IFOUT –5 TC = 25°C RF1 = 849MHz RF2 = 851MHz LO = 1003MHz –60 IM3 IM5 GC (dB), IIP3 (dBm), SSB NF (dB) 7 GC 4 3.0 3.1 3.2 3.3 3.4 3.5 VCC SUPPLY VOLTAGE (V) –15 18 PLO = –3dBm 17 16 PLO = 0dBm 15 13 12 11 –25 105 IFOUT (RF = 850MHz) –35 –45 3LO-3RF (RF = 952MHz) –65 2LO-2RF (RF = 926.5MHz) –70 –75 –85 6 –15 –12 –9 –6 –3 0 3 RF INPUT POWER (dBm) 6 5567 G26 5567 G22 14 –25 –55 3.6 PLO = 3dBm –20 5 –15 –10 –5 0 RF BLOCKER POWER (dBm) 10 5567 G25 2 × 2 and 3 × 3 Spur Suppression vs LO Power –60 –80 –12 –9 –3 0 3 –6 RF INPUT POWER (dBm/TONE) 10 TC = 25°C 21 RF = 850MHz 20 BLOCKER = 750MHz LO = 1003MHz 19 RELATIVE SPUR LEVEL (dBc) –50 NF 13 SSB Noise Figure vs RF Blocker Level TC = 25°C 5 LO = 1003MHz OUTPUT POWER (dBm) OUTPUT POWER/TONE (dBm) –40 16 1 15 –10 –30 19 Single Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power 20 0 TC = 85°C TC = 25°C TC = –40°C RF = 850MHz HIGH SIDE LO 5567 G24 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 10 IIP3 22 28 26 IIP3 24 22 20 RF = 850MHz 18 HIGH SIDE LO 16 14 NF 12 10 P1dB 8 6 4 GC 2 0 –15 45 –45 15 75 CASE TEMPERATURE (°C) 5567 G23 –20 25 22 Conversion Gain, IIP3, NF and RF Input P1dB vs Temperature TC = 25°C RF-LO ISO 28 5567 G21 RF Isolation and LO Leakage vs Frequency 70 850MHz Conversion Gain, IIP3 and NF vs Supply Voltage SSB NF (dB) 28 26 IIP3 24 22 20 HIGH SIDE LO 18 TC = 25°C 16 14 NF 12 10 8 6 4 GC 2 0 700 750 800 850 900 RF FREQUENCY (MHz) 850MHz Conversion Gain, IIP3 and NF vs LO Power GC (dB), IIP3 (dBm), SSB NF (dB) GC (dB), IIP3 (dBm), SSB NF (dB) Conversion Gain, IIP3 and NF vs RF Frequency 9 12 5567 G27 TC = 25°C RF = 850MHz –65 PRF = –6dBm LO = 1003MHz –70 2LO-2RF (RF = 926.5MHz) –75 –80 3LO-3RF (RF = 952MHz) –85 –90 –6 –4 –2 0 2 LO INPUT POWER (dBm) 4 6 5567 G28 5567f 7 LTC5567 Typical Performance Characteristics 400MHz to 500MHz application. Test circuit shown in Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz unless otherwise noted. 450MHz Conversion Gain, IIP3 and NF vs LO Power RF Isolation and LO Leakage vs RF and LO Frequency 27 70 GC (dB), IIP3 (dBm), NF (dB) 24 IIP3 21 HIGH SIDE LO 18 NF 15 60 12 9 GC 0 –2 0 2 LO INPUT POWER (dBm) 4 5567 G29 6 0 –10 –20 55 –30 LO-IF 50 –40 45 –50 –60 LO-RF 35 –4 –6 TC = 25°C RF-LO 40 6 3 500 RF-IF 65 TC = 85°C TC = 25°C TC = –40°C RF ISOLATION (dB) 27 25 IIP3 23 21 HIGH SIDE LO 19 TC = 25°C 17 15 NF 13 11 9 7 5 3 GC 1 425 450 475 400 RF FREQUENCY (MHz) LO LEAKAGE (dBm) GC (dB), IIP3 (dBm), SSB NF (dB) Conversion Gain, IIP3 and NF vs RF Frequency –70 30 400 450 –80 700 500 600 650 550 RF/LO FREQUENCY (MHz) 5567 G30 5567 G31 3GHz to 4GHz application. Test circuit shown in Figure 1. 3500MHz Conversion Gain, IIP3 and NF vs LO Power 27 24 LOW SIDE LO TC = 25°C NF GC 3.2 3.8 3.4 3.6 RF FREQUENCY (GHz) 18 RF = 3.5GHz LOW SIDE LO NF 15 12 TC = 85°C TC = 25°C TC = –40°C 9 6 GC 3 0 4.0 24 IIP3 21 –6 –4 –20 20 10 TC = 25°C 0 TC = 25°C –10 –35 –40 LO-IF –45 –50 –20 RF-IF –30 3.0 3.2 3.8 3.4 3.6 RF FREQUENCY (GHz) LO-RF –55 4.0 5567 G35 –60 2.6 2.9 3.2 3.5 3.8 LO FREQUENCY (GHz) 4.1 18 RF = 3.5GHz LOW SIDE LO NF 15 12 TC = 85°C TC = 25°C TC = –40°C 9 6 GC 3 3.0 3.1 3.2 3.3 3.4 VCC SUPPLY VOLTAGE 3.5 3.6 5567 G34 Conversion Gain, IIP3 and RF Input P1dB vs Temperature –30 30 IIP3 21 0 6 –25 RF-LO LO LEAKAGE (dBm) RF ISOLATION (dB) 4 LO leakage vs LO Frequency 60 40 –2 0 2 LO INPUT POWER (dBm) 5567 G33 RF Isolation vs RF Frequency 50 GC (dB), IIP3 (dBm), SSB NF (dB) IIP3 3.0 27 5567 G32 –40 3500MHz Conversion Gain, IIP3 and NF vs Supply