MC74LCX374 Low-Voltage CMOS Octal D-Type Flip-Flop With 5 V−Tolerant Inputs and Outputs (3−State, Non−Inverting) The MC74LCX374 is a high performance, non−inverting octal D−type flip−flop operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A VI specification of 5.5 V allows MC74LCX374 inputs to be safely driven from 5 V devices. The MC74LCX374 consists of 8 edge−triggered flip−flops with individual D−type inputs and 3−state true outputs. The buffered clock and buffered Output Enable (OE) are common to all flip−flops. The eight flip−flops will store the state of individual D inputs that meet the setup and hold time requirements on the LOW−to−HIGH Clock (CP) transition. With the OE LOW, the contents of the eight flip−flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. The OE input level does not affect the operation of the flip−flops. http://onsemi.com MARKING DIAGRAMS 20 20 1 SOIC−20 WB DW SUFFIX CASE 751D 1 20 • • • 1 1 Designed for 2.3 to 3.6 V VCC Operation 5 V Tolerant − Interface Capability With 5 V TTL Logic Supports Live Insertion and Withdrawal IOFF Specification Guarantees High Impedance When VCC = 0 V LVTTL Compatible LVCMOS Compatible 24 mA Balanced Output Sink and Source Capability Near Zero Static Supply Current in All Three Logic States (10 mA) Substantially Reduces System Power Requirements Latchup Performance Exceeds 500 mA ESD Performance: ♦ Human Body Model >2000 V ♦ Machine Model >200 V These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant © Semiconductor Components Industries, LLC, 2012 July, 2012 − Rev. 9 LCX 374 ALYWG G TSSOP−20 DT SUFFIX CASE 948E 20 Features • • • • • • • • LCX374 AWLYYWWG 1 A L, WL Y, YY W, WW G or G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. Publication Order Number: MC74LCX374/D MC74LCX374 OE CP VCC O7 20 19 D7 18 D6 O6 17 16 O5 D5 15 14 D4 13 O4 12 CP 1 11 3 D0 11 D1 2 3 4 5 6 7 OE O0 D0 D1 O1 O2 D2 8 9 10 D3 O3 GND 5 nCP O1 Q D 7 D2 Figure 1. Pinout: 20−Lead (Top View) O0 Q D 4 1 2 nCP 6 nCP O2 Q D 8 D3 9 nCP O3 Q D 13 D4 12 nCP O4 Q D PIN NAMES Pins Function OE Output Enable Input CP Clock Pulse Input D0−D7 Data Inputs O0−O7 3−State Outputs 14 D5 O5 Q D 17 D6 16 nCP O6 Q D 18 D7 15 nCP 19 nCP Q D Figure 2. LOGIC DIAGRAM TRUTH TABLE INPUTS H h L l NC X Z ↑ ↑ = = = = = = = = = OUTPUTS OE CP Dn On OPERATING MODE L L ↑ ↑ l h L H Load and Read Register L ↑ X NC Hold and Read Register H ↑ X Z Hold and Disable Outputs H H ↑ ↑ l h Z Z Load Internal Register and Disable Outputs High Voltage Level High Voltage Level One Setup Time Prior to the Low−to−High Clock Transition Low Voltage Level Low Voltage Level One Setup Time Prior to the Low−to−High Clock Transition No Change, State Prior to Low−to−High Clock Transition High or Low Voltage Level and Transitions are Acceptable High Impedance State Low−to−High Transition Not a Low−to−High Transition; For ICC Reasons, DO NOT FLOAT Inputs http://onsemi.com 2 O7 MC74LCX374 MAXIMUM RATINGS Symbol VCC Parameter Value DC Supply Voltage VI DC Input Voltage VO DC Output Voltage IIK DC Input Diode Current IOK DC Output Diode Current Condition Units −0.5 to +7.0 V −0.5 ≤ VI ≤ +7.0 V −0.5 ≤ VO ≤ +7.0 Output in 3−State −0.5 ≤ VO ≤ VCC + 0.5 (Note 1) V V −50 VI < GND mA −50 VO < GND mA +50 VO > VCC mA IO DC Output Source/Sink Current ±50 mA ICC DC Supply Current Per Supply Pin ±100 mA IGND DC Ground Current Per Ground Pin ±100 mA TSTG Storage Temperature Range −65 to +150 °C MSL Moisture Sensitivity Level 1 Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Output in HIGH or LOW State. IO absolute maximum rating must be observed. RECOMMENDED OPERATING CONDITIONS Symbol VCC Parameter Supply Voltage Operating Data Retention Only Min Typ Max 2.0 1.5 3.3 3.3 3.6 3.6 Units V VI Input Voltage 0 5.5 VO Output Voltage (HIGH or LOW State) (3−State) 0 0 VCC 5.5 IOH HIGH Level Output Current, VCC = 3.0 V − 3.6 V −24 mA IOL LOW Level Output Current, VCC = 3.0 V − 3.6 V 24 mA IOH HIGH Level Output Current, VCC = 2.7 V − 3.0 V −12 mA IOL LOW Level Output Current, VCC = 2.7 V − 3.0 V 12 mA TA Operating Free−Air Temperature −40 +85 °C 0 10 ns/V Dt/DV Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V V V ORDERING INFORMATION Package Shipping† MC74LCX374DWR2G SOIC−20 WB (Pb−Free) 1000 Tape & Reel MC74LCX374DTR2G TSSOP−20 (Pb−Free) 2500 Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 3 MC74LCX374 DC ELECTRICAL CHARACTERISTICS TA = −40°C to +85°C Symbol Characteristic VIH HIGH Level Input Voltage (Note 2) VIL LOW Level Input Voltage (Note 2) VOH HIGH Level Output Voltage VOL LOW Level Output Voltage Condition Min 2.7 V ≤ VCC ≤ 3.6 V 2.0 2.7 V ≤ VCC ≤ 3.6 V Max V 0.8 2.7 V ≤ VCC ≤ 3.6 V; IOH = −100 mA VCC − 0.2 VCC = 2.7 V; IOH = −12 mA 2.2 VCC = 3.0 V; IOH = −18 mA 2.4 VCC = 3.0 V; IOH = −24 mA 2.2 Units V V 2.7 V ≤ VCC ≤ 3.6 V; IOL = 100 mA 0.2 VCC = 2.7 V; IOL = 12 mA 0.4 V VCC = 3.0 V; IOL = 16 mA 0.4 VCC = 3.0 V; IOL = 24 mA 0.55 VCC = 3.6 V, VIN = VIH or VIL, VOUT = 0 to 3.6 V ±5 mA IOZ 3−State Output Current IOFF Power Off Leakage Current VCC = 0, VIN = 3.6 V or VOUT = 3.6 V 10 mA IIN Input Leakage Current VCC = 0 to 3.6 V, VIN = 3.6 V or GND ±5 mA ICC Quiescent Supply Current VCC = 3.6 V, VIN = 3.6 V or VOUT = 3.6 V 10 mA 2.3 ≤ VCC ≤ 3.6 V; VIH = VCC − 0.6 V 500 mA DICC Increase in ICC per Input 2. These values of VI are used to test DC electrical characteristics only. AC CHARACTERISTICS (tR = tF = 2.5 ns; CL = 50 pF; RL = 500 W) Limits TA = −40°C to +85°C VCC = 3.0 V to 3.6 V Symbol Parameter Max VCC = 2.7 V Waveform Min fmax Clock Pulse Frequency 1 150 Min Max Units tPLH tPHL Propagation Delay CP to On 1 1.5 1.5 8.5 8.5 1.5 1.5 9.5 9.5 ns tPZH tPZL Output Enable Time to HIGH and LOW Levels 2 1.5 1.5 8.5 8.5 1.5 1.5 9.5 9.5 ns tPHZ tPLZ Output Disable Time from HIGH and LOW Levels 2 1.5 1.5 7.5 7.5 1.5 1.5 8.5 8.5 ns MHz ts Setup TIme, HIGH or LOW Dn to CP 1 2.5 2.5 ns th Hold TIme, HIGH or LOW Dn to CP 1 1.5 1.5 ns tw CP Pulse Width, HIGH or LOW 3 3.3 3.3 ns tOSHL tOSLH Output−to−Output Skew (Note 3) 1.0 1.0 ns 3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter guaranteed by design. http://onsemi.com 4 MC74LCX374 DYNAMIC SWITCHING CHARACTERISTICS TA = +25°C Symbol Characteristic Condition Min Typ Max Units VOLP Dynamic LOW Peak Voltage (Note 4) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V 0.8 V VOLV Dynamic LOW Valley Voltage (Note 4) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V 0.8 V 4. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is measured in the LOW state. CAPACITIVE CHARACTERISTICS Symbol Condition Typical Units Input Capacitance VCC = 3.3 V, VI = 0 V or VCC 7 pF COUT Output Capacitance VCC = 3.3 V, VI = 0 V or VCC 8 pF CPD Power Dissipation Capacitance 10 MHz, VCC = 3.3 V, VI = 0 V or VCC 25 pF CIN Parameter 2.7 V 2.7 V Dn 0V 0V tPHZ tPZH th ts 1.5 V 1.5 V OE 1.5 V 2.7 V CP VOH - 0.3 V 1.5V On 1.5 V VCC ≈0V 0V fmax tPLH, tPHL tPZL tPLZ VOH On 1.5V On VOL + 0.3 V 1.5 V GND VOL WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns WAVEFORM 1 - PROPAGATION DELAYS, SETUP AND HOLD TIMES tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns 2.7 V CP 1.5 V 1.5 V tw 0V 2.7 V tw CP ≈ 3.0 V 1.5 V 1.5 V 0V WAVEFORM 3 - PULSE WIDTH tR = tF = 2.5 ns (or fast as required) from 10% to 90%; Output requirements: VOL ≤ 0.8 V, VOH ≥ 2.0 V Figure 3. AC Waveforms http://onsemi.com 5 MC74LCX374 VCC R1 PULSE GENERATOR DUT RT CL RL TEST SWITCH tPLH, tPHL Open tPZL, tPLZ 6V Open Collector/Drain tPLH and tPHL 6V tPZH, tPHZ GND CL = 50 pF or equivalent (Includes jig and probe capacitance) RL = R1 = 500 W or equivalent RT = ZOUT of pulse generator (typically 50 W) Figure 4. Test Circuit http://onsemi.com 6 6V OPEN GND MC74LCX374 PACKAGE DIMENSIONS SOIC−20 WB DW SUFFIX CASE 751D−05 ISSUE G A 20 q X 45 _ E h 1 10 20X B B 0.25 M T A S B S A L H M 10X 0.25 NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. 11 B M D 18X e A1 SEATING PLANE C T http://onsemi.com 7 DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 2.35 2.65 0.10 0.25 0.35 0.49 0.23 0.32 12.65 12.95 7.40 7.60 1.27 BSC 10.05 10.55 0.25 0.75 0.50 0.90 0_ 7_ MC74LCX374 PACKAGE DIMENSIONS TSSOP−20 DT SUFFIX CASE 948E−02 ISSUE C 20X 0.15 (0.006) T U 2X L K REF 0.10 (0.004) S M T U V S S K K1 L/2 20 ÍÍÍÍ ÍÍÍÍ ÍÍÍÍ 11 J J1 B −U− PIN 1 IDENT SECTION N−N 1 10 0.25 (0.010) N 0.15 (0.006) T U S M A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. N F DETAIL E −W− C D G H DETAIL E 0.100 (0.004) −T− SEATING PLANE DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 6.40 6.60 4.30 4.50 --1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.27 0.37 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ SOLDERING FOOTPRINT 7.06 1 0.65 PITCH 16X 0.36 16X 1.26 DIMENSIONS: MILLIMETERS http://onsemi.com 8 INCHES MIN MAX 0.252 0.260 0.169 0.177 --0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.011 0.015 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ MC74LCX374 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 9 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74LCX374/D