LINER LTC2153-14

LTC5567
300MHz to 4GHz Active
Downconverting Mixer with
Wideband IF
Features
Description
n
n
n
n
n
n
n
n
n
The LTC®5567 is optimized for RF downconverting mixer
applications that require wide IF bandwidth. The part is
also a pin-compatible upgrade to the LT5557 active mixer,
offering higher linearity and 1dB compression, wider
bandwidth, and lower output spurious levels. Integrated
RF and LO transformers and LO buffer amplifiers allow a
very compact solution.
n
n
High IIP3: +26.9dBm at 1950MHz
1.9dB Conversion Gain
Low Noise Figure: 11.8dB at 1950MHz
16.5dB NF Under 5dBm Blocking
Low Power: 294mW
Wide IF Frequency Range Up to 2.5GHz
LO Input 50Ω Matched when Shutdown
–40°C to 105°C Operation (TC)
Very Small Solution Size
Pin Compatible with LT5557
16-Lead (4mm × 4mm) QFN package
The RF input is 50Ω matched from 1.4GHz to 3GHz, and
easily matched for higher or lower RF frequencies with
simple external matching. The LO input is 50Ω matched
from 1GHz to 4GHz, even when the IC is disabled. The LO
input is easily matched for higher or lower frequencies, as
low as 300MHz, with simple external matching. The low
capacitance differential IF output is usable up to 2.5GHz.
Applications
Wireless Infrastructure Receivers
DPD Observation Receivers
n CATV Infrastructure
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
n
Typical Application
DPD Observation Receiver Mixer with 500MHz IF Bandwidth and
+13dBm Input P1dB into 200Ω Load
LO
1.65GHz
0dBm
28
3.9pF
26
LO
200Ω LOAD
330pF
2.7pF
LO
IF+
249Ω
390nH
100Ω
IF
AMP
RF
RF
EN
EN
249Ω
IF–
BIAS
VCC
10nF
IADJ
390nH
330pF
10nF
3.3V
89mA
100Ω
5567 TA01a
GV (dB), IIP3 (dBm), SSB NF (dB)
LTC5567
RF
1.69GHz
TO
2.24GHz
Voltage Conversion Gain, IIP3
and NF vs IF Frequency
IIP3
24
22
20
18
16
14
12
RF = 1.69GHz TO 2.24GHz
LO = 1.65GHz
ZRF = 50Ω
ZIF = 200Ω DIFFERENTIAL
TC = 25°C
NF
10
8
6
4
GV
40 90 140 190 240 290 340 390 440 490 540 590
IF FREQUENCY (MHz)
5567 TA01b
5567f
1
LTC5567
Pin Configuration
Supply Voltage (VCC, IF+, IF –)...................................4.0V
Enable Input Voltage (EN).................–0.3V to VCC + 0.3V
LO Input Power (300MHz to 4.5GHz).................. +10dBm
LO Input DC Voltage................................................ ±0.1V
RF Input Power (300MHz to 4GHz)..................... +15dBm
RF Input DC Voltage................................................ ±0.1V
TEMP Monitor Input Current...................................10mA
Operating Temperature Range (TC)......... –40°C to 105°C
Junction Temperature (TJ)..................................... 150°C
Storage Temperature Range................... –65°C to 150°C
GND
NC
LO
GND
TOP VIEW
16 15 14 13
TEMP 1
12 GND
GND 2
11 IF+
17
GND
RF 3
10 IF–
GND 4
5
6
7
8
NC
IADJ
9
EN
(Note 1)
VCC
Absolute Maximum Ratings
GND
UF PACKAGE
16-LEAD (4mm × 4mm) PLASTIC QFN
TJMAX = 150°C, θJC = 8°C/W
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
Order Information
LEAD FREE FINISH
TAPE AND REEL
PART MARKING
PACKAGE DESCRIPTION
CASE TEMPERATURE RANGE
LTC5567IUF#PBF
LTC5567IUF#TRPBF
5567
16-Lead (4mm × 4mm) Plastic QFN
–40°C to 105°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
AC
Electrical Characteristics CC = 3.3V, EN = High. Test circuit shown in Figure 1.
V
(Notes 2, 3, 4)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
RF Input Frequency Range
300 to 4000
MHz
LO Input Frequency Range
300 to 4500
MHz
5 to 2500
MHz
IF Output Frequency Range
External Matching Required
RF Input Return Loss
ZO = 50Ω, 1400MHz to 3000MHz, C3 = 2.7pF
>12
dB
LO Input Return Loss
ZO = 50Ω, 1000MHz to 4000MHz, C5 = 3.9pF
>10
dB
IF Output Impedance
Differential at 153MHz
LO Input Power
532Ω ||1.0pF
–6
0
R||C
6
dBm
RF to LO Isolation
RF = 300MHz to 1000MHz
RF = 1000MHz to 4000MHz
>59
>50
dB
dB
RF to IF Isolation
RF = 300MHz to 700MHz
RF = 700MHz to 1000MHz
RF = 1000MHz to 4000MHz
>47
>40
>28
dB
dB
dB
5567f
2
LTC5567
AC
Electrical Characteristics CC = 3.3V, EN = High. TC = 25°C, PLO = 0dBm, IF = 153MHz,
V
PRF = –6dBm (–6dBm/tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER
CONDITIONS
MIN
TYP
Power Conversion Gain
RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
0.8
1.5
2.0
1.9
1.7
1.2
dB
dB
dB
dB
dB
RF = 1950 ±30MHz, LO = 1797MHz, IF = 153 ±30MHz
±0.09
dB
Conversion Gain vs Temperature
TC = –40°C to 105ºC, RF = 1950MHz, Low Side LO
–0.013
dB/°C
2-Tone Input 3rd Order Intercept (∆fRF = 2MHz)
RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
26.0
26.7
26.9
26.0
26.5
dBm
dBm
dBm
dBm
dBm
67
64
72
71
63
dBm
dBm
dBm
dBm
dBm
Conversion Gain Flatness
24.2
MAX
UNITS
2-Tone Input 2nd Order Intercept
(∆fRF = 154MHz = fIM2)
RF = 450MHz (527MHz/373MHz), LO = 603MHz