Voltage GC (dB), IIP3 (dBm), P1dB (dBm), SSBNF (dB) 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 GC (dB), IIP3 (dBm), SSB NF (dB) GC (dB), IIP3 (dBm), SSB NF (dB) Conversion Gain, IIP3 and NF vs RF Frequency 4.4 5567 G36 28 26 IIP3 24 22 RF = 3500MHz 20 LOW SIDE LO 18 16 14 NF 12 10 P1dB 8 6 4 GC 2 0 –15 45 –45 15 105 75 CASE TEMPERATURE (°C) 5567 G37 5567f 8 LTC5567 Pin Functions TEMP (Pin 1): Temperature Sensing Diode. This pin is connected to the anode of a diode that may be used to measure the die temperature, by forcing a current and measuring the voltage. VCC (Pin 6): Power Supply Pin. This pin must be connected to a regulated 3.3V supply, with a bypass capacitor located close to the pin. Typical DC current consumption is 34mA. NC (Pins 7, 14): These pins are not connected internally. They can be left floating, connected to ground, or to VCC. GND (Pins 2, 4, 9, 12, 13, 16, Exposed Pad Pin 17): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. IADJ (Pin 8): This pin allows adjustment of the mixer DC supply current. Typical open-circuit DC voltage is 2.2V. This pin should be left floating for optimum performance. IF+/IF– (Pin 11/Pin 10): Open-Collector Differential IF Output. These pins must be connected to the VCC supply through impedance-matching inductors or a transformer center tap. Typical DC current consumption is 27.5mA into each pin. RF (Pin 3): Single-Ended RF Input. This pin is internally connected to the primary winding of the integrated RF transformer, which has low DC resistance to ground. A series DC-blocking capacitor must be used if the RF source has DC voltage present. The RF input is 50Ω impedance matched from 1.4GHz to 3GHz, as long as the mixer is enabled. Operation down to 300MHz or up to 4GHz is possible with external matching. LO (Pin 15): Single-Ended Local Oscillator Input. This pin is internally connected to the primary winding of an integrated transformer, which has low DC resistance to ground. A series DC-blocking capacitor must be used to avoid damage to the internal transformer. This input is 50Ω impedance matched from 1GHz to 4GHz, even when the IC is disabled. Operation down to 300MHz or up to 4.5GHz is possible with external matching. EN (Pin 5): Enable Pin. When the input voltage is greater than 2.5V, the mixer is enabled. When the input voltage is less than 0.3V, the mixer is disabled. Typical input current is less than 30µA. This pin has an internal pull-down resistor. Block Diagram 16 15 LO GND 1 14 13 NC GND TEMP GND 12 2 GND LO IF+ 11 RF 3 IF– RF 4 GND BIAS 17 GND (EXPOSED PAD) VCC EN 5 6 10 GND 9 NC 7 IADJ 8 5567 BD 5567f 9 LTC5567 test circuit DC1861A EVALUATION BOARD LAYER STACK-UP (NELCO N4000-13) 0.062" RF GND BIAS GND 0.015" 0.015" C6 LOIN 50Ω C5 16 15 14 13 GND LO NC GND GND 12 1 TEMP C7 LTC5567 IF+ 11 2 GND RFIN 50Ω C3 C2 R1 L1 R2 L2 T1 IFOUT 50Ω 17 GND L3 3 RF R4 0Ω IF– 10 C4 C8 4 GND GND 9 EN VCC NC IADJ 5 6 7 8 EN C1 C9 VCC 3.3V 89mA 5567 F01 APPLICATION RF (MHz) LO 300 to 400 HS 400 to 500 HS 700 to 1000 HS 1400 to 3000 LS, HS 3000 to 4000 LS LS = Low side, HS = High side REF DES C1, C2 C3 - C6 C7, C8 R1, R2 VALUE 10nF See Table 330pF 3.01k, 1% SIZE 0402 0402 0402 0402 C3 120pF 120pF 120pF 2.7pF 3.9pF VENDOR AVX AVX AVX RF MATCH C4 18pF 12pF 4.7pF — 0.7pF REF DES C9 T1 L1, L2 L3 L3 2.2nH 2nH — — — VALUE 1µF 4:1 300nH See Table LO MATCH C5 C6 47pF 15pF 27pF 10pF 6.8pF 2.7pF 3.9pF — 3.9pF — SIZE 0603 — 0603 0402 VENDOR AVX Mini-Circuits TC8-1-10LN+ Coilcraft 0603HP Coilcraft 