LTC5551 300MHz to 3.5GHz Ultra-High Dynamic Range Downconverting Mixer Description Features +36dBm Input IP3 n 2.4dB Conversion Gain n Low Noise Figure: <10dB n+18dBm Ultra High Input P1dB n 670mW Power Consumption n 2.5V to 3.6V Operation n 50Ω Single-Ended RF and LO Inputs n0dBm LO Drive Level n Low Power Mode n–40°C to 105°C Operation (T ) C n Small Solution Size n Enable Pin n16-Lead (4mm × 4mm) QFN Package The LTC®5551 is a 2.5V to 3.6V mixer optimized for RF downconverting mixer applications that require very high dynamic range. The LTC5551 covers the 300MHz to 3.5GHz RF Frequency range with LO frequency range of 200MHz to 3.5GHz. The LTC5551 provides very high IIP3 and P1dB with low power consumption. A typical application is a basestation receiver covering 700MHz to 2.7GHz frequency range. The RF input can be matched for a wide range of frequencies and the IF is usable up to 1GHz. n A low power mode is activated by pulling the ISEL pin high, reducing the power consumption by about 1/3, however, with a corresponding reduction in IIP3 to approximately +29dBm. The mixer can also be turned on or off by using the EN pin. Applications n n n n n n n The LTC5551’s high level of integration minimizes the total solution cost, board space and system level variation, while providing the highest dynamic range for demanding receiver applications. GSM, LTE, LTE-Advanced Basestations Repeaters DPD Observation Receiver Public Safety Radios, Military and Defense Avionics Radios and TCAS Transponders Active Phased-Array Antennas White-Space Radio Receiver L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Typical Application Wideband Receiver 1nF VCC 3.3V 0.56µF 22pF BPF 470nH 470nH 475Ω 475Ω LTC6416 IF AMP Mixer Conversion Gain and IIP3 vs IF Frequency (Low-Side LO) LTC2208 39 ADC 6 36 33 1nF IIP3 5 RF = 1770MHz TO 1970MHz LO = 1700MHz ZIF = 200Ω 4 2.2pF RFIN IF – IF LTC5551 RF LO LO 7.5nH EN (0V/3.3V) VCC 3.3V 3.9pF LTC6946 SYNTH LO 1700MHz 24 21 18 VCC 3 GC 15 12 9 BIAS EN 27 GC (dB) IF+ IIP3 (dBm) 30 2 NORMAL POWER MODE LOW POWER MODE 1 70 90 110 130 150 170 190 210 230 250 270 IF FREQUENCY (MHz) 5551 TA01b 5551 TA01a 0.56µF 22pF 5551f For more information www.linear.com/LTC5551 1 LTC5551 Absolute Maximum Ratings Pin Configuration (Note 1) Supply Voltage (VCC, IF+, IF –)......................................4V Enable Input Voltage (EN).................–0.3V to VCC + 0.3V Power Select Voltage (ISEL).............–0.3V to VCC + 0.3V LO Input Power (0.2GHz to 3.5GHz).................... +10dBm LO Input DC Voltage ............................................. ±0.1V RF Input Power (0.3GHz to 3.5GHz)....................+20dBm RF Input DC Voltage................................................ ±0.1V TEMP Diode Continuous DC Input Current..............10mA TEMP Diode Input Voltage......................................... ±1V IFBIAS Voltage..........................................................2.5V Operating Temperature Range (TC)......... –40°C to 105°C Storage Temperature Range................... –65°C to 150°C Junction Temperature (TJ)..................................... 150°C GND IF– IF+ IFBIAS TOP VIEW 16 15 14 13 TP 1 12 TEMP RF 2 11 GND 17 GND CT 3 10 LO GND 4 6 7 8 EN VCC VCC ISEL 9 5 GND UF PACKAGE 16-LEAD (4mm × 4mm) PLASTIC QFN TJMAX = 150°C, θJC = 6°C/W EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB CAUTION: This part is sensitive to electrostatic discharge (ESD). It is very important that proper ESD precautions be observed when handling the LTC5551. Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE LTC5551IUF#PBF LTC5551IUF#TRPBF 5551 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ 2 5551f For more information www.linear.com/LTC5551 LTC5551 AC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = High, ISEL = Low, PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3) PARAMETER CONDITIONS MIN TYP MAX UNITS LO Input Frequency Range l 200 to 3500 MHz RF Input Frequency Range l 300 to 3500 MHz 5 to 1000 MHz IF Output Frequency Range Requires External Matching RF Input Return Loss ZO = 50Ω, 1100MHz to 2700MHz, X1 = 7.5nH, C1 = 2.2pF LO Input Return Loss ZO = 50Ω, 1000MHz to 3500MHz, C2 = 3.9pF IF Output Impedance Differential at 153MHz LO Input Power LO = 200MHz to 3500MHz LO to RF Leakage LO = 200MHz to 3500MHz < –25 dBm LO to IF Leakage LO = 200MHz to 3500MHz < –21 dBm RF to LO Isolation RF = 300MHz to 3500MHz >55 dB RF to IF Isolation RF = 300MHz to 3500MHz >23 dB >12 dB >12 950Ω || 1.2pF dB R||C –6 0 6 dBm The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = High, PLO = 0dBm, PRF = 0dBm (0dBm/tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3) 0.3GHz to 3.5GHz Downmixer Application: IF = 153MHz, ISEL = Low, unless otherwise noted. (Notes 2, 3) PARAMETER CONDITIONS MIN TYP MAX UNITS Power Conversion Gain RF = 400MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2700MHz, Low Side LO 3.2 2.8 2.4 1.7 dB dB dB dB Conversion Gain Flatness RF = 1870MHz ±100MHz, LO = 1700MHz, IF = 170 ±100MHz ±0.2 dB Conversion Gain vs Temperature TC = –40°C to 105°C, RF = 1950MHz, Low Side LO –0.013 dB/°C 2-Tone Input 3rd Order Intercept (∆f = 2MHz) RF = 400MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2700MHz, Low Side LO 33.2 35.2 35.5 38.1 dBm dBm dBm dBm 2-Tone Input 2nd Order Intercept (∆f = 154MHz = fIM2) RF = 400MHz (477MHz/323MHz), LO = 553MHz RF = 850MHz (927MHz/773MHz), LO = 1053MHz RF = 1950MHz (2027MHz/1873MHz), LO = 1797MHz RF = 2700MHz (2777MHz/2623MHz), LO = 2547MHz 65.8 68.2 58.4 57.1 dBm dBm dBm dBm SSB Noise Figure RF = 400MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2700MHz, Low Side LO 10.6 9.1 9.7 10.9 dB dB dB dB SSB Noise Figure Under Blocking RF = 850MHz, High Side LO, 750MHz Blocker at 5dBm RF = 1950MHz, Low Side LO, 2050MHz Blocker at 5dBm 16.5 16.9 dB dB 1/2 IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz) 850MHz: RF = 926.5MHz at –3dBm, LO = 1003MHz 1950MHz: RF = 1873.5MHz at –3dBm, LO = 1797MHz –66 –68 dBc dBc 1/3 IF Output Spurious Product (fRF Offset to Produce Spur at fIF = 153MHz) 850MHz: RF = 952MHz at –3dBm, LO = 1003MHz 1950MHz: RF = 1848MHz at –3dBm, LO = 1797MHz –97 –93 dBc dBc Input 1dB Compression RF = 400MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2700MHz, Low Side LO 17.1 17.8 18.0 18.7 dBm dBm dBm dBm 5551f For more information www.linear.com/LTC5551 3 LTC5551 AC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 3.3V, EN = High, PLO = 0dBm, PRF = 0dBm (0dBm/tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3) Low Power Mode, 0.3GHz to 3.5GHz Downmixer Application: IF = 153MHz, ISEL = High (Notes 2, 3) PARAMETER CONDITIONS Power Conversion Gain RF = 400MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2700MHz, Low Side LO MIN TYP 3.0 2.7 2.4 1.7 MAX UNITS dB dB dB dB Input 3rd Order Intercept RF = 400MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2700MHz, Low Side LO 27.3 28.0 29.3 29.7 dBm dBm dBm dBm SSB Noise Figure RF = 400MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2700MHz, Low Side LO 9.8 8.2 8.3 9.2 dB dB dB dB Input 1dB Compression RF = 400MHz, High Side LO RF = 850MHz, High Side LO RF = 1950MHz, Low Side LO RF = 2700MHz, Low Side LO 14.8 16.2 16.7 17.7 dBm dBm dBm dBm DC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = High, ISEL = Low, unless otherwise noted. Test circuit shown in Figure 1. (Note 2) PARAMETER CONDITIONS MIN TYP MAX UNITS 2.5 3.3 3.6 VDC 234 100 mA mA µA 100 mA mA µA Power Supply Requirements Supply Voltage (VCC) l Supply Current (ISEL = Low) EN = High, No LO Applied EN = High, with LO Applied EN = Low 148 204 Supply Current – Low Power Mode (ISEL = High) EN = High, No LO Applied EN = High, with LO Applied EN = Low 128 142 Enable Logic Input (EN) Input High Voltage (On) l Input Low Voltage (Off) l 1.2 VDC –30 0.3 VDC 100 µA Input Current –0.3V to VCC + 0.3V Turn On Time LO Applied 0.4 µs Turn Off Time LO Applied 0.5 µs Power Select Logic Input (ISEL) Input High Voltage (Low Power Mode) l Input Low Voltage (High Power Mode) Input Current 1.2 VDC l –0.3V to VCC + 0.3V –30 0.3 VDC 100 µA Temperature Sensing Diode (TEMP) DC Voltage at TJ = 25°C IIN = 10µA IIN = 80µA Voltage Temperature Coefficient IIN = 10µA IIN = 80µA 4 726 783 l l –1.72 –1.53 mV mV mV/°C mV/°C 5551f For more information www.linear.com/LTC5551 LTC5551 Electrical Characteristics Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5551 is guaranteed functional over the –40°C to 105°C case temperature range. Note 3: SSB Noise Figure measurements performed with a small-signal noise source, bandpass filter and 6dB matching pad on RF input, bandpass filter and 6dB matching pad on the LO input, bandpass filter on the IF output and no other RF signals applied. Typical DC Performance Characteristics Supply Current vs Supply Voltage, LO = 1800MHz at 0dBm Supply Current vs Supply Voltage, No LO Applied 180 250 ISEL = LOW 200 ICC (mA) ICC (mA) ISEL = HIGH 100 80 60 50 VCC = 3.5V VCC = 3.3V VCC = 3.1V 35 10 60 85 CASE TEMPERATURE (°C) 110 40 VCC = 3.5V VCC = 3.3V VCC = 3.1V 20 0 –40 –15 35 10 60 85 CASE TEMPERATURE (°C) Supply Current vs VCC LO = 1800MHz at 0dBm ISEL = HIGH 100 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 50 0 300 700 1100 1500 1900 2300 2700 3100 3500 LO FREQUENCY (MHz) 5551 G03 Supply Current vs VCC LO = 1800MHz at TC = 25°C 220 220 190 190 160 130 110 150 5551 G02 5551 G01 ICC (mA) –15 ISEL = LOW 120 ISEL = HIGH ICC (mA) ICC (mA) 250 140 100 0 –40 Supply Current vs LO Frequency (PLO = 0dBm) ISEL = LOW 160 200 150 EN = High, Test circuit shown in Figure 1. TC = 105°C TC = 85°C TC = 25°C TC = –40°C 100 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 VCC (V) 160 130 LO = 6dBm LO = 0dBm LO = –6dBm 100 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 VCC (V) 5551 G04 5551 G05 5551f For more information www.linear.com/LTC5551 5 LTC5551 Typical AC Performance Characteristics 1100MHz to 2700MHz application. VCC = 3.3V, EN = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = 0dBm (0dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1. 40 36 TC = 85°C TC = 25°C TC = –40°C NF GC 1.3 IIP3 32 IIP3 28 2.5 16 NF 12 8 GC –6 –4 –2 0 2 4 LO INPUT POWER (dBm) 18 15 NF 12 9 6 IIP3 (dBm), NF (dB), GC (dB) 21 GC 3 0 1.1 1.3 2.5 GC –4 –2 0 2 4 LO INPUT POWER (dBm) 32 28 TC = 85°C TC = 25°C TC = –40°C 24 20 16 NF 12 8 GC 0 2.7 –6 –4 IIP3 28 24 16 NF 12 8 GC 0 6 TC = 85°C TC = 25°C TC = –40°C 20 4 –2 0 2 4 LO INPUT POWER (dBm) 5551 G09 –6 –4 –2 0 2 4 LO INPUT POWER (dBm) RF Isolation vs Frequency 20 6 5551 G11 5551 G10 Input P1dB vs RF Frequency (Low Side LO) 6 2550MHz Conversion Gain, IIP3 and NF vs LO Power (High Side LO) IIP3 4 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) 8 36 32 TC = 85°C TC = 25°C TC = –40°C NF 12 5551 G08 IIP3 (dBm), NF (dB), GC (dB) IIP3 24 16 –6 36 27 20 1950MHz Conversion Gain, IIP3 and NF vs LO Power (High Side LO) 36 30 24 0 6 TC = 85°C TC = 25°C TC = –40°C 28 5551 G07 Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO) 33 IIP3 32 4 5551 G06 IIP3 (dBm), NF (dB), GC (dB) 36 20 0 2.7 TC = 85°C TC = 25°C TC = –40°C 24 4 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) 2550MHz Conversion Gain, IIP3 and NF vs LO Power (Low Side LO) IIP3 (dBm), NF (dB), GC (dB) 39 36 33 30 27 24 21 18 15 12 9 6 3 0 1.1 1950MHz Conversion Gain, IIP3 and NF vs LO Power (Low Side LO) IIP3 (dBm), NF (dB), GC (dB) IIP3 (dBm), NF (dB), GC (dB) Conversion Gain, IIP3 and NF vs RF Frequency (Low Side LO) LO Leakage vs LO Frequency 0 70 19 60 15 14 13 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 11 10 1.1 1.3 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) 2.5 2.7 5551 G12 LO LEAKAGE (dBm) 16 12 6 –10 RF-LO 17 ISOLATION (dB) INPUT P1dB (dBm) 18 50 40 30 1.3 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) –30 LO-RF –40 –50 RF-IF 20 1.1 LO-IF –20 2.5 2.7 5551 G13 –60 1.1 1.3 1.5 1.7 1.9 2.1 2.3 LO FREQUENCY (GHz) 2.5 2.7 5551 G14 5551f For more information www.linear.com/LTC5551 LTC5551 Typical AC Performance Characteristics 1100MHz to 2700MHz application. VCC = 3.3V, EN = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = 0dBm (0dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1. Single-Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power 20 20 0 –10 –20 RF1 = 1949MHz RF2 = 1951MHz LO = 1797MHz –40 –50 –60 –70 IM3 –80 –100 –10 –7 –30 –40 2RF-2LO RF = 1873.5MHz –50 –60 –70 IM5 –90 –20 3RF-3LO RF = 1848MHz –80 –4 –1 2 5 8 11 14 RF INPUT POWER (dBm/TONE) –90 17 –9 –6 –3 0 3 6 9 12 15 RF INPUT POWER (dBm/TONE) 5551 G15 SSB NF (dB) 14 12 8 –25 PLO = –6dBm PLO = 0dBm PLO = 6dBm –20 –15 –10 –5 0 5 RF BLOCKER POWER (dBm) RF = 1950MHz LOW SIDE LO HIGH SIDE LO 24 21 18 15 NF 12 9 6 GC 3 –4 10 5 32 4 RF = 1950MHz LOW SIDE LO HIGH SIDE LO 3 29 26 23 GC 20 40 40 30 20 10 0 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 CONVERSION GAIN (dB) 5551 G21 35 30 2 P1dB 17 14 1 NF 0 8 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 VCC SUPPLY VOLTAGE (V) 5551 G19 RF = 1950MHz 6 IIP3 5551 G20 1950MHz IIP3 Histogram 85°C 25°C –40°C –2 0 2 4 LO INPUT POWER (dBm) 5551 G17 11 0 –40 –25 –10 5 20 35 50 65 80 95 110 CASE TEMPERATURE (°C) DISTRIBUTION (%) DISTRIBUTION (%) 50 –6 35 27 1950MHz Conversion Gain Histogram 60 3RF-3LO RF = 1848MHz –90 Conversion Gain, IIP3, P1dB and SSB NF vs Supply Voltage IIP3 30 5551 G18 70 –80 GC (dB) 16 2RF-2LO RF = 1873.5MHz 38 33 18 10 –70 –100 36 IIP3 (dBm), NF (dB), GC (dB) 20 –60 Conversion Gain, IIP3 and SSB NF vs Temperature RF = 1950MHz LO = 1797MHz BLOCKER = 2050MHz RF = 1950MHz PRF = –3dBm LO = 1797MHz 5551 G16 SSB Noise Figure vs RF Blocker Level 22 18 IIP3 (dBm), P1dB (dBm), NF (dB) –30 LO = 1797MHz –10 1950MHz SSB NF Histogram 40 RF = 1950MHz 85°C 25°C –40°C RF = 1950MHz 35 85°C 25°C –40°C 30 DISTRIBUTION (%) 0 –50 IFOUT RF = 1950MHz 10 IFOUT OUTPUT POWER (dBm) OUTPUT POWER/TONE (dBm) 10 2 × 2 and 3 × 3 Spurs vs LO Power RELATIVE SPUR LEVEL (dBc) 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 25 20 15 25 20 15 10 10 5 5 0 33.2 33.6 34 34.4 34.8 35.2 35.8 36 36.4 IIP3 (dBm) 0 8.8 5551 G22 9.2 10.4 10.8 9.6 10 SSB NOISE FIGURE (dB) 11.2 5551 G23 5551f For more information www.linear.com/LTC5551 7 LTC5551 Typical AC Performance Characteristics 1100MHz to 2700MHz application. Low Power Mode. VCC = 3.3V, EN = High, ISEL = High, TC = 25°C, PLO = 0dBm, PRF = 0dBm (0dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO) 31 28 28 LOW POWER MODE 85°C 25°C –40°C 19 16 13 NF 10 7 GC 4 1.3 19 16 13 NF 10 2.5 GC 1 1.1 2.7 19 35 1.3 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) INPUT P1dB (dBm) 14 13 LOW POWER MODE LOW SIDE LO HIGH SIDE LO 1.3 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) 2.5 2.7 IIP3 29 3 GC 23 20 2 17 –30 –40 –50 –60 –70 IM3 10 LO-RF –40 1.1 1.3 1.5 1.7 1.9 2.1 2.3 LO/RF FREQUENCY (GHz) 2.5 LOW POWER MODE LO = 1797MHz –10 –20 –30 –40 –50 2RF-2LO RF = 1873.5MHz –90 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 RF INPUT POWER (dBm/TONE) –80 –10 –7 –10 2.7 5551 G29 2 × 2 and 3 × 3 Spurs vs LO Power –50 –70 8 LO-IF IFOUT RF = 1950MHz –80 5551 G30 30 –30 Single Tone IF Output Power, 2 × 2 and 3 × 3 Spurs vs RF Input Power 0 50 RF-IF –20 NF –60 IM5 LOW POWER MODE 5551 G28 LOW POWER MODE RF1 = 1949MHz RF2 = 1951MHz LO = 1797MHz 70 –10 0 8 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 VCC SUPPLY VOLTAGE (V) 10 0 RF-LO 1 11 6 0 P1dB 14 OUTPUT POWER (dBm) OUTPUT POWER/TONE (dBm) –20 2 4 –2 0 LO INPUT POWER (dBm) 5551 G26 20 IFOUT –4 LO Leakage and RF Isolation 26 20 0 –6 LOW POWER MODE RF = 1950MHz LOW SIDE LO 4 HIGH SIDE LO 32 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power –10 7 2.7 5 5551 G27 10 NF RF ISOLATION (dB) 15 11 2.5 GC (dB) 16 IIP3 (dBm), P1dB (dBm), NF (dB) 38 17 2 LOW POWER MODE RF = 1950MHz LOW SIDE LO HIGH SIDE LO 1 16 Conversion Gain, IIP3, P1dB and NF vs Supply Voltage 20 10 1.1 19 5551 G25 Input P1dB vs RF Frequency 12 22 10 5551 G24 18 3 GC 13 7 4 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) IIP3 25 LOW POWER MODE 85°C 25°C –40°C 22 4 28 RELATIVE SPUR LEVEL (dBc) 1 1.1 IIP3 25 LO LEAKAGE (dBm) 22 IIP3 (dBm), NF (dB), GC (dB) IIP3 25 31 NF (dB), IIP3 (dBm) 31 1950MHz Conversion Gain, IIP3 and NF vs LO Power GC (dB) IIP3 (dBm), NF (dB), GC (dB) Conversion Gain, IIP3 and NF vs RF Frequency (Low Side LO) –60 2RF-2LO RF = 1873.5MHz LOW POWER MODE RF = 1950MHz PRF = –3dBm LO = 1797MHz –70 –80 3RF-3LO RF = 1848MHz –90 3RF-3LO RF = 1848MHz –4 –1 2 5 8 11 14 RF INPUT POWER (dBm/TONE) 17 5551 G31 –100 –6 –4 –2 0 2 4 LO INPUT POWER (dBm) 6 5551 G32 5551f For more information www.linear.com/LTC5551 LTC5551 Typical AC Performance Characteristics 300MHz to 650MHz application. VCC = 3.3V, EN = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = 0dBm (0dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO) 33 IIP3 85°C 25°C –40°C 30 27 24 21 18 15 NF 12 9 GC 6 3 31 85°C 25°C –40°C 27 24 21 NF 12 350 400 450 500 550 RF FREQUENCY (MHz) 600 6 GC 0 300 650 350 400 450 500 550 RF FREQUENCY (MHz) 600 IIP3 28 12 GC 25 3 22 RF = 400MHz LOW SIDE LO 2 HIGH SIDE LO 19 16 NF LOW SIDE LO HIGH SIDE LO 350 400 450 500 550 RF FREQUENCY (MHz) 600 1 7 –6 650 –4 –2 0 2 4 LO INPUT POWER (dBm) Conversion Gain, IIP3 and SSB NF vs Temperature 18 12 NF 9 6 3 RF-IF –20 40 LO-IF GC 20 23 20 17 P1dB 14 1 NF –40 300 350 IFOUT 0 –10 –20 –30 RF1 = 399MHz RF2 = 401MHz LO = 553MHz –40 –50 –60 –70 –80 LO-RF 5551 G39 3 RF = 400MHz LOW SIDE LO HIGH SIDE LO 2 20 60 –30 0 –40 –25 –10 5 20 35 50 65 80 95 110 CASE TEMPERATURE (°C) 26 10 –10 LO LEAKAGE (dBm) 21 GC 5551 G38 RF-LO RF = 400MHz LOW SIDE LO HIGH SIDE LO 4 29 0 8 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 VCC SUPPLY VOLTAGE (V) 80 IIP3 24 IIP3 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 0 27 15 6 0 RF ISOLATION (dB) IIP3 (dBm), NF (dB), GC (dB) 30 32 LO Leakage and RF Isolation 36 0 650 5 5551 G37 5551 G36 33 600 11 10 OUTPUT POWER/TONE (dBm) 10 300 4 IIP3 (dBm), P1dB (dBm), NF (dB) NF (dB), IIP3 (dBm) INPUT P1dB (dBm) 35 13 11 400 450 500 550 RF FREQUENCY (MHz) GC (dB) 13 350 1 38 GC (dB) LOW POWER MODE 14 2 NF Conversion Gain, IIP3, P1dB and NF vs Supply Voltage 5 31 16 3 5551 G35 34 NORMAL POWER MODE 17 4 7 300 650 37 19 5 GC 16 400MHz Conversion Gain, IIP3 and NF vs LO Power 20 6 19 5551 G34 Input P1dB vs Frequency 15 22 10 5551 G33 18 LOW POWER MODE ISEL = HIGH LOW SIDE LO HIGH SIDE LO 13 9 3 0 300 7 25 18 15 8 IIP3 28 IIP3 30 IIP3 (dBm), NF (dB) 36 33 IIP3 (dBm), NF (dB), GC (dB) 36 Conversion Gain, IIP3 and NF vs RF Frequency GC (dB) IIP3 (dBm), NF (dB), GC (dB) Conversion Gain, IIP3 and NF vs RF Frequency (Low Side LO) 400 450 500 550 600 LO/RF FREQUENCY (MHz) 0 650 5551 G40 –90 –10 –7 IM3 IM5 –4 –1 2 5 8 11 14 RF INPUT POWER (dBm/TONE) 17 5551 G41 5551f For more information www.linear.com/LTC5551 9 LTC5551 Typical AC Performance Characteristics 500MHz to 1100MHz application. VCC = 3.3V, EN = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = 0dBm (0dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1. 31 33 30 85°C 25°C –40°C NF 24 21 18 15 NF 12 6 GC 0 500 1100 IIP3 GC 3 RF = 850MHz 2 LOW SIDE LO HIGH SIDE LO 1 20 NF –6 –4 –2 0 2 4 LO INPUT POWER (dBm) 6 5551 G46 0 GC (dB) NF (dB), IIP3 (dBm) 4 29 26 23 8 19 600 700 800 900 1000 RF FREQUENCY (MHz) LOW POWER MODE 14 13 12 4 GC 26 3 23 20 RF = 850MHz 2 LOW SIDE LO HIGH SIDE LO 1 17 –6 –4 –2 0 2 4 LO INPUT POWER (dBm) 5551 G45 26 GC 23 20 2 P1dB 17 14 1 NF 5551 G47 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power LO Leakage and RF Isolation 80 0 20 60 –10 RF-IF –20 40 LO-IF –30 20 LO-RF –40 500 600 IFOUT 10 RF-LO LO LEAKAGE (dBm) IIP3 (dBm), NF (dB), GC (dB) 6 RF = 850MHz 4 LOW SIDE LO HIGH SIDE LO 3 IIP3 29 0 8 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 VCC SUPPLY VOLTAGE (V) 0 RF ISOLATION (dB) 10 32 5551 G46 Conversion Gain, IIP3 and SSB NF vs Temperature 5551 G48 5 11 NF 8 0 1100 38 29 11 1100 39 36 IIP3 33 30 27 RF = 850MHz 24 LOW SIDE LO 21 HIGH SIDE LO 18 15 12 NF 9 6 GC 3 0 –40 –25 –10 5 20 35 50 65 80 95 110 CASE TEMPERATURE (°C) 900 1000 700 800 RF FREQUENCY (MHz) 35 IIP3 14 LOW SIDE LO HIGH SIDE LO 700 800 900 1000 RF FREQUENCY (MHz) 600 1 GC (dB) NF (dB), IIP3 (dBm) 17 600 2 5551 G44 5 32 4 Conversion Gain, IIP3, P1dB and NF vs Supply Voltage 38 35 NORMAL POWER MODE 5 3 NF 7 500 1100 GC (dB) INPUT P1dB (dBm) 5 35 32 11 GC 16 10 IIP3 (dBm), P1dB (dBm), NF (dB) 38 17 14 11 15 19 850MHz Conversion Gain, IIP3 and NF vs LO Power 20 16 22 5551 G43 Input P1dB vs RF Frequency 18 6 LOW POWER MODE ISEL = HIGH LOW SIDE LO HIGH SIDE LO 13 9 3 700 800 900 1000 RF FREQUENCY (MHz) 7 IIP3 25 OUTPUT POWER/TONE (dBm) 600 85°C 25°C –40°C 27 GC 8 28 IIP3 (dBm), NF (dB) IIP3 IIP3 5551 G42 10 500 Conversion Gain, IIP3 and NF vs RF Frequency 36 IIP3 (dBm), NF (dB), GC (dB) 39 36 33 30 27 24 21 18 15 12 9 6 3 0 500 Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO) GC (dB) IIP3 (dBm), NF (dB), GC (dB) Conversion Gain, IIP3 and NF vs RF Frequency (Low Side LO) 0 –10 –20 –30 –40 RF1 = 849MHz RF2 = 851MHz LO = 1003MHz –50 –60 –70 IM3 IM5 –80 700 800 900 1000 LO/RF FREQUENCY (MHz) 0 1100 5551 G49 –90 –10 –7 –4 –1 2 5 8 11 14 RF INPUT POWER (dBm/TONE) 17 5551 G50 5551f For more information www.linear.com/LTC5551 LTC5551 Typical AC Performance Characteristics 2300MHz to 3500MHz application. VCC = 3.3V, EN = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = 0dBm (0dBm/tone for two-tone IIP3 tests, ∆f = 2MHz), IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO) 39 36 35 33 23 19 NF 11 7 GC 3 –1 2.3 2.5 3.3 85°C 25°C –40°C 24 21 18 15 NF 12 6 2.5 2.7 2.9 3.1 RF FREQUENCY (GHz) 39 NORMAL POWER MODE NF (dB), IIP3 (dBm) INPUT P1dB (dBm) 14 13 12 LOW SIDE LO HIGH SIDE LO 2.7 2.9 3.1 RF FREQUENCY (GHz) 3.3 30 24 RF = 2.7GHz 3 LOW SIDE LO HIGH SIDE LO 21 2 27 GC 18 12 9 3.5 1 NF –6 –4 –2 0 2 4 LO INPUT POWER (dBm) 24 21 1 P1dB 18 15 0 NF 5551 G56 75 20 60 LO LEAKAGE (dBm) –10 RF-IF 45 LO-IF –30 –40 IFOUT 10 RF-LO –20 2 GC 2-Tone IF Output Power, IM3 and IM5 vs RF Input Power 0 NF 27 –1 9 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 VCC SUPPLY VOLTAGE (V) 0 30 15 LO-RF GC RF ISOLATION (dB) IIP3 (dBm), NF (dB), GC (dB) 6 3 RF = 2.7GHz LOW SIDE LO HIGH SIDE LO 30 LO Leakage and RF Isolation IIP3 RF = 2700MHz LOW SIDE LO HIGH SIDE LO IIP3 33 5551 G55 Conversion Gain, IIP3 and SSB NF vs Temperature –3 3.5 3.3 4 12 5551 G54 39 36 33 30 27 24 21 18 15 12 9 6 3 0 –40 –25 3.1 2.7 2.9 RF FREQUENCY (GHz) 36 4 15 2.5 2.5 GC (dB) 15 –2 NF 39 GC (dB) 16 –1 Conversion Gain, IIP3, P1dB and NF vs Supply Voltage 5 33 LOW POWER MODE 0 5551 G53 IIP3 36 18 11 16 7 2.3 3.3 1 LOW POWER MODE ISEL = HIGH LOW SIDE LO HIGH SIDE LO 2.7GHz Conversion Gain, IIP3 and NF vs LO Power 20 10 2.3 19 2 5551 G52 Input P1dB vs RF Frequency 17 GC 22 10 GC 5551 G51 19 3 13 9 0 2.3 3.5 4 IIP3 25 27 3 2.7 2.9 3.1 RF FREQUENCY (GHz) 5 28 OUTPUT POWER/TONE (dBm) 15 30 IIP3 (dBm), NF (dB) 85°C 25°C –40°C 31 IIP3 IIP3 (dBm), P1dB (dBm), NF (dB) 27 IIP3 (dBm), NF (dB), GC (dB) IIP3 31 Conversion Gain, IIP3 and NF vs RF Frequency GC (dB) IIP3 (dBm), NF (dB), GC (dB) Conversion Gain, IIP3 and NF vs RF Frequency (Low Side LO) 0 –10 –20 –30 –40 RF1 = 2699MHz RF2 = 2701MHz LO = 2547MHz –50 –60 IM3 –70 IM5 –80 –10 5 20 35 50 65 80 95 110 CASE TEMPERATURE (°C) 5551 G57 –50 2.3 2.5 2.9 3.1 3.3 2.7 LO/RF FREQUENCY (GHz) 0 3.5 5551 G58 –90 –8 –5 –2 1 4 7 10 13 RF INPUT POWER (dBm/TONE) 16 5551 G59 5551f For more information www.linear.com/LTC5551 11 LTC5551 Pin Functions TP (Pin 1): Test Point. It is used for manufacture measurement only. It is recommended to be connected to ground. RF (Pin 2): Single-Ended Input for the RF Signal. This pin is internally connected to the primary side of the RF input transformer, which has low DC resistance to ground. A series DC-blocking capacitor should be used to avoid damage to the integrated transformer when DC voltage is present at the RF input. The RF input impedance is matched under the condition that the LO input is driven with a 0dBm ±6dB source between 0.2GHz and 3.5GHz. CT (Pin 3): RF Transformer Secondary Center-Tap. This pin must be connected to ground with minimum parasitic resistance and inductance to complete the Mixer’s DC current path. Typical DC current is 80mA with LO disabled and 134mA when LO signal is applied. GND (Pins 4, 9, 11, 13, Exposed Pad Pin 17): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. EN (Pin 5): Enable Pin. When the input voltage is greater than 1.2V, the mixer is enabled. When the input voltage is less than 0.3V or left open, the mixer is disabled. Typical input current is less than 30μA. This pin has an internal pull-down resistor. VCC (Pins 6, 7): Power Supply Pins. These pins are internally connected and must be externally connected to a regulated 2.5V to 3.6V supply, with bypass capacitors located close to the pin. Typical current consumption is 70mA through these pins. ISEL (Pin 8): Low Power Select Pin. When this pin is pulled low (<0.3V) or left open, the mixer is biased at the normal current level for best RF performance. When greater than 1.2V is applied, the mixer operates at reduced current mode, which provides reasonable performance at lower power consumption. This pin has an internal pull-down resistor. LO (Pin 10): Single-Ended Input for the Local Oscillator. This pin is internally connected to the primary side of the RF input transformer, which has low DC resistance to ground. A series DC blocking capacitor should be used to avoid damage to the integrated transformer when DC voltage is present at the LO input. TEMP (Pin 12): Temperature Sensing Diode. This pin is connected to the anode of a diode that may be used to measure the die temperature, by forcing a current and measuring the voltage. IF – (Pin 14) and IF + (Pin 15): Open-Collector Differential Outputs for the IF Amplifier. These pins must be connected to a DC supply through impedance matching inductors, or a transformer center-tap. Typical DC current consumption is 67mA into each pin. IFBIAS (Pin 16): This Pin Allows Adjustment of the IF Amplifier Current. Typical DC voltage is 2.1V. This pin should be left floating for optimum performance. 12 5551f For more information www.linear.com/LTC5551 LTC5551 Block Diagram 16 15 14 IFBIAS IF + 17 IF – EXPOSED PAD IF AMP 2 3 TEMP LO RF LO AMP 12 10 CT BIAS 5 EN 6 VCC 7 VCC 6 ISEL 5551 BD GND PINS ARE NOT SHOWN 5551f For more information www.linear.com/LTC5551 13 LTC5551 Test Circuit T1 4:1 IFOUT 153MHz 50Ω C9 L1 L2 R1 R2 C8 VCC C4 C5 16 15 IFBIAS 1 GND 14 IF+ 13 IF – GND TEMP 12 LTC5551 C1 RFIN 50Ω 2 RF X1 GND 11 X2 17 GND C2 LO 10 3 CT C3 4 GND EN 0V TO 3.3V GND 9 EN VCC VCC ISEL 5 6 7 8 VCC 3.1V TO 3.5V C6 C7 0.015" RF MATCH LO X1 C1 5551 F01 GND TBD BOARD BIAS STACK-UP GND (NELCO N4000-13) 0.062" APPLICATION ISEL 0V TO 3.3V RF 0.015" RF (MHz) LOIN 50Ω LO MATCH X2 C2 IF TRANSFORMER C3 T1 VENDOR 300 to 650 HS 15nH 15pF 15pF 15pF 8.2pF TC4-1W-7ALN+ Mini-Circuits 500 to 1100 HS 13nH 6.8pF 4.7pF 8.2pF 2.2pF WBC4-6TLB Coilcraft 1100 to 2700 LS, HS 7.5nH 2.2pF – 3.9pF – TCA-1W-7ALN+ Mini-Circuits 2300 to 3500 LS, HS 1.2pF 22pF 2.2nH 3.9pF – TCA-1W-7ALN+ Mini-Circuits REF DES VALUE SIZE VENDOR REF DES VALUE SIZE VENDOR C4, C6 0.56µF 0603 Murata R1, R2 475Ω, 1% 0402 Vishay C5, C7 22pF 0402 AVX L1, L2 470nH, 2% 0603 Coilcraft 0603LS C8, C9 1nF 0402 AVX Figure 1. Standard Downmixer Test Circuit Schematic (153MHz IF) 14 5551f For more information www.linear.com/LTC5551 LTC5551 Applications Information Introduction The LTC5551 consists of a high linearity double-balanced mixer core, IF buffer amplifier, LO buffer amplifier and bias/enable circuits. See the Block Diagram section for a description of each pin function. The RF and LO inputs are single-ended. The IF output is differential. Low side or high side LO injection can be used. The evaluation circuit, shown in Figure 1, utilizes bandpass IF output matching and an IF transformer to realize a 50Ω single-ended IF output. The evaluation board layout is shown in Figure 2. For the RF input to be matched, the LO input must be driven. Using components listed in Figure 1, the RF input can be matched from 300MHz to 3.5GHz. The measured RF input return loss is shown in Figure 4 for LO frequencies of 0.5GHz, 1.0GHz. 1.8GHz and 2.8GHz. These LO frequencies correspond to the lower, middle and upper values of the LO range. The RF input impedance and input reflection coefficient, versus RF frequency, is listed in Table 1. The reference plane for this data is Pin 2 of the IC, with no external matching, and the LO is driven at 1.8GHz. LTC5551 TO MIXER C1 RFIN 2 X1 RF X2 3 CT 5551 F03 Figure 3. RF Input Schematic Figure 2. Evaluation Board Layout RF Input 0 The mixer’s RF input, shown in Figure 3, is connected to the primary winding of an integrated transformer. A 50Ω match can be realized with a π-network as shown in Figures 1 and 3. The primary side of the RF transformer is DC-grounded internally and the DC resistance of the primary is approximately 4Ω. A DC blocking capacitor is needed if the RF source has DC voltage present. The secondary winding of the RF transformer is internally connected to the mixer core. The center-tap of the transformer secondary is connected to Pin 3 (CT). Pin 3 needs to be connected to ground with a minimum parasitic resistance and inductance. RF PORT RETURN LOSS (dB) 5 10 LO = 0.5GHz LO = 1.0GHz LO = 1.8GHz LO = 2.8GHz 1100MHz to 2700MHz MATCHING 15 20 25 30 500MHz to 1100MHz MATCHING 300MHz to 650MHz MATCHING 2300MHz to 3500MHz MATCHING 35 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 RF FREQUENCY (GHz) 5551 F04 Figure 4. RF Input Return Loss 5551f For more information www.linear.com/LTC5551 15 LTC5551 Applications Information Table 1. RF Input Impedance and S11 (at Pin 2, No External Matching, LO Input Driven at 1.8GHz) S11 FREQUENCY (GHz) INPUT IMPEDANCE MAG ANGLE 0.3 7.6 + j8.4 0.74 160.4 0.7 11.7 + j15.2 0.65 144.5 1.1 17.7 + j 22.2 0.55 127.4 1.5 29.3 + j27.8 0.41 107.4 1.9 46.7 + j21.8 0.22 85.8 2.3 49.6 – j1.3 0.01 –106.3 2.7 31.1 – j9.0 0.26 –148.2 3.1 18.2 – j1.8 0.47 –175.2 3.5 11.8 + j8.4 0.63 159.8 LO Input The mixer’s LO input circuit, shown in Figure 5, consists of a balun transformer and a two-stage high speed limiting differential amplifier to drive the mixer core. The LTC5551’s LO amplifiers are optimized for the 200MHz to 3.5GHz LO frequency range. LO frequencies above or below this frequency range may be used with degraded performance. The mixer’s LO input is directly connected to the primary winding of an integrated transformer. The LO is 50Ω matched from 1GHz to 3.5GHz with a single 3.9pF series capacitor on the input. Matching to LO frequencies below 1GHz is easily accomplished by adding shunt capacitor C3 shown in Figure 5. Measured LO input return loss is shown in Figure 6. The nominal LO input level is 0dBm although the limiting amplifiers will deliver excellent performance over a ±6dB input power range. LO input power of –9dBm may be used with slightly degraded performance. The LO input impedance and input reflection coefficient, versus frequency, is shown in Table 2. Table 2. LO Input Impedance vs Frequency (at Pin 10, No External Matching) INPUT IMPEDANCE MAG ANGLE 0.3 4.8 + j12.0 0.84 152.7 0.7 13.4 + j28.1 0.67 118.5 1.1 32.7 + j39.1 0.47 88.6 1.5 56.8 + j31.1 0.29 61.5 1.9 62.8 + j9.3 0.14 31.4 2.3 54.1 – j1.4 0.04 –18.3 2.7 45.1 – j1.4 0.05 –163.6 3.1 39.8 + j3.6 0.12 158.6 3.5 37.2 + j10.4 0.19 134.1 0 LO BUFFER LO 10 TO MIXER C2 C3 4mA BIAS 5 EN 6 VCC 7 LOIN LO PORT RETURN LOSS (dB) LTC5551 S11 FREQUENCY (GHz) 5 C2 = 15pF, C3 = 8.2pF C2 = 8.2pF, C3 = 2.2pF C2 = 3.9pF, C3 OPEN 10 15 20 25 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 LO FREQUENCY (GHz) VCC 5551 F05 5551 F06 Figure 5. LO Input Schematic 16 Figure 6. LO Input Return Loss 5551f For more information www.linear.com/LTC5551 LTC5551 Applications Information IF Output The IF amplifier, shown in Figure 7, has differential opencollector outputs (IF+ and IF –), and a pin for modifying the internal bias (IFBIAS). The IF outputs must be biased at the supply voltage (VCC), which is applied through matching inductors L1 and L2. Alternatively, the IF outputs can be biased through the center tap of a transformer. Each IF output pin draws approximately 67mA of DC supply current (134mA total). For the highest performance, high-Q wire-wound chip inductors are recommended for L1 and L2. Low cost multilayer chip inductors may be substituted, with a slight degradation in performance. C9 L1 16 15 IF+ IFBIAS IF – CIF 5551 F08 Figure 8. IF Output Small-Signal Model Table 3. IF Output Impedance vs Frequency 954 || –j1442 (1.2pF) 140 950 || –j848 (1.2pF) 190 945 || –j681 (1.2pF) L2 240 942 || –j539 (1.2pF) R2 380 938 || –j338 (1.2pF) 456 926 || –j281 (1.2pF) VCC LTC5551 RIF 90 C8 R1 14 DIFFERENTIAL OUTPUT IMPEDANCE (RIF || XIF (CIF)) 4:1 R3 (OPTION TO REDUCE DC POWER) IF + FREQUENCY (MHz) T1 IFOUT 15 LTC5551 C4 14 IF – Transformer-Based Bandpass IF Matching VCC 4mA The IF output can be matched using the bandpass IF matching shown in Figures 1 and 7. L1 and L2 resonate with the internal IF output capacitance at the desired IF frequency. The value of L1, L2 is calculated as follows: IF AMP BIAS 5551 F07 Figure 7. IF Amplifier Schematic with Transformer-Based Bandpass Match For optimum single-ended performance, the differential IF outputs must be combined through an external IF transformer or discrete IF balun circuit. The evaluation board (see Figures 1 and 2) uses a 4:1 ratio IF transformer for impedance transformation and differential to single-ended transformation. It is also possible to eliminate the IF transformer and drive differential filters or amplifiers directly. The IF output impedance can be modeled as 950Ω in parallel with 1.2pF at IF frequencies. An equivalent smallsignal model is shown in Figure 8. Frequency-dependent differential IF output impedance is listed in Table 3. This data is referenced to the package pins (with no external components) and includes the effects of IC and package parasitics. L1, L2 = 1/[(2 π fIF)2 • 2 • CIF] where CIF is the internal IF capacitance (listed in Table 3). Values of L1 and L2 are tabulated in Figure 1 for various IF frequencies. For IF Frequency below 80MHz, the inductor values become unreasonably high and the high pass impedance matching network described in a later section is preferred, due to its lower inductor values. Table 4 summarizes the optimum IF matching inductor values vs IF center frequency, to be used in the standard downmixer test circuit shown in Figure 1. The inductor values listed are less than the ideal calculated values due to the additional capacitance of the 4:1 transformer. Measured IF output return losses are shown in Figure 9. 5551f For more information www.linear.com/LTC5551 17 LTC5551 Applications Information Table 4. Bandpass Matching Elements Values vs IF Frequency Highpass IF Matching L1, L2 vs IF Frequencies The highpass IF matching circuits shown in Figure 10 can be used when higher conversion gain than that from the standard demoboard is desired. The highpass matching network will have less IF bandwidth than the bandpass matching. It also use smaller inductance values; an advantage when designing for IF center frequency well lower than 80MHz. IF (MHz) L1, L2 (nH) COMMENTS 120 810 Coilcraft 0603 LS 153 470 Coilcraft 0603 LS 240 180 Coilcraft 0603 CS 305 120 Coilcraft 0603 CS 380 56 Coilcraft 0603 CS 456 33 Coilcraft 0603 CS The resistors R1 and R2 which are connected between the IF+ and IF– is used to assist the IF impedance matching. A lower value of R1, R2 will help improve the IF return loss and broaden the IF bandwidth. However, it will results in lower conversion gain with minor impact to linearity and noise figure performances. Other 4:1 transformers can be used to replace the TC41-7ALN+ that is used in the standard demoboards. The insertion loss and parasitics of the transformer will impact the overall circuit performance. For IF frequency higher than 300MHz, the TC4-1-17LN+ from Mini-Circuits or the WBC4-6TLB from Coilcraft is preferred. Referring to the small-signal output network schematic in Figure 10, the reactive matching element values (L1, L2, C8 and C9) are calculated using the following equations. The source resistance (RS) is the parallel combination of external resistors R1 + R2 and the internal IF resistance, RIF taken from Table 3. The differential load resistance (RL) is typically 200Ω, but can be less. CIF, the IF output capacitance, is taken from Table 3. Choosing RS in the 380Ω to 450Ω range will yield power conversion gains around 4dB. 0 RETURN LOSS (dB) 5 10 15 L1, L2 = 470nH L1, L2 = 120nH L1, L2 = 56nH L1, L2 = 33nH 20 25 50 100 150 200 250 300 350 400 450 500 IF FREQUENCY (MHz) 5551 F09 RS =RIF 2 •R1 (R1=R2) Q= (RS >RL ) (RS /RL −1) YL =Q /RS + (ωIF •CIF ) L1,L2 =1/ (2 • YL • ωIF ) C7,C8 = 2 / (Q •RL • ωIF ) To demonstrate the highpass impedance transformer output matching, these equations were used to calculate the element values for a 80MHz IF frequency and 200Ω differential load resistance. The measured performance with L1, L2 = 330nH, C8, C9 = 15pF is shown in Figure 11. The test conditions are: PRF = –6dBm, PLO = 0dBm with low side LO injection. Figure 9. IF Output Return Loss Bandpass Matching with 4:1 Transformer 18 5551f For more information www.linear.com/LTC5551 LTC5551 Applications Information T1 4:1 C9 IFOUT L1 L2 R1 R2 C8 VCC C4 15 LTC5551 14 IF+ IF – RIF CIF 5551 F10 Figure 10. IF Output Circuit for Highpass Matching Element Value Calculations 38 10 36 9 8 IIP3 32 7 30 6 26 5 4 24 22 20 1.1 GC (dB) IIP3 (dBm) 34 R1, R2 OPEN R1, R2 = 1kΩ 1.3 GC 1.5 1.7 1.9 2.1 2.3 RF FREQUENCY (GHz) 3 2.5 2 2.7 5551 F11 Figure 11. Performance Using 80MHz Highpass IF Matching Network 5551f For more information www.linear.com/LTC5551 19 LTC5551 Applications Information Wideband Differential IF Output Wide IF bandwidth and high input 1dB compression are obtained by reducing the IF output resistance with resistors R1 and R2. This will reduce the mixer’s conversion gain, but will not degrade the IIP3 or noise figure. The IF matching shown in Figure 12 uses 249Ω resistors and 470nH supply chokes to produce a wideband 200Ω differential output. This differential output is suitable for driving a wideband differential amplifier, filter, or a wideband 4:1 transformer. The complete test circuit, shown in Figure 13, uses resistive impedance matching attenuators (L-pads) on the evaluation board to transform each 100Ω IF output to 50Ω. An external 0°/180° power combiner is then used to convert the 100Ω differential output to 50Ω single-ended, to facilitate measurement. Measured conversion gain and IIP3 at the 200Ω differential output are plotted in Figure 14. As shown, the conversion gain is flat within 1dB over the 50MHz to 490MHz IF output frequency range. 5 38 36 IIP3 34 249Ω IF+ 100Ω 470nH 249Ω 3 28 26 20 0 50 90 130 170 210 250 290 330 370 410 450 490 IF FREQUENCY (MHz) 18 5551 F12 270pF 1 22 100Ω 470nH 2 GC 24 VCC IF– 30 GC (dB) LTC5551 IIP3 (dBm) 200Ω LOAD 270pF 4 32 5551 F14 Figure 12. Wideband 200Ω Differential Output LO 1.8GHz 0dBm Figure 14. Conversion Gain and IIP3 vs IF Output Frequency for Wideband 200Ω Differential IF L-PADS AND 180° COMBINER FOR 50Ω SINGLE-ENDED MEASUREMENT 3.9pF LO 270pF LTC5551 RF 1.85GHz TO 2.29GHz 2.2pF IF+ LO 249Ω 7.5nH IF EN 71.5Ω 470nH IFOUT 200Ω RF EN 69.8Ω 249Ω IF– BIAS IF+ 50Ω 22pF 470nH 1MHz TO 500MHz COMBINER 0° OUT IF– 69.8Ω 270pF 50Ω 180° IFOUT 50Ω 71.5Ω VCC 3.3V 10nF 0.56µF 5551 F13 Figure 13. Test Circuit for Wideband 200Ω Differential Output 20 5551f For more information www.linear.com/LTC5551 LTC5551 Applications Information The IFBIAS pin (Pin 16) is available for reducing the DC current consumption of the IF amplifier, at the expense of reduced performance. This pin should be left open-circuited for optimum performance. The internal bias circuit produces a 4mA reference for the IF amplifier, which causes the amplifier to draw approximately 134mA. If resistor R3 is connected to Pin 16 as shown in Figure 7, a portion of the reference current can be shunted to ground, resulting in reduced IF amplifier current. For example, R3 = 1kΩ will shunt away 1.5mA from Pin 16 and the IF amplifier current will be reduced to approximately 90mA. The nominal, open-circuit DC voltage at Pin 16 is 2.1V. Table 5 lists RF performance at 1950MHz vs IF amplifier current. Table 5. Mixer Performance with Reduced IF Amplifier Current (RF = 1950MHz, Low Side LO, IF = 153MHz, VCC = 3.3V) R3 (kΩ) ICC (mA) GC (dB) IIP3 (dBm) P1dB (dBm) NF (dB) OPEN 204 2.4 35.5 18.0 9.7 4.7 194 2.4 35.0 17.9 9.4 2.2 186 2.4 34.2 17.8 9.2 1.0 164 2.4 31.9 17.3 LTC5551 VCC 7 ISEL 8 BIAS 5551 F15 Figure 15. ISEL Interface Schematic LTC5551 6 5 VCC EN BIAS 5551 F16 Figure 16. Enable Input Circuit 8.7 (RF = 1950MHz, High Side LO, IF = 153MHz, VCC = 3.3V) R3 (kΩ) ICCIF (mA) GC (dB) IIP3 (dBm) P1dB (dBm) NF (dB) OPEN 204 2.4 33.0 17.9 10.5 4.7 194 2.3 32.6 17.8 10.2 ISEL ICC (mA) GC (dB) IIP3 (dBm) P1dB (dBm) NF (dB) Table 6. Performance Comparison – Low Power vs High Power Mode RF = 1950MHz, Low Side LO, IF = 153MHz, EN = High 2.2 186 2.3 32.1 17.6 9.9 Low 204 2.4 35.5 18.0 9.7 1.0 164 2.3 30.5 17.0 9.4 High 139 2.4 29.3 16.7 8.3 Low Power Mode Enable Interface The LTC5551 can be set to low power mode using a digital voltage applied to the ISEL pin (Pin 8). This allows the flexibility to reduce current when lower RF performance is acceptable. Figure 15 shows a simplified schematic of the ISEL pin interface. When ISEL is set low (<0.3V), the mixer operates at maximum DC current. When ISEL is set high (>1.2V), the DC current is reduced, thus reducing power consumption. When floating, the ISEL is pulled low by an internal pull-down resistor, and operates at maximum supply current. The performance in low power mode and nominal power mode are compared in Table 6. Figure 16 shows a simplified schematic of the EN pin interface. To enable the chip, the EN voltage must be higher than 1.2V. The EN voltage at the pin should never exceed the power supply voltage (VCC) by more than 0.3V. If this should occur, the supply current could be sourced through the ESD diode, potentially damaging the IC. If the EN pin is left floating, its voltage will be pulled low by the internal pull-down resistor and the chip will be disabled. 5551f For more information www.linear.com/LTC5551 21 LTC5551 Applications Information Temperature Diode Supply Voltage Ramping The LTC5551 provides an on-chip diode at Pin 12 (TEMP) for chip temperature measurement. Pin 12 is connected to the anode of an internal ESD diode with its cathode connected to internal ground. The chip temperature can be measured by injecting a constant DC current into Pin 12 and measuring its DC voltage. The voltage vs temperature coefficient of the diode is about –1.72mV/°C with 10µA current injected into the TEMP pin. Figure 17 shows a typical temperature-voltage behavior when 10µA and 80µA currents are injected into Pin 12. Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1ms is recommended. TEMPERATURE DIODE VOLTAGE (mV) 900 850 800 Table 7. IF Output Spur Levels (dBc) 80µA 700 650 600 550 500 450 400 –40 –20 0 20 40 60 TEMPERATURE (°C) 80 100 5551 F17 Figure 17. TEMP Diode Voltage vs Junction Temperature (TJ) 22 Mixer spurious output levels versus harmonics of the RF and LO are tabulated in Table 7. The spur levels were measured on a standard evaluation board using the test circuit shown in Figure 1. The spur frequencies can be calculated using the following equation: fSPUR = (M • fRF)–(N • fLO) 10µA 750 Spurious Output Levels RF = 1950MHz, PRF = 0dBm, PLO = 0dBm, IF = 153MHz, Low Side LO, VCC = 3.3V, EN = High, ISEL = Low, TC = 25°C N 0 1 2 3 4 5 6 7 8 9 0 –26 –36 –40 –40 –61 –70 –57 –60 * 1 –28 0 –43 –26 –60 –43 –64 –49 –62 –63 2 –83 –66 –70 –69 –83 * * –81 * –79 M * * * * * * 3 * –81 * * 4 * * * * * * * * * * 5 * * * * * * * * * * 6 –84 * * * * * * * * * 7 –82 * * –84 * * * * * * *Less than –85dBc 5551f For more information www.linear.com/LTC5551 LTC5551 Package Description Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. UF Package 16-Lead Plastic QFN (4mm × 4mm) (Reference LTC DWG # 05-08-1692) 0.72 ±0.05 4.35 ±0.05 2.15 ±0.05 2.90 ± 0.05 (4 SIDES) PACKAGE OUTLINE 0.30 ±0.05 0.65 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS BOTTOM VIEW—EXPOSED PAD 4.00 ± 0.10 (4 SIDES) R = 0.115 TYP 0.75 ± 0.05 15 PIN 1 NOTCH R = 0.20 TYP OR 0.35 × 45° CHAMFER 16 0.55 ± 0.20 PIN 1 TOP MARK (NOTE 6) 1 2.15 ±0.10 (4-SIDES) 2 (UF16) QFN 10-04 0.200 REF 0.00 – 0.05 0.30 ± 0.05 0.65 BSC NOTE: 1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 5551f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. For more information www.linear.com/LTC5551 23 LTC5551 Typical Application Wideband 100Ω Differential IF Output Matching 1nF 3.9pF LO 2.2pF RF 7.5nH LTC5551 110Ω 560nH 2MHz TO 2000MHz COMBINER 0° IFOUT 50Ω OUT IF– 110Ω VCC 560nH 1nF IF– 50Ω 180° 39 6 36 5 33 4 30 3 27 2 IIP3 NORMAL POWER MODE 1 LOW POWER MODE 0 24 21 18 22pF 12 3.3V 10nF 0.56µF –1 GC 15 GC (dB) RF 1.85GHz TO 2.51GHz IF+ IF+ 50Ω IIP3 (dBm) LO 1.8GHz 0dBm Conversion Gain and IIP3 vs IF Frequency (Low Side LO) –2 –3 50 110 170 230 290 350 410 470 530 590 650 710 IF FREQUENCY (MHz) 5551 TA02b 5551 TA02a Related Parts PART NUMBER DESCRIPTION Mixers and Modulators LT®5527 400MHz to 3.7GHz, 5V Downconverting Mixer LT5557 400MHz to 3.8GHz, 3.3V Downconverting Mixer LTC559x 600MHz to 4.5GHz Dual Downconverting Mixer Family LTC5569 300MHz to 4GHz, 3.3V Dual Active Downconverting Mixer LTC554x 600MHz to 4GHz, 5V Downconverting Mixer Family LT5578 400MHz to 2.7GHz Upconverting Mixer LT5579 1.5GHz to 3.8GHz Upconverting Mixer LTC5588-1 200MHz to 6GHz I/Q Modulator LTC5585 700MHz to 3GHz Wideband I/Q Demodulator Amplifiers LTC6430-15 High Linearity Differential IF Amp LTC6431-15 High Linearity Single-Ended IF Amp LTC6412 31dB Linear Analog VGA LT5554 Ultralow Distortion IF Digital VGA RF Power Detectors LT5538 40MHz to 3.8GHz Log Detector LT5581 6GHz Low Power RMS Detector LTC5582 40MHz to 10GHz RMS Detector LTC5583 Dual 6GHz RMS Power Detector ADCs LTC2208 16-Bit, 130Msps ADC LTC2153-14 14-Bit, 310Msps Low Power ADC RF PLL/Synthesizer with VCO LTC6946-1/ Low Noise, Low Spurious Integer-N PLL with Integrated VCO LTC6946-2/ LTC6946-3 24 Linear Technology Corporation COMMENTS 2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply 2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply 8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply 2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply 8dB Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports 31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor >530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling 20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz 20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation 78dBFS Noise Floor, >83dB SFDR at 250MHz 68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption 373MHz to 5.79GHz, –157dBc/Hz WB Phase Noise Floor, –100dBc/Hz Closed-Loop Phase Noise 1630 McCarthy Blvd., Milpitas, CA 95035-7417 For more information www.linear.com/LTC5551 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LTC5551 5551f LT 0813 • PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 2013