RF = 850MHz (927MHz/773MHz), LO = 1003MHz
RF = 1950MHz (2027MHz/1873MHz), LO = 1797MHz
RF = 2550MHz (2627MHz/2473MHz), LO = 2397MHz
RF = 3500MHz (3577MHz/3423MHz), LO = 3347MHz
SSB Noise Figure
RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
12.5
11.4
11.8
12.6
14.6
SSB Noise Figure Under Blocking
RF = 850MHz, High Side LO, 750MHz Blocker at 5dBm
RF = 1950MHz, Low Side LO, 2050MHz Blocker at 5dBm
16.5
16.5
dB
dB
LO to RF Leakage
LO = 300MHz to 700MHz
LO = 700MHz to 2200MHz
LO = 2200MHz to 4500MHz
<–62
<–56
<–47
dBm
dBm
dBm
LO to IF Leakage
LO = 300MHz to 500MHz
LO = 500MHz to 700MHz
LO = 700MHz to 4500MHz
<–43
<–37
<–41
dBm
dBm
dBm
1/2IF Output Spurious Product
(fRF Offset to Produce Spur at fIF = 153MHz)
850MHz: fRF = 926.5MHz at –6dBm, fLO = 1003MHz
1950MHz: fRF = 1873.5MHz at –6dBm, fLO = 1797MHz
–78
–73
dBc
dBc
1/3IF Output Spurious Product
(fRF Offset to Produce Spur at fIF = 153MHz)
850MHz: fRF = 952MHz at –6dBm, fLO = 1003MHz
1950MHz: fRF = 1848MHz at –6dBm, fLO = 1797MHz
–82
–80
dBc
dBc
Input 1dB Compression
RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
11.0
10.9
10.1
10.2
10.4
dBm
dBm
dBm
dBm
dBm
13.5
dB
dB
dB
dB
dB
5567f
3
LTC5567
DC
Electrical Characteristics CC = 3.3V, TC = 25°C. Test circuit shown in Figure 1. (Note 2)
V
PARAMETER
CONDITIONS
Supply Voltage (VCC)
Supply Current
Enabled
Disabled
MIN
TYP
MAX
3.0
3.3
3.6
V
89
105
100
mA
µA
EN = High
EN = Low
UNITS
Enable Logic Input (EN)
Input High Voltage (On)
2.5
V
Input Low Voltage (Off)
–0.3V to VCC + 0.3V
Input Current
–30
0.3
V
100
µA
Turn-On Time
0.6
µs
Turn-Off Time
0.5
µs
2.2
V
Pin Shorted to Ground
1.8
mA
DC Voltage at TJ = 25°C
IIN = 10µA
IIN = 80µA
716
773
mV
mV
Voltage Temperature Coefficient
IIN = 10µA
IIN = 80µA
–1.75
–1.56
Mixer DC Current Adjust (IADJ)
Open-Circuit DC Voltage
Short-Circuit DC Current
Temperature Sensing Diode (TEMP)
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTC5567 is guaranteed functional over the –40°C to 105°C
case temperature range (θJC = 8°C/W).
Note 3: SSB Noise Figure measured with a small-signal noise source,
bandpass filter and 2dB matching pad on RF input, and bandpass filter on
the LO input.
Note 4: Specified performance includes 4:1 IF transformer and evaluation
PCB losses.
Typical DC Performance Characteristics
900
96
850
94
TC = 105°C
TC = 85°C
TC = 55°C
TC = 25°C
TC = –10°C
TC = –40°C
88
86
84
3.0
TEMP DIODE VOLTAGE (mV)
SUPPLY CURRENT (mA)
98
90
EN = High, Test circuit shown in Figure 1.
TEMP Diode Voltage vs Junction
Temperature
Supply Current vs Supply Voltage
92
mV/°C
mV/°C
800
IIN = 80µA
750
700
650
IIN = 10µA
600
550
3.1
3.4
3.3
3.5
3.2
VCC SUPPLY VOLTAGE (V)
3.6
500
–45
5
30
55
80 105
–20
JUNCTION TEMPERATURE (°C)
130
5567 G02
5567 G01
5567f
4
LTC5567
Typical
Performance Characteristics 1400MHz to 3000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz unless otherwise noted.
1950MHz Conversion Gain, IIP3
and NF vs LO Power (Low Side LO)
IIP3
4
24
TC = 25°C 3
22
20
18
14
12
10
2
GC
16
1
NF
1.4 1.6
GC (dB)
IIP3 (dBm), NF (dB)
26
1.8 2.0 2.2 2.4 2.6
RF FREQUENCY (GHz)
0
3.0
2.8
28
26
24 IIP3
22
20
18
16
NF
14
12
10
8
6
4 GC
2
0
–4
–6
TC = 85°C
TC = 25°C
TC = –40°C
0
–2
2
LO INPUT POWER (dBm)
4
6
5567 G03
Conversion Gain, IIP3 and NF
vs RF Frequency (High Side LO)
5
IIP3
4
24
TC = 25°C 3
22
20
18
16
10
1
NF
1.4 1.6
1.8 2.0 2.2 2.4 2.6
RF FREQUENCY (GHz)
2.8
0
3.0
28
26
24
IIP3
22
20
18
16
NF
14
12
10
8
6
4 GC
2
0
–6
–4
TC = 85°C
TC = 25°C
TC = –40°C
–2
2
0
LO INPUT POWER (dBm)
6
4
RF Isolation vs RF Frequency
65
RF-LO
50
45
40
25
1.4
1.6
1.8 2.0 2.2 2.4 2.6
RF FREQUENCY (GHz)
2550MHz Conversion Gain, IIP3
and NF vs LO Power (High Side LO)
28
26
24
22 IIP3
20
18
16 NF
14
12
10
8
6
4 GC
2
0
–4
–6
TC = 85°C
TC = 25°C
TC = –40°C
0
–2
2
LO INPUT POWER (dBm)
4
6
5567 G08
TC = 25°C
LO-IF
–40
–50
LO-RF
–60
RF-IF
30
6
–30
55
35
4
LO Leakage vs LO Frequency
–20
TC = 25°C
60
0
–2
2
LO INPUT POWER (dBm)
5567 G07
5567 G06
LO LEAKAGE (dBm)
12
RF ISOLATION (dB)
14
2
GC
GC (dB)
IIP3 (dBm), NF (dB)
26
GC (dB), IIP3 (dBm), SSB NF (dB)
28
TC = 85°C
TC = 25°C
TC = –40°C
5567 G05
1950MHz Conversion Gain, IIP3
and NF vs LO Power (High Side LO)
30
28
26
24
IIP3
22
20
18
16 NF
14
12
10
8
6
4 GC
2
0
–4
–6
5567 G04
GC (dB), IIP3 (dBm), SSB NF (dB)
28
GC (dB), IIP3 (dBm), SSB NF (dB)
5
30
2550MHz Conversion Gain, IIP3
and NF vs LO Power (Low Side LO)
GC (dB), IIP3 (dBm), SSB NF (dB)
Conversion Gain, IIP3 and NF
vs RF Frequency (Low Side LO)
2.8
3.0
5567 G09
–70
1.2
1.6
2.8
2.0
2.4
LO FREQUENCY (GHz)
3.2
5567 G10
5567f
5
LTC5567
Typical
Performance Characteristics 1400MHz to 3000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz unless otherwise noted.
Single Tone IF Output Power, 2 × 2
and 3 × 3 Spurs vs RF Input Power
2-Tone IF Output Power, IM3 and
IM5 vs RF Input Power
15
10
–20
–30 TC = 25°C
RF1 = 1949MHz
–40
RF2 = 1951MHz
–50 LO = 1797MHz
IM3
–90
–12
–45
–75
2RF-2LO
(RF = 1873.5MHz)
–85
3
6
–15 –12 –9 –6 –3 0
RF INPUT POWER (dBm)
6
3
–9
–3
0
–6
RF INPUT POWER (dBm/TONE)
3RF-3LO
(RF = 1848MHz)
–55
–65
IM5
–80
–35
SSB Noise Figure
vs RF Blocker Level
GC AND SSB NF (dB), IIP3 AND P1dB (dBm)
SSB NF (dB)
TC = 25°C
21 RF = 1950MHz
20 BLOCKER = 2050MHz
LO = 1797MHz
19
PLO = –3dBm
16
PLO = 0dBm
15
14
13
PLO = 3dBm
12
11
–25
–20
–15 –10 –5
0
5
RF BLOCKER POWER (dBm)
10
5567 G14
28
26
24 IIP3
22
20
RF = 1950MHz
LOW SIDE LO
18
16
14
12 SSB NF
10
8 P1dB
6
4 GC
2
0
75
–45
–15
105
45
15
CASE TEMPERATURE (°C)
105°C
25°C
–40°C
25
DISTRIBUTION (%)
DISTRIBUTION (%)
35
30
25
20
15
10
–6
–2
0
2
LO INPUT POWER (dBm)
–4
4
6
5567 G13
Conversion Gain, IIP3 and NF
vs Supply Voltage
30
27
24
IIP3
21
RF = 1950MHz
LOW SIDE LO
18
15
TC = 85°C
TC = 25°C
TC = –40°C
NF
12
9
6
GC
3
0
3.0
3.1
3.3
3.4
3.5
3.2
VCC SUPPLY VOLTAGE (V)
3.6
5567 G16
1950MHz SSB NF Distribution
50
RF = 1950MHz, LOW SIDE LO
105°C
25°C
–40°C
RF = 1950MHz
LOW SIDE LO
45
105°C
25°C
–40°C
40
20
15
10
35
30
25
20
15
10
5
5
0
3RF-3LO
(RF = 1848MHz)
–85
1950MHz IIP3 Distribution
30
RF = 1950MHz, LOW SIDE LO
40
–80
5567 G15
1950MHz Conversion Gain
Distribution
45
–75
–90
12
2RF-2LO
(RF = 1873.5MHz)
–70
Conversion Gain, IIP3, NF and RF
Input P1dB vs Temperature
22
17
TC = 25°C
RF = 1950MHz
–65 PRF = –6dBm
LO = 1797MHz
5567 G12
5567 G11
18
9
GC (dB), IIP3 (dBm), SSB NF (dB)
–70
–15
–25
DISTRIBUTION (%)
–60
IFOUT
(RF = 1950MHz)
–5
RELATIVE SPUR LEVEL (dBc)
IFOUT
–10
–60
TC = 25°C
5 LO = 1797MHz
OUTPUT POWER (dBm)
OUTPUT POWER/TONE (dBm)
0
50
2 × 2 and 3 × 3 Spur Suppression
vs LO Power
5
0.6
1.0
1.4
1.8
2.2
2.6
CONVERSION GAIN (dB)
3.0
5567 G17
0
24.6 25.2 25.8 26.4 27.0 27.6 28.2 28.8
IIP3 (dBm)
5567 G18
0
10.2
10.8
11.4 12.0 12.6 13.2
SSB NOISE FIGURE (dB)
13.8
5567 G19
5567f
6
LTC5567
Typical
Performance Characteristics 700MHz to 1000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz unless otherwise noted.
1000
950
28
26
24 IIP3
22
TC = 85°C
20 RF = 850MHz
TC = 25°C
TC = –40°C
18 HIGH SIDE LO
16
NF
14
12
10
8
6
4 GC
2
0
–4
0
–6
–2
4
6
2
LO INPUT POWER (dBm)
5567 G20
–10
–20
RF-IF
ISO
40
–30
–40
30
LO-IF
20
–50
LO-RF
10
0
700
800
900
1000
1100
RF/LO FREQUENCY (MHz)
–60
GC (dB), NF (dB), IIP3 (dBm), P1dB (dBm)
50
0
LO LEAKAGE (dBm)
RF ISOLATION (dB)
60
–70
1200
IFOUT
–5
TC = 25°C
RF1 = 849MHz
RF2 = 851MHz
LO = 1003MHz
–60
IM3
IM5
GC (dB), IIP3 (dBm), SSB NF (dB)
7
GC
4
3.0
3.1
3.2
3.3
3.4
3.5
VCC SUPPLY VOLTAGE (V)
–15
18
PLO = –3dBm
17
16
PLO = 0dBm
15
13
12
11
–25
105
IFOUT
(RF = 850MHz)
–35
–45
3LO-3RF
(RF = 952MHz)
–65
2LO-2RF
(RF = 926.5MHz)
–70
–75
–85
6
–15 –12 –9 –6 –3 0
3
RF INPUT POWER (dBm)
6
5567 G26
5567 G22
14
–25
–55
3.6
PLO = 3dBm
–20
5
–15 –10 –5
0
RF BLOCKER POWER (dBm)
10
5567 G25
2 × 2 and 3 × 3 Spur Suppression
vs LO Power
–60
–80
–12
–9
–3
0
3
–6
RF INPUT POWER (dBm/TONE)
10
TC = 25°C
21 RF = 850MHz
20 BLOCKER = 750MHz
LO = 1003MHz
19
RELATIVE SPUR LEVEL (dBc)
–50
NF
13
SSB Noise Figure
vs RF Blocker Level
TC = 25°C
5 LO = 1003MHz
OUTPUT POWER (dBm)
OUTPUT POWER/TONE (dBm)
–40
16
1
15
–10
–30
19
Single Tone IF Output Power, 2 × 2
and 3 × 3 Spurs vs RF Input Power
20
0
TC = 85°C
TC = 25°C
TC = –40°C
RF = 850MHz
HIGH SIDE LO
5567 G24
2-Tone IF Output Power, IM3 and
IM5 vs RF Input Power
10
IIP3
22
28
26
IIP3
24
22
20 RF = 850MHz
18 HIGH SIDE LO
16
14
NF
12
10
P1dB
8
6
4
GC
2
0
–15
45
–45
15
75
CASE TEMPERATURE (°C)
5567 G23
–20
25
22
Conversion Gain, IIP3, NF and RF
Input P1dB vs Temperature
TC = 25°C
RF-LO
ISO
28
5567 G21
RF Isolation and LO Leakage vs
Frequency
70
850MHz Conversion Gain,
IIP3 and NF vs Supply Voltage
SSB NF (dB)
28
26
IIP3
24
22
20 HIGH SIDE LO
18 TC = 25°C
16
14
NF
12
10
8
6
4
GC
2
0
700
750
800
850
900
RF FREQUENCY (MHz)
850MHz Conversion Gain,
IIP3 and NF vs LO Power
GC (dB), IIP3 (dBm), SSB NF (dB)
GC (dB), IIP3 (dBm), SSB NF (dB)
Conversion Gain, IIP3 and NF
vs RF Frequency
9
12
5567 G27
TC = 25°C
RF = 850MHz
–65 PRF = –6dBm
LO = 1003MHz
–70
2LO-2RF
(RF = 926.5MHz)
–75
–80
3LO-3RF
(RF = 952MHz)
–85
–90
–6
–4
–2
0
2
LO INPUT POWER (dBm)
4
6
5567 G28
5567f
7
LTC5567
Typical
Performance Characteristics 400MHz to 500MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz unless otherwise noted.
450MHz Conversion Gain,
IIP3 and NF vs LO Power
RF Isolation and LO Leakage
vs RF and LO Frequency
27
70
GC (dB), IIP3 (dBm), NF (dB)
24
IIP3
21
HIGH SIDE LO
18
NF
15
60
12
9
GC
0
–2
0
2
LO INPUT POWER (dBm)
4
5567 G29
6
0
–10
–20
55
–30
LO-IF
50
–40
45
–50
–60
LO-RF
35
–4
–6
TC = 25°C
RF-LO
40
6
3
500
RF-IF
65
TC = 85°C
TC = 25°C
TC = –40°C
RF ISOLATION (dB)
27
25 IIP3
23
21 HIGH SIDE LO
19 TC = 25°C
17
15
NF
13
11
9
7
5
3
GC
1
425
450
475
400
RF FREQUENCY (MHz)
LO LEAKAGE (dBm)
GC (dB), IIP3 (dBm), SSB NF (dB)
Conversion Gain, IIP3 and NF vs
RF Frequency
–70
30
400
450
–80
700
500
600
650
550
RF/LO FREQUENCY (MHz)
5567 G30
5567 G31
3GHz to 4GHz application. Test circuit shown in Figure 1.
3500MHz Conversion Gain,
IIP3 and NF vs LO Power
27
24
LOW SIDE LO
TC = 25°C
NF
GC
3.2
3.8
3.4
3.6
RF FREQUENCY (GHz)
18
RF = 3.5GHz
LOW SIDE LO
NF
15
12
TC = 85°C
TC = 25°C
TC = –40°C
9
6
GC
3
0
4.0
24
IIP3
21
–6
–4
–20
20
10 TC = 25°C
0
TC = 25°C
–10
–35
–40
LO-IF
–45
–50
–20
RF-IF
–30
3.0
3.2
3.8
3.4
3.6
RF FREQUENCY (GHz)
LO-RF
–55
4.0
5567 G35
–60
2.6
2.9
3.2
3.5
3.8
LO FREQUENCY (GHz)
4.1
18
RF = 3.5GHz
LOW SIDE LO
NF
15
12
TC = 85°C
TC = 25°C
TC = –40°C
9
6
GC
3
3.0
3.1
3.2
3.3
3.4
VCC SUPPLY VOLTAGE
3.5
3.6
5567 G34
Conversion Gain, IIP3 and RF
Input P1dB vs Temperature
–30
30
IIP3
21
0
6
–25
RF-LO
LO LEAKAGE (dBm)
RF ISOLATION (dB)
4
LO leakage vs LO Frequency
60
40
–2
0
2
LO INPUT POWER (dBm)
5567 G33
RF Isolation vs RF Frequency
50
GC (dB), IIP3 (dBm), SSB NF (dB)
IIP3
3.0
27
5567 G32
–40
3500MHz Conversion Gain,
IIP3 and NF vs Supply Voltage
GC (dB), IIP3 (dBm), P1dB (dBm), SSBNF (dB)
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
GC (dB), IIP3 (dBm), SSB NF (dB)
GC (dB), IIP3 (dBm), SSB NF (dB)
Conversion Gain, IIP3 and NF
vs RF Frequency
4.4
5567 G36
28
26 IIP3
24
22
RF = 3500MHz
20
LOW SIDE LO
18
16
14 NF
12
10
P1dB
8
6
4
GC
2
0
–15
45
–45
15
105
75
CASE TEMPERATURE (°C)
5567 G37
5567f
8
LTC5567
Pin Functions
TEMP (Pin 1): Temperature Sensing Diode. This pin is
connected to the anode of a diode that may be used to
measure the die temperature, by forcing a current and
measuring the voltage.
VCC (Pin 6): Power Supply Pin. This pin must be connected
to a regulated 3.3V supply, with a bypass capacitor located
close to the pin. Typical DC current consumption is 34mA.
NC (Pins 7, 14): These pins are not connected internally.
They can be left floating, connected to ground, or to VCC.
GND (Pins 2, 4, 9, 12, 13, 16, Exposed Pad Pin 17):
Ground. These pins must be soldered to the RF ground
plane on the circuit board. The exposed pad metal of the
package provides both electrical contact to ground and
good thermal contact to the printed circuit board.
IADJ (Pin 8): This pin allows adjustment of the mixer DC
supply current. Typical open-circuit DC voltage is 2.2V.
This pin should be left floating for optimum performance.
IF+/IF– (Pin 11/Pin 10): Open-Collector Differential IF
Output. These pins must be connected to the VCC supply
through impedance-matching inductors or a transformer
center tap. Typical DC current consumption is 27.5mA
into each pin.
RF (Pin 3): Single-Ended RF Input. This pin is internally
connected to the primary winding of the integrated RF
transformer, which has low DC resistance to ground. A
series DC-blocking capacitor must be used if the RF
source has DC voltage present. The RF input is 50Ω
impedance matched from 1.4GHz to 3GHz, as long as
the mixer is enabled. Operation down to 300MHz or up
to 4GHz is possible with external matching.
LO (Pin 15): Single-Ended Local Oscillator Input. This
pin is internally connected to the primary winding of an
integrated transformer, which has low DC resistance to
ground. A series DC-blocking capacitor must be used to
avoid damage to the internal transformer. This input is
50Ω impedance matched from 1GHz to 4GHz, even when
the IC is disabled. Operation down to 300MHz or up to
4.5GHz is possible with external matching.
EN (Pin 5): Enable Pin. When the input voltage is greater
than 2.5V, the mixer is enabled. When the input voltage is
less than 0.3V, the mixer is disabled. Typical input current is
less than 30µA. This pin has an internal pull-down resistor.
Block Diagram
16
15
LO
GND
1
14
13
NC
GND
TEMP
GND 12
2 GND
LO
IF+
11
RF
3
IF–
RF
4 GND
BIAS
17 GND
(EXPOSED PAD)
VCC
EN
5
6
10
GND 9
NC
7
IADJ
8
5567 BD
5567f
9
LTC5567
test circuit
DC1861A
EVALUATION BOARD
LAYER STACK-UP
(NELCO N4000-13)
0.062"
RF
GND
BIAS
GND
0.015"
0.015"
C6
LOIN
50Ω
C5
16
15
14
13
GND
LO
NC
GND
GND 12
1 TEMP
C7
LTC5567
IF+ 11
2 GND
RFIN
50Ω
C3
C2
R1
L1
R2
L2
T1
IFOUT
50Ω
17
GND
L3
3 RF
R4
0Ω
IF– 10
C4
C8
4 GND
GND 9
EN
VCC
NC
IADJ
5
6
7
8
EN
C1
C9
VCC
3.3V
89mA
5567 F01
APPLICATION
RF (MHz)
LO
300 to 400
HS
400 to 500
HS
700 to 1000
HS
1400 to 3000
LS, HS
3000 to 4000
LS
LS = Low side, HS = High side
REF DES
C1, C2
C3 - C6
C7, C8
R1, R2
VALUE
10nF
See Table
330pF
3.01k, 1%
SIZE
0402
0402
0402
0402
C3
120pF
120pF
120pF
2.7pF
3.9pF
VENDOR
AVX
AVX
AVX
RF MATCH
C4
18pF
12pF
4.7pF
—
0.7pF
REF DES
C9
T1
L1, L2
L3
L3
2.2nH
2nH
—
—
—
VALUE
1µF
4:1
300nH
See Table
LO MATCH
C5
C6
47pF
15pF
27pF
10pF
6.8pF
2.7pF
3.9pF
—
3.9pF
—
SIZE
0603
—
0603
0402
VENDOR
AVX
Mini-Circuits TC8-1-10LN+
Coilcraft 0603HP
Coilcraft 0402HP
Figure 1. Standard Downmixer Test Circuit Schematic (153MHz Bandpass IF Matching)
5567f
10
LTC5567
Applications Information
Introduction
RF Input
The LTC5567 incorporates a high linearity double-balanced
active mixer, a high-speed limiting LO buffer and bias/
enable circuits. See the Pin Functions and Block Diagram
sections for a description of each pin. A test circuit schematic showing all external components required for the
data sheet specified performance is shown in Figure 1.
A few additional components may be used to modify the
DC supply current or frequency response, which will be
discussed in the following sections.
A simplified schematic of the mixer’s RF input is shown
in Figure 3. As shown, one terminal of the integrated RF
transformer’s primary winding is connected to Pin 3, while
the other terminal is DC-grounded internally. For this reason, a series DC-blocking capacitor (C3) is needed if the
RF source has DC voltage present. The DC resistance of
the primary winding is approximately 4Ω. The secondary
winding of the RF transformer is internally connected to
the RF buffer amplifier.
The LO and RF inputs are single ended. The IF output is
differential. Low side or high side LO injection may be
used. The test circuit, shown in Figure 1, utilizes bandpass
IF output matching and an 8:1 IF transformer to realize a
50Ω single-ended IF output. The evaluation board layout
is shown in Figure 2.
The RF input is 50Ω matched from 1400MHz to 3000MHz
with a single 2.7pF series capacitor on the input. Matching
to RF frequencies above or below this frequency range is
easily accomplished by adding shunt capacitor C4, shown
in Figure 3. For RF frequencies below 500MHz, series
Figure 2. Evaluation Board Layout
5567f
11
LTC5567
Applications Information
0
LTC5567
C3
L3
3
–5
RF
RF
BUFFER
C4
5567 F03
Figure 3. RF Input Schematic
inductor L3 is also needed. The evaluation board does
not have provisions for L3, so the RF input trace needs
to be cut to install it in series. The RF input matching element values for each application are tabulated in Figure 1.
Measured RF input return losses are shown in Figure 4.
The RF input impedance and input reflection coefficient,
versus frequency are listed in Table 1.
RETURN LOSS (dB)
RFIN
–10
–15
–20
–25
–30
–35
0.2
TC = 25°C
0.7
1.2
1.7
2.2
2.7
3.2
FREQUENCY (GHz)
3.7
4.2
4.7
5567 F04
400MHz TO 500MHz APP.
700MHz TO 1000MHz APP.
1400MHz TO 3000MHz APP.
3GHz TO 4GHz APP.
Figure 4. RF Input Return Loss
Table 1. RF Input Impedance and S11 (At Pin 3, No External
Matching, Mixer Enabled)
LTC5567
S11
LO
C5
LOIN
FREQUENCY
(MHz)
INPUT
IMPEDANCE
MAG
ANGLE
200
6.0 + j8.0
0.79
161.6
350
9.0 + j11.9
0.71
152.1
450
11.0 + j14.1
0.66
147.0
575
13.3 + j15.9
0.61
142.5
700
15.4 + j17.5
0.57
138.1
900
18.5 + j20.0
0.52
131.1
LO Input
1100
21.7 + j22.0
0.48
125.1
1400
27.4 + j24.2
0.41
115.6
1700
33.7 + j24.2
0.33
107.9
1950
39.1 + j21.6
0.26
103.1
2200
42.6 + j16.1
0.19
104.9
2450
42.6 + j9.9
0.13
120.8
2700
38.8 + j4.3
0.14
155.9
3000
31.9 + j2.3
0.22
171.3
3300
24.8 + j4.0
0.34
167.9
3600
19.5 + j8.2
0.45
158.3
3900
15.4 + j13.4
0.56
147.3
A simplified schematic of the LO input, with external
components is shown in Figure 5. Similar to the RF input, the integrated LO transformer’s primary winding is
DC‑grounded internally, and therefore requires an external
DC-blocking capacitor. Capacitor C5 provides the necessary DC-blocking, and optimizes the LO input match over
the 1GHz to 4GHz frequency range. The nominal LO input
level is 0dBm although the limiting amplifiers will deliver
excellent performance over a ±5dB input power range. LO
input power greater than +6dBm may cause conduction
of the internal ESD diodes.
4200
12.6 + j18.7
0.64
136.8
4500
10.9 + j24.2
0.70
126.6
15
LO
BUFFER
C6
5569 F05
Figure 5. LO Input Schematic
To optimize the LO input match for frequencies below
1GHz, the value of C5 is increased and shunt capacitor C6
is added. A summary of values for C5 and C6, versus LO
5567f
12
LTC5567
Applications Information
frequency range is listed in Table 2. Measured LO input
return losses are shown in Figure 6. Finally, LO input impedance and input reflection coefficient, versus frequency
is shown in Table 3.
Table 2. LO Input Matching Values vs LO Frequency Range
FREQUENCY (MHz)
C5 (pF)
C6 (pF)
285 to 392
330
33
338 to 415
330
22
415 to 505
56
18
525 to 635
27
10
645 to 803
15
7.5
800 to 1150
6.8
2.7
1000 to 4000
3.9
—
3000 to 4500
1.8
0.2
0
INPUT
IMPEDANCE
MAG
ANGLE
350
5.2 + j14.9
0.83
146.5
400
6.0 + j17.3
0.81
141.7
450
6.6 + j19.5
0.80
137.0
500
7.2 + j21.5
0.78
132.7
600
9.1 + j26.5
0.75
123.6
800
15.1 + j35.7
0.67
106.0
1000
24.9 + j43.6
0.58
89.5
1500
67.5 + j36.4
0.33
47.1
2000
61.7 – j4.2
0.11
–18.3
2500
40.3 – j7.1
0.13
–139.4
3000
31.7 + j1.8
0.23
173.1
3500
29.8 + j12.3
0.29
140.0
4000
31.5 + j22.9
0.35
113.2
4500
36.0 + j32.4
0.38
92.8
0
–10
TC = 25°C
C5 = 3.9pF
–2
–4
–15
–20
–25
0.2
S11
FREQUENCY
(MHz)
TC = 25°C
0.7
1.2
1.7
2.2
2.7
3.2
FREQUENCY (GHz)
3.7
4.2
4.7
RETURN LOSS (dB)
RETURN LOSS (dB)
–5
Table 3. LO Input Impedance and S11 (At Pin 15, No External
Matching, Mixer Enabled)
–8
–10
–12
–14
5567 F06
C5 = 27pF, C6 = 10pF
C5 = 6.8pF, C6 = 2.7pF
C5 = 3.9pF
C5 = 1.8pF, C6 = 0.2pF
DISABLED
ENABLED
–16
–18
0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7
FREQUENCY (GHz)
Figure 6. LO Input Return Loss
The LO buffers have been designed such that the LO input
impedance does not change significantly when the IC is
disabled. This feature only requires that supply voltage is
applied. The actual performance of this feature is shown
in Figure 7. As shown, the LO input return loss is better
than 10dB over the 1GHz to 4GHz frequency range when
the IC is enabled or disabled.
–6
5567 F07
Figure 7. LO Input Return Loss—Mixer Enabled and Disabled
IF Output
The IF output schematic with external matching components is shown in Figure 8. As shown, the output is differential open collector. Each IF output pin must be biased
at the supply voltage (VCC), which is applied through the
external matching inductors (L1 and L2) shown in Figure 8.
Each pin draws approximately 27.5mA of DC supply current (55mA total).
5567f
13
LTC5567
Applications Information
The differential IF output impedance can be modeled as a
frequency-dependent parallel R-C circuit, using the values
listed in Table 4. This data is referenced to the package
pins (with no external components) and includes the
effects of the IC and package parasitics. Resistors R1
and R2 are used to reduce the output resistance, which
increases the IF bandwidth and input P1dB, but reduces
the conversion gain. The standard downmixer test circuit
shown in Figure 1 uses bandpass matching and 3.01k
resistors to realize a 400Ω differential output, followed by
an 8:1 transformer to get a 50Ω single-ended output. C7
and C8 are 330pF DC-blocking capacitors. The values of
L1 and L2 are calculated to resonate with the internal IF
capacitance (CIF) at the desired IF center frequency, using
the following equation:
1
(2 • π • fIF )2 • 2 •CIF
For IF frequencies below 100MHz, the inductor values
become unreasonably high and the highpass impedance
matching network described in a later section is preferred,
due to its lower inductor values.
Table 4. IF Output Impedance and Bandpass Matching Element
Values vs IF Frequency.
DIFFERENTIAL IF
IF FREQUENCY OUTPUT IMPEDANCE
(MHz)
(RIF || CIF)
1dB IF FREQUENCY
RANGE (MHz)
532Ω||1.0pF
390nH
65 to 327
153
532Ω||1.0pF
300nH
84 to 350
190
530Ω ||1.0pF
210nH
107 to 375
250
525Ω ||1.0pF
120nH
160 to 415
380
511Ω ||1.0pF
51nH
288 to 520
500
500Ω ||1.03pF
1000
454Ω ||1.07pF
1500
364Ω ||1.12pF
2000
268Ω ||1.24pF
2500
209Ω ||1.41pF
140
T1
IFOUT
50Ω
C7
0
L1
L2
R1
R2
–5
C8
VCC
C2
10nF
11
IF
+
IF MATCHING USING TC8-1
L1, L2
LTC5567
10
IF–
RETURN LOSS (dB)
L1, L2 =
measured 1dB (conversion gain) IF frequency range for
each inductor value is shown. The inductor values listed are
less than the ideal calculated values due to the additional
capacitance of the 8:1 transformer. For differential IF output applications where the 8:1 transformer is eliminated,
the ideal calculated values should be used. Measured IF
output return losses are shown in Figure 9.
–10
390nH
300nH
210nH
120nH
51nH
–15
–20
–25
VCC
–30
T1 = TC8-1
R1, R2 = 3.01k
C7, C8 = 330pF
50 100 150 200 250 300 350 400 450 500 550
5567 F09
FREQUENCY (MHz)
Figure 9. IF Output Return Loss—400Ω Bandpass
Matching with 8:1 Transformer
5567 F08
Figure 8. IF Output Schematic with External Matching
Table 4 summarizes the optimum IF matching inductor
values, versus IF center frequency, to be used in the
standard downmixer test circuit shown in Figure 1. The
Wideband Differential IF Output
Wide IF bandwidth and high input 1dB compression are
obtained by reducing the IF output resistance with resistors
R1 and R2. This will reduce the mixer’s conversion gain,
but will not degrade the IIP3 or noise figure.
5567f
14
LTC5567
Applications Information
The IF matching shown in Figure 10 uses 249Ω resistors
and 390nH supply chokes to produce a wideband 200Ω
differential output. This differential output is suitable for
driving a wideband differential amplifier, filter, or a wideband 4:1 transformer. The evaluation board layout allows
the removal of the IF transformer to evaluate the mixer
performance with a differential output.
Table 5. IF Bandwidth and 1dB Compression for 400Ω and
200Ω Differential IF Output Resistance (RF = 1.69 to 2.24GHz,
LO = 1.65GHz, VCC = 3.3V, TC = 25°C, L1, L2 = 390nH)
The complete test circuit, shown in Figure 11, uses resistive impedance matching attenuators (L-pads) on the
evaluation board to transform each 100Ω IF output to
50Ω. An external 0°/180° power combiner is then used to
convert the 100Ω differential output to 50Ω single-ended,
to facilitate measurement.
Measured voltage conversion gain, IIP3 and SSB noise
figure, at the 200Ω differential output are plotted in Figure 12. Voltage gain, rather than power gain, is plotted
to emphasize the voltage gain due to the 200Ω output.
As shown, the conversion gain is flat within 1dB over the
45MHz to 590MHz IF output frequency range.
ROUT
(Ω)
R1, R2
(Ω)
P1dB
(dBm)
1dB (CONVERSION GAIN)
IF FREQUENCY RANGE
400
3.01k
10.1
65MHz to 327MHz
200
249
13.0
45MHz to 580MHz
Table 5 compares the IF bandwidth and 1dB compression
for the standard 400Ω and wideband 200Ω IF output resistances. As shown, the 200Ω matching doubles the IF
bandwidth, and increases the RF input P1dB to +13dBm.
IF+
GV (dB), IIP3 (dBm), SSB NF (dB)
249Ω
26
200Ω
LOAD
330pF
LTC5567
28
100Ω
390nH
VCC
IF–
249Ω
LO
330pF
LO
249Ω
10
8
GV
40 90 140 190 240 290 340 390 440 490 540 590
IF FREQUENCY (MHz)
69.8Ω
390nH
249Ω
IF–
BIAS
VCC
10nF
IF+
50Ω
71.5Ω
IFOUT
200Ω
RF
EN
NF
12
IF+
RF
EN
14
L-PADS AND 180° COMBINER
FOR 50Ω SINGLE-ENDED MEASUREMENT
2.7pF
RF
1.69GHz
TO
2.24GHz
16
5567 F12
3.9pF
LTC5567
18
RF = 1.69GHz TO 2.24GHz
LO = 1.65GHz
ZRF = 50Ω
ZIF = 200Ω DIFFERENTIAL
TC = 25°C
Figure 12. Voltage Conversion Gain, IIP3 and NF vs IF
Output Frequency for Wideband 200Ω Differential IF
Figure 10. Wideband 200Ω Differential Output
LO
1.65GHz
0dBm
20
4
5567 F10
330pF
22
6
100Ω
390nH
IIP3
24
IADJ
390nH
330pF
10nF
1MHz TO 500MHz
COMBINER
0°
OUT
IF–
69.8Ω
50Ω
180°
IFOUT
50Ω
71.5Ω
3.3V
89mA
5567 F11
Figure 11. Test Circuit for Wideband 200Ω Differential Output
5567f
15
LTC5567
Applications Information
Highpass IF Matching
By simply changing component values, the bandpass IF
output matching network can be changed to a highpass
impedance transforming network. This matching network
will drive a lower impedance differential load (or transformer), like the 200Ω wideband bandpass matching
previously described, while delivering higher conversion
gain, similar to the 400Ω bandpass matching. The highpass matching network will have less IF bandwidth than
the bandpass matching. It also uses smaller inductance
values; an advantage when designing for IF center frequencies well below 100MHz.
Referring to the small-signal output network schematic in
Figure 13, the reactive matching element values (L1, L2,
C7 and C8) are calculated using the following equations.
The source resistance (RS) is the parallel combination of
external resistors R1 + R2 and the internal IF resistance,
RIF taken from Table 4. The differential load resistance
(RL) is typically 200Ω, but can be less. CIF, the IF output
capacitance, is taken from Table 4. Choosing RS in the
380Ω to 450Ω range will yield power conversion gains
around 2dB.
(R1 = R2)
Q = √(RS/RL–1)(RS > RL)
YL = Q/RS + (ωIF • CIF)
L1, L2 = 1/(2 • YL • ωIF)
C7, C8 = 2/(Q • RL • ωIF)
C7
LTC5567
IF+
11
RIF
R1
L1
10
IF–
R2
L2
RL
C8
5567 F13
Figure 13. IF Output Circuit for Highpass Matching Element
Value Calculations
To demonstrate the highpass impedance transformer
output matching, these equations were used to calculate
the element values for a 153MHz IF frequency and 200Ω
differential load resistance. The output matching on the
16
C7, C8 = 10pF
R1, R2 = 1.1k
Measured voltage conversion gain for the highpass and
wideband bandpass methods are shown in Figure 14, for
comparison. Both circuits are driving a 200Ω differential
load, but the highpass version delivers 2.3dB of additional
gain at 153MHz. Measured performance for both circuits
is summarized in Table 6. As shown, the highpass method
has less than half the IF bandwidth, and 3dB lower P1dB.
Table 6. Measured Performance Comparison for Highpass
and Wideband IF Matching (RF = 1950MHz, IF = 153MHz,
Low Side LO).
IF MATCHING
GV
(dB)
IIP3
(dBm)
P1dB
(dBm)
1dB (CONVERSION GAIN)
IF FREQUENCY RANGE
Highpass
8.5
26.9
10.0
110MHz to 320MHz
Wideband
6.2
26.9
13.0
45MHz to 590MHz
9
8
7
6
5
4
3
2
1
0
–1
–2
–3
–4
–5
153MHz
HIGHPASS
WIDEBAND
BANDPASS
RF = 1.7GHz TO 2.2GHz
LO = 1.65GHz AT 0dBm
ZRF = 50Ω
ZIF = 200Ω DIFFERENTIAL
TC = 25°C
50 100 150 200 250 300 350 400 450 500 550
IF FREQUENCY (MHz)
5567 F14
VCC
CIF
L1, L2 = 150nH
VOLTAGE CONVERSION GAIN (dB)
RS = RIF || 2·R1
wideband test circuit, shown in Figure 11, was modified
with the following new element values, and re-tested.
Figure 14. Voltage Conversion Gain versus IF Frequency
for 153MHz Highpass and Wideband Bandpass IF Matching
Networks
Mixer Bias Current Reduction
The IADJ pin (Pin 8) is available for reducing the mixer
core DC current consumption at the expense of linearity
and P1dB. For the highest performance, this pin should
be left open circuit. As shown in Figure 15, an internal
bias circuit produces a 3mA reference current for the
mixer core. If a resistor is connected to Pin 8, as shown
5567f
LTC5567
Applications Information
ICC
R3
L1
8
L2
11
IADJ
IF+
VCC
34mA
10
6
IF–
6
LTC5567
VCC
CLAMP
500Ω
VCC
CMOS
VCC
EN
4
EN
300k
3mA
BIAS
5567 F16
55mA
BIAS
Figure 16. Enable Input Circuit
LTC5567
The EN pin has an internal 300k pull-down resistor.
Therefore, the mixer will be disabled with the enable pin
left floating.
5567 F12
Figure 15. IADJ Interface
Supply Voltage Ramping
in Figure 15, a portion of the reference current can be
shunted to ground, resulting in reduced mixer core current. For example, R3 = 1k will shunt away 1mA from Pin
8 and reduce the mixer core current by 33%. The nominal,
open-circuit DC voltage at the IADJ pin is 2.2V. Table 7
lists DC supply current and RF performance at 1950MHz
for various values of R3.
Fast ramping of the supply voltage can cause a current
glitch in the internal ESD clamp circuits connected to the
VCC pin. Depending on the supply inductance, this could
result in a supply voltage transient that exceeds the 4.0V
maximum rating. A supply voltage ramp time greater than
1ms is recommended.
Spurious Output Levels
Table 7. Mixer Performance with Reduced Current
(RF = 1950MHz, Low Side LO, IF = 153MHz)
R3 (Ω)
ICC (mA)
GC (dB)
IIP3
(dBm)
P1dB
(dBm)
NF (dB)
Open
89.0
1.9
26.9
10.2
11.8
10k
84.6
1.9
25.7
10.2
11.5
1k
70.4
1.6
21.4
10.1
10.5
330
62.9
1.3
19.3
9.5
10.3
100
58.3
1.0
17.9
8.5
10.1
Enable Interface
Figure 16 shows a simplified schematic of the enable
interface. To enable the mixer, the EN voltage must be
higher than 2.5V. If the enable function is not required,
the pin should be connected directly to VCC. The voltage at the EN pin should never exceed the power supply
voltage (VCC) by more than 0.3V. If this should occur, the
supply current could be sourced through the ESD diode,
potentially damaging the IC.
Mixer spurious output levels versus harmonics of the
RF and LO are tabulated in Table 8. The spur levels were
measured on a standard evaluation board using the test
circuit shown in Figure 1. The spur frequencies can be
calculated using the following equation:
fSPUR = (M • fRF) – (N • fLO)
Table 8. IF Output Spur Levels (dBm)
(RF = 1950MHz, PRF = –2dBm, PIF = 0dBm at 153MHz, Low Side
LO, PLO = 0dBm, VCC = 3.3V, TC = 25°C)
0
1
–43
0
–56
–81
*
*
*
0
1 –30
2 –60
*
M 3
4
*
5
*
6
7
*Less than –90dBc
2
–24
–56
–67
–89
–73
*
*
3
–47
–57
–68
*
*
*
*
*
N
4
–30
–59
–72
*
*
*
*
*
5
–57
–37
–78
*
*
*
*
6
–46
–69
–78
*
*
*
*
7
–64
–47
–85
*
*
*
*
8
–50
–78
–87
*
–90
*
*
*
9
–81
–58
*
*
*
*
*
5567f
17
LTC5567
Typical Applications
300MHz RF Application with 70MHz Highpass IF Matching
22pF
LOIN
50Ω
370MHz ±40MHz
330pF
LO
LTC5567
120pF
LO
3.3nH
22pF
EN
RF
390nH
1.1k
390nH
IF–
BIAS
EN
VCC
Conversion Gain, IIP3 and NF
vs RF Frequency
IADJ
22pF
10nF
3.3V
89mA
5567 TA03a
RF Isolation and LO leakage vs
RF and LO Frequency
RF, LO and IF Port Return Losses
70
IIP3
NF
GC
300 320 340 360
RF FREQUENCY (MHz)
65
55
50
400
5567 TA03b
0
–20
–30
RF-IF
LO-IF
–40
45
–50
40
–60
30
260
5
–10
RF-LO
LO-RF
35
380
10
0
60
RF ISOLATION (dB)
HIGH SIDE LO
PLO = 0dBm
IF = 70MHz
TC = 25°C
280
IFOUT
50Ω
70MHz NOM
TYPICAL PERFORMANCE
(RF = 300MHz, IF = 70MHz, LO = 370MHz AT 0dBm)
GC = 0.6dB
IIP3 = 26.3dBm
SSB NF = 13.3dB
INPUT P1dB = 10.9dBm
300
380
340
420
RF/LO FREQUENCY (MHz)
LO LEAKAGE (dBm)
GC (dB), IIP3 (dBm), NF (dB)
1.1k
RF
10nF
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
–2
260
TC4-1W
4:1
IF+
RETURN LOSS (dB)
RFIN
50Ω
300MHz ±40MHz
22pF
–5
–10
IF
–15
–20
LO
–25
RF
–30
–70
–35
–80
460
–40
50
100 150 200 250 300 350 400 450
5567 TA03d
FREQUENCY (MHz)
5567 TA03c
5567f
18
LTC5567
Package Description
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
UF Package
16-Lead Plastic QFN (4mm × 4mm)
(Reference LTC DWG # 05-08-1692 Rev Ø)
0.72 ±0.05
4.35 ±0.05
2.15 ±0.05
2.90 ±0.05 (4 SIDES)
PACKAGE OUTLINE
0.30 ±0.05
0.65 BSC
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
BOTTOM VIEW—EXPOSED PAD
4.00 ±0.10
(4 SIDES)
0.75 ±0.05
R = 0.115
TYP
15
PIN 1 NOTCH R = 0.20 TYP
OR 0.35 × 45° CHAMFER
16
0.55 ±0.20
PIN 1
TOP MARK
(NOTE 6)
1
2.15 ±0.10
(4-SIDES)
2
(UF16) QFN 10-04
0.200 REF
0.00 – 0.05
0.30 ±0.05
0.65 BSC
NOTE:
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE
5567f
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
19
LTC5567
Typical Application
CATV Downconverting Mixer with 1GHz IF Bandwidth
LOIN
1200MHz
TO 2150MHz
50Ω
15
14
LO
NC
13
GND GND 12
IF+ 11
1 TEMP
30
24
2 GND
MABACT0066
T1
68nH
17
GND
10pF
68nH
10nF
3 RF
1.8pF
1nF
402Ω
4 GND
IF– 10
EN
VCC
NC
5
6
7
1nF
18
15
12
9
8
EN
220nF
1µF
10V
–30
–40
–50
–60
2RF-LO
6
3
–3
15nH
–20
RF = 1150MHz
PRF = –6dBm
HIGH SIDE LO
PLO = 0dBm
TC = 25°C
21
0
–80
–100
–110
1000
200
400
600
800
IF OUTPUT FREQUENCY (MHz)
VCC
3.0V TO 3.6V
–70
–90
GC
0
IADJ GND 9
10nF
IFOUT
50MHz TO
1000MHz
50Ω
–10
2RF-LO SPUR (dBc)
402Ω
0
OIP3
27
15nH
GC (dB), OIP3 (dBm)
16
GND
LTC5567
RFIN
1150MHz
50Ω
Conversion Gain, OIP3 and 2RF-LO
Spur vs IF Output Frequency
3.9pF
5567 TA02b
5567 TA02a
Related Parts
PART NUMBER
Infrastructure
LT®5527
LT5557
LTC559x
DESCRIPTION
COMMENTS
400MHz to 3.7GHz, 5V Downconverting Mixer
400MHz to 3.8GHz, 3.3V Downconverting Mixer
600MHz to 4.5GHz Dual Downconverting Mixer
Family
LTC5569
300MHz to 4GHz, 3.3V Dual Active
Downconverting Mixer
LTC554x
600MHz to 4GHz, 5V Downconverting Mixer Family
LTC6400-X
300MHz Low Distortion IF Amp/ADC Driver
LTC6416
2GHz 16-Bit ADC Buffer
LTC6412
31dB Linear Analog VGA
LT5554
Ultralow Distort IF Digital VGA
LT5578
400MHz to 2.7GHz Upconverting Mixer
LT5579
1.5GHz to 3.8GHz Upconverting Mixer
LTC5588-1
200MHz to 6GHz I/Q Modulator
LTC5585
700MHz to 3GHz Wideband I/Q Demodulator
RF Power Detectors
LT5538
40MHz to 3.8GHz Log Detector
LT5581
6GHz Low Power RMS Detector
LTC5582
40MHz to 10GHz RMS Detector
LTC5583
Dual 6GHz RMS Power Detector
ADCs
LTC2208
16-Bit, 130Msps ADC
LTC2153-14
14-Bit, 310Msps Low Power ADC
2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply
2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply
8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply
2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply
8dBm Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply
Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/O
40dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping
35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer
27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor
>530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling
±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range
40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current
±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range
Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation
78dBFS Noise Floor, >83dB SFDR at 250MHz
68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption
5567f
20 Linear Technology Corporation
LT 0412 • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
 LINEAR TECHNOLOGY CORPORATION 2012