0402HP Figure 1. Standard Downmixer Test Circuit Schematic (153MHz Bandpass IF Matching) 5567f 10 LTC5567 Applications Information Introduction RF Input The LTC5567 incorporates a high linearity double-balanced active mixer, a high-speed limiting LO buffer and bias/ enable circuits. See the Pin Functions and Block Diagram sections for a description of each pin. A test circuit schematic showing all external components required for the data sheet specified performance is shown in Figure 1. A few additional components may be used to modify the DC supply current or frequency response, which will be discussed in the following sections. A simplified schematic of the mixer’s RF input is shown in Figure 3. As shown, one terminal of the integrated RF transformer’s primary winding is connected to Pin 3, while the other terminal is DC-grounded internally. For this reason, a series DC-blocking capacitor (C3) is needed if the RF source has DC voltage present. The DC resistance of the primary winding is approximately 4Ω. The secondary winding of the RF transformer is internally connected to the RF buffer amplifier. The LO and RF inputs are single ended. The IF output is differential. Low side or high side LO injection may be used. The test circuit, shown in Figure 1, utilizes bandpass IF output matching and an 8:1 IF transformer to realize a 50Ω single-ended IF output. The evaluation board layout is shown in Figure 2. The RF input is 50Ω matched from 1400MHz to 3000MHz with a single 2.7pF series capacitor on the input. Matching to RF frequencies above or below this frequency range is easily accomplished by adding shunt capacitor C4, shown in Figure 3. For RF frequencies below 500MHz, series Figure 2. Evaluation Board Layout 5567f 11 LTC5567 Applications Information 0 LTC5567 C3 L3 3 –5 RF RF BUFFER C4 5567 F03 Figure 3. RF Input Schematic inductor L3 is also needed. The evaluation board does not have provisions for L3, so the RF input trace needs to be cut to install it in series. The RF input matching element values for each application are tabulated in Figure 1. Measured RF input return losses are shown in Figure 4. The RF input impedance and input reflection coefficient, versus frequency are listed in Table 1. RETURN LOSS (dB) RFIN –10 –15 –20 –25 –30 –35 0.2 TC = 25°C 0.7 1.2 1.7 2.2 2.7 3.2 FREQUENCY (GHz) 3.7 4.2 4.7 5567 F04 400MHz TO 500MHz APP. 700MHz TO 1000MHz APP. 1400MHz TO 3000MHz APP. 3GHz TO 4GHz APP. Figure 4. RF Input Return Loss Table 1. RF Input Impedance and S11 (At Pin 3, No External Matching, Mixer Enabled) LTC5567 S11 LO C5 LOIN FREQUENCY (MHz) INPUT IMPEDANCE MAG ANGLE 200 6.0 + j8.0 0.79 161.6 350 9.0 + j11.9 0.71 152.1 450 11.0 + j14.1 0.66 147.0 575 13.3 + j15.9 0.61 142.5 700 15.4 + j17.5 0.57 138.1 900 18.5 + j20.0 0.52 131.1 LO Input 1100 21.7 + j22.0 0.48 125.1 1400 27.4 + j24.2 0.41 115.6 1700 33.7 + j24.2 0.33 107.9 1950 39.1 + j21.6 0.26 103.1 2200 42.6 + j16.1 0.19 104.9 2450 42.6 + j9.9 0.13 120.8 2700 38.8 + j4.3 0.14 155.9 3000 31.9 + j2.3 0.22 171.3 3300 24.8 + j4.0 0.34 167.9 3600 19.5 + j8.2 0.45 158.3 3900 15.4 + j13.4 0.56 147.3 A simplified schematic of the LO input, with external components is shown in Figure 5. Similar to the RF input, the integrated LO transformer’s primary winding is DC‑grounded internally, and therefore requires an external DC-blocking capacitor. Capacitor C5 provides the necessary DC-blocking, and optimizes the LO input match over the 1GHz to 4GHz frequency range. The nominal LO input level is 0dBm although the limiting amplifiers will deliver excellent performance over a ±5dB input power range. LO input power greater than +6dBm may cause conduction of the internal ESD diodes. 4200 12.6 + j18.7 0.64 136.8 4500 10.9 + j24.2 0.70 126.6 15 LO BUFFER C6 5569 F05 Figure 5. LO Input Schematic To optimize the LO input match for frequencies below 1GHz, the value of C5 is increased and shunt capacitor C6 is added. A summary of values for C5 and C6, versus LO 5567f 12 LTC5567 Applications Information frequency range is listed in Table 2. Measured LO input return losses are shown in Figure 6. Finally, LO input impedance and input reflection coefficient, versus frequency is shown in Table 3. Table 2. LO Input Matching Values vs LO Frequency Range FREQUENCY (MHz) C5 (pF) C6 (pF) 285 to 392 330 33 338 to 415 330 22 415 to 505 56 18 525 to 635 27 10 645 to 803 15 7.5 800 to 1150 6.8 2.7 1000 to 4000 3.9 — 3000 to 4500 1.8 0.2 0 INPUT IMPEDANCE MAG ANGLE 350 5.2 + j14.9 0.83 146.5 400 6.0 + j17.3 0.81 141.7 450 6.6 + j19.5 0.80 137.0 500 7.2 + j21.5 0.78 132.7 600 9.1 + j26.5 0.75 123.6 800 15.1 + j35.7 0.67 106.0 1000 24.9 + j43.6 0.58 89.5 1500 67.5 + j36.4 0.33 47.1 2000 61.7 – j4.2 0.11 –18.3 2500 40.3 – j7.1 0.13 –139.4 3000 31.7 + j1.8 0.23 173.1 3500 29.8 + j12.3 0.29 140.0 4000 31.5 + j22.9 0.35 113.2 4500 36.0 + j32.4 0.38 92.8 0 –10 TC = 25°C C5 = 3.9pF –2 –4 –15 –20 –25 0.2 S11 FREQUENCY (MHz) TC = 25°C 0.7 1.2 1.7 2.2 2.7 3.2 FREQUENCY (GHz) 3.7 4.2 4.7 RETURN LOSS (dB) RETURN LOSS (dB) –5 Table 3. LO Input Impedance and S11 (At Pin 15, No External Matching, Mixer Enabled) –8 –10 –12 –14 5567 F06 C5 = 27pF, C6 = 10pF C5 = 6.8pF, C6 = 2.7pF C5 = 3.9pF C5 = 1.8pF, C6 = 0.2pF DISABLED ENABLED –16 –18 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7 FREQUENCY (GHz) Figure 6. LO Input Return Loss The LO buffers have been designed such that the LO input impedance does not change significantly when the IC is disabled. This feature only requires that supply voltage is applied. The actual performance of this feature is shown in Figure 7. As shown, the LO input return loss is better than 10dB over the 1GHz to 4GHz frequency range when the IC is enabled or disabled. –6 5567 F07 Figure 7. LO Input Return Loss—Mixer Enabled and Disabled IF Output The IF output schematic with external matching components is shown in Figure 8. As shown, the output is differential open collector. Each IF output pin must be biased at the supply voltage (VCC), which is applied through the external matching inductors (L1 and L2) shown in Figure 8. Each pin draws approximately 27.5mA of DC supply current (55mA total). 5567f 13 LTC5567 Applications Information The differential IF output impedance can be modeled as a frequency-dependent parallel R-C circuit, using the values listed in Table 4. This data is referenced to the package pins (with no external components) and includes the effects of the IC and package parasitics. Resistors R1 and R2 are used to reduce the output resistance, which increases the IF bandwidth and input P1dB, but reduces the conversion gain. The standard downmixer test circuit shown in Figure 1 uses bandpass matching and 3.01k resistors to realize a 400Ω differential output, followed by an 8:1 transformer to get a 50Ω single-ended output. C7 and C8 are 330pF DC-blocking capacitors. The values of L1 and L2 are calculated to resonate with the internal IF capacitance (CIF) at the desired IF center frequency, using the following equation: 1 (2 • π • fIF )2 • 2 •CIF For IF frequencies below 100MHz, the inductor values become unreasonably high and the highpass impedance matching network described in a later section is preferred, due to its lower inductor values. Table 4. IF Output Impedance and Bandpass Matching Element Values vs IF Frequency. DIFFERENTIAL IF IF FREQUENCY OUTPUT IMPEDANCE (MHz) (RIF || CIF) 1dB IF FREQUENCY RANGE (MHz) 532Ω||1.0pF 390nH 65 to 327 153 532Ω||1.0pF 300nH 84 to 350 190 530Ω ||1.0pF 210nH 107 to 375 250 525Ω ||1.0pF 120nH 160 to 415 380 511Ω ||1.0pF 51nH 288 to 520 500 500Ω ||1.03pF 1000 454Ω ||1.07pF 1500 364Ω ||1.12pF 2000 268Ω ||1.24pF 2500 209Ω ||1.41pF 140 T1 IFOUT 50Ω C7 0 L1 L2 R1 R2 –5 C8 VCC C2 10nF 11 IF + IF MATCHING USING TC8-1 L1, L2 LTC5567 10 IF– RETURN LOSS (dB) L1, L2 = measured 1dB (conversion gain) IF frequency range for each inductor value is shown. The inductor values listed are less than the ideal calculated values due to the additional capacitance of the 8:1 transformer. For differential IF output applications where the 8:1 transformer is eliminated, the ideal calculated values should be used. Measured IF output return losses are shown in Figure 9. –10 390nH 300nH 210nH 120nH 51nH –15 –20 –25 VCC –30 T1 = TC8-1 R1, R2 = 3.01k C7, C8 = 330pF 50 100 150 200 250 300 350 400 450 500 550 5567 F09 FREQUENCY (MHz) Figure 9. IF Output Return Loss—400Ω Bandpass Matching with 8:1 Transformer 5567 F08 Figure 8. IF Output Schematic with External Matching Table 4 summarizes the optimum IF matching inductor values, versus IF center frequency, to be used in the standard downmixer test circuit shown in Figure 1. The Wideband Differential IF Output Wide IF bandwidth and high input 1dB compression are obtained by reducing the IF output resistance with resistors R1 and R2. This will reduce the mixer’s conversion gain, but will not degrade the IIP3 or noise figure. 5567f 14 LTC5567 Applications Information The IF matching shown in Figure 10 uses 249Ω resistors and 390nH supply chokes to produce a wideband 200Ω differential output. This differential output is suitable for driving a wideband differential amplifier, filter, or a wideband 4:1 transformer. The evaluation board layout allows the removal of the IF transformer to evaluate the mixer performance with a differential output. Table 5. IF Bandwidth and 1dB Compression for 400Ω and 200Ω Differential IF Output Resistance (RF = 1.69 to 2.24GHz, LO = 1.65GHz, VCC = 3.3V, TC = 25°C, L1, L2 = 390nH) The complete test circuit, shown in Figure 11, uses resistive impedance matching attenuators (L-pads) on the evaluation board to transform each 100Ω IF output to 50Ω. An external 0°/180° power combiner is then used to convert the 100Ω differential output to 50Ω single-ended, to facilitate measurement. Measured voltage conversion gain, IIP3 and SSB noise figure, at the 200Ω differential output are plotted in Figure 12. Voltage gain, rather than power gain, is plotted to emphasize the voltage gain due to the 200Ω output. As shown, the conversion gain is flat within 1dB over the 45MHz to 590MHz IF output frequency range. ROUT (Ω) R1, R2 (Ω) P1dB (dBm) 1dB (CONVERSION GAIN) IF FREQUENCY RANGE 400 3.01k 10.1 65MHz to 327MHz 200 249 13.0 45MHz to 580MHz Table 5 compares the IF bandwidth and 1dB compression for the standard 400Ω and wideband 200Ω IF output resistances. As shown, the 200Ω matching doubles the IF bandwidth, and increases the RF input P1dB to +13dBm. IF+ GV (dB), IIP3 (dBm), SSB NF (dB) 249Ω 26 200Ω LOAD 330pF LTC5567 28 100Ω 390nH VCC IF– 249Ω LO 330pF LO 249Ω 10 8 GV 40 90 140 190 240 290 340 390 440 490 540 590 IF FREQUENCY (MHz) 69.8Ω 390nH 249Ω IF– BIAS VCC 10nF IF+ 50Ω 71.5Ω IFOUT 200Ω RF EN NF 12 IF+ RF EN 14 L-PADS AND 180° COMBINER FOR 50Ω SINGLE-ENDED MEASUREMENT 2.7pF RF 1.69GHz TO 2.24GHz 16 5567 F12 3.9pF LTC5567 18 RF = 1.69GHz TO 2.24GHz LO = 1.65GHz ZRF = 50Ω ZIF = 200Ω DIFFERENTIAL TC = 25°C Figure 12. Voltage Conversion Gain, IIP3 and NF vs IF Output Frequency for Wideband 200Ω Differential IF Figure 10. Wideband 200Ω Differential Output LO 1.65GHz 0dBm 20 4 5567 F10 330pF 22 6 100Ω 390nH IIP3 24 IADJ 390nH 330pF 10nF 1MHz TO 500MHz COMBINER 0° OUT IF– 69.8Ω 50Ω 180° IFOUT 50Ω 71.5Ω 3.3V 89mA 5567 F11 Figure 11. Test Circuit for Wideband 200Ω Differential Output 5567f 15 LTC5567 Applications Information Highpass IF Matching By simply changing component values, the bandpass IF output matching network can be changed to a highpass impedance transforming network. This matching network will drive a lower impedance differential load (or transformer), like the 200Ω wideband bandpass matching previously described, while delivering higher conversion gain, similar to the 400Ω bandpass matching. The highpass matching network will have less IF bandwidth than the bandpass matching. It also uses smaller inductance values; an advantage when designing for IF center frequencies well below 100MHz. Referring to the small-signal output network schematic in Figure 13, the reactive matching element values (L1, L2, C7 and C8) are calculated using the following equations. The source resistance (RS) is the parallel combination of external resistors R1 + R2 and the internal IF resistance, RIF taken from Table 4. The differential load resistance (RL) is typically 200Ω, but can be less. CIF, the IF output capacitance, is taken from Table 4. Choosing RS in the 380Ω to 450Ω range will yield power conversion gains around 2dB. (R1 = R2) Q = √(RS/RL–1)(RS > RL) YL = Q/RS + (ωIF • CIF) L1, L2 = 1/(2 • YL • ωIF) C7, C8 = 2/(Q • RL • ωIF) C7 LTC5567 IF+ 11 RIF R1 L1 10 IF– R2 L2 RL C8 5567 F13 Figure 13. IF Output Circuit for Highpass Matching Element Value Calculations To demonstrate the highpass impedance transformer output matching, these equations were used to calculate the element values for a 153MHz IF frequency and 200Ω differential load resistance. The output matching on the 16 C7, C8 = 10pF R1, R2 = 1.1k Measured voltage conversion gain for the highpass and wideband bandpass methods are shown in Figure 14, for comparison. Both circuits are driving a 200Ω differential load, but the highpass version delivers 2.3dB of additional gain at 153MHz. Measured performance for both circuits is summarized in Table 6. As shown, the highpass method has less than half the IF bandwidth, and 3dB lower P1dB. Table 6. Measured Performance Comparison for Highpass and Wideband IF Matching (RF = 1950MHz, IF = 153MHz, Low Side LO). IF MATCHING GV (dB) IIP3 (dBm) P1dB (dBm) 1dB (CONVERSION GAIN) IF FREQUENCY RANGE Highpass 8.5 26.9 10.0 110MHz to 320MHz Wideband 6.2 26.9 13.0 45MHz to 590MHz 9 8 7 6 5 4 3 2 1 0 –1 –2 –3 –4 –5 153MHz HIGHPASS WIDEBAND BANDPASS RF = 1.7GHz TO 2.2GHz LO = 1.65GHz AT 0dBm ZRF = 50Ω ZIF = 200Ω DIFFERENTIAL TC = 25°C 50 100 150 200 250 300 350 400 450 500 550 IF FREQUENCY (MHz) 5567 F14 VCC CIF L1, L2 = 150nH VOLTAGE CONVERSION GAIN (dB) RS = RIF || 2·R1 wideband test circuit, shown in Figure 11, was modified with the following new element values, and re-tested. Figure 14. Voltage Conversion Gain versus IF Frequency for 153MHz Highpass and Wideband Bandpass IF Matching Networks Mixer Bias Current Reduction The IADJ pin (Pin 8) is available for reducing the mixer core DC current consumption at the expense of linearity and P1dB. For the highest performance, this pin should be left open circuit. As shown in Figure 15, an internal bias circuit produces a 3mA reference current for the mixer core. If a resistor is connected to Pin 8, as shown 5567f LTC5567 Applications Information ICC R3 L1 8 L2 11 IADJ IF+ VCC 34mA 10 6 IF– 6 LTC5567 VCC CLAMP 500Ω VCC CMOS VCC EN 4 EN 300k 3mA BIAS 5567 F16 55mA BIAS Figure 16. Enable Input Circuit LTC5567 The EN pin has an internal 300k pull-down resistor. Therefore, the mixer will be disabled with the enable pin left floating. 5567 F12 Figure 15. IADJ Interface Supply Voltage Ramping in Figure 15, a portion of the reference current can be shunted to ground, resulting in reduced mixer core current. For example, R3 = 1k will shunt away 1mA from Pin 8 and reduce the mixer core current by 33%. The nominal, open-circuit DC voltage at the IADJ pin is 2.2V. Table 7 lists DC supply current and RF performance at 1950MHz for various values of R3. Fast ramping of the supply voltage can cause a current glitch in the internal ESD clamp circuits connected to the VCC pin. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the 4.0V maximum rating. A supply voltage ramp time greater than 1ms is recommended. Spurious Output Levels Table 7. Mixer Performance with Reduced Current (RF = 1950MHz, Low Side LO, IF = 153MHz) R3 (Ω) ICC (mA) GC (dB) IIP3 (dBm) P1dB (dBm) NF (dB) Open 89.0 1.9 26.9 10.2 11.8 10k 84.6 1.9 25.7 10.2 11.5 1k 70.4 1.6 21.4 10.1 10.5 330 62.9 1.3 19.3 9.5 10.3 100 58.3 1.0 17.9 8.5 10.1 Enable Interface Figure 16 shows a simplified schematic of the enable interface. To enable the mixer, the EN voltage must be higher than 2.5V. If the enable function is not required, the pin should be connected directly to VCC. The voltage at the EN pin should never exceed the power supply voltage (VCC) by more than 0.3V. If this should occur, the supply current could be sourced through the ESD diode, potentially damaging the IC. Mixer spurious output levels versus harmonics of the RF and LO are tabulated in Table 8. The spur levels were measured on a standard evaluation board using the test circuit shown in Figure 1. The spur frequencies can be calculated using the following equation: fSPUR = (M • fRF) – (N • fLO) Table 8. IF Output Spur Levels (dBm) (RF = 1950MHz, PRF = –2dBm, PIF = 0dBm at 153MHz, Low Side LO, PLO = 0dBm, VCC = 3.3V, TC = 25°C) 0 1 –43 0 –56 –81 * * * 0 1 –30 2 –60 * M 3 4 * 5 * 6 7 *Less than –90dBc 2 –24 –56 –67 –89 –73 * * 3 –47 –57 –68 * * * * * N 4 –30 –59 –72 * * * * * 5 –57 –37 –78 * * * * 6 –46 –69 –78 * * * * 7 –64 –47 –85 * * * * 8 –50 –78 –87 * –90 * * * 9 –81 –58 * * * * * 5567f 17 LTC5567 Typical Applications 300MHz RF Application with 70MHz Highpass IF Matching 22pF LOIN 50Ω 370MHz ±40MHz 330pF LO LTC5567 120pF LO 3.3nH 22pF EN RF 390nH 1.1k 390nH IF– BIAS EN VCC Conversion Gain, IIP3 and NF vs RF Frequency IADJ 22pF 10nF 3.3V 89mA 5567 TA03a RF Isolation and LO leakage vs RF and LO Frequency RF, LO and IF Port Return Losses 70 IIP3 NF GC 300 320 340 360 RF FREQUENCY (MHz) 65 55 50 400 5567 TA03b 0 –20 –30 RF-IF LO-IF –40 45 –50 40 –60 30 260 5 –10 RF-LO LO-RF 35 380 10 0 60 RF ISOLATION (dB) HIGH SIDE LO PLO = 0dBm IF = 70MHz TC = 25°C 280 IFOUT 50Ω 70MHz NOM TYPICAL PERFORMANCE (RF = 300MHz, IF = 70MHz, LO = 370MHz AT 0dBm) GC = 0.6dB IIP3 = 26.3dBm SSB NF = 13.3dB INPUT P1dB = 10.9dBm 300 380 340 420 RF/LO FREQUENCY (MHz) LO LEAKAGE (dBm) GC (dB), IIP3 (dBm), NF (dB) 1.1k RF 10nF 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 –2 260 TC4-1W 4:1 IF+ RETURN LOSS (dB) RFIN 50Ω 300MHz ±40MHz 22pF –5 –10 IF –15 –20 LO –25 RF –30 –70 –35 –80 460 –40 50 100 150 200 250 300 350 400 450 5567 TA03d FREQUENCY (MHz) 5567 TA03c 5567f 18 LTC5567 Package Description Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. UF Package 16-Lead Plastic QFN (4mm × 4mm) (Reference LTC DWG # 05-08-1692 Rev Ø) 0.72 ±0.05 4.35 ±0.05 2.15 ±0.05 2.90 ±0.05 (4 SIDES) PACKAGE OUTLINE 0.30 ±0.05 0.65 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS BOTTOM VIEW—EXPOSED PAD 4.00 ±0.10 (4 SIDES) 0.75 ±0.05 R = 0.115 TYP 15 PIN 1 NOTCH R = 0.20 TYP OR 0.35 × 45° CHAMFER 16 0.55 ±0.20 PIN 1 TOP MARK (NOTE 6) 1 2.15 ±0.10 (4-SIDES) 2 (UF16) QFN 10-04 0.200 REF 0.00 – 0.05 0.30 ±0.05 0.65 BSC NOTE: 1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 5567f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 19 LTC5567 Typical Application CATV Downconverting Mixer with 1GHz IF Bandwidth LOIN 1200MHz TO 2150MHz 50Ω 15 14 LO NC 13 GND GND 12 IF+ 11 1 TEMP 30 24 2 GND MABACT0066 T1 68nH 17 GND 10pF 68nH 10nF 3 RF 1.8pF 1nF 402Ω 4 GND IF– 10 EN VCC NC 5 6 7 1nF 18 15 12 9 8 EN 220nF 1µF 10V –30 –40 –50 –60 2RF-LO 6 3 –3 15nH –20 RF = 1150MHz PRF = –6dBm HIGH SIDE LO PLO = 0dBm TC = 25°C 21 0 –80 –100 –110 1000 200 400 600 800 IF OUTPUT FREQUENCY (MHz) VCC 3.0V TO 3.6V –70 –90 GC 0 IADJ GND 9 10nF IFOUT 50MHz TO 1000MHz 50Ω –10 2RF-LO SPUR (dBc) 402Ω 0 OIP3 27 15nH GC (dB), OIP3 (dBm) 16 GND LTC5567 RFIN 1150MHz 50Ω Conversion Gain, OIP3 and 2RF-LO Spur vs IF Output Frequency 3.9pF 5567 TA02b 5567 TA02a Related Parts PART NUMBER Infrastructure LT®5527 LT5557 LTC559x DESCRIPTION COMMENTS 400MHz to 3.7GHz, 5V Downconverting Mixer 400MHz to 3.8GHz, 3.3V Downconverting Mixer 600MHz to 4.5GHz Dual Downconverting Mixer Family LTC5569 300MHz to 4GHz, 3.3V Dual Active Downconverting Mixer LTC554x 600MHz to 4GHz, 5V Downconverting Mixer Family LTC6400-X 300MHz Low Distortion IF Amp/ADC Driver LTC6416 2GHz 16-Bit ADC Buffer LTC6412 31dB Linear Analog VGA LT5554 Ultralow Distort IF Digital VGA LT5578 400MHz to 2.7GHz Upconverting Mixer LT5579 1.5GHz to 3.8GHz Upconverting Mixer LTC5588-1 200MHz to 6GHz I/Q Modulator LTC5585 700MHz to 3GHz Wideband I/Q Demodulator RF Power Detectors LT5538 40MHz to 3.8GHz Log Detector LT5581 6GHz Low Power RMS Detector LTC5582 40MHz to 10GHz RMS Detector LTC5583 Dual 6GHz RMS Power Detector ADCs LTC2208 16-Bit, 130Msps ADC LTC2153-14 14-Bit, 310Msps Low Power ADC 2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply 2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply 8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply 2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply 8dBm Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/O 40dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports 31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor >530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation 78dBFS Noise Floor, >83dB SFDR at 250MHz 68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption 5567f 20 Linear Technology Corporation LT 0412 • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LINEAR TECHNOLOGY CORPORATION 2012