ONSEMI NL37WZ17_12

NL37WZ17
Triple Noninverting
Schmitt-Trigger Buffer
The NL37WZ17 is a high performance buffer with Schmitt−Trigger
inputs operating from a 1.65 to 5.5 V supply.
The NL37WZ17 can be used as a line receiver which will receive
slow input signals. The NL37WZ17 is capable of transforming slowly
changing input signals into sharply defined, jitter−free output signals.
In addition, it has a greater noise margin than conventional inverters.
The NL37WZ17 has hysteresis between the positive−going and the
negative−going input thresholds (typically 1.0 V) which is determined
internally by transistor ratios and is essentially insensitive to
temperature and supply voltage variations.
Features
• Designed for 1.65 V to 5.5 V VCC Operation
• Over Voltage Tolerant Inputs and Outputs
• LVTTL Compatible − Interface Capability with 5 V TTL Logic
•
•
•
•
•
•
with VCC = 3 V
LVCMOS Compatible
24 mA Balanced Output Sink and Source Capability
Near Zero Static Supply Current Substantially Reduces System
Power Requirements
Current Drive Capability is 24 mA at the Outputs
Chip Complexity: FET = 94
These Devices are Pb−Free and are RoHS Compliant
IN A1
OUT Y3
1
8
2
7
http://onsemi.com
MARKING
DIAGRAM
8
1
LX
M
G
= Device Code
= Date Code*
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon
manufacturing location.
PIN ASSIGNMENT
Pin
VCC
OUT Y1
IN A2
3
6
IN A3
GND
4
5
OUT Y2
LX M G
G
US8
US SUFFIX
CASE 493
Function
1
IN A1
2
OUT Y3
3
IN A2
4
GND
5
OUT Y2
6
IN A3
7
OUT Y1
8
VCC
FUNCTION TABLE
A Input
Figure 1. Pinout
Y Output
L
L
H
H
ORDERING INFORMATION
IN A1
1
OUT Y1
IN A2
1
OUT Y2
IN A3
1
OUT Y3
Device
Package
Shipping†
NL37WZ17USG
US8
(Pb−Free)
3000/Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Figure 2. Logic Symbol
© Semiconductor Components Industries, LLC, 2012
April, 2012 − Rev. 7
1
Publication Order Number:
NL37WZ17/D
NL37WZ17
MAXIMUM RATINGS
Symbol
VCC
Parameter
DC Supply Voltage
Value
Units
−0.5 to +7.0
V
V
VI
DC Input Voltage
−0.5 ≤ VI ≤ +7.0
VO
DC Output Voltage
Output in Z or LOW State (Note 1)
−0.5 ≤ VO ≤ +7.0
IIK
DC Input Diode Current
VI < GND
−50
IOK
DC Output Diode Current
VO < GND
−50
IO
DC Output Sink Current
±50
mA
ICC
DC Supply Current per Supply Pin
±100
mA
IGND
DC Ground Current per Ground Pin
±100
mA
TSTG
Storage Temperature Range
−65 to +150
°C
°C
V
mA
mA
TL
Lead Temperature, 1 mm from Case for 10 Seconds
260
TJ
Junction Temperature under Bias
+150
°C
qJA
Thermal Resistance (Note 2)
333
°C/W
PD
Power Dissipation in Still Air at 85°C
200
mW
MSL
FR
VESD
Moisture Sensitivity
Level 1
Flammability Rating
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
ESD Withstand Voltage
Human Body Model (Note 3)
Machine Model (Note 4)
Charged Device Model (Note 5)
V
> 2000
> 200
N/A
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. IO absolute maximum rating must be observed.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow.
3. Tested to EIA/JESD22−A114−A.
4. Tested to EIA/JESD22−A115−A.
5. Tested to JESD22−C101−A.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
VCC
Supply Voltage
Operating
Data Retention Only
2.3
1.5
5.5
5.5
Units
V
VI
Input Voltage (Note 6)
0
5.5
V
VO
Output Voltage (HIGH or LOW State)
0
5.5
V
TA
Operating Free−Air Temperature
−40
+85
°C
Dt/DV
Input Transition Rise or Fall Rate
VCC = 2.5 V ±0.2 V
VCC = 3.0 V ±0.3 V
VCC = 5.0 V ±0.5 V
0
0
0
No Limit
No Limit
No Limit
6. Unused inputs may not be left open. All inputs must be tied to a high−logic voltage level or a low−logic input voltage level.
http://onsemi.com
2
ns/V
NL37WZ17
DC ELECTRICAL CHARACTERISTICS
TA = 255C
VCC
Symbol
Parameter
Condition
−405C 3 TA 3 855C
(V)
Min
Typ
Max
Min
Max
Units
VT+
Positive Input Threshold
Voltage
2.3
2.7
3.0
4.5
5.5
1.0
1.2
1.3
1.9
2.2
1.5
1.7
1.9
2.7
3.3
1.8
2.0
2.2
3.1
3.6
1.0
1.2
1.3
1.9
2.2
1.8
2.0
2.2
3.1
3.6
V
VT−
Negative Input Threshold
Voltage
2.3
2.7
3.0
4.5
5.5
0.4
0.5
0.6
1.0
1.2
0.75
0.87
1.0
1.5
1.9
1.15
1.4
1.5
2.0
2.3
0.4
0.5
0.6
1.0
1.2
1.15
1.4
1.5
2.0
2.3
V
VH
Input Hysteresis Voltage
2.3
2.7
3.0
4.5
5.5
0.25
0.3
0.4
0.6
0.7
0.75
0.83
0.93
1.2
1.4
1.1
1.15
1.2
1.5
1.7
0.25
0.3
0.4
0.6
0.7
1.1
1.15
1.2
1.5
1.7
V
VCC − 0.1
1.29
1.9
2.2
2.4
2.3
3.8
VCC
1.52
2.1
2.4
2.7
2.5
4.0
VOH
High−Level Output Voltage
VIN = VIH or VIL
IOH = −100 mA
IOH = −3 mA
IOH = −8 mA
IOH = −12 mA
IOH = −16 mA
IOH = −24 mA
IOH = −32 mA
1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5
VOL
Low−Level Output Voltage
VIN = VIH or VIL
IOL = 100 mA
IOL = 4 mA
IOL = 8 mA
IOL = 12 mA
IOL = 16 mA
IOL = 24 mA
IOL = 32 mA
1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5
Input Leakage Current
VIN = 5.5 V or GND
IOFF
Power Off Leakage Current
VIN = 5.5 V or
VOUT = 5.5 V
ICC
Quiescent Supply Current
VIN = 5.5 V or GND
IIN
0.08
0.2
0.22
0.28
0.38
0.42
VCC − 0.1
1.29
1.9
2.2
2.4
2.3
3.8
V
0.1
0.24
0.3
0.4
0.4
0.55
0.55
0.1
0.24
0.3
0.4
0.4
0.55
0.55
V
0 to 5.5
±0.1
±1.0
mA
0
1
10
mA
5.5
1
10
mA
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0 ns)
VCC
Symbol
tPLH
tPHL
Parameter
Propagation Delay
Input A to Y
(Figures 3 and 4)
TA = 255C
−405C 3 TA 3 855C
Condition
(V)
Min
Typ
Max
Min
Max
Units
RL = 1 MW, CL = 15 pF
2.5 ± 0.2
1.8
4.3
7.4
1.8
8.1
ns
RL = 1 MW, CL = 15 pF
RL = 500 W, CL = 50 pF
3.3 ± 0.3
1.5
1.8
3.3
4.0
5.0
5.0
1.5
1.8
5.5
6.6
RL = 1 MW, CL = 15 pF
RL = 500 W, CL = 50 pF
5.0 ± 0.5
1.0
1.2
2.7
3.2
4.1
4.9
1.0
1.2
4.5
5.4
CAPACITIVE CHARACTERISTICS
Symbol
Parameter
Condition
Typical
Units
CIN
Input Capacitance
VCC = 5.5 V, VI = 0 V or VCC
2.5
pF
CPD
Power Dissipation Capacitance (Note 7)
10 MHz, VCC = 3.3 V, VI = 0 V or VCC
10 MHz, VCC = 5.5 V, VI = 0 V or VCC
9
11
pF
7. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no−load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
http://onsemi.com
3
NL37WZ17
A or B
OUTPUT
GND
tPLH
Y
INPUT
VCC
50%
RL
tPHL
50% VCC
A 1−MHz square input wave is recommended for
propagation delay tests.
Figure 3. Switching Waveforms
VT , TYPICAL INPUT THRESHOLD VOLTAGE (VOLTS)
CL
Figure 4. Test Circuit
4
3
(VT))
2
VHtyp
(VT*)
1
2
2.5
3.5
3
VCC, POWER SUPPLY VOLTAGE (VOLTS)
VHtyp = (VT) typ) − (VT* typ)
3.6
Figure 5. Typical Input Threshold, VT), VT* versus Power Supply Voltage
VH
Vin
VCC
VH
VT)
VT*
VCC
VT)
VT*
Vin
GND
GND
VOH
VOH
Vout
Vout
VOL
VOL
(a) A Schmitt−Trigger Squares Up Inputs With
Slow Rise and Fall Times
(b) A Schmitt−Trigger Offers Maximum Noise Immunity
Figure 6. Typical Schmitt−Trigger Applications
http://onsemi.com
4
NL37WZ17
PACKAGE DIMENSIONS
US8
CASE 493−02
ISSUE B
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION “A” DOES NOT INCLUDE MOLD
FLASH, PROTRUSION OR GATE BURR.
MOLD FLