AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 Fully Integrated, 8-Channel Ultrasound Analog Front End with Passive CW Mixer, 0.75nV/rtHz, 14/12-Bit, 65MSPS, 153mW/CH Check for Samples: AFE5808 FEATURES APPLICATIONS • • • 1 • • • • • • • • • • • 8-Channel Complete Analog Front-End – LNA, VCAT, PGA, LPF, ADC, and CW Mixer Programmable Gain Low-Noise Amplifier (LNA) – 24/18/12 dB Gain – 0.25/0.5/1 VPP Linear Input Range – 0.63/0.7/0.9 nV/rtHz Input Referred Noise – Programmable Active Termination 40 dB Low Noise Voltage Controlled Attenuator (VCAT) 24/30 dB Programmable Gain Amplifier (PGA) 3rd Order Linear Phase Low-Pass Filter (LPF) – 10, 15, 20, 30 MHz 14-bit Analog to Digital Converter (ADC) – 77 dBFS SNR at 65 MSPS – LVDS Outputs Noise/Power Optimizations (Full Chain) – 153 mW/CH at 0.75 nV/rtHz, 65 MSPS – 98 mW/CH at 1.1 nV/rtHz, 40 MSPS – 80 mW/CH at CW Mode Excellent Device-to-Device Gain Matching – ±0.5 dB(typical) and ±0.9 dB(max) Low Harmonic Distortion Fast and Consistent Overload Recovery Passive Mixer for Continuous Wave Doppler(CWD) – Low Close-in Phase Noise –156 dBc/Hz at 1 KHz off 2.5 MHz Carrier – Phase Resolution of 1/16λ – Support 16X, 8X, 4X and 1X CW Clocks – 12dB Suppression on 3rd and 5th Harmonics – Flexible Input Clocks Small Package: 15 mm x 9 mm, 135-BGA Medical Ultrasound Imaging Nondestructive Evaluation Equipments DESCRIPTION The AFE5808 is a highly integrated Analog Front-End (AFE) solution specifically designed for ultrasound systems in which high performance and small size are required. The AFE5808 integrates a complete time-gain-control (TGC) imaging path and a continuous wave Doppler (CWD) path. It also enables users to select one of various power/noise combinations to optimize system performance. Therefore, the AFE5808 is a suitable ultrasound analog front end solution not only for high-end systems, but also for portable ones. The AFE5808 contains eight channels of voltage controlled amplifier (VCA), 14/12-bit Analog-to-Digital Converter (ADC), and CW mixer. The VCA includes Low noise Amplifier(LNA), Voltage controlled Attenuator(VCAT), Programmable Gain Amplifier(PGA), and Low-Pass Filter (LPF). The LNA gain is programmable to support 250 mVPP to 1 VPP input signals. Programmable active termination is also supported by the LNA. The ultra-low noise VCAT provides an attenuation control range of 40dB and improves overall low gain SNR which benefits harmonic imaging and near field imaging. The PGA provides gain options of 24 dB and 30 dB. Before the ADC, a LPF can be configured as 10 MHz, 15 MHz, 20 MHz or 30 MHz to support ultrasound applications with different frequencies. The high-performance 14 bit/65 MSPS ADC in the AFE5808 achieves 77 dBFS SNR. It ensures excellent SNR at low chain gain. The ADC’s LVDS outputs enable flexible system integration desired for miniaturized systems. NOTE AFE5808A is an enhanced version of AFE5808 and it is recommended for new designs. Compared to AFE5808, it expands the cut-off frequency range of the digital high pass filter; increases the handling capability of extreme overload signals; lowers the correlated noise significantly when high impedance source appears. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2010–2012, Texas Instruments Incorporated AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. DESCRIPTION CONTINUED The AFE5808 also integrates a low power passive mixer and a low noise summing amplifier to accomplish onchip CWD beamformer. 16 selectable phase-delays can be applied to each analog input signal. Meanwhile a unique 3rd and 5th order harmonic suppression filter is implemented to enhance CW sensitivity. The AFE5808 is available in a 15mm × 9mm, 135-pin BGA package and it is specified for operation from 0°C to 85°C. It is also pin-to-pin compatible to the AFE5807, AFE5803, and AFE5808A. AFE5808 (1 of 8 Channels) SPI IN SPI Logic VCAT 0 to -40dB LNA 3rd LP Filter 10, 15, 20, 30 MHz PGA 24, 30dB LNA IN 16X CLK 1X CLK 16 Phases Generator CW Mixer 16X8 Crosspoint SW SPI OUT 14Bit ADC LVDS Summing Amplifier Reference Reference CW I/Q Vout Differential TGC Vcntl EXT/INT REFs 1X CLK Figure 1. Block Diagram PACKAGING/ORDERING INFORMATION (1) (1) 2 PRODUCT PACKAGE TYPE OPERATING ORDERING NUMBER TRANSPORT MEDIA, QUANTITY AFE5808 ZCF 0°C to 85°C AFE5808ZCF Tray, 160 For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Copyright © 2010–2012, Texas Instruments Incorporated AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) VALUE Supply voltage range UNIT MAX MIN AVDD –0.3 3.9 V AVDD_ADC –0.3 2.2 V AVDD_5V –0.3 6 V DVDD –0.3 2.2 V Voltage between AVSS and LVSS –0.3 0.3 V Voltage at analog inputs and digital inputs –0.3 min [3.6,AVDD+0.3] V 260 °C 105 °C 150 °C Peak solder temperature (2) Maximum junction temperature (TJ), any condition Storage temperature range –55 Operating temperature range ESD Ratings (1) (2) 85 °C HBM 0 2000 V CDM 500 V Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied Exposure to absolute maximum rated conditions for extended periods may degrade device reliability. Device complies with JSTD-020D. THERMAL INFORMATION AFE5808 THERMAL METRIC (1) BGA UNITS 135 PINS θJA Junction-to-ambient thermal resistance θJCtop Junction-to-case (top) thermal resistance θJB Junction-to-board thermal resistance 11.5 ψJT Junction-to-top characterization parameter 0.2 ψJB Junction-to-board characterization parameter 10.8 θJCbot Junction-to-case (bottom) thermal resistance n/a (1) 34.1 5 °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. RECOMMENDED OPERATING CONDITIONS PARAMETER MIN MAX AVDD 3.15 3.6 V 1.7 1.9 V V AVDD_ADC DVDD AVDD_5V Ambient Temperature, TA 1.7 1.9 4.75 5.5 V 0 85 °C Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 UNIT 3 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com PINOUT INFORMATION Top View ZCF (BGA-135) 1 2 3 4 5 6 7 8 9 A AVDD INP8 INP7 INP6 INP5 INP4 INP3 INP2 INP1 B CM_BYP ACT8 ACT7 ACT6 ACT5 ACT4 ACT3 ACT2 ACT1 C AVSS INM8 INM7 INM6 INM5 INM4 INM3 INM2 INM1 D AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVDD AVDD E CW_IP_AMPINP CW_IP_AMPINM AVSS AVSS AVSS AVSS AVSS AVDD AVDD F CW_IP_OUTM CW_IP_OUTP AVSS AVSS AVSS AVSS AVSS CLKP_16X CLKM_16X G AVSS AVSS AVSS AVSS AVSS AVSS AVSS CLKP_1X CLKM_1X H CW_QP_OUTM CW_QP_OUTP AVSS AVSS AVSS AVSS AVSS PDN_GLOBAL RESET J CW_QP_AMPINP CW_QP_AMPINM AVSS AVSS AVSS AVDD_ADC AVDD_ADC PDN_VCA SCLK K AVDD AVDD_5V VCNTLP VCNTLM VHIGH AVSS DNC AVDD_ADC SDATA L CLKP_ADC CLKM_ADC AVDD_ADC REFM DNC DNC DNC PDN_ADC SEN M AVDD_ADC AVDD_ADC VREF_IN REFP DNC DNC DNC DNC SDOUT N D8P D8M DVDD DNC DVSS DNC DVDD D1M D1P P D7M D6M D5M FCLKM DVSS DCLKM D4M D3M D2M R D7P D6P D5P FCLKP DVSS DCLKP D4P D3P D2P PIN FUNCTIONS PIN DESCRIPTION NO. NAME B9~ B2 ACT1...ACT8 Active termination input pins for CH1~8. 1 µF capacitors are recommended. See the Applicaiton Information section. A1, D8, D9, E8, E9, K1 AVDD 3.3V Analog supply for LNA, VCAT, PGA, LPF and CWD blocks. K2 AVDD_5V 5.0V Analog supply for LNA, VCAT, PGA, LPF and CWD blocks. J6, J7, K8, L3, M1, M2 AVDD_ADC 1.8V Analog power supply for ADC. C1, D1~D7, E3~E7, F3~F7, G1~G7, AVSS H3~H7,J3~J5, K6 Analog ground. L2 CLKM_ADC Negative input of differential ADC clock. In the single-end clock mode, it can be tied to GND directly or through a 0.1µF capacitor. L1 CLKP_ADC Positive input of differential ADC clock. In the single-end clock mode, it can be tied to clock signal directly or through a 0.1µF capacitor. F9 CLKM_16X Negative input of differential CW 16X clock. Tie to GND when the CMOS clock mode is enabled. In the 4X and 8X CW clock modes, this pin becomes the 4X or 8X CLKM input. In the 1X CW clock mode, this pin becomes the quadrature-phase 1X CLKM for the CW mixer. Can be floated if CW mode is not used. F8 CLKP_16X Positive input of differential CW 16X clock. In 4X and 8X clock modes, this pin becomes the 4X or 8X CLKP input. In the 1X CW clock mode, this pin becomes the quadrature-phase 1X CLKP for the CW mixer. Can be floated if CW mode is not used. G9 CLKM_1X Negative input of differential CW 1X clock. Tie to GND when the CMOS clock mode is enabled (Refer to Figure 88 for details). In the 1X clock mode, this pin is the In-phase 1X CLKM for the CW mixer. Can be floated if CW mode is not used. G8 CLKP_1X Positive input of differential CW 1X clock. In the 1X clock mode, this pin is the In-phase 1X CLKP for the CW mixer. Can be floated if CW mode is not used. B1 CM_BYP Bias voltage and bypass to ground. ≥ 1µF is recommended. To suppress the ultra low frequency noise, 10 µF can be used. E2 CW_IP_AMPINM Negative differential input of the In-phase summing amplifier. External LPF capacitor has to be connected between CW_IP_AMPINM and CW_IP_OUTP. This pin becomes the CH7 PGA negative output when PGA test mode is enabled. Can be floated if not used. 4 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 PIN FUNCTIONS (continued) PIN DESCRIPTION NO. NAME E1 CW_IP_AMPINP Positive differential input of the In-phase summing amplifier. External LPF capacitor has to be connected between CW_IP_AMPINP and CW_IP_OUTM. This pin becomes the CH7 PGA positive output when PGA test mode is enabled. Can be floated if not used. F1 CW_IP_OUTM Negative differential output for the In-phase summing amplifier. External LPF capacitor has to be connected between CW_IP_AMPINP and CW_IP_OUTPM. Can be floated if not used. F2 CW_IP_OUTP Positive differential output for the In-phase summing amplifier. External LPF capacitor has to be connected between CW_IP_AMPINM and CW_IP_OUTP. Can be floated if not used. J2 CW_QP_AMPIN M Negative differential input of the quadrature-phase summing amplifier. External LPF capacitor has to be connected between CW_QP_AMPINM and CW_QP_OUTP. This pin becomes CH8 PGA negative output when PGA test mode is enabled. Can be floated if not used. J1 Positive differential input of the quadrature-phase summing amplifier. External LPF capacitor has to be CW_QP_AMPINP connected between CW_QP_AMPINP and CW_QP_OUTM. This pin becomes CH8 PGA positive output when PGA test mode is enabled. Can be floated if not used. H1 CW_QP_OUTM Negative differential output for the quadrature-phase summing amplifier. External LPF capacitor has to be connected between CW_QP_AMPINP and CW_QP_OUTM. Can be floated if not used. H2 CW_QP_OUTP Positive differential output for the quadrature-phase summing amplifier. External LPF capacitor has to be connected between CW_QP_AMPINM and CW_QP_OUTP. Can be floated if not used. N8, P9~P7, P3~P1, N2 D1M~D8M ADC CH1~8 LVDS negative outputs N9, R9~R7, R3~R1, N1 D1P~D8P ADC CH1~8 LVDS positive outputs P6 DCLKM LVDS bit clock (7x) negative output R6 DCLKP LVDS bit clock (7x) positive output K7, L5~L7,M5~M8, DNC N4, N6 Do not connect. Must leave floated N3, N7 DVDD ADC digital and I/O power supply, 1.8V N5, P5, R5 DVSS ADC digital ground P4 FCLKM LVDS frame clock (1X) negative output R4 FCLKP LVDS frame clock (1X) positive output C9~C2 INM1…INM8 CH1~8 complimentary analog inputs. Bypass to ground with ≥ 0.015µF capacitors. The HPF response of the LNA depends on the capacitors. A9~A2 INP1...INP8 CH1~8 analog inputs. AC couple to inputs with ≥ 0.1µF capacitors. L8 PDN_ADC ADC partial (fast) power down control pin with an internal pull down resistor of 100kΩ. Active High. J8 PDN_VCA VCA partial (fast) power down control pin with an internal pull down resistor of 20kΩ. Active High. H8 PDN_GLOBAL Global (complete) power-down control pin for the entire chip with an internal pull down resistor of 20kΩ. Active High. L4 REFM 0.5V reference output in the internal reference mode. Must leave floated in the internal reference mode. Adding a test point on the PCB is recommended for monitoring the reference output. M4 REFP 1.5V reference output in the internal reference mode. Must leave floated in the internal reference mode. Adding a test point on the PCB is recommended for monitoring the reference output. H9 RESET Hardware reset pin with an internal pull-down resistor of 20kΩ. Active high. J9 SCLK Serial interface clock input with an internal pull-down resistor of 20kΩ K9 SDATA Serial interface data input with an internal pull-down resistor of 20kΩ M9 SDOUT Serial interface data readout. High impedance when readout is disabled. L9 SEN Serial interface enable with an internal pull up resistor of 20kΩ. Active low. K4 VCNTLM Negative differential attenuation control pin. K3 VCNTLP Positive differential attenuation control pin K5 VHIGH Bias voltage; bypass to ground with ≥1µF. M3 VREF_IN ADC 1.4V reference input in the external reference mode; bypass to ground with 0.1µF. K7, L5~L7, M5~M8, N4, N6 DNC Do not connect. Must leave floated Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 5 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com ELECTRICAL CHARACTERISTICS AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V, AC-coupled with 0.1µF at INP and bypassed to ground with 15nF at INM, No active termination, VCNTL= 0V, fIN= 5MHz, LNA = 18dB, PGA = 24dB, 14Bit, sample rate = 65MSPS, LPF Filter = 15MHz, low noise mode, VOUT = –1dBFS, internal 500Ω CW feedback resistor, CMOS CW clocks, ADC configured in internal reference mode, Single-ended VCNTL mode, VCNTLM = GND, at ambient temperature TA = 25°C, unless otherwise noted. Min and max values are specified across full-temperature range with AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V PARAMETER TEST CONDITION MIN TYP MAX UNITS TGC FULL SIGNAL CHANNEL (LNA+VCAT+LPF+ADC) en (RTI) Input voltage noise over LNA Gain(low noise mode) Rs = 0Ω, f = 2MHz, LNA = 24/18/12dB, PGA = 24dB 0.76/0.83/1.16 Rs = 0Ω, f = 2MHz,LNA = 24/18/12dB, PGA = 30dB 0.75/0.86/1.12 Input voltage noise over LNA Gain(low power mode) Rs = 0Ω, f = 2MHz,LNA = 24/18/12dB, PGA = 24dB 1.1/1.2/1.45 Rs = 0Ω, f = 2MHz, LNA = 24/18/12dB, PGA = 30dB 1.1/1.2/1.45 Input Voltage Noise over LNA Gain(Medium Power Mode) Rs = 0Ω, f = 2MHz,LNA = 24/18/12dB, PGA = 24dB 1/1.05/1.25 Rs = 0Ω, f = 2MHz, LNA = 24/18/12dB, PGA = 30dB 0.95/1.0/1.2 2.7 pA/rtHz Rs = 200Ω, 200Ω active termination, PGA = 24dB, LNA = 12/18/24dB 3.85/2.4/1.8 dB Rs = 100Ω, 100Ω active termination, PGA = 24dB, LNA = 12/18/24dB 5.3/3.1/2.3 dB nV/rtHz nV/rtHz nV/rtHz Input referred current noise NF Noise figure VMAX Maximum Linear Input Voltage LNA gain = 24/18/12dB 250/500/1000 VCLAMP Clamp Voltage Reg52[10:9] = 0, LNA = 24/18/12dB 350/600/1150 mVpp Low noise mode 24/30 PGA Gain dB Medium/Low power mode Total gain Ch-CH Noise Correlation Factor without Signal (1) Ch-CH Noise Correlation Factor with Signal (1) 24/28.5 LNA = 24dB, PGA = 30dB, Low noise mode 54 LNA = 24dB, PGA = 30dB, Med power mode 52.5 LNA = 24dB, PGA = 30dB, Low power mode 52.5 Summing of 8 channels 0 Full band (VCNTL = 0/0.8) 0.15/0.17 1MHz band over carrier (VCNTL= 0/0.8) 0.18/0.75 VCNTL= 0.6V(22 dB total channel gain) Signal to Noise Ratio (SNR) dB VCNTL= 0, LNA = 18dB, PGA = 24dB 68 70 59.3 63 VCNTL = 0, LNA = 24dB, PGA = 24dB dBFS 58 Narrow Band SNR SNR over 2MHz band around carrier at VCNTL=0.6V ( 22dB total gain) Input Common-mode Voltage At INP and INM pins 75 77 dBFS 2.4 V 8 kΩ Input resistance Preset active termination enabled Input capacitance Input Control Voltage VCNTLP-VCNTLM Common-mode voltage VCNTLP and VCNTLM Gain Range pF 0 1.5 V 0.75 V -40 dB VCNTL= 0.1V to 1.1V 35 dB/V Input Resistance Between VCNTLP and VCNTLM 200 KΩ Input Capacitance Between VCNTLP and VCNTLM 1 pF TGC Response Time VCNTL= 0V to 1.5V step function 1.5 µs 10, 15, 20, 30 MHz Settling time for change in LNA gain 14 µs Settling time for change in active termination setting 1 µs Noise correlation factor is defined as Nc/(Nu+Nc), where Nc is the correlated noise power in single channel; and Nu is the uncorrelated noise power in single channel. Its measurement follows the below equation, in which the SNR of single channel signal and the SNR of summed eight channel signal are measured. NC = 10 8CH_SNR 10 10 Nu + NC 6 Ω 20 Gain Slope 3rd order-Low-pass Filter (1) 50/100/200/400 1CH_SNR 1 x 1 - 56 7 10 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 ELECTRICAL CHARACTERISTICS (continued) AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V, AC-coupled with 0.1µF at INP and bypassed to ground with 15nF at INM, No active termination, VCNTL= 0V, fIN= 5MHz, LNA = 18dB, PGA = 24dB, 14Bit, sample rate = 65MSPS, LPF Filter = 15MHz, low noise mode, VOUT = –1dBFS, internal 500Ω CW feedback resistor, CMOS CW clocks, ADC configured in internal reference mode, Single-ended VCNTL mode, VCNTLM = GND, at ambient temperature TA = 25°C, unless otherwise noted. Min and max values are specified across full-temperature range with AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V PARAMETER TEST CONDITION MIN TYP MAX UNITS AC ACCURACY LPF Bandwidth tolerance ±5% CH-CH group delay variation 2MHz to 15MHz 2 ns CH-CH Phase variation 15MHz signal 11 Degree 0V < VCNTL< 0.1V (Dev-to-Dev) ±0.5 0.1V < VCNTL < 1.1V (Dev-to-Dev) –0.9 ±0.5 0.9 0.1V < VCNTL < 1.1V (Dev-to-Dev), Temp = 0°C and 85°C –1.1 ±0.5 1.1 Gain matching dB 1.1V < VCNTL < 1.5V (Dev-to-Dev) ±0.5 Gain matching Channel-to-Channel ±0.25 Output offset VCNTL = 0, PGA = 30dB, LNA = 24dB –75 dB 75 LSB AC PERFORMANCE HD2 HD3 THD Second-Harmonic Distortion Third-Harmonic Distortion Total Harmonic Distortion Fin = 2MHz; VOUT = -1dBFS –60 Fin = 5MHz; VOUT = -1dBFS –60 Fin = 5MHz; VIN = 500mVpp, VOUT = –1dBFS, LNA = 18dB, VCNTL = 0.88V –55 Fin = 5MHz; VIN = 250mVpp, VOUT = –1dBFS, LNA = 24dB, VCNTL= 0.88V –55 Fin = 2MHz; VOUT = –1dBFS –55 Fin = 5MHz; VOUT = –1dBFS –55 Fin = 5MHz; VIN = 500mVpp, VOUT = –1dBFS, LNA = 18dB, VCNTL = 0.88V –55 Fin = 5MHz; VIN = 250mVpp, VOUT = –1dBFS, LNA = 24dB, VCNTL = 0.88V –55 Fin = 2MHz; VOUT = –1dBFS –55 Fin = 5MHz; VOUT = –1dBFS –55 –60 dBc dBc dBc IMD3 Intermodulation distortion f1 = 5MHz at –1dBFS, f2 = 5.01MHz at –27dBFS XTALK Cross-talk Fin = 5MHz; VOUT = –1dBFS –65 dB Phase Noise 1kHz off 5MHz (VCNTL= 0V) –132 dBc/Hz Input Referred Voltage Noise Rs = 0Ω, f = 2MHz, Rin = High Z, Gain = 24/18/12dB High-Pass Filter -3dB Cut-off Frequency dBc LNA LNA linear output 0.63/0.70/0.9 nV/rtHz 50/100/150/200 KHz 4 Vpp 2/10.5 nV/rtHz 1.75 nV/rtHz 80 KHz VCAT+ PGA VCAT Input Noise 0dB/-40dB Attenuation PGA Input Noise 24dB/30dB -3dB HPF cut-off Frequency Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 7 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com ELECTRICAL CHARACTERISTICS (continued) AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V, AC-coupled with 0.1µF at INP and bypassed to ground with 15nF at INM, No active termination, VCNTL= 0V, fIN= 5MHz, LNA = 18dB, PGA = 24dB, 14Bit, sample rate = 65MSPS, LPF Filter = 15MHz, low noise mode, VOUT = –1dBFS, internal 500Ω CW feedback resistor, CMOS CW clocks, ADC configured in internal reference mode, Single-ended VCNTL mode, VCNTLM = GND, at ambient temperature TA = 25°C, unless otherwise noted. Min and max values are specified across full-temperature range with AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V PARAMETER TEST CONDITION MIN TYP MAX UNITS CW DOPPLER en (RTI) en (RTO) en (RTI) en (RTO) NF 0.8 8 channel mixer, LNA = 24dB, 62.5Ω feedback resistor 0.33 1 channel mixer, LNA = 24dB, 500Ω feedback resistor 12 8 channel mixer, LNA = 24dB, 62.5Ω feedback resistor 5 1 channel mixer, LNA = 18dB, 500Ω feedback resistor 1.1 8 channel mixer, LNA = 18dB, 62.5Ω feedback resistor 0.5 1 channel mixer, LNA = 18dB, 500Ω feedback resistor 8.1 8 channel mixer, LNA = 18dB, 62.5Ω feedback resistor 4.0 Rs = 100Ω,RIN = High Z, fin = 2MHz (LNA, I/Q mixer and summing amplifier/filter) 1.8 nV/rtHz Output voltage noise (CW) nV/rtHz Input voltage noise (CW) nV/rtHz Output voltage noise (CW) Noise figure fCW 1 channel mixer, LNA = 24dB, 500Ω feedback resistor Input voltage noise (CW) CW Operation Range (2) CW Clock frequency nV/rtHz dB CW signal carrier frequency 8 1X CLK (16X mode) 8 16X CLK(16X mode) 128 4X CLK(4X mode) MHz 32 AC coupled LVDS clock amplitude 0.7 CLKM_16X-CLKP_16X; CLKM_1X-CLKP_1X Vpp AC coupled LVPECL clock amplitude VCMOS MHz 1.6 CLK duty cycle 1X and 16X CLKs Common-mode voltage Internal provided 35% 65% 2.5 CMOS Input clock amplitude 4 CW Mixer conversion loss V 5 4 CW Mixer phase noise 1kHz off 2MHz carrier DR Input dynamic range FIN = 2MHz, LNA = 24/18/12dB IMD3 Intermodulation distortion V dB 156 dBc/Hz 160/164/165 dBFS/Hz f1 = 5 MHz, f2 = 5.01 MHz, both tones at -8.5dBm amplitude, 8 channels summed up in-phase, CW feedback resistor = 87 Ω –50 dBc f1 = 5 MHz, f2= 5.01 MHz, both tones at –8.5dBm amplitude, Single channel case, CW feed back resistor = 500Ω –60 dBc I/Q Channel gain matching 16X mode ±0.04 dB I/Q Channel phase matching 16X mode ±0.1 Degree I/Q Channel gain matching 4X mode ±0.04 dB I/Q Channel phase matching 4X mode ±0.1 Degree Image rejection ratio fin = 2.01MHz, 300mV input amplitude, CW clock frequency = 2.00MHz –50 dBc Summing amplifier inputs/outputs 1.5 V 4 Vpp CW SUMMING AMPLIFIER VCMO Common-mode voltage Summing amplifier output 100Hz 2 nV/rtHz 1.2 nV/rtHz 1 nV/rtHz Input referred current noise 2.5 pA/rtHz Unit gain bandwidth 200 MHz 20 mApp Input referred voltage noise 1kHz 2KHz-100MHz Max output current Linear operation range ADC SPECIFICATIONS Sample rate SNR Signal-to-noise ratio 10 65 MSPS Idle channel SNR of ADC 14b 77 dBFS REFP 1.5 V REFM 0.5 V VREF_IN Voltage 1.4 V VREF_IN Current 50 µA Internal reference mode External reference mode (2) 8 In the 16X operation mode, the CW operation range is limited to 8MHz due to the 16X CLK. The maximum clock frequency for the 16X CLK is 128MHz. In the 8X, 4X, and 1X modes, higher CW signal frequencies up to 15 MHz can be supported with small degradation in performance, see application information: CW clock selection. . Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 ELECTRICAL CHARACTERISTICS (continued) AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V, AC-coupled with 0.1µF at INP and bypassed to ground with 15nF at INM, No active termination, VCNTL= 0V, fIN= 5MHz, LNA = 18dB, PGA = 24dB, 14Bit, sample rate = 65MSPS, LPF Filter = 15MHz, low noise mode, VOUT = –1dBFS, internal 500Ω CW feedback resistor, CMOS CW clocks, ADC configured in internal reference mode, Single-ended VCNTL mode, VCNTLM = GND, at ambient temperature TA = 25°C, unless otherwise noted. Min and max values are specified across full-temperature range with AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V PARAMETER TEST CONDITION MIN ADC input full-scale range LVDS Rate 65MSPS at 14 bit TYP MAX UNITS 2 Vpp 910 Mbps POWER DISSIPATION AVDD Voltage 3.15 3.3 3.6 V 1.7 1.8 1.9 V 4.75 5 5.5 V 1.7 1.8 1.9 V TGC low noise mode, 65MSPS 153 175 TGC low noise mode, 40MSPS 142 TGC medium power mode, 40MSPS 110 AVDD_ADC Voltage AVDD_5V Voltage DVDD Voltage Total power dissipation per channel mW/CH TGC low power mode, 40MSPS 98 TGC low noise mode, no signal 203 TGC medium power mode, no signal 126 TGC low power mode, no signal 99 CW-mode, no signal 147 TGC low noise mode, 500mVpp Input,1% duty cycle 210 TGC medium power mode, 500mVpp Input, 1% duty cycle 133 TGC low power, 500mVpp Input, 1% duty cycle 105 235 170 AVDD (3.3V) Current mA CW-mode, 500mVpp Input 375 TGC mode no signal 16.5 CW Mode no signal, 16X clock = 32MHz 22 32 AVDD_5V Current mA TGC mode, 500mVpp Input,1% duty cycle 16.5 CW-mode, 500mVpp Input 42.5 TGC low noise mode, no signal 93.5 TGC medium power mode, no signal 62 TGC low power mode, no signal 50 TGC low noise mode, 500mVpp input,1% duty cycle 97 TGC medium power mode, 500mVpp Input, 1% duty cycle 65 TGC low power mode, 500mVpp input,1% duty cycle 54 107 VCA Power dissipation CW Power dissipation mW/CH No signal, ADC shutdown CW Mode no signal, 16X clock = 32MHz 80 500mVpp input, ADC shutdown , 16X clock = 32MHz 173 AVDD_ADC(1.8V) Current 65MSPS 187 205 DVDD(1.8V) Current 65MSPS 77 110 mA ADC Power dissipation/CH 65MSPS 59 69 mW/CH 50MSPS 51 40MSPS 46 20MSPS 35 mW/CH Power dissipation in power down mode 25 Complete power-down PDN_Globa l= High 0.6 mW/CH Power-down response time Time taken to enter power down 1 µs Power-up response time VCA power down 2µs+1% of PDN time µs ADC power down 1 Power supply modulation ratio, AVDD and AVDD_5V Power supply rejection ratio (3) PDN_VCA = High, PDN_ADC = High mA Complete power down 2.5 ms fin = 5MHz, at 50mVpp noise at 1KHz on supply (3) –65 dBc fin = 5MHz, at 50mVpp noise at 50KHz on supply (3) –65 dBc f = 10kHz,VCNTL = 0V (high gain), AVDD –40 dBc f = 10kHz,VCNTL = 0V (high gain), AVDD_5V –55 dBc f = 10kHz,VCNTL = 1V (low gain), AVDD –50 dBc PSMR specification is with respect to input signal amplitude. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 9 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com DIGITAL CHARACTERISTICS Typical values are at +25°C, AVDD = 3.3V, AVDD_5 = 5V and AVDD_ADC = 1.8V, DVDD = 1.8V unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = 0°C to TMAX = +85°C,. PARAMETER CONDITION MIN TYP MAX UNITS (1) DIGITAL INPUTS/OUTPUTS VIH Logic high input voltage 2 3.3 VIL Logic low input voltage 0 0.3 V V Logic high input current 200 µA Logic low input current 200 µA 5 pF VOH Input capacitance Logic high output voltage SDOUT pin DVDD V VOL Logic low output voltage SDOUT pin 0 V 400 mV LVDS OUTPUTS Output differential voltage with 100 ohms external differential termination Output offset voltage Common-mode voltage FCLKP and FCLKM 1X clock rate 10 65 MHz DCLKP and DCLKM 7X clock rate 70 455 MHz 6X clock rate 60 390 MHz 1100 (2) tsu Data setup time th Data hold time (2) mV 350 ps 350 ps ADC INPUT CLOCK CLOCK frequency 10 Clock duty cycle 45% Sine-wave, ac-coupled Clock input amplitude, differential(VCLKP_ADC–VCLKM_ADC) Common-mode voltage (2) 10 0.5 MSPS 55% Vpp LVPECL, ac-coupled 1.6 Vpp LVDS, ac-coupled 0.7 Vpp 1 V 1.8 Vpp biased internally Clock input amplitude VCLKP_ADC (singleCMOS CLOCK ended) (1) 65 50% The DC specifications refer to the condition where the LVDS outputs are not switching, but are permanently at a valid logic level 0 or 1 with 100Ω external termination. Setup and hold time specifications take into account the effect of jitter on the output data and clock. These specifications also assume that the data and clock paths are perfectly matched within the receiver. Any mismatch in these paths within the receiver would appear as reduced timing margins Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 TYPICAL CHARACTERISTICS AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V, ac-coupled with 0.1µF caps at INP and 15nF caps at INM, No active termination, VCNTL = 0V, FIN = 5MHz, LNA = 18dB, PGA = 24dB, 14Bit, sample rate = 65MSPS, LPF Filter = 15MHz, low noise mode, VOUT = -1dBFS, 500Ω CW feedback resistor, CMOS 16X clock, ADC is configured in internal reference mode, Single-ended VCNTL mode, VCNTLM = GND. at ambient temperature TA = +25C, unless otherwise noted. SPACER 45.0 45.0 Low noise Medium power Low power 40.0 35.0 35.0 30.0 Gain (dB) Gain (dB) 30.0 25.0 20.0 25.0 20.0 15.0 15.0 10.0 10.0 5.0 5.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Vcntl (V) 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Vcntl (V) Figure 2. Gain vs. VCNTL, LNA = 18dB and PGA = 24dB Figure 3. Gain Variation vs. Temperature, LNA = 18dB and PGA = 24dB 300 250 Number of Occurrences 250 Number of Occurrences −40 deg C 25 deg C 85 deg C 40.0 200 150 100 150 100 50 50 0 200 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 Gain Error (dB) 0.3 0.4 0.5 0.6 Figure 4. Gain Matching Histogram, VCNTL = 0.3V (936 channels) 0 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 Gain Error (dB) Figure 5. Gain Matching Histogram, VCNTL = 0.6V (936 channels) Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 11 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com TYPICAL CHARACTERISTICS (continued) 60 180 160 Number of Occurrences Number of Occurrences 50 140 120 100 80 60 40 40 30 20 10 20 0 0 −0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0 Gain Error (dB) 0.1 0.2 0.3 0.4 −50 Figure 6. Gain Matching Histogram, VCNTL = 0.9V (936 channels) −40 −30 −20 −10 0 10 ADC Output 20 30 40 50 Figure 7. Output Offset Histogram, VCNTL = 0V (936 channels) Impedance Magnitude Response Impedance Phase Response 10 Open 12000 −10 Phase (Degrees) 10000 Impedance (Ohms) Open 0 8000 6000 4000 −20 −30 −40 −50 −60 −70 2000 500k −80 4.5M 8.5M 12.5M 16.5M −90 500k 20.5M 4.5M 8.5M Frequency (Hz) Figure 8. Input Impedance without Active Termination (Magnitude) Impedance Magnitude Response Impedance Phase Response 50 Ohms 100 Ohms 200 Ohms 400 Ohms 400 350 0 −10 Phase (Degrees) Impedance (Ohms) 20.5M 10 450 300 250 200 150 −20 −30 −40 −50 −60 100 −70 50 −80 4.5M 8.5M 12.5M 16.5M 20.5M −90 500k Frequency (Hz) 50 Ohms 100 Ohms 200 Ohms 400 Ohms 4.5M 8.5M 12.5M 16.5M 20.5M Frequency (Hz) Figure 10. Input Impedance with Active Termination (Magnitude) 12 16.5M Figure 9. Input Impedance without Active Termination (Phase) 500 0 500k 12.5M Frequency (Hz) Figure 11. Input Impedance with Active Termination (Phase) Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 TYPICAL CHARACTERISTICS (continued) LNA INPUT HPF CHARECTERISTICS 5 10MHz 15MHz 20MHz 30MHz 0 0 −3 −6 Amplitude (dB) Amplitude (dB) −5 3 −10 −15 −20 −9 −12 −15 −18 −21 −25 −30 01 00 11 10 −24 −27 0 10 20 30 40 50 60 −30 Frequency (MHz) 10 100 500 Frequency (KHz) Figure 12. Low-Pass Filter Response Figure 13. LNA High-Pass Filter Response vs. Reg59[3:2] HPF CHARECTERISTICS (LNA+VCA+PGA+ADC) −144 Single Channel CW PN −146 0 −148 −5 −150 Phase Noise (dBc/Hz) Amplitude (dB) 5 −10 −15 −20 −25 −30 16X Clock Mode 8X Clock Mode 4X Clock Mode −152 −154 −156 −158 −160 −162 −164 −166 −35 −40 −168 10 100 −170 100 500 Frequency (KHz) −144 16X Clock Mode 8X Clock Mode 4X Clock Mode −148 −150 Phase Noise (dBc/Hz) −150 Phase Noise (dBc/Hz) Eight Channel CW PN −146 PN 1 Ch PN 8 Ch −148 −152 −154 −156 −158 −160 −162 −164 −152 −154 −156 −158 −160 −162 −164 −166 −166 −168 −168 1000 50000 Figure 15. CW Phase Noise, Fin = 2MHz Phase Noise −146 −170 100 10000 Offset frequency (Hz) Figure 14. Full Channel High-Pass Filter Response at Default Register Setting −144 1000 10000 50000 −170 100 Frequency Offset (Hz) 1000 10000 50000 Offset frequency (Hz) Figure 16. CW Phase Noise, Fin = 2MHz, 1 Channel vs. 8 Channel Figure 17. CW Phase Noise vs. Clock Modes, Fin = 2MHz Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 13 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com TYPICAL CHARACTERISTICS (continued) Hz) 40.0 3.5 LNA 12 dB LNA 18 dB LNA 24 dB Input reffered noise (nV Hz) 50.0 Input reffered noise (nV 60.0 30.0 20.0 10.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Vcntl (V) 2.5 2.0 1.5 1.0 0.5 0.0 0.0 Figure 18. IRN, PGA = 24dB and Low Noise Mode Hz) Input reffered noise (nV Hz) Input reffered noise (nV 40.0 30.0 20.0 10.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Vcntl (V) 0.4 LNA 12 dB LNA 18 dB LNA 24 dB 3.0 2.5 2.0 1.5 1.0 0.1 0.2 Vcntl (V) 0.3 0.4 4.0 Hz) LNA 12 dB LNA 18 dB LNA 24 dB 50.0 Input reffered noise (nV Hz) 0.3 Figure 21. IRN, PGA = 24dB and Medium Power Mode 70.0 Input reffered noise (nV 3.5 0.5 0.0 Figure 20. IRN, PGA = 24dB and Medium Power Mode 40.0 30.0 20.0 10.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Vcntl (V) Figure 22. IRN, PGA = 24dB and Low Power Mode 14 0.2 Vcntl (V) 4.0 LNA 12 dB LNA 18 dB LNA 24 dB 50.0 60.0 0.1 Figure 19. IRN, PGA = 24dB and Low Noise Mode 70.0 60.0 LNA 12 dB LNA 18 dB LNA 24 dB 3.0 3.5 LNA 12 dB LNA 18 dB LNA 24 dB 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.1 0.2 Vcntl (V) 0.3 0.4 Figure 23. IRN, PGA = 24dB and Low Power Mode Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 TYPICAL CHARACTERISTICS (continued) 190.0 170.0 300.0 280.0 260.0 240.0 220.0 200.0 180.0 160.0 140.0 120.0 100.0 80.0 60.0 40.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Vcntl (V) Hz) LNA 12 dB LNA 18 dB LNA 24 dB Output reffered noise (nV Output reffered noise (nV Hz) 220.0 210.0 150.0 130.0 110.0 90.0 70.0 50.0 30.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Vcntl (V) 1.2 LNA 12 dB LNA 18 dB LNA 24 dB 1.1 1.0 Hz) 340.0 320.0 300.0 280.0 260.0 240.0 220.0 200.0 180.0 160.0 140.0 120.0 100.0 80.0 60.0 40.0 1.0 1.1 1.2 Figure 25. ORN, PGA = 24dB and Medium Power Mode Amplitude (nV Output reffered noise (nV Hz) Figure 24. ORN, PGA = 24dB and Low Noise Mode LNA 12 dB LNA 18 dB LNA 24 dB 0.9 0.8 0.7 0.6 0.5 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Vcntl (V) 1 0.3 1.0 1.1 1.2 Figure 26. ORN, PGA = 24dB and Low Power Mode 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Frequency (MHz) 9.0 10.0 11.0 12.0 Figure 27. IRN, PGA = 24dB and Low Noise Mode 75.0 180.0 120.0 70.0 SNR (dBFS) Hz) 140.0 Amplitude (nV 160.0 100.0 80.0 65.0 60.0 60.0 40.0 1.0 24 dB PGA gain 30 dB PGA gain 3.0 5.0 7.0 Frequency (MHz) 9.0 11.0 12.0 Figure 28. ORN, PGA = 24dB and Low Noise Mode 55.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Vcntl (V) Figure 29. SNR, LNA = 18dB and Low Noise Mode Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 15 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com TYPICAL CHARACTERISTICS (continued) 75.0 73.0 Low noise Low power mode 71.0 69.0 SNR (dBFS) SNR (dBFS) 70.0 65.0 60.0 67.0 65.0 63.0 61.0 59.0 24 dB PGA gain 30 dB PGA gain 55.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Vcntl (V) 57.0 0 Figure 30. SNR, LNA = 18dB and Low Power Mode 9.0 8.0 6.0 5.0 4.0 3.0 7.0 4.0 3.0 2.0 1.0 100.0 150.0 200.0 250.0 300.0 350.0 0.0 50.0 400.0 50 ohm act term 100 ohm act term 200 ohm act term 400 ohm act term Without Termination 5.0 1.0 100.0 Source Impedence (Ω) 250.0 300.0 350.0 400.0 4.5 50 ohm act term 100 ohm act term 200 ohm act term 400 ohm act term No Termination Low noise Low power Medium power Noise Figure (dB) Noise Figure (dB) 200.0 Figure 33. Noise Figure, LNA = 18dB and Low Noise Mode 8.0 6.0 150.0 Source Impedence (Ω) Figure 32. Noise Figure, LNA = 12dB and Low Noise Mode 7.0 12 15 18 21 24 27 30 33 36 39 42 Gain (dB) 6.0 2.0 0.0 50.0 9 10.0 100 ohm act term 200 ohm act term 400 ohm act term Without Termination Noise Figure (dB) Noise Figure (dB) 7.0 6 Figure 31. SNR vs. Different Power Modes 9.0 8.0 3 5.0 4.0 3.0 3.5 2.5 2.0 1.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 1.5 50.0 Source Impedence (Ω) 150.0 200.0 250.0 300.0 350.0 400.0 Source Impedence (Ω) Figure 34. Noise Figure, LNA = 24dB and Low Noise Mode 16 100.0 Figure 35. Noise Figure vs. Power Modes with 400Ω Termination Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 TYPICAL CHARACTERISTICS (continued) 4.0 −50 Low noise Low power Medium power Low noise Medium power Low power −52 HD2 (dBc) Noise Figure (dB) −54 3.0 2.0 −56 −58 −60 −62 −64 1.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 −66 400.0 1 2 3 Source Impedence (Ω) 4 5 6 7 8 9 10 Frequency (MHz) Figure 36. Noise Figure vs. Power Modes without Termination Figure 37. HD2 vs. Frequency, VIN = 500mVPP and VOUT = -1dBFS −40 −50 −55 Low noise Medium power Low power −50 HD2 (dBc) HD3 (dBc) −60 −65 −60 −70 −70 −80 −80 Low noise Medium power Low power −75 1 2 3 4 5 6 7 8 9 −90 10 6 12 18 Frequency (MHz) Figure 38. HD3 vs. Frequency, VIN = 500mVPP and VOUT = -1dBFS 36 −40 Low noise Medium power Low power −60 −70 −80 Low noise Medium power Low power −50 HD2 (dBc) −50 HD3 (dBc) 30 Figure 39. HD2 vs. Gain, LNA = 12dB and PGA = 24dB and VOUT = -1dBFS −40 −90 24 Gain (dB) −60 −70 −80 6 12 18 24 30 36 −90 12 Gain (dB) 18 24 30 36 42 Gain (dB) Figure 40. HD3 vs. Gain, LNA = 12dB and PGA = 24dB and VOUT =- 1dBFS Figure 41. HD2 vs. Gain, LNA = 18dB and PGA = 24dB and VOUT = -1dBFS Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 17 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com TYPICAL CHARACTERISTICS (continued) −40 −40 Low noise Medium power Low power −50 HD2 (dBc) HD3 (dBc) −50 −60 −70 −60 −70 −80 −90 Low noise Medium Power Low power −80 12 18 24 30 36 −90 42 18 24 30 Gain (dB) −50.0 Fin1=2MHz, Fin2=2.01MHz Fin1=5MHz, Fin2=5.01MHz Low noise Medium power Low power −54.0 IMD3 (dBFS) −50 −60 −70 −58.0 −62.0 −66.0 −80 18 21 24 27 30 33 36 39 42 45 −70.0 14.0 48 18.0 Gain (dB) Figure 44. HD3 vs. Gain, LNA = 24dB and PGA = 24dB and VOUT = -1dBFS 22.0 26.0 30.0 Gain (dB) 34.0 38.0 42.0 Figure 45. IMD3, Fout1 = -7dBFS and Fout2 = -21dBFS PSMR vs SUPPLY FREQUENCY −50.0 Fin1=2MHz, Fin2=2.01MHz Fin1=5MHz, Fin2=5.01MHz −60 Vcntl = 0 Vcntl = 0.3 Vcntl = 0.6 Vcntl = 0.9 −54.0 −58.0 PSMR (dBc) IMD3 (dBFS) 48 Figure 43. HD2 vs. Gain, LNA = 24dB and PGA = 24dB and VOUT = -1dBFS −40 HD3 (dBc) 42 Gain (dB) Figure 42. HD3 vs. Gain, LNA = 18dB and PGA = 24dB and VOUT = -1dBFS −90 36 −62.0 −65 −70 −66.0 −70.0 14.0 18.0 22.0 26.0 30.0 Gain (dB) 34.0 38.0 42.0 −75 5 10 100 1000 2000 Supply frequency (kHz) Figure 46. IMD3, Fout1 = -7dBFS and Fout2 = -7dBFS 18 Figure 47. AVDD Power Supply Modulation Ratio, 100mVPP Supply Noise with Different Frequencies Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 TYPICAL CHARACTERISTICS (continued) PSMR vs SUPPLY FREQUENCY 3V PSRR vs SUPPLY FREQUENCY −20 −55 Vcntl = 0 Vcntl = 0.3 Vcntl = 0.6 Vcntl = 0.9 PSRR wrt supply tone (dB) PSMR (dBc) −60 Vcntl = 0 Vcntl = 0.3 Vcntl = 0.6 Vcntl = 0.9 −30 −65 −70 −75 −40 −50 −60 −70 −80 5 10 100 −90 1000 2000 5 10 100 Supply frequency (kHz) Supply frequency (kHz) Figure 48. AVDD_5V Power Supply Modulation Ratio, 100mVPP Supply Noise with Different Frequencies Figure 49. AVDD Power Supply Rejection Ratio, 100mVPP Supply Noise with Different Frequencies 5V PSRR vs SUPPLY FREQUENCY 20000.0 −20 Vcntl = 0 Vcntl = 0.3 Vcntl = 0.6 Vcntl = 0.9 −40 16000.0 14000.0 Output Code PSRR wrt supply tone (dB) Output Code Vcntl 18000.0 −30 1000 2000 −50 12000.0 10000.0 8000.0 6000.0 −60 4000.0 −70 2000.0 0.0 0.0 −80 −90 5 10 100 0.5 1.0 1.5 Time (µs) 2.0 2.5 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 −0.1 3.0 Vcntl (V) −80 1000 2000 Supply frequency (kHz) Figure 50. AVDD_5V Power Supply Rejection Ratio, 100mVPP Supply Noise with Different Frequencies Output Code Vcntl 16000.0 Output Code 14000.0 12000.0 10000.0 8000.0 6000.0 4000.0 2000.0 0.0 0.0 0.2 0.5 0.8 1.0 1.2 1.5 Time (µs) 1.8 2.0 2.2 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 −0.1 2.5 1.2 1.0 0.8 0.6 0.4 Input (V) 18000.0 Vcntl (V) 20000.0 Figure 51. VCNTL Response Time, LNA = 18dB and PGA = 24dB 0.2 0.0 −0.2 −0.4 −0.6 −0.8 −1.0 −1.2 0.0 Figure 52. VCNTL Response Time, LNA = 18dB and PGA = 24dB 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time (µs) Figure 53. Pulse Inversion Asymmetrical Positive Input Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 19 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com TYPICAL CHARACTERISTICS (continued) 1.2 10000.0 1.0 8000.0 0.8 Positive overload Negative overload Average 6000.0 0.6 4000.0 Output Code Input (V) 0.4 0.2 0.0 −0.2 −0.4 2000.0 0.0 −2000.0 −4000.0 −0.6 −6000.0 −0.8 −8000.0 −1.0 −1.2 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time (µs) −10000.0 0.0 Figure 54. Pulse Inversion Asymmetrical Negative Input 4.0 5.0 6.0 6000 1200 4000 800 2000 0 −2000 400 0 −400 −4000 −800 −6000 −1200 −8000 −1600 0 0.5 1 1.5 2 2.5 3 Time (µs) 3.5 4 4.5 Figure 56. Overload Recovery Response vs. INM capacitor, VIN =5 0 mVpp/100 µVPP, Max Gain 47nF 15nF 1600 Output Code Output Code 3.0 Time (µs) 2000 47nF 15nF 8000 20 2.0 Figure 55. Pulse Inversion, VIN = 2VPP, PRF = 1KHz, Gain = 21dB 10000 −10000 1.0 5 −2000 1 1.5 2 2.5 3 3.5 Time (µs) 4 4.5 5 Figure 57. Overload Recovery Response vs. INM capacitor(Zoomed), VIN = 50 mVpp/100 µVPP, Max Gain Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 TIMING CHARACTERISTICS (1) Typical values are at 25°C, AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V, Differential clock, CLOAD = 5pF, RLOAD = 100Ω, 14Bit, sample rate = 65MSPS, unless otherwise noted. Minimum and maximum values are across the full temperature range TMIN = 0°C to TMAX = 85°C with AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V PARAMETER ta TEST CONDITIONS Aperture delay Aperture delay matching tj MIN The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling occurs 0.7 Across channels within the same device Aperture jitter TYP MAX 3 ns ±150 ps 450 Fs rms 11/8 Input clock cycles ADC latency Default, after reset, or / 0 x 2 [12] = 1,LOW_LATENCY = 1 tdelay Data and frame clock delay Input clock rising edge (zero cross) to frame clock rising edge (zero cross) minus 3/7 of the input clock period (T). Δtdelay Delay variation At fixed supply and 20°C T difference. Device to device tRISE Data rise time Data fall time Rise time measured from –100mV to 100mV Fall time measured from 100mV to –100mV 10MHz < fCLKIN < 65MHz 0.14 Frame clock rise time Frame clock fall time Rise time measured from –100mV to 100mV Fall time measured from 100mV to –100mV 10MHz < fCLKIN < 65MHz 0.14 Frame clock duty cycle Zero crossing of the rising edge to zero crossing of the falling edge Bit clock rise time Bit clock fall time Rise time measured from –100mV to 100mV Fall time measured from 100mV to –100mV 10MHz < fCLKIN < 65MHz Bit clock duty cycle Zero crossing of the rising edge to zero crossing of the falling edge 10MHz < fCLKIN < 65MHz tFALL tFCLKRISE tFCLKFALL tDCLKRISE tDCLKFALL (1) 3 UNIT 5.4 –1 7 ns 1 ns ns 0.15 ns 0.15 48% 50% 52% 0.13 ns 0.12 46% 54% Timing parameters are specified by design and characterization; not production tested. OUTPUT INTERFACE TIMING (1) (2) (3) fCLKIN, Input Clock Frequency (1) (2) (3) Setup Time (tsu), ns (for output data and frame clock) Hold Time (th), ns (for output data and frame clock) tPROG = (3/7)x T + tdelay, ns Data Valid to Input Clock ZeroCrossing Input Clock Zero-Crossing to Data Invalid Input Clock Zero-Cross (rising edge) to Frame Clock Zero-Cross (rising edge) MHz MIN TYP MIN TYP MIN TYP MAX 65 0.24 0.37 MAX 0.24 0.38 MAX 11 12 12.5 50 0.41 0.54 0.46 0.57 13 13.9 14.4 40 0.55 0.70 0.61 0.73 15 16 16.7 30 0.87 1.10 0.94 1.1 18.5 19.5 20.1 20 1.30 1.56 1.46 1.6 25.7 26.7 27.3 FCLK timing is the same as for the output data lines. It has the same relation to DCLK as the data pins. Setup and hold are the same for the data and the frame clock. Data valid is logic HIGH = +100 mV and logic LOW = -100 mV Timing parameters are specified by design and characterization; not production tested. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 21 12-Bit 6x serialization mode 22 Output Data CHnOUT Data rate = 14 x fCLKIN Bit Clock DCLK Freq = 7 x fCLKIN Frame Clock FCLK Freq = fCLKIN Input Clock CLKIN Freq = fCLKIN Input Signal D0 D13 D12 D1 (D12) (D13) (D0) (D1) D11 (D2) Submit Documentation Feedback Product Folder Link(s): AFE5808 D13 (D0) D10 D9 (D3) (D4) D6 D5 (D7) (D8) Bit Clock Output Data Pair Data bit in LSB First mode D13 D12 (D0) (D1) CHi out tsu DCLKM DCLKP Cd clock cycles latency D4 D3 D2 D1 D0 (D9) (D10) (D11) (D12) (D13) Data bit in MSB First mode SAMPLE N-Cd D8 D7 (D5) (D6) ta Sample N th D11 D10 (D2) (D3) Dn D7 D6 (D6) (D7) SAMPLE N-1 D9 D8 (D4) (D5) Sample N+Cd ta Dn + 1 tsu th D5 D4 D3 D2 D1 D0 D13 D12 (D8) (D9) (D10) (D11) (D12) (D13) (D0) (D1) tPROG tPROG D11 D10 (D2) (D3) T D7 D6 (D6) (D7) SAMPLE N D9 D8 (D4) (D5) Sample N+Cd+1 D10 (D1) T0434-01 D1 D0 D11 D5 D4 D3 D2 (D8) (D9) (D10) (D11) (D12) (D13) (D0) AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com LVDS Setup and Hold Timing 14-Bit 7x serialization mode Figure 58. LVDS Timing Diagrams Copyright © 2010–2012, Texas Instruments Incorporated AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 LVDS Output Interface Description AFE5808 has LVDS output interface which supports multiple output formats. The ADC resolutions can be configured as 12bit or 14bit as shown in the LVDS timing diagrams Figure 58. The ADCs in the AFE5808 are running at 14bit; 2 LSBs are removed when 12-bit output is selected; and two 0s are added at LSBs when 16-bit output is selected. Appropriate ADC resolutions can be selected for optimizing system performance-cost effectiveness. When the devices run at 16bit mode, higher end FPGAs are required to process higher rate of LVDS data. Corresponding register settings are listed in Table 1. Table 1. Corresponding Register Settings LVDS Rate 12 bit (6X DCLK) 14 bit (7X DCLK) Reg 3 [14:13] 11 00 16 bit (8X DCLK) 01 Reg 4 [2:0] 010 000 000 Description 2 LSBs removed N/A 2 0s added at LSBs SERIAL REGISTER OPERATION Serial Register Write Description Programming of different modes can be done through the serial interface formed by pins SEN (serial interface enable), SCLK (serial interface clock), SDATA (serial interface data) and RESET. All these pins have a pull-down resistor to GND of 100kΩ. Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA is latched at every rising edge of SCLK when SEN is active (low). The serial data is loaded into the register at every 24th SCLK rising edge when SEN is low. If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiple of 24-bit words within a single active SEN pulse (there is an internal counter that counts groups of 24 clocks after the falling edge of SEN). The interface can work with the SCLK frequency from 20 MHz down to low speeds (few Hertz) and even with non-50% duty cycle SCLK. The data is divided into two main portions: a register address (8 bits) and the data itself (16 bits), to load on the addressed register. When writing to a register with unused bits, these should be set to 0. Figure 59 illustrates this process. Start Sequence End Sequence SEN t6 t7 t1 t2 Data Latched On Rising Edge of SCLK SCLK t3 SDATA A7 A5 A6 A4 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 t4 t5 Start Sequence End Sequence RESET T0384-01 Figure 59. SPI Timing Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 23 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com SPI Timing Characteristics Minimum values across full temperature range TMIN = 0°C to TMAX = 85°C, AVDD_5V = 5V, AVDD = 3.3V, AVDD_ADC = 1.8V, DVDD = 1.8V PARAMETER DESCRIPTION MIN TYP MAX UNIT t1 SCLK period 50 ns t2 SCLK high time 20 ns t3 SCLK low time 20 ns t4 Data setup time 5 ns t5 Data hold time 5 ns t6 SEN fall to SCLK rise 8 ns t7 Time between last SCLK rising edge to SEN rising edge t8 SDOUT Delay 8 ns 12 20 28 ns Register Readout The device includes an option where the contents of the internal registers can be read back. This may be useful as a diagnostic test to verify the serial interface communication between the external controller and the AFE. First, the <REGISTER READOUT ENABLE> bit (Reg0[1]) needs to be set to '1'. Then user should initiate a serial interface cycle specifying the address of the register (A7-A0) whose content has to be read. The data bits are "don’t care". The device will output the contents (D15-D0) of the selected register on the SDOUT pin. SDOUT has a typical delay t8 of 20nS from the falling edge of the SCLK. For a lower speed, SCLK, SDOUT can be latched on the rising edge of SCLK. For higher speed, SCLK,e.g. the SCLK period lesser than 60nS, it would be better to latch the SDOUT at the next falling edge of SCLK. The following timing diagram shows this operation (the time specifications follow the same information provided. In the readout mode, users still can access the <REGISTER READOUT ENABLE> through SDATA/SCLK/SEN. To enable serial register writes, set the <REGISTER READOUT ENABLE> bit back to '0'. Start Sequence End Sequence SEN t6 t7 t1 t2 SCLK t3 A7 SDATA A6 A5 A4 A3 t4 A2 A1 A0 x x x x x x x x x x x x x x x x D6 D5 D4 D3 D2 D1 D0 t8 t5 D15 D14 D13 D12 D11 D10 D9 SDOUT D8 D7 Figure 60. Serial Interface Register Read The AFE5808 SDOUT buffer is tri-stated and will get enabled only when 0[1] (REGISTER READOUT ENABLE) is enabled. SDOUT pins from multiple AFE5808s can be tied together without any pull-up resistors. Level shifter SN74AUP1T04 can be used to convert 1.8V logic to 2.5V/3.3V logics if needed. 24 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 t1 AVDD AVDD_5V AVDD_ADC t2 DVDD t3 t4 t7 t5 RESET t6 Device Ready for Serial Register Write SEN Start of Clock Device Ready for Data Conversion CLKP_ADC t8 10µs < t1 < 50ms, 10µs < t2 < 50ms, –10ms < t3 < 10ms, t4 > 10ms, t5 > 100ns, t6 > 100ns, t7 > 10ms, and t8 > 100µs. The AVDDx and DVDD power-on sequence does not matter as long as –10 ms < t3 < 10 ms. Similar considerations apply while shutting down the device. Figure 61. Recommended Power-up Sequencing and Reset Timing Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 25 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com Register Map A reset process is required at the AFE5808 initialization stage. Initialization can be done in one of two ways: 1. Through a hardware reset, by applying a positive pulse in the RESET pin 2. Through a software reset, using the serial interface, by setting the SOFTWARE RESET bit to high. Setting this bit initializes the internal registers to the respective default values (all zeros) and then self-resets the SOFTWARE RESET bit to low. In this case, the RESET pin can stay low (inactive). After reset, all ADC and VCA registers are set to ‘0’, i.e. default settings. During register programming, all reserved/unlisted register bits need to be set as ‘0’. Register settings are maintained when the AFE5808 is in either partial power down mode or complete power down mode. ADC Register Map Table 2. ADC Register Map ADDRESS (DEC) ADDRESS (HEX) Default Value 0[0] 0x0[0] 0 SOFTWARE_RESET 0: Normal operation; 1: Resets the device and self-clears the bit to '0' 0[1] 0x0[1] 0 REGISTER_READOUT_ENABLE 0:Disables readout; 1: enables readout of register at SDOUT Pin 1[0] 0x1[0] 0 ADC_COMPLETE_PDN 0: Normal 1: Complete Power down 1[1] 0x1[1] 0 LVDS_OUTPUT_DISABLE 0: Output Enabled; 1: Output disabled 1[9:2] 0x1[9:2] 0 ADC_PDN_CH<7:0> 0: Normal operation; 1: Power down. Power down Individual ADC channels. 1[9]→CH8…1[2]→CH1 1[10] 0x1[10] 0 PARTIAL_PDN 0: Normal Operation; 1: Partial Power Down ADC 1[11] 0x1[11] 0 LOW_FREQUENCY_ NOISE_SUPPRESSION 0: No suppression; 1: Suppression Enabled 1[13] 0x1[13] 0 EXT_REF 0: Internal Reference; 1: External Reference. VREF_IN is used. Both 3[15] and 1[13] should be set as 1 in the external reference mode 1[14] 0x1[14] 0 LVDS_OUTPUT_RATE_2X 0: 1x rate; 1: 2x rate. Combines data from 2 channels on 1 LVDS pair. When ADC clock rate is low, this feature can be used 1[15] 0x1[15] 0 SINGLE-ENDED_CLK_MODE 0: Differential clock input; 1: Single-ended clock input 2[2:0] 0x2[2:0] 0 RESERVED Set to 0 2[10:3] 0x2[10:3] 0 POWER-DOWN_LVDS 0: Normal operation; 1: PDN Individual LVDS outputs. 2[10]→CH8…2[3]→CH1 2[11] 0x2[11] 0 AVERAGING_ENABLE 0: No averaging; 1: Average 2 channels to increase SNR 2[12] 0x2[12] 0 LOW_LATENCY 0: Default Latency with digital features supported , 11 cycle latency 1: Low Latency with digital features bypassed., 8 cycle latency 2[15:13] 0x2[15:3] 0 TEST_PATTERN_MODES 000: Normal operation; 001: Sync; 010: De-skew; 011: Custom; 100:All 1's; 101: Toggle; 110: All 0's; 111: Ramp 3[7:0] 0x3[7:0] 0 INVERT_CHANNELS 0: No inverting; 1:Invert channel digital output. 3[7]→CH8;3[0]→CH1 3[8] 0x3[8] 0 CHANNEL_OFFSET_ SUBSTRACTION_ENABLE 0: No offset subtraction; 1: Offset value Subtract Enabled 3[9:11] 0x3[9:11] 0 RESERVED Set to 0 26 FUNCTION DESCRIPTION Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 Table 2. ADC Register Map (continued) ADDRESS (DEC) ADDRESS (HEX) Default Value 3[12] 0x3[12] 0 DIGITAL_GAIN_ENABLE 0: No digital gain; 1: Digital gain Enabled 3[14:13] 0x3[14:13] 0 SERIALIZED_DATA_RATE Serialization factor 00: 14x 01: 16x 10: reserved 11: 12x when 4[1]=1. In the 16x serialization rate, two 0s are filled at two LSBs (see Table 1) 3[15] 0x3[15] 0 ENABLE_EXTERNAL_ REFERENCE_MODE 0: Internal reference mode; 1: Set to external reference mode Note: both 3[15] and 1[13] should be set as 1 when configuring the device in the external reference mode 4[1] 0x4[1] 0 ADC_RESOLUTION_SELECT 0: 14bit; 1: 12bit 4[3] 0x4[3] 0 ADC_OUTPUT_FORMAT 0: 2's complement; 1: Offset binary 4[4] 0x4[4] 0 LSB_MSB_FIRST 0: LSB first; 1: MSB first 5[13:0] 0x5[13:0] 0 CUSTOM_PATTERN Custom pattern data for LVDS output (2[15:13]=011) 13[9:0] 0xD[9:0] 0 OFFSET_CH1 Value to be subtracted from channel 1 code 13[15:11] 0xD[15:11] 0 DIGITAL_GAIN_CH1 0dB to 6dB in 0.2dB steps 15[9:0] 0xF[9:0] 0 OFFSET_CH2 value to be subtracted from channel 2 code 15[15:11] 0xF[15:11] 0 DIGITAL_GAIN_CH2 0dB to 6dB in 0.2dB steps 17[9:0] 0x11[9:0] 0 OFFSET_CH3 value to be subtracted from channel 3 code 17[15:11] 0x11[15:11] 0 DIGITAL_GAIN_CH3 0dB to 6dB in 0.2dB steps 19[9:0] 0x13[9:0] 0 OFFSET_CH4 value to be subtracted from channel 4 code 19[15:11] 0x13[15:11] 0 DIGITAL_GAIN_CH4 0dB to 6dB in 0.2dB steps 21[0] 0x15[0] 0 DIGITAL_HPF_FILTER_ENABLE _ CH1-4 0: Disable the digital HPF filter; 1: Enable for 1-4 channels 21[4:1] 0x15[4:1] 0 DIGITAL_HPF_FILTER_K_CH1-4 Set K for the high-pass filter (k from 2 to 4, i.e. 0010B to 0100B). This group of four registers controls the characteristics of a digital high-pass transfer function applied to the output data, following the formula: y(n) = 2k/(2k + 1) [x(n) – x(n – 1) + y(n – 1)] (please see Table 3) 25[9:0] 0x19[9:0] 0 OFFSET_CH8 value to be subtracted from channel 8 code 25[15:11] 0x19[15:11] 0 DIGITAL_GAIN_CH8 0dB to 6dB in 0.2dB steps 27[9:0] 0x1B[9:0] 0 OFFSET_CH7 value to be subtracted from channel 7 code 27[15:11] 0x1B[15:11] 0 DIGITAL_GAIN_CH7 0dB to 6dB in 0.2dB steps 29[9:0] 0x1D[9:0] 0 OFFSET_CH6 value to be subtracted from channel 6 code 29[15:11] 0x1D[15:11] 0 DIGITAL_GAIN_CH6 0dB to 6dB in 0.2dB steps 31[9:0] 0x1F[9:0] 0 OFFSET_CH5 value to be subtracted from channel 5 code 31[15:11] 0x1F[15:11] 0 DIGITAL_GAIN_CH5 0dB to 6dB in 0.2dB steps 33[0] 0x21[0] 0 DIGITAL_HPF_FILTER_ENABLE _ CH5-8 0: Disable the digital HPF filter; 1: Enable for 5-8 channels 33[4:1] 0x21[4:1] 0 DIGITAL_HPF_FILTER_K_CH5-8 Set K for the high-pass filter (k from 2 to 4, 0010B to 0100B) This group of four registers controls the characteristics of a digital high-pass transfer function applied to the output data, following the formula: y(n) = 2k/(2k + 1) [x(n) – x(n – 1) + y(n – 1)] (please see Table 3) FUNCTION DESCRIPTION Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 27 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com AFE5808 ADC Register/Digital Processing Description The ADC in the AFE5808 has extensive digital processing functionalities which can be used to enhance ultrasound system performance. The digital processing blocks are arranged as in Figure 62. ADC Output 12/14b Channel Average Default=No Digital Gain Default=0 Digital HPF Default = No 12/14b Final Digital Output Digital Offset Default=No Figure 62. ADC Digital Block Diagram AVERAGING_ENABLE: Address: 2[11] When set to 1, two samples, corresponding to two consecutive channels, are averaged (channel 1 with 2, 3 with 4, 5 with 6, and 7 with 8). If both channels receive the same input, the net effect is an improvement in SNR. The averaging is performed as: • Channel 1 + channel 2 comes out on channel 3 • Channel 3 + channel 4 comes out on channel 4 • Channel 5 + channel 6 comes out on channel 5 • Channel 7 + channel 8 comes out on channel 6 ADC_OUTPUT_FORMAT: Address: 4[3] The ADC output, by default, is in 2’s-complement mode. Programming the ADC_OUTPUT_FORMAT bit to 1 inverts the MSB, and the output becomes straight-offset binary mode. DIGITAL_GAIN_ENABLE: Address: 3[12] Setting this bit to 1 applies to each channel i the corresponding gain given by DIGTAL_GAIN_CHi <15:11>. The gain is given as 0dB + 0.2dB × DIGTAL_GAIN_CHi<15:11>. For instance, if DIGTAL_GAIN_CH5<15:11> = 3, channel 5 is increased by 0.6dB gain. DIGTAL_GAIN_CHi <15:11> = 31 produces the same effect as DIGTAL_GAIN_CHi <15:11> = 30, setting the gain of channel i to 6dB. DIGITAL_HPF_ENABLE • CH1-4: Address 21[0] • CH5-8: Address 33[0] DIGITAL_HPF_FILTER_K_CHX • CH1-4: Address 21[4:1] • CH5-8: Address 3[4:1] This group of registers controls the characteristics of a digital high-pass transfer function applied to the output data, following Equation 1. y (n ) = 2k 2k + 1 éë x (n ) - x (n - 1) + y (n - 1)ùû (1) These digital HPF registers (one for the first four channels and one for the second group of four channels) describe the setting of K. The digital high pass filter can be used to suppress low frequency noise which commonly exists in ultrasound echo signals. The digital filter can significantly benefit near field recovery time due to T/R switch low frequency response. Table 3 shows the cut-off frequency vs K. 28 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 Table 3. Digital HPF –1dB Corner Frequency vs. K and Fs k 40 MSPS 50 MSPS 65 MSPS 2 2780 KHz 3480 KHz 4520 KHz 3 1490 KHz 1860 KHz 2420 KHz 4 770 KHz 960 KHz 1250 KHz LOW_FREQUENCY_NOISE_SUPPRESSION: Address: 1[11] The low-frequency noise suppression mode is especially useful in applications where good noise performance is desired in the frequency band of 0MHz to 1MHz (around dc). Setting this mode shifts the low-frequency noise of the AFE5808 to approximately Fs/2, thereby moving the noise floor around dc to a much lower value. Register bit 1[11] is used for enabling or disabling this feature. When this feature is enabled, power consumption of the device will be increased slightly by approximate 1mW/CH. LVDS_OUTPUT_RATE_2X: Address: 1[14] The output data always uses a DDR format, with valid/different bits on the positive as well as the negative edges of the LVDS bit clock, DCLK. The output rate is set by default to 1X (LVDS_OUTPUT_RATE_2X = 0), where each ADC has one LVDS stream associated with it. If the sampling rate is low enough, two ADCs can share one LVDS stream, in this way lowering the power consumption devoted to the interface. The unused outputs will output zero. To avoid consumption from those outputs, no termination should be connected to them. The distribution on the used output pairs is done in the following way: • Channel 1 and channel 2 come out on channel 3. Channel 1 comes out first. • Channel 3 and channel 4 come out on channel 4. Channel 3 comes out first. • Channel 5 and channel 6 come out on channel 5. Channel 5 comes out first. • Channel 7 and channel 8 come out on channel 6. Channel 7 comes out first CHANNEL_OFFSET_SUBSTRACTION_ENABLE: Address: 3[8] Setting this bit to 1 enables the subtraction of the value on the corresponding OFFSET_CHx<9:0> (offset for channel i) from the ADC output. The number is specified in 2s-complement format. For example, OFFSET_CHx<9:0> = 11 1000 0000 means subtract –128. For OFFSET_CHx<9:0> = 00 0111 1111 the effect is to subtract 127. In effect, both addition and subtraction can be performed. Note that the offset is applied before the digital gain (see DIGITAL_GAIN_ENABLE). The whole data path is 2s-complement throughout internally, with digital gain being the last step. Only when ADC_OUTPUT_FORMAT = 1 (straight binary output format) is the 2scomplement word translated into offset binary at the end. SERIALIZED_DATA_RATE: Address: 3[14:13] Please see Table 1 for detail description. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 29 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com TEST_PATTERN_MODES: Address: 2[15:13] The AFE5808 can output a variety of test patterns on the LVDS outputs. These test patterns replace the normal ADC data output. The device may also be made to output 6 preset patterns: 1. Ramp: Setting Register 2[15:13]=111causes all the channels to output a repeating full-scale ramp pattern. The ramp increments from zero code to full-scale code in steps of 1LSB every clock cycle. After hitting the full-scale code, it returns back to zero code and ramps again. 2. Zeros: The device can be programmed to output all zeros by setting Register 2[15:13]=110; 3. Ones: The device can be programmed to output all 1s by setting Register 2[15:13]=100; 4. Deskew Patten: When 2[15:13]=010; this mode replaces the 14-bit ADC output with the 01010101010101 word. 5. Sync Pattern: When 2[15:13]=001, the normal ADC output is replaced by a fixed 11111110000000 word. 6. Toggle: When 2[15:13]=101, the normal ADC output is alternating between 1's and 0's. The start state of ADC word can be either 1's or 0's. 7. Custom Pattern: It can be enabled when 2[15:13]=011;. Users can write the required VALUE into register bits <CUSTOM PATTERN> which is Register 5[13:0]. Then the device will output VALUE at its outputs, about 3 to 4 ADC clock cycles after the 24th rising edge of SCLK. So, the time taken to write one value is 24 SCLK clock cycles + 4 ADC clock cycles. To change the customer pattern value, users can repeat writing Register 5[13:0] with a new value. Due to the speed limit of SPI, the refresh rate of the custom pattern may not be high. For example, 128 points custom pattern will take approximately 128 x (24 SCLK clock cycles + 4 ADC clock cycles). NOTE only one of the above patterns can be active at any given instant. 30 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 VCA Register Map Table 4. VCA Register Map ADDRESS ADDRESS Default (DEC) (HEX) Value FUNCTION DESCRIPTION 51[0] 0x33[0] 0 RESERVED 0 51[3:1] 0x33[3:1] 0 LPF_PROGRAMMABILITY 000: 010: 011: 100: 51[4] 0x33[4] 0 PGA_INTEGRATOR_DISABLE (PGA_HPF_DISABLE) 0: Enable 1: Disables offset integrator for PGA. Please see explanation for the PGA integrator function in APPLICATION INFORMATION section 51[6:5] 0x33[6:5] 0 PGA_CLAMP_LEVEL 00: –2dBFS; 10: 0dBFS; 01:–4dBFS when 51[7]=0 Note: the clamp circuit makes sure that PGA output is in linear range. For example, at 00 setting, PGA output HD3 will be worsen by 3dB at –2dBFS ADC input. In normal operation, clamp function can be set as 00 51[7] 0x33[7] 0 PGA_CLAMP_DISABLE 0:Enables the PGA clamp circuit; 1:Disables the PGA clamp circuit at PGA outputs. 51[6:5] determines the clamp output level 51[13] 0x33[13] 0 PGA_GAIN_CONTROL 0:24dB; 1:30dB 52[4:0] 0x34[4:0] 0 ACTIVE_TERMINATION_ INDIVIDUAL_RESISTOR_CNTL SeeTable 6 Reg 52[5] should be set as '1' to access these bits 52[5] 0x34[5] 0 ACTIVE_TERMINATION_ INDIVIDUAL_RESISTOR_ENABLE 0: Disables; 1: Enables internal active termination individual resistor control 52[7:6] 0x34[7:6] 0 PRESET_ACTIVE_ TERMINATIONS 00: 50Ω, 01: 100Ω, 10: 200Ω, 11: 400Ω (Note: the device will adjust resistor mapping (52[4:0]) automatically. 50ohm active termination is NOT supported in 12dB LNA setting. Instead, '00' represents high impedance mode when LNA gain is 12dB) 52[8] 0x34[8] 0 ACTIVE TERMINATION ENABLE 0: Disables; 1: Enables active termination 52[10:9] 0x34[10:9] 0 LNA_INPUT_CLAMP_SETTING 00: Auto setting (Recommended for most cases. Clamp level can be set automatically depending LNA gain. 350mVpp when LNA = 24dB, 600mVpp when LNA = 18dB, 1.15Vpp when LNA = 12dB) 01: 1.5Vpp, 10: 1.15Vpp, 11: 0.6Vpp 52[11] 0x34[11] 0 RESERVED Set to 0 52[12] 0x34[12] 0 LNA_INTEGRATOR_DISABLE (LNA_HPF_DISABLE) 0: Enables; 1: Disables offset integrator for LNA. Please see the explanation for this function in the following section 52[14:13] 0x34[14:1 3] 0 LNA_GAIN 00: 01: 10: 11: 52[15] 0x34[15] 0 LNA_INDIVIDUAL_CH_CNTL 0: Disable; 1: Enable LNA individual channel control. See Register 57 for details 15MHz, 20MHz, 30MHz, 10MHz 18dB; 24dB; 12dB; Reserved Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 31 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com Table 4. VCA Register Map (continued) ADDRESS ADDRESS Default (DEC) (HEX) Value FUNCTION DESCRIPTION 53[7:0] 0x35[7:0] 0 PDN_CH<7:0> 0: Normal operation; 1: Powers down corresponding channels. Bit7→CH8, Bit6→CH7…Bit0→CH1. PDN_CH will shut down whichever blocks are active depending on TGC mode or CW mode 53[8] 0x35[8] 0 RESERVED Set to 0 53[9] 0x35[9] 0 RESERVED Set to 0 53[10] 0x35[10] 0 LOW_POWER 0: Low noise mode; 1: Sets to low power mode (53[11]=0). At 30dB PGA, total chain gain may slightly change. See typical characteristics 53[11] 0x35[11] 0 MED_POWER 0: Low noise mode; 1: Sets to medium power mode(53[10]=0). At 30dB PGA, total chain gain may slightly change. See typical characteristics 53[12] 0x35[12] 0 PDN_VCAT_PGA 0: Normal operation; 1: Powers down VCAT (voltage-controlled-attenuator) and PGA 53[13] 0x35[13] 0 PDN_LNA 0: Normal operation; 1: Powers down LNA only 53[14] 0x35[14] 0 VCA_PARTIAL_PDN 0: Normal operation; 1: Powers down LNA, VCAT, and PGA partially(fast wake response) 53[15] 0x35[15] 0 VCA_COMPLETE_PDN 0: Normal operation; 1: Powers down LNA, VCAT, and PGA completely (slow wake response). This bit can overwrite 53[14]. 54[4:0] 0x36[4:0] 0 CW_SUM_AMP_GAIN_CNTL Selects Feedback resistor for the CW Amplifier as per Table 6 below 54[5] 0x36[5] 0 CW_16X_CLK_SEL 0: Accepts differential clock; 1: Accepts CMOS clock 54[6] 0x36[6] 0 CW_1X_CLK_SEL 0: Accepts CMOS clock; 1: Accepts differential clock 54[7] 0x36[7] 0 RESERVED Set to 0 54[8] 0x36[8] 0 CW_TGC_SEL 0: TGC Mode; 1 : CW Mode Note : VCAT and PGA are still working in CW mode. They should be powered down separately through 53[12] 54[9] 0x36[9] 0 CW_SUM_AMP_ENABLE 0: enables CW summing amplifier; 1: disables CW summing amplifier Note: 54[9] is only effective in CW mode. 54[11:10] 0x36[11:1 0] 0 CW_CLK_MODE_SEL 00: 01: 10: 11: 55[3:0] 0x37[3:0] 0 CH1_CW_MIXER_PHASE 55[7:4] 0x37[7:4] 0 CH2_CW_MIXER_PHASE 55[11:8] 0x37[11:8] 0 CH3_CW_MIXER_PHASE 55[15:12] 0x37[15:1 2] 0 CH4_CW_MIXER_PHASE 56[3:0] 0x38[3:0] 0 CH5_CW_MIXER_PHASE 56[7:4] 0x38[7:4] 0 CH6_CW_MIXER_PHASE 56[11:8] 0x38[11:8] 0 CH7_CW_MIXER_PHASE 56[15:12] 0x38[15:1 2] 0 CH8_CW_MIXER_PHASE 32 16X mode; 8X mode; 4X mode; 1X mode 0000→1111, 16 different phase delays, see Table 9 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 Table 4. VCA Register Map (continued) ADDRESS ADDRESS Default (DEC) (HEX) Value FUNCTION DESCRIPTION 57[1:0] 0x39[1:0] 0 CH1_LNA_GAIN_CNTL 57[3:2] 0x39[3:2] 0 00: 18dB; 01: 24dB; 10: 12dB; 11: Reserved REG52[15] should be set as '1' CH2_LNA_GAIN_CNTL 57[5:4] 0x39[5:4] 0 CH3_LNA_GAIN_CNTL 57[7:6] 0x39[7:6] 0 CH4_LNA_GAIN_CNTL 00: 18dB; 01: 24dB; 10: 12dB; 11: Reserved REG52[15] should be set as '1' 57[9:8] 0x39[9:8] 0 CH5_LNA_GAIN_CNTL 57[11:10] 0x39[11:1 0] 0 CH6_LNA_GAIN_CNTL 57[13:12] 0x39[13:1 2] 0 CH7_LNA_GAIN_CNTL 57[15:14] 0x39[15:1 4] 0 CH8_LNA_GAIN_CNTL 59[3:2] 0x3B[3:2] 0 HPF_LNA 00: 01: 10: 11: 59[6:4] 0x3B[6:4] 0 DIG_TGC_ATT_GAIN 000: 0dB attenuation; 001: 6dB attenuation; N: ~N×6dB attenuation when 59[7] = 1 59[7] 0x3B[7] 0 DIG_TGC_ATT 0: disable digital TGC attenuator; 1: enable digital TGC attenuator 59[8] 0x3B[8] 0 CW_SUM_AMP_PDN 0: Power down; 1: Normal operation Note: 59[8] is only effective in TGC test mode. 59[9] 0x3B[9] 0 PGA_TEST_MODE 0: Normal CW operation; 1: PGA outputs appear at CW outputs 100KHz; 50Khz; 200Khz; 150KHz with 0.015uF on INMx AFE5808 VCA Register Description LNA Input Impedances Configuration (Active Termination Programmability) Different LNA input impedances can be configured through the register 52[4:0]. By enabling and disabling the feedback resistors between LNA outputs and ACTx pins, LNA input impedance is adjustable accordingly. Table 5 describes the relationship between LNA gain and 52[4:0] settings. The input impedance settings are the same for both TGC and CW paths. The AFE5808 also has 4 preset active termination impedances as described in 52[7:6]. An internal decoder is used to select appropriate resistors corresponding to different LNA gain. Table 5. Register 52[4:0] Description 52[4:0]/0x34[4:0] FUNCTION 00000 No feedback resistor enabled 00001 Enables 450 Ω feedback resistor 00010 Enables 900 Ω feedback resistor 00100 Enables 1800 Ω feedback resistor 01000 Enables 3600 Ω feedback resistor 10000 Enables 4500 Ω feedback resistor Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 33 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com Table 6. Register 52[4:0] vs LNA Input Impedances 52[4:0]/0x34[4:0] 00000 00001 00010 00011 00100 00101 00110 00111 LNA:12dB High Z 150 Ω 300 Ω 100 Ω 600 Ω 120 Ω 200 Ω 86 Ω LNA:18dB High Z 90 Ω 180 Ω 60 Ω 360 Ω 72 Ω 120 Ω 51 Ω LNA:24dB High Z 50 Ω 100 Ω 33 Ω 200 Ω 40 Ω 66.67 Ω 29 Ω 52[4:0]/0x34[4:0] 01000 01001 01010 01011 01100 01101 01110 01111 LNA:12dB 1200 Ω 133 Ω 240 Ω 92 Ω 400 Ω 109 Ω 171 Ω 80 Ω LNA:18dB 720 Ω 80 Ω 144 Ω 55 Ω 240 Ω 65 Ω 103 Ω 48 Ω LNA:24dB 400 Ω 44 Ω 80 Ω 31 Ω 133 Ω 36 Ω 57 Ω 27 Ω 52[4:0]/0x34[4:0] 10000 10001 10010 10011 10100 10101 10110 10111 LNA:12dB 1500 Ω 136 Ω 250 Ω 94 Ω 429 Ω 111 Ω 176 Ω 81 Ω LNA:18dB 900 Ω 82 Ω 150 Ω 56 Ω 257 Ω 67 Ω 106 Ω 49 Ω LNA:24dB 500 Ω 45 Ω 83 Ω 31 Ω 143 Ω 37 Ω 59 Ω 27 Ω 52[4:0]/0x34[4:0] 11000 11001 11010 11011 11100 11101 11110 11111 LNA:12dB 667 Ω 122 Ω 207 Ω 87 Ω 316 Ω 102 Ω 154 Ω 76 Ω LNA:18dB 400 Ω 73 Ω 124 Ω 52 Ω 189 Ω 61 Ω 92 Ω 46 Ω LNA:24dB 222 Ω 41 Ω 69 Ω 29 Ω 105 Ω 34 Ω 51 Ω 25 Ω 34 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 Programmable Gain for CW Summing Amplifier Different gain can be configured for the CW summing amplifier through the register 54[4:0]. By enabling and disabling the feedback resistors between the summing amplifier inputs and outputs, the gain is adjustable accordingly to maximize the dynamic range of CW path. Table 7 describes the relationship between the summing amplifier gain and 54[4:0] settings. Table 7. Register 54[4:0] Description 54[4:0]/0x36[4:0] FUNCTION 00000 No feedback resistor 00001 Enables 250 Ω feedback resistor 00010 Enables 250 Ω feedback resistor 00100 Enables 500 Ω feedback resistor 01000 Enables 1000 Ω feedback resistor 10000 Enables 2000 Ω feedback resistor Table 8. Register 54[4:0] vs Summing Amplifier Gain 54[4:0]/0x36[4:0] CW I/V Gain 54[4:0]/0x36[4:0] CW I/V Gain 54[4:0]/0x36[4:0] CW I/V Gain 54[4:0]/0x36[4:0] CW I/V Gain 00000 00001 00010 00011 00100 00101 00110 00111 N/A 0.50 0.50 0.25 1.00 0.33 0.33 0.20 01000 01001 01010 01011 01100 01101 01110 01111 2.00 0.40 0.40 0.22 0.67 0.29 0.29 0.18 10000 10001 10010 10011 10100 10101 10110 10111 4.00 0.44 0.44 0.24 0.80 0.31 0.31 0.19 11000 11001 11010 11011 11100 11101 11110 11111 1.33 0.36 0.36 0.21 0.57 0.27 0.27 0.17 Programmable Phase Delay for CW Mixer Accurate CW beamforming is achieved through adjusting the phase delay of each channel. In the AFE5808, 16 different phase delays can be applied to each LNA output; and it meets the standard requirement of typical 1 λ ultrasound beamformer, i.e. 16 beamformer resolution. Table 7 describes the relationship between the phase delays and the register 55 and 56 settings. Table 9. CW Mixer Phase Delay vs Register Settings CH1 - 55[3:0], CH2 - 55[7:4], CH3 - 55[11:8], CH4 - 55[15:12], CH5- 56[3:0], CH6 - 56[7:4], CH7 - 56[11:8], CH8 - 56[15:12], CHX_CW_MIXER_PHASE PHASE SHIFT 0000 0001 0010 0011 0100 0101 0110 0111 0 22.5° 45° 67.5° 90° 112.5° 135° 157.5° CHX_CW_MIXER_PHASE 1000 1001 1010 1011 1100 1101 1110 1111 PHASE SHIFT 180° 202.5° 225° 247.5° 270° 292.5° 315° 337.5° Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 35 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com THEORY OF OPERATION AFE5808 OVERVIEW The AFE5808 is a highly integrated Analog Front-End (AFE) solution specifically designed for ultrasound systems in which high performance and small size are required. The AFE5808 integrates a complete time-gaincontrol (TGC) imaging path and a continuous wave Doppler (CWD) path. It also enables users to select one of various power/noise combinations to optimize system performance. The AFE5808 contains eight channels; each channels includes a Low-Noise Amplifier (LNA), a Voltage Controlled Attenuator (VCAT), a Programmable Gain Amplifier (PGA), a Low-pass Filter (LPF), a 14-bit Analog-to-Digital Converter (ADC), and a CW mixer. In addition, multiple features in the AFE5808 are suitable for ultrasound applications, such as active termination, individual channel control, fast power up/down response, programmable clamp voltage control, fast and consistent overload recovery, etc. Therefore the AFE5808 brings premium image quality to ultra–portable, handheld systems all the way up to high-end ultrasound systems. Its simplified function block diagram is listed in Figure 63. SPI IN AFE5808 (1 of 8 Channels) LNA VCAT 0 to -40dB 16 Phases Generator CW Mixer rd 3 LP Filter 10, 15, 20, 30 MHz PGA 24, 30dB LNA IN 16X CLK 1X CLK SPI OUT SPI Logic 16X8 Crosspoint SW 14Bit ADC Summing Amplifier Reference Reference CW I/Q Vout Differential TGC Vcntl EXT/INT REFs LVDS 1X CLK Figure 63. Functional Block Diagram LOW-NOISE AMPLIFIER (LNA) In many high-gain systems, a low noise amplifier is critical to achieve overall performance. Using a new proprietary architecture, the LNA in the AFE5808 delivers exceptional low-noise performance, while operating on a very low quiescent current compared to CMOS-based architectures with similar noise performance. The LNA performs single-ended input to differential output voltage conversion. It is configurable for a programmable gain of 24/18/12dB and its input-referred noise is only 0.63/0.70/0.9 nV/√Hz respectively. Programmable gain settings result in a flexible linear input range up to 1 Vpp, realizing high signal handling capability demanded by new transducer technologies. Larger input signal can be accepted by the LNA; however the signal can be distorted since it exceeds the LNA’s linear operation region. Combining the low noise and high input range, a wide input dynamic range is achieved consequently for supporting the high demands from various ultrasound imaging modes. The LNA input is internally biased at approximately +2.4 V; the signal source should be ac-coupled to the LNA input by an adequately-sized capacitor, e.g. ≥0.1 µF. To achieve low DC offset drift, the AFE5808 incorporates a DC offset correction circuit for each amplifier stage. To improve the overload recovery, an integrator circuit is used to extract the DC component of the LNA output and then fed back to the LNA’s complementary input for DC offset correction. This DC offset correction circuit has a high-pass response and can be treated as a high-pass 36 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 filter. The effective corner frequency is determined by the capacitor CBYPASS connected at INM. With larger capacitors, the corner frequency is lower. For stable operation at the highest HP filer cut-off frequency, a ≥15 nF capacitor can be selected. This corner frequency scales almost linearly with the value of the CBYPASS. For example, 15 nF gives a corner frequency of approximately 100 kHz, while 47 nF can give an effective corner frequency of 33 KHz. The DC offset correction circuit can also be disabled/enabled through register 52[12]. The AFE5808 can be terminated passively or actively. Active termination is preferred in ultrasound application for reducing reflection from mismatches and achieving better axial resolution without degrading noise figure too much. Active termination values can be preset to 50, 100, 200, 400Ω; other values also can be programmed by users through register 52[4:0]. A feedback capacitor is required between ACTx and the signal source as Figure 64 shows. On the active termination path, a clamping circuit is also used to create a low impedance path when overload signal is seen by the AFE5808. The clamp circuit limits large input signals at the LNA inputs and improves the overload recovery performance of the AFE5808. The clamp level can be set to 350mVPP, 600 mVPP, 1.15 VPP automatically depending on the LNA gain settings when register 52[10:9]=0. Other clamp voltages, such as 1.15 VPP, 0.6 VPP, and 1.5 VPP, are also achievable by setting register 52[10:9]. This clamping circuit is also designed to obtain good pulse inversion performance and reduce the impact from asymmetric inputs. AFE CLAMP CACT ACTx CIN INPx CBYPASS INMx Input LNAx Optional Diodes DC Offset Correction S0498-01 Figure 64. AFE5808 LNA with DC Offset Correction Circuit VOLTAGE-CONTROLLED ATTENUATOR The voltage-controlled attenuator is designed to have a linear-in-dB attenuation characteristic; that is, the average gain loss in dB (refer to Figure 2) is constant for each equal increment of the control voltage (VCNTL) as shown in Figure 65. A differential control structure is used to reduce common mode noise. A simplified attenuator structure is shown in the following Figure 65 and Figure 66. The attenuator is essentially a variable voltage divider that consists of the series input resistor (RS) and seven shunt FETs placed in parallel and controlled by sequentially activated clipping amplifiers (A1 through A7). VCNTL is the effective difference between VCNTLP and VCNTLM. Each clipping amplifier can be understood as a specialized voltage comparator with a soft transfer characteristic and well-controlled output limit voltage. Reference voltages V1 through V7 are equally spaced over the 0V to 1.5V control voltage range. As the control voltage increases through the input range of each clipping amplifier, the amplifier output rises from a voltage where the FET is nearly OFF to VHIGH where the FET is completely ON. As each FET approaches its ON state and the control voltage continues to rise, the next clipping amplifier/FET combination takes over for the next portion of the piecewise-linear attenuation characteristic. Thus, low control voltages have most of the FETs turned OFF, producing minimum signal attenuation. Similarly, high control voltages turn the FETs ON, leading to maximum signal attenuation. Therefore, each FET acts to decrease the shunt resistance of the voltage divider formed by Rs and the parallel FET network. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 37 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com Additionally, a digitally controlled TGC mode is implemented to achieve better phase-noise performance in the AFE5808. The attenuator can be controlled digitally instead of the analog control voltage VCNTL. This mode can be set by the register bit 59[7]. The variable voltage divider is implemented as a fixed series resistance and FET as the shunt resistance. Each FET can be turned ON by connecting the switches SW1-7. Turning on each of the switches can give approximately 6dB of attenuation. This can be controlled by the register bits 59[6:4]. This digital control feature can eliminate the noise from the VCNTL circuit and ensure the better SNR and phase noise for TGC path. A1 - A7 Attenuator Stages Attenuator Input RS Attenuator Output Q1 VB A1 Q2 A1 Q3 A1 C1 C2 V1 Q4 A1 C3 V2 Q5 A1 C4 V3 Q6 A1 C5 V4 Q7 A1 C6 V5 C7 V6 V7 VCNTL C1 - C8 Clipping Amplifiers Control Input Figure 65. Simplified Voltage Controlled Attenuator (Analog Structure) Attenuator Input RS Attenuator Output Q1 Q2 Q3 Q4 Q5 SW5 SW6 Q6 Q7 VB SW1 SW2 SW3 SW4 SW7 VHIGH Figure 66. Simplified Voltage Controlled Attenuator (Digital Structure) The voltage controlled attenuator’s noise follows a monotonic relationship to the attenuation coefficient. AAt higher attenuation, the input-referred noise is higher and vice-versa. The attenuator’s noise is then amplified by the PGA and becomes the noise floor at ADC input. In the attenuator’s high attenuation operating range, i.e. VCNTL is high, the attenuator’s input noise may exceed the LNA’s output noise; the attenuator then becomes the dominant noise source for the following PGA stage and ADC. Therefore the attenuator’s noise should be minimized compared to the LNA output noise. The AFE5808’s attenuator is designed for achieving very low noise even at high attenuation (low channel gain) and realizing better SNR in near field. The input referred noise for different attenuations is listed in the below table: Table 10. Voltage-Controlled-Attenuator noise vs Attenuation 38 Attenuation (dB) Attenuator Input Referred noise (nV/rtHz) –40 10.5 –36 10 –30 9 –24 8.5 –18 6 –12 4 –6 3 0 2 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 PROGRAMMABLE GAIN AMPLIFIER (PGA) After the voltage controlled attenuator, a programmable gain amplifier can be configured as 24dB or 30dB with a constant input referred noise of 1.75nV/rtHz. The PGA structure consists of a differential voltage-to-current converter with programmable gain, clamping circuits, a transimpedance amplifier with a programmable low-pass filter, and a DC offset correction circuit. Its simplified block diagram is shown below: CLAMP From attenuator To ADC I/V LPF V/I CLAMP DC Offset Correction Loop Figure 67. Simplified Block Diagram of PGA Low input noise is always preferred in a PGA and its noise contribution should not degrade the ADC SNR too much after the attenuator. At the minimum attenuation (used for small input signals), the LNA noise dominates; at the maximum attenuation (large input signals), the PGA and ADC noise dominates. Thus 24 dB gain of PGA achieves better SNR as long as the amplified signals can exceed the noise floor of the ADC. The PGA clamping circuit can be enabled (register 51) to improve the overload recovery performance of the AFE. If we measure the standard deviation of the output just after overload, for 0.5 V VCNTL, it is about 3.2 LSBs in normal case, i.e the output is stable in about 1 clock cycle after overload. With the clamp disabled, the value approaches 4 LSBs meaning a longer time duration before the output stabilizes; however, with the clamp enabled, there will be degradation in HD3 for PGA output levels > -2 dBFS. For example, for a –2 dBFS output level, the HD3 degrades by approximately 3dB. The AFE5808 integrates an anti-aliasing filter in the form of a programmable low-pass filter (LPF) in the transimpedance amplifier. The LPF is designed as a differential, active, 3rd order filter with a typical 18 dB per octave roll-off. Programmable through the serial interface, the –1dB frequency corner can be set to one of 10 MHz, 15 MHz, 20 MHz, and 30 MHz. The filter bandwidth is set for all channels simultaneously. A selectable DC offset correction circuit is implemented in the PGA as well. This correction circuit is similar to the one used in the LNA. It extracts the DC component of the PGA outputs and feeds back to the PGA’s complimentary inputs for DC offset correction. This DC offset correction circuit also has a high-pass response with a cut-off frequency of 80 KHz. ANALOG TO DIGITAL CONVERTER The analog-to-digital converter (ADC) of the AFE5808 employs a pipelined converter architecture that consists of a combination of multi-bit and single-bit internal stages. Each stage feeds its data into the digital error correction logic, ensuring excellent differential linearity and no missing codes at the 14-bit level. The 14 bits given out by each channel are serialized and sent out on a single pair of pins in LVDS format. All eight channels of the AFE5808 operate from a common input clock (CLKP/M). The sampling clocks for each of the eight channels are generated from the input clock using a carefully matched clock buffer tree. The 14x clock required for the serializer is generated internally from the CLKP/M pins. A 7x and a 1x clock are also given out in LVDS format, along with the data, to enable easy data capture. The AFE5808 operates from internally-generated reference voltages that are trimmed to improve the gain matching across devices. The nominal values of REFP and REFM are 1.5 V and 0.5 V, respectively. Alternately, the device also supports an external reference mode that can be enabled using the serial interface. Using serialized LVDS transmission has multiple advantages, such as a reduced number of output pins (saving routing space on the board), reduced power consumption, and reduced effects of digital noise coupling to the analog circuit inside the AFE5808. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 39 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com CONTINUOUS-WAVE (CW) BEAMFORMER Continuous-wave Doppler is a key function in mid-end to high-end ultrasound systems. Compared to the TGC mode, the CW path needs to handle high dynamic range along with strict phase noise performance. CW beamforming is often implemented in analog domain due to the mentioned strict requirements. Multiple beamforming methods are being implemented in ultrasound systems, including passive delay line, active mixer, and passive mixer. Among all of them, the passive mixer approach achieves optimized power and noise. It satisfies the CW processing requirements, such as wide dynamic range, low phase noise, accurate gain and phase matching. A simplified CW path block diagram and an In-phase or Quadrature (I/Q) channel block diagram are illustrated below respectively. Each CW channel includes a LNA, a voltage-to-current converter, a switch-based mixer, a shared summing amplifier with a low-pass filter, and clocking circuits. All blocks include well-matched in-phase and quadrature channels to achieve good image frequency rejection as well as beamforming accuracy. As a result, the image rejection ratio from an I/Q channel is better than -46 dBc which is desired in ultrasound systems. I-CLK LNA1 Voltage to Current Converter I-CH Q-CH Q-CLK Sum Amp with LPF 1×fcw CLK I-CH Clock Distribution Circuits Q-CH N×fcw CLK Sum Amp with LPF I-CLK LNA8 Voltage to Current Converter I-CH Q-CH Q-CLK Figure 68. Simplified Block Diagram of CW Path 40 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 ACT1 500Ω IN1 INPUT1 INM1 Mixer Clock 1 LNA1 Cext 500Ω ACT2 500Ω IN2 INPUT2 INM2 Mixer Clock 2 CW_AMPINM 10Ω 10Ω LNA2 500Ω Rint/Rext CW_OUTP I/V Sum Amp Rint/Rext CW _AMPINP CW_OUTM Cext CW I or Q CHANNEL Structure ACT8 500Ω IN8 INPUT8 INM8 Mixer Clock 8 LNA8 500Ω Note: the 10Ω resistors at CW_AMPINM/P are due to internal IC routing and can create slight attenuation. Figure 69. A Complete In-phase or Quadrature Phase Channel The CW mixer in the AFE5808 is passive and switch based; passive mixer adds less noise than active mixers. It achieves good performance at low power. The below illustration and equations describe the principles of mixer operation, where Vi(t), Vo(t) and LO(t) are input, output and local oscillator (LO) signals for a mixer respectively. The LO(t) is square-wave based and includes odd harmonic components as the below equation expresses: Vi(t) Vo(t) LO(t) Figure 70. Block Diagram of Mixer Operation Vi(t) = sin (w0 t + wd t + j ) + f (w0 t ) 4é 1 1 ù sin (w0 t ) + sin (3w0 t ) + sin (5w0 t )...ú ê 3 5 pë û 2 Vo(t) = éëcos (wd t + f ) - cos (2w0 t - wd t + f )...ùû p LO(t) = (2) Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 41 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com From the above equations, the 3rd and 5th order harmonics from the LO can interface with the 3rd and 5th order harmonic signals in the Vi(t); or the noise around the 3rd and 5th order harmonics in the Vi(t). Therefore the mixer’s performance is degraded. In order to eliminate this side effect due to the square-wave demodulation, a proprietary harmonic suppression circuit is implemented in the AFE5808. The 3rd and 5th harmonic components from the LO can be suppressed by over 12 dB. Thus the LNA output noise around the 3rd and 5th order harmonic bands will not be down-converted to base band. Hence, better noise figure is achieved. The conversion loss of the mixer is about -4 dB which is derived from 20log10 2 p The mixed current outputs of the 8 channels are summed together internally. An internal low noise operational amplifier is used to convert the summed current to a voltage output. The internal summing amplifier is designed to accomplish low power consumption, low noise, and ease of use. CW outputs from multiple AFE5808s can be further combined on system board to implement a CW beamformer with more than 8 channels. More detail information can be found in the application information section. Multiple clock options are supported in the AFE5808 CW path. Two CW clock inputs are required: N × ƒcw clock and 1 × ƒcw clock, where ƒcw is the CW transmitting frequency and N could be 16, 8, 4, or 1. Users have the flexibility to select the most convenient system clock solution for the AFE5808. In the 16 × ƒcw and 8×fcw modes, the 3rd and 5th harmonic suppression feature can be supported. Thus the 16 × ƒcw and 8 × ƒcw modes achieves better performance than the 4 × ƒcw and 1 × ƒcw modes 16 × ƒcw Mode The 16 × ƒcw mode achieves the best phase accuracy compared to other modes. It is the default mode for CW operation. In this mode, 16 × ƒcw and 1 × ƒcw clocks are required. 16 × fcw generates LO signals with 16 accurate phases. Multiple AFE5808s can be synchronized by the 1 × ƒcw , i.e. LO signals in multiple AFEs can have the same starting phase. The phase noise spec is critical only for 16X clock. 1X clock is for synchronization only and doesn’t require low phase noise. Please see the phase noise requirement in the section of application information. The top level clock distribution diagram is shown in the below Figure 71. Each mixer's clock is distributed through a 16 × 8 cross-point switch. The inputs of the cross-point switch are 16 different phases of the 1x clock. It is recommended to align the rising edges of the 1 x ƒcw and 16 x ƒcw clocks. The cross-point switch distributes the clocks with appropriate phase delay to each mixer. For example, Vi(t) is a 1 received signal with a delay of 16 T , a delayed LO(t) should be applied to the mixer in order to compensate for 1 2p T 16 16 the delay. Thus a 22.5⁰ delayed clock, i.e. , is selected for this channel. The mathematic calculation is expressed in the following equations: é æ ù 1 ö Vi(t) = sin êw0 ç t + ÷ + wd t ú = sin [w0 t + 22.5° + wd t ] ëê è 16 f0 ø ûú LO(t) = é æ 4 1 öù 4 sin êw0 ç t + ÷ ú = sin [w0 t + 22.5°] p êë è 16 f0 ø úû p Vo(t) = 2 cos (wd t ) + f (wn t ) p (3) Vo(t) represents the demodulated Doppler signal of each channel. When the doppler signals from N channels are summed, the signal to noise ratio improves. 42 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 Fin 16X Clock INV D Q Fin 1X Clock Fin 1X Clock 16 Phase Generator 1X Clock Phase 0º 1X Clock Phase 22.5º SPI 1X Clock Phase 292.5º 1X Clock Phase 315º 1X Clock Phase 337.5º 16-to-8 Cross Point Switch Mixer 1 1X Clock Mixer 2 1X Clock Mixer 3 1X Clock Mixer 6 1X Clock Mixer 7 1X Clock Mixer 8 1X Clock Figure 71. Fin 1X Clock Fin 16X Clock 1X Clock Phase 0° 1X Clock Phase 22.5° 1X Clock Phase 45° Quadrature clocks 1X Clock Phase 90° Figure 72. 1x and 16x CW Clock Timing 8 × ƒcw and 4 × ƒcw Modes 8 × ƒcw and 4 × ƒcw modes are alternative modes when higher frequency clock solution (i.e. 16 × ƒcw clock) is not available in system. The block diagram of these two modes is shown below. Good phase accuracy and matching are also maintained. Quadature clock generator is used to create in-phase and quadrature clocks with exact 90° phase difference. The only difference between 8 × ƒcw and 4 × ƒcw modes is the accessibility of the 3rd and 5th harmonic suppression filter. In the 8 × ƒcw mode, the suppression filter can 1 T 16 be supported. In both modes, phase delay resolution is achieved by weighting the in-phase and quadrature 1 T paths correspondingly. For example, if a delay of 16 or 22.5° is targeted, the weighting coefficients should follow the below equations, assuming Iin and Qin are sin(ω0t) and cos(ω0t) respectively: æ 1 ö æ 2p ö æ 2p ö Idelayed (t) = Iin cos ç ÷ + Qin sin ç ÷ = Iin ç t + ÷ è 16 ø è 16 ø è 16 f0 ø æ 1 ö æ 2p ö æ 2p ö Qdelayed (t) = Qin cos ç ÷ - Iin sin ç ÷ = Qin ç t + ÷ è 16 ø è 16 ø è 16 f0 ø (4) Therefore after I/Q mixers, phase delay in the received signals is compensated. The mixers’ outputs from all channels are aligned and added linearly to improve the signal to noise ratio. It is preferred to have the 4 × ƒcw or 8 × ƒcw and 1 × ƒcw clocks aligned both at the rising edge. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 43 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com INV 4X/8X Clock I/Q CLK Generator D Q 1X Clock LNA2~8 In-phase CLK Summed In-Phase Quadrature CLK I/V Weight Weight LNA1 I/V Weight Summed Quadrature Weight Figure 73. 8 X ƒcw and 4 X ƒcw Block Diagram Fin 1X Clock Fin 4X Clock 1X Clock Phase 0° 1X Clock Phase 90° Quadrature clocks Figure 74. 8 x ƒcw and 4 x ƒcw Timing Diagram 1 × ƒcw Mode 1 T 16 The 1x ƒcw mode requires in-phase and quadrature clocks with low phase noise specifications. The phase delay resolution is also achieved by weighting the in-phase and quadrature signals as described in the 8 × ƒcw and 4 × ƒcw modes. Syncronized I/Q CLOCKs LNA2~8 In-phase CLK Summed In-Phase Quadrature CLK I/V Weight Weight LNA1 I/V Weight Summed Quadrature Weight Figure 75. Block Diagram of 1 x ƒcw mode 44 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 EQUIVALENT CIRCUITS CM CM (a) INP (b) INM (c) ACT S0492-01 Figure 76. Equivalent Circuits of LNA inputs S0493-01 Figure 77. Equivalent Circuits of VCNTLP/M VCM 5 kΩ 5 kΩ CLKP CLKM (a) CW 1X and 16X Clocks (b) ADC Input Clocks S0494-01 Figure 78. Equivalent Circuits of Clock Inputs Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 45 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com (a) CW_OUTP/M (b) CW_AMPINP/M S0495-01 Figure 79. Equivalent Circuits of CW Summing Amplifier Inputs and Outputs + – Low +Vdiff High AFE5808 OUTP + – –Vdiff + – High Vcommon Low External 100-W Load Rout OUTM Switch impedance is nominally 50 W (±10%) S0496-01 Figure 80. Equivalent Circuits of LVDS Outputs 46 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 APPLICATION INFORMATION 0.1μF AVSS IN CH1 IN CH2 IN CH3 IN CH4 IN CH5 IN CH6 IN CH7 IN CH8 1.4V 0.1μF N*0.1μF AVSS 1.8VD DVDD AVDD N*0.1μF AVSS 10μF N*0.1μF DVSS D1P 0.1μF IN1P D1M 0.1μF 15nF IN1M D2P 0.1μF 1μF ACT2 D2M 0.1μF IN2P D3P 15nF IN2M D3M 1μF ACT3 D4P 0.1μF CLKP_1X 0.1μF CLKM_1X 0.1μF IN3P D4M 15nF IN3M D5P 1μF ACT4 D5M 0.1μF IN4P D6P 15nF IN4M D6M 1μF ACT5 0.1μF IN5P 15nF IN5M 1μF ACT6 0.1μF IN6P 15nF IN6M 1μF ACT7 CLKP CLKM 0.1μF CLKP_16X 0.1μF CLKM_16X AFE5808 CLOCK INPUTS SOUT SDATA SCLK D7P SEN AFE5808 D7M AFE5808 RESET D8P PDN_VCA D8M ANALOG INPUTS ANALOG OUTPUTS REF/BIAS DECOUPLING LVDS OUTPUTS PDN_GLOBAL DCLKM FCLKP OTHER AFE5808 OUTPUT FCLKM IN7P 15nF IN7M CW_IP_AMPINP REXT (optional) 1μF ACT8 CW_IP_OUTM CCW 0.1μF IN8P CW_IP_AMPINM REXT (optional) 15nF IN8M CW_IP_OUTP CCW OTHER AFE5808 OUTPUT CVCNTL 470pF VCNTLP VCNTLM CVCNTL 470pF VREF_IN DIGITAL INPUTS PDN_ADC DCLKP 0.1μF VHIGH RVCNTL 200Ω 1.8VA ACT1 CM_BYP VCNTLM IN 10μF 1μF 1μF VCNTLP IN 3.3VA Clock termination depends on clock types LVDS, PECL, or CMOS 1μF RVCNTL 200Ω 10μF AVDD_ADC 5VA AVDD_5V 10μF OTHER AFE5808 OUTPUT CW_QP_AMPINP CW_QP_OUTM CCW CW_QP_AMPINM REXT (optional) CW_QP_OUTP CCW REFM CAC R SUM CAC RSUM CAC R SUM TO SUMMING AMP CAC RSUM CAC R SUM CAC RSUM CAC R SUM REXT (optional) TO SUMMING AMP DNCs REFP AVSS DVSS OTHER AFE5808 OUTPUT CAC RSUM S0497-01 Figure 81. Application Circuit Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 47 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com A typical application circuit diagram is listed above. The configuration for each block is discussed below. LNA CONFIGURATION LNA Input Coupling and Decoupling The LNA closed-loop architecture is internally compensated for maximum stability without the need of external compensation components. The LNA inputs are biased at 2.4V and AC coupling is required. A typical input configuration is shown in Figure 82. CIN is the input AC coupling capacitor. CACT is a part of the active termination feedback path. Even if the active termination is not used, the CACT is required for the clamp functionality. Recommended values for CACT ≥ 1µF and CIN are ≥ 0.1µF. A pair of clamping diodes is commonly placed between the T/R switch and the LNA input. Schottky diodes with suitable forward drop voltage (e.g. the BAT754/54 series, the BAS40 series, the MMBD7000 series, or similar) can be considered depending on the transducer echo amplitude. AFE CLAMP CACT ACTx CIN INPx CBYPASS INMx Input LNAx DC Offset Correction S0498-01 Figure 82. LNA Input Configurations This architecture minimizes any loading of the signal source that may otherwise lead to a frequency-dependent voltage divider. The closed-loop design yields very low offsets and offset drift. CBYPASS (≥0.015µF) is used to set the high-pass filter cut-off frequency and decouple the complimentary input. Its cut-off frequency is inversely proportional to the CBYPASS value, The HPF cut-off frequency can be adjusted through the register 59[3:2] a Table 11 lists. Low frequency signals at T/R switch output, such as signals with slow ringing, can be filtered out. In addition, the HPF can minimize system noise from DC-DC converters, pulse repetition frequency (PRF) trigger, and frame clock. Most ultrasound systems’ signal processing unit includes digital high-pass filters or band-pass filters (BPFs) in FPGAs or ASICs. Further noise suppression can be achieved in these blocks. In addition, a digital HPF is available in the AFE5808 ADC. If low frequency signal detection is desired in some applications, the LNA HPF can be disabled. Table 11. LNA HPF Settings (CBYPASS = 15 nF) 48 Reg59[3:2] (0x3B[3:2]) Frequency 00 100 KHz 01 50 KHz 10 200 KHz 11 150 KHz Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 CM_BYP and VHIGH pins, which generate internal reference voltages, need to be decoupled with ≥1µF capacitors. Bigger bypassing capacitors (>2.2µF) may be beneficial if low frequency noise exists in system. LNA Noise Contribution The noise spec is critical for LNA and it determines the dynamic range of entire system. The LNA of the AFE5808 achieves low power and an exceptionally low-noise voltage of 0.63nV/√Hz, and a low current noise of 2.7pA/√Hz. Typical ultrasonic transducer’s impedance Rs varies from tens of ohms to several hundreds of ohms. Voltage noise is the dominant noise in most cases; however, the LNA current noise flowing through the source impedance (Rs) generates additional voltage noise. 2 2 LNA _ Noise total = VLNAnoise + R2s ´ ILNAnoise (5) The AFE5808 achieves low noise figure (NF) over a wide range of source resistances as shown in Figure 32, Figure 33, andFigure 34. Active Termination In ultrasound applications, signal reflection exists due to long cables between transducer and system. The reflection results in extra ringing added to echo signals in PW mode. Since the axial resolution depends on echo signal length, such ringing effect can degrade the axial resolution. Hence, either passive termination or active termination, is preferred if good axial resolution is desired. Figure 83 shows three termination configurations: Rs LNA (a) No Termination Rf Rs LNA (b) Active Termination Rs Rt LNA (c) Passive Termination S0499-01 Figure 83. Termination Configurations Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 49 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com Under the no termination configuration, the input impedance of the AFE5808 is about 6KΩ (8K//20pF) at 1 MHz. Passive termination requires external termination resistor Rt, which contributes to additional thermal noise. The LNA supports active termination with programmable values, as shown in Figure 84 . 450Ω 900Ω 1800Ω ACTx 3600Ω 4500Ω INPx Input INMx LNAx AFE S0500-01 Figure 84. Active Termination Implementation The AFE5808 has four pre-settings 50,100, 200 and 400Ω which are configurable through the registers. Other termination values can be realized by setting the termination switches shown in the above figure. Register [52] is used to enable these switches. The input impedance of the LNA under the active termination configuration approximately follows: ZIN = Rf AnLNA 1+ 2 (6) Table 5 lists the LNA RINs under different LNA gains. System designers can achieve fine tuning for different probes. The equivalent input impedance is given by Equation 7 where RIN (8K) and CIN (20pF) are the input resistance and capacitance of the LNA. ZIN = Rf / /CIN / /RIN AnLNA 1+ 2 (7) Therefore, the ZIN is frequency dependent and it decreases as frequency increases shown in Figure 10. Since 2MHz to approximately 10MHz is the most commonly used frequency range in medical ultrasound, this rolling-off effect doesn’t impact system performance greatly. Active termination can be applied to both CW and TGC modes. Since each ultrasound system includes multiple transducers with different impedances, the flexibility of impedance configuration is a great plus. Figure 32, Figure 33, andFigure 34 shows the NF under different termination configurations. It indicates that no termination achieves the best noise figure; active termination adds less noise than passive termination. Thus termination topology should be carefully selected based on each use scenario in ultrasound. 50 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 LNA Gain Switch Response The LNA gain is programmable through SPI. The gain switching time depends on the SPI speed as well as the LNA gain response time. During the switching, glitches might occur and they can appear as artifacts in images. LNA gain switching in a single imaging line may not be preferred, although digital signal processing might be used here for glitch suppression. VOLTAGE-CONTROLLED-ATTENUATOR The attenuator in the AFE5808 is controlled by a pair of differential control inputs, the VCNTLM/P pins. The differential control voltage spans from 0V to 1.5V. This control voltage varies the attenuation of the attenuator based on its linear-in-dB characteristic. Its maximum attenuation (minimum channel gain) appears at VCNTLP VCNTLM= 1.5V, and minimum attenuation (maximum channel gain) occurs at VCNTLP- VCNTLM = 0. The typical gain range is 40dB and remains constant, independent of the PGA setting. When only single-ended VCNTL signal is available, this 1.5VPP signal can be applied on the VCNTLP pin with the VCNTLM pin connected to ground. As shown in Figure 85, the TGC gain curve is inversely proportional to the VCNTLP-VCNTLM. 1.5V VCNTLP VCNTLM = 0V X+40dB TGC Gain XdB (a) Single-Ended Input at VCNTLP 1.5V VCNTLP 0.75V VCNTLM 0V X+40dB TGC Gain XdB (b) Differential Inputs at VCNTLP and VCNTLM W0004-01 Figure 85. VCNTLP and VCNTLM Configurations Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 51 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com As discussed in the theory of operation, the attenuator architecture uses seven attenuator segments that are equally spaced in order to approximate the linear-in-dB gain-control slope. This approximation results in a monotonic slope; the gain ripple is typically less than ±0.5dB. The control voltage input (VCNTLM/P pins) represents a high-impedance input. The VCNTLM/P pins of multiple AFE5808 devices can be connected in parallel with no significant loading effects. When the voltage level (VCNTLPVCNTLM) is above 1.5V or below 0V, the attenuator continues to operate at its maximum attenuation level or minimum attenuation level respectively. It is recommended to limit the voltage from -0.3V to 2V. When the AFE5808 operates in CW mode, the attenuator stage remains connected to the LNA outputs. Therefore, it is recommended to power down the VCA using the PDN_VCA register bit. In this case, VCNTLPVCNTLM voltage does not matter. The AFE5808 gain-control input has a –3dB bandwidth of approximately 800KHz. This wide bandwidth, although useful in many applications (e.g. fast VCNTL response), can also allow high-frequency noise to modulate the gain control input and finally affect the Doppler performance. In practice, this modulation can easily be avoided by additional external filtering (RVCNTL and CVCNTL) at VCNTLM/P pins as Figure 80 shows. However, the external filter's cutoff frequency cannot be kept too low as this results in low gain response time. Without external filtering, the gain control response time is typically less than 1 μs to settle within 10% of the final signal level of 1VPP (–6dBFS) output as indicated in Figure 51 and Figure 52. Typical VCNTLM/P signals are generated by an 8bit to 12bit 10MSPS digital to analog converter (DAC) and a differential operation amplifier. TI’s DACs, such as TLV5626 and DAC7821/11 (10MSPS/12bit), could be used to generate TGC control waveforms. Differential amplifiers with output common mode voltage control (e.g. THS4130 and OPA1632) can connect the DAC to the VCNTLM/P pins. The buffer amplifier can also be configured as an active filter to suppress low frequency noise. More information can be found in the literatures SLOS318F and SBAA150. The VCNTL vs Gain curves can be found in Figure 2. The below table also shows the absolute gain vs. VCNTL, which may help program DAC correspondingly. In PW Doppler and color Doppler modes, VCNTL noise should be minimized to achieve the best close-in phase noise and SNR. Digital VCNTL feature is implemented to address this need in the AFE5808. In the digital VCNTL mode, no external VCNTL is needed. Table 12. VCNTLP–VCNTLM vs Gain Under Different LNA and PGA Gain Settings (Low Noise Mode) VCNTLP–VCNTLM (V) Gain (dB) LNA = 12 dB PGA = 24 dB Gain (dB) LNA = 18 dB PGA = 24 dB Gain (dB) LNA = 24 dB PGA = 24 dB Gain (dB) LNA = 12 dB PGA = 30 dB Gain (dB) LNA = 18 dB PGA = 30 dB Gain (dB) LNA = 24 dB PGA = 30 dB 0 36.45 42.45 48.45 42.25 48.25 54.25 0.1 33.91 39.91 45.91 39.71 45.71 51.71 0.2 30.78 36.78 42.78 36.58 42.58 48.58 0.3 27.39 33.39 39.39 33.19 39.19 45.19 0.4 23.74 29.74 35.74 29.54 35.54 41.54 0.5 20.69 26.69 32.69 26.49 32.49 38.49 0.6 17.11 23.11 29.11 22.91 28.91 34.91 0.7 13.54 19.54 25.54 19.34 25.34 31.34 0.8 10.27 16.27 22.27 16.07 22.07 28.07 0.9 6.48 12.48 18.48 12.28 18.28 24.28 1.0 3.16 9.16 15.16 8.96 14.96 20.96 1.1 –0.35 5.65 11.65 5.45 11.45 17.45 1.2 –2.48 3.52 9.52 3.32 9.32 15.32 1.3 –3.58 2.42 8.42 2.22 8.22 14.22 1.4 –4.01 1.99 7.99 1.79 7.79 13.79 1.5 –4 2 8 1.8 7.8 13.8 52 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 CW OPERATION CW Summing Amplifier In order to simplify CW system design, a summing amplifier is implemented in the AFE5808 to sum and convert 8-channel mixer current outputs to a differential voltage output. Low noise and low power are achieved in the summing amplifier while maintaining the full dynamic range required in CW operation. This summing amplifier has 5 internal gain adjustment resistors which can provide 32 different gain settings (register 54[4:0], Figure 84 and Table 7). System designers can easily adjust the CW path gain depending on signal strength and transducer sensitivity. For any other gain values, an external resistor option is supported. The gain of the summation amplifier is determined by the ratio between the 500Ω resistors after LNA and the internal or external resistor network REXT/INT. Thus the matching between these resistors plays a more important role than absolute resistor values. Better than 1% matching is achieved on chip. Due to process variation, the absolute resistor tolerance could be higher. If external resistors are used, the gain error between I/Q channels or among multiple AFEs may increase. It is recommended to use internal resistors to set the gain in order to achieve better gain matching (across channels and multiple AFEs). With the external capacitor CEXT , this summing amplifier has 1st order LPF response to remove high frequency components from the mixers, such as 2f0±fd. Its cut-off frequency is determined by: fHP = 1 2pRINT/EXT CEXT (8) Note that when different gain is configured through register 54[4:0], the LPF response varies as well. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 53 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com CEXT REXT 250Ω 250Ω RINT 500Ω 1000Ω 2000Ω CW_AMPINP CW_AMPINM CW_OUTM I/V Sum Amp CW_OUTP 250Ω 250Ω 500Ω RINT 1000Ω 2000Ω REXT CEXT S0501-01 Figure 86. CW Summing Amplifier Block Diagram Multiple AFE5808s are usually utilized in parallel to expand CW beamformer channel count. These AFE5808s’ CW outputs can be summed and filtered externally further to achieve desired gain and filter response. AC coupling capacitors CAC are required to block DC component of the CW carrier signal. CAC can vary from 1uF to 10s μF depending on the desired low frequency Doppler signal from slow blood flow. Multiple AFE5808s’ I/Q outputs can be summed together with a low noise external differential amplifiers before 16/18-bit differential audio ADCs. TI’s ultralow noise differential precision amplifier OPA1632 and THS4130 are suitable devices. 54 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 AFE No.4 AFE No.3 AFE No.2 ACT1 500 Ω INP1 INPUT1 INM1 AFE No.1 Mixer 1 Clock LNA1 500 Ω ACT2 500 Ω INP2 INPUT2 INM2 Ext Sum Amp Cext Mixer 2 Clock Rint/Rext CW_AMPINP CW_AMPINM LNA2 I/V Sum Amp CW_OUTM CW_OUTP Rint/Rext 500 Ω CAC RSUM Cext CW I or Q CHANNEL Structure ACT8 500 Ω INP8 INPUT8 INM8 Mixer 8 Clock LNA8 500 Ω S0502-01 Figure 87. CW circuit with Multiple AFE5808s The CW I/Q channels are well matched internally to suppress image frequency components in Doppler spectrum. Low tolerance components and precise operational amplifiers should be used for achieving good matching in the external circuits as well. CW Clock Selection The AFE5808 can accept differential LVDS, LVPECL, and other differential clock inputs as well as single-ended CMOS clock. An internally generated VCM of 2.5V is applied to CW clock inputs, i.e. CLKP_16X/ CLKM_16X and CLKP_1X/ CLKM_1X. Since this 2.5V VCM is different from the one used in standard LVDS or LVPECL clocks, AC coupling is required between clock drivers and the AFE5808 CW clock inputs. When CMOS clock is used, CLKM_1X and CLKM_16X should be tied to ground. Common clock configurations are illustrated in Figure 88. Appropriate termination is recommended to achieve good signal integrity. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 55 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com 3.3 V 130 Ω 83 Ω CDCM7005 CDCE7010 3.3 V 0.1 μF AFE CLOCKs 0.1 μF 130 Ω LVPECL (a) LVPECL Configuration 100 Ω CDCE72010 0.1 μF 0.1 μF AFE CLOCKs LVDS (b) LVDS Configuration 0.1μF 0.1μF CLOCK SOURCE 0.1μF AFE CLOCKs 50 Ω 0.1μF (c) Transformer Based Configuration CMOS CLK Driver AFE CMOS CLK CMOS (d) CMOS Configuration S0503-01 Figure 88. Clock Configurations The combination of the clock noise and the CW path noise can degrade the CW performance. The internal clocking circuit is designed for achieving excellent phase noise required by CW operation. The phase noise of the AFE5808 CW path is better than 155dBc/Hz at 1KHz offset. Consequently the phase noise of the mixer clock inputs needs to be better than 155dBc/Hz. 56 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 In the 16/8/4×fcw operations modes, low phase noise clock is required for 16/8/4׃cw clocks (i.e. CLKP_16X/ CLKM_16X pins) in order to maintain good CW phase noise performance. The 1׃cw clock (i.e. CLKP_1X/ CLKM_1X pins) is only used to synchronize the multiple AFE5808 chips and is not used for demodulation. Thus 1×fcw clock’s phase noise is not a concern. However, in the 1×fcw operation mode, low phase noise clocks are required for both CLKP_16X/ CLKM_16X and CLKP_1X/ CLKM_1X pins since both of them are used for mixer demodulation. In general, higher slew rate clock has lower phase noise; thus clocks with high amplitude and fast slew rate are preferred in CW operation. In the CMOS clock mode, 5V CMOS clock can achieve the highest slew rate. Clock phase noise can be improved by a divider as long as the divider’s phase noise is lower than the target phase noise. The phase noise of a divided clock can be improved approximately by a factor of 20logN dB where N is the dividing factor of 16, 8, or 4. If the target phase noise of mixer LO clock 1×fcw is 160dBc/Hz at 1KHz off carrier, the 16×fcw clock phase noise should be better than 160-20log16=136dBc/Hz. TI’s jitter cleaners CDCM7005 and CDCE72010 exceed this requirement and can be selected for the AFE5808. In the 4X/1X modes, higher quality input clocks are expected to achieve the same performance since N is smaller. Thus the 16X mode is a preferred mode since it reduces the phase noise requirement for system clock design. In addition, the phase delay accuracy is specified by the internal clock divider and distribution circuit. Note in the 16X operation mode, the CW operation range is limited to 8 MHz due to the 16X CLK. The maximum clock frequency for the 16X CLK is 128 MHz. In the 8X, 4X, and 1X modes, higher CW signal frequencies up to 15 MHz can be supported with small degradation in performance, e.g. the phase noise is degraded by 9 dB at 15 MHz, compared to 2 MHz. As the channel number in a system increases, clock distribution becomes more complex. It is not preferred to use one clock driver output to drive multiple AFEs since the clock buffer’s load capacitance increases by a factor of N. As a result, the falling and rising time of a clock signal is degraded. A typical clock arrangement for multiple AFE5808s is illustrated in Figure 89. Each clock buffer output drives one AFE5808 in order to achieve the best signal integrity and fastest slew rate, i.e. better phase noise performance. When clock phase noise is not a concern, e.g. the 1×fcw clock in the 16/8/4×fcw operation modes, one clock driver output may excite more than one AFE5808s. Nevertheless, special considerations should be applied in such a clock distribution network design. In typical ultrasound systems, it is preferred that all clocks are generated from a same clock source, such as 16×fcw , 1×fcw clocks, audio ADC clocks, RF ADC clock, pulse repetition frequency signal, frame clock and etc. By doing this, interference due to clock asynchronization can be minimized Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 57 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com FPGA Clock/ Noisy Clock n×16×CW Freq TI Jitter Cleaner CDCE72010/ CDCM 7005 16X CW CLK 1X CW CLK CDCLVP1208 1-to-8 CLK Buffer CDCLVP1208 1-to-8 CLK Buffer AFE AFE AFE AFE 8 Synchronized 1X CW CLKs AFE AFE AFE AFE 8 Synchronized 16 X CW CLKs B0436-01 Figure 89. CW Clock Distribution CW Supporting Circuits As a general practice in CW circuit design, in-phase and quadrature channels should be strictly symmetrical by using well matched layout and high accuracy components. In systems, additional high-pass wall filters (20Hz to 500Hz) and low-pass audio filters (10KHz to 100KHz) with multiple poles are usually needed. Since CW Doppler signal ranges from 20Hz to 20KHz, noise under this range is critical. Consequently low noise audio operational amplifiers are suitable to build these active filters for CW post-processing, e.g. OPA1632 or OPA2211. More filter design techniques can be found from www.ti.com, e.g. TI’s active filter design tool http://focus.ti.com/docs/toolsw/folders/print/filter-designer.html The filtered audio CW I/Q signals are sampled by audio ADCs and processed by DSP or PC. Although CW signal frequency is from 20 Hz to 20 KHz, higher sampling rate ADCs are still preferred for further decimation and SNR enhancement. Due to the large dynamic range of CW signals, high resolution ADCs (>=16bit) are required, such as ADS8413 (2MSPS/16it/92dBFS SNR) and ADS8472 (1MSPS/16bit/95dBFS SNR). ADCs for in-phase and quadature-phase channels must be strictly matched, not only amplitude matching but also phase matching, in order to achieve the best I/Q matching,. In addition, the in-phase and quadrature ADC channels must be sampled simultaneously. ADC OPERATION ADC Clock Configurations To ensure that the aperture delay and jitter are the same for all channels, the AFE5808 uses a clock tree network to generate individual sampling clocks for each channel. The clock, for all the channels, are matched from the source point to the sampling circuit of each of the eight internal ADCs. The variation on this delay is described in the aperture delay parameter of the output interface timing. Its variation is given by the aperture jitter number of the same table. 58 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 FPGA Clock/ Noisy Clock n×(20~65)MHz TI Jitter Cleaner CDCE72010/ CDCM7005 20~65 MHz ADC CLK CDCLVP1208 1-to-8 CLK Buffer CDCE72010 has 10 outputs thus the buffer may not be needed for 64CH systems AFE AFE AFE AFE AFE AFE AFE AFE 8 Synchronized ADC CLKs B0437-01 Figure 90. ADC Clock Distribution Network The AFE5808 ADC clock input can be driven by differential clocks (sine wave, LVPECL or LVDS) or singled clocks (LVCMOS) similar to CW clocks as shown in Figure 88. In the single-end case, it is recommended that the use of low jitter square signals (LVCMOS levels, 1.8V amplitude). Please see TI document SLYT075 for further details on the theory. The jitter cleaner CDCM7005 or CDCE72010 is suitable to generate the AFE5808’s ADC clock and ensure the performance for the14bit ADC with 77dBFS SNR. A clock distribution network is shown in Figure 90. ADC Reference Circuit The ADC’s voltage reference can be generated internally or provided externally. When the internal reference mode is selected, the REFP/M becomes output pins and should be floated. When 3[15] =1 and 1[13]=1, the device is configured to operate in the external reference mode in which the VREF_IN pin should be driven with a 1.4V reference voltage and REFP/M must be left open. Since the input impedance of the VREF_IN is high, no special drive capability is required for the 1.4V voltage reference The digital beam-forming algorithm in an ultrasound system relies on gain matching across all receiver channels. A typical system would have about 12 octal AFEs on the board. In such a case, it is critical to ensure that the gain is matched, essentially requiring the reference voltages seen by all the AFEs to be the same. Matching references within the eight channels of a chip is done by using a single internal reference voltage buffer. Trimming the reference voltages on each chip during production ensures that the reference voltages are wellmatched across different chips. When the external reference mode is used, a solid reference plane on a printed circuit board can ensure minimal voltage variation across devices. More information on voltage reference design can be found in the document SLYT339. The dominant gain variation in the AFE5808 comes from the VCA gain variation. The gain variation contributed by the ADC reference circuit is much smaller than the VCA gain variation. Hence, in most systems, using the ADC internal reference mode is sufficient to maintain good gain matching among multiple AFE5808As. In addition, the internal reference circuit without any external components achieves satisfactory thermal noise and phase noise performance. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 59 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com POWER MANAGEMENT Power/Performance Optimization The AFE5808 has options to adjust power consumption and meet different noise performances. This feature would be useful for portable systems operated by batteries when low power is more desired. See the characteristics information listed in the table of electrical characteristics as well as the typical characteristic plots. Power Management Priority Power management plays a critical role to extend battery life and ensure long operation time. The AFE5808 has fast and flexible power down/up control which can maximize battery life. The AFE5808 can be powered down/up through external pins or internal registers. The following table indicates the affected circuit blocks and priorities when the power management is invoked. The higher priority controls can overwrite the lower priority ones. In the device, all the power down controls are logically ORed to generate final power down for different blocks. Thus, the higher priority controls can cover the lower priority controls Table 13. Power Management Priority Name Blocks Priority Pin PDN_GLOBAL All High Pin PDN_VCA LNA + VCAT+ PGA Medium Register VCA_PARTIAL_PDN LNA + VCAT+ PGA Low Register VCA_COMPLETE_PDN LNA + VCAT+ PGA Medium Pin PDN_ADC ADC Medium Register ADC_PARTIAL_PDN ADC Low Register ADC_COMPLETE_PDN ADC Medium Register PDN_VCAT_PGA VCAT + PGA Lowest Register PDN_LNA LNA Lowest Partial Power-Up/Down Mode The partial power up/down mode is also called as fast power up/down mode. In this mode, most amplifiers in the signal path are powered down, while the internal reference circuits remain active as well as the LVDS clock circuit, i.e. the LVDS circuit still generates its frame and bit clocks. The partial power down function allows the AFE5808 to be wake up from a low-power state quickly. This configuration ensures that the external capacitors are discharged slowly; thus a minimum wake-up time is needed as long as the charges on those capacitors are restored. The VCA wake-up response is typically about 2 μs or 1% of the power down duration whichever is larger. The longest wake-up time depends on the capacitors connected at INP and INM, as the wake-up time is the time required to recharge the caps to the desired operating voltages. For 0.1μF at INP and 15nF at INM can give a wake-up time of 2.5ms. For larger capacitors this time will be longer. The ADC wake-up time is about 1 μs. Thus the AFE5808 wake-up time is more dependent on the VCA wake-up time. This also assumes that the ADC clock has been running for at least 50 µs before normal operating mode resumes. The power-down time is instantaneous, less than 1.0µs. This fast wake-up response is desired for portable ultrasound applications in which the power saving is critical. The pulse repetition frequency of a ultrasound system could vary from 50KHz to 500Hz, while the imaging depth (i.e. the active period for a receive path) varies from 10 μs to hundreds of us. The power saving can be pretty significant when a system’s PRF is low. In some cases, only the VCA would be powered down while the ADC keeps running normally to ensure minimal impact to FPGAs. In the partial power-down mode, the AFE5808 typically dissipates only 26mW/ch, representing an 80% power reduction compared to the normal operating mode. This mode can be set using either pins (PDN_VCA and PDN_ADC) or register bits (VCA_PARTIAL_PDN and ADC_PARTIAL_PDN). 60 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 Complete Power-Down Mode To achieve the lowest power dissipation of 0.7 mW/CH, the AFE5808 can be placed into a complete power-down mode. This mode is controlled through the registers ADC_COMPLETE_PDN, VCA_COMPLETE_PDN or PDN_GLOBAL pin. In the complete power-down mode, all circuits including reference circuits within the AFE5808 are powered down; and the capacitors connected to the AFE5808 are discharged. The wake-up time depends on the time needed to recharge these capacitors. The wake-up time depends on the time that the AFE5808 spends in shutdown mode. 0.1μF at INP and 15nF at INM can give a wake-up time close to 2.5ms Power Saving in CW Mode Usually only half the number of channels in a system are active in the CW mode. Thus the individual channel control through ADC_PDN_CH <7:0> and VCA_PDN_CH <7:0> can power down unused channels and save power consumption greatly. Under the default register setting in the CW mode, the voltage controlled attenuator, PGA, and ADC are still active. During the debug phase, both the PW and CW paths can be running simultaneously. In real operation, these blocks need to be powered down manually. TEST MODES The AFE5808 includes multiple test modes to accelerate system development. The ADC test modes have been discussed in the register description section. The VCA has a test mode in which the CH7 and CH8 PGA outputs can be brought to the CW pins. By monitoring these PGA outputs, the functionality of VCA operation can be verified. The PGA outputs are connected to the virtual ground pins of the summing amplifier (CW_IP_AMPINM/P, CW_QP_AMPINM/P) through 5KΩ resistors. The PGA outputs can be monitored at the summing amplifier outputs when the LPF capacitors CEXT are removed. Please note that the signals at the summing amplifier outputs are attenuated due to the 5KΩ resistors. The attenuation coefficient is RINT/EXT/5KΩ If users would like to check the PGA outputs without removing CEXT, an alternative way is to measure the PGA outputs directly at the CW_IP_AMPINM/P and CW_QP_AMPINM/P when the CW summing amplifier is powered down Some registers are related to this test mode. PGA Test Mode Enable: Reg59[9]; Buffer Amplifier Power Down Reg59[8]; and Buffer Amplifier Gain Control Reg54[4:0]. Based on the buffer amplifier configuration, the registers can be set in different ways: Configuration 1: In this configuration, the test outputs can be monitored at CW_AMPINP/M • Reg59[9]=1 ;Test mode enabled • Reg59[8]=0 ;Buffer amplifier powered down Configuration 2: In this configuration, the test outputs can be monitored at CW_OUTP/M • Reg59[9]=1 ;Test mode enabled • Reg59[8]=1 ;Buffer amplifier powered on • Reg54[4:0]=10H; Internal feedback 2K resistor enabled. Different values can be used as well Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 61 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com PGA_P Cext 5K ACT 500 Ω INP INPUT INM Mixer Clock Rint/Rext CW_AMPINP CW_AMPINM LNA 500 Ω CW_OUTM I/V Sum Amp Rint/Rext CW_OUTP 5K Cext PGA_M S0504-01 Figure 91. AFE5808 PGA Test Mode POWER SUPPLY, GROUNDING AND BYPASSING In a mixed-signal system design, power supply and grounding design plays a significant role. The AFE5808 distinguishes between two different grounds: AVSS(Analog Ground) and DVSS(digital ground). In most cases, it should be adequate to lay out the printed circuit board (PCB) to use a single ground plane for the AFE5808. Care should be taken that this ground plane is properly partitioned between various sections within the system to minimize interactions between analog and digital circuitry. Alternatively, the digital (DVDD) supply set consisting of the DVDD and DVSS pins can be placed on separate power and ground planes. For this configuration, the AVSS and DVSS grounds should be tied together at the power connector in a star layout. In addition, optical isolator or digital isolators, such as ISO7240, can separate the analog portion from the digital portion completely. Consequently they prevent digital noise to contaminate the analog portion. Table 13 lists the related circuit blocks for each power supply. Table 14. Supply vs Circuit Blocks Power Supply Ground Circuit Blocks AVDD (3.3VA) AVSS LNA, attenuator, PGA with clamp and BPF, reference circuits, CW summing amplifier, CW mixer, VCA SPI AVDD_5V (5VA) AVSS LNA, CW clock circuits, reference circuits AVDD_ADC (1.8VA) AVSS ADC analog and reference circuits DVDD (1.8VD) DVSS LVDS and ADC SPI All bypassing and power supplies for the AFE5808 should be referenced to their corresponding ground planes. All supply pins should be bypassed with 0.1µF ceramic chip capacitors (size 0603 or smaller). In order to minimize the lead and trace inductance, the capacitors should be located as close to the supply pins as possible. Where double-sided component mounting is allowed, these capacitors are best placed directly under the package. In addition, larger bipolar decoupling capacitors 2.2µF to 10µF, effective at lower frequencies) may also be used on the main supply pins. These components can be placed on the PCB in proximity (< 0.5 in or 12.7 mm) to the AFE5808 itself. The AFE5808 has a number of reference supplies needed to be bypassed, such CM_BYP, VHIGH, and VREF_IN. These pins should be bypassed with at least 1µF; higher value capacitors can be used for better lowfrequency noise suppression. For best results, choose low-inductance ceramic chip capacitors (size 0402, > 1µF) and place them as close as possible to the device pins. 62 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 High-speed mixed signal devices are sensitive to various types of noise coupling. One primary source of noise is the switching noise from the serializer and the output buffer/drivers. For the AFE5808, care has been taken to ensure that the interaction between the analog and digital supplies within the device is kept to a minimal amount. The extent of noise coupled and transmitted from the digital and analog sections depends on the effective inductances of each of the supply and ground connections. Smaller effective inductance of the supply and ground pins leads to improved noise suppression. For this reason, multiple pins are used to connect each supply and ground sets. It is important to maintain low inductance properties throughout the design of the PCB layout by use of proper planes and layer thickness. BOARD LAYOUT Proper grounding and bypassing, short lead length, and the use of ground and power-supply planes are particularly important for high-frequency designs. Achieving optimum performance with a high-performance device such as the AFE5808 requires careful attention to the PCB layout to minimize the effects of board parasitics and optimize component placement. A multilayer PCB usually ensures best results and allows convenient component placement. In order to maintain proper LVDS timing, all LVDS traces should follow a controlled impedance design. In addition, all LVDS trace lengths should be equal and symmetrical; it is recommended to keep trace length variations less than 150mil (0.150 in or 3.81mm). In addition, appropriate delay matching should be considered for the CW clock path, especially in systems with high channel count. For example, if clock delay is half of the 16x clock period, a phase error of 22.5°C could exist. Thus the timing delay difference among channels contributes to the beamformer accuracy. Additional details on BGA PCB layout techniques can be found in the Texas Instruments Application Report MicroStar BGA Packaging Reference Guide (SSYZ015B), which can be downloaded from www.ti.com. Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 63 AFE5808 SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 www.ti.com REVISION HISTORY Changes from Original (September 2010) to Revision A • Page Changed From: Product Preview To: Production Data ........................................................................................................ 1 Changes from Revision A (December 2010) to Revision B Page • Added text to the pin Description for B9~ B2 (ACT1...ACT8) .............................................................................................. 4 • Added text to the L4 and M4 Pin Descriptions ..................................................................................................................... 5 • Changed the ELECTRICAL CHARACTERISTICS condition statement ............................................................................... 6 • Changed the Common-mode voltage values From: MIN 0.75 V / MAX 1 V To: 0.75 V TYP .............................................. 6 • Added Note 1 ........................................................................................................................................................................ 6 • Changed the ELECTRICAL CHARACTERISTICS condition statement ............................................................................... 7 • Changed the Gain Matching Test Conditions From: 0.1V< VCNTL<1.3V (Dev-to-Dev) To: 0.1V< VCNTL<1.1V(Devto-Dev). ................................................................................................................................................................................. 7 • Added to the Gain Matching Test Conditions: 0.1V< VCNTL<1.1V (Dev-to-Dev), Temp = 0°C and 85°C .......................... 7 • Changed the Gain Matching Test Conditions From: 1.3V< VCNTL<1.5V (Dev-to-Dev) To: 1.1V< VCNTL<1.5V(Dev-toDev). ..................................................................................................................................................................................... 7 • Changed the Output Offset values From: MIN = -60 LSB / MAX = 60 LSB To: MIN = -75 LSB / MAX = 75 LSB .............. 7 • Changed the ELECTRICAL CHARACTERISTICS condition statement ............................................................................... 8 • Changed en (RTO) and en (RTI) Test Conditions From: LNA = 24dB To: 18dB ................................................................. 8 • Changed the ELECTRICAL CHARACTERISTICS condition statement ............................................................................... 9 • Changed the AVDD (3.3V) Current - TGC low noise mode, no signal Max value From: 225 mA To: 235 mA ................... 9 • Changed the TYPICAL CHARACTERISTICS condition statement .................................................................................... 11 • Changed all -40°C to 85°C To 0°C to 85°C ........................................................................................................................ 21 • Changed the ADC latency test Conditions and Typ value. ................................................................................................ 21 • Changed Figure 58 ............................................................................................................................................................. 22 • Added t8 to the SPI Timing Characteristics table ................................................................................................................ 24 • Updated the SDOUT description in the Register Readout section ..................................................................................... 24 • Changed Figure 60 ............................................................................................................................................................. 24 • Changed the Text Note following Figure 61 ....................................................................................................................... 25 • Changed the LOW_LATENCY Desctiption ......................................................................................................................... 26 • Changed the VOLTAGE-CONTROLLED-ATTENUATOR. Deleted the last sentence of paragraph two ........................... 51 • Changed Figure 85, Removed the Single-Ended Input at VCNTLM image ....................................................................... 51 • Changed the ADC Reference Circuit section. Added text to the end of paragraph two .................................................... 59 • Changed the Power Management Priority section. Added text to the end of paragraph ................................................... 60 • Changed the Priority column in Table 13 ........................................................................................................................... 60 64 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 AFE5808 www.ti.com SLOS688C – SEPTEMBER 2010 – REVISED APRIL 2012 Changes from Revision B (August 2011) to Revision C Page • Changed the data sheet title From: 8-Channel Ultrasound Analog Front End for Ultrasound... To: 8-Channel Ultrasound Analog Front End ............................................................................................................................................... 1 • Added the AFE5808A Note to the Description text .............................................................................................................. 2 • Added pin compatible devices AFE5803 and AFE5808A to the Description text ................................................................ 2 • Chnaged the Noise figure TYP value for Rs= 100Ω From: 5.3/3.1/3.6 To: 5.3/3.1/2.3 ........................................................ 6 • Added footnote for CW Operation Range ............................................................................................................................. 8 • Changed the tdelay Test Condiitons From: Input clock rising edge (zero cross) to frame clock rising edge (zero cross) minus half the input clock period (T). To: Input clock rising edge (zero cross) to frame clock rising edge (zero cross) minus 3/7 of the input clock period (T). .............................................................................................................................. 21 • Added text to the Register Map section: "Register settings are maintained when the AFE5808A is in either partial power down mode or complete power down mode." .......................................................................................................... 26 • Changed Table 3 ................................................................................................................................................................ 29 • Changed the CHANNEL_OFFSET_SUBSTRACTION_ENABLE: Address: 3[8] text ........................................................ 29 • Added Note: 54[9] is only effective in CW mode. ............................................................................................................... 32 • Added Note: 59[8] is only effective in TGC test mode. ....................................................................................................... 33 • Changed Figure 64 ............................................................................................................................................................. 37 • Changed Figure 69 ............................................................................................................................................................. 41 • Added text to the LNA Input Coupling and Decoupling section .......................................................................................... 48 • Added text to the CW Clock Selection section ................................................................................................................... 57 • Changed the TEST MODES section .................................................................................................................................. 61 Submit Documentation Feedback Copyright © 2010–2012, Texas Instruments Incorporated Product Folder Link(s): AFE5808 65 PACKAGE OPTION ADDENDUM www.ti.com 25-Feb-2012 PACKAGING INFORMATION Orderable Device AFE5808ZCF Status (1) ACTIVE Package Type Package Drawing NFBGA ZCF Pins Package Qty 135 160 Eco Plan (2) Green (RoHS & no Sb/Br) Lead/ Ball Finish SNAGCU MSL Peak Temp (3) Samples (Requires Login) Level-3-260C-168 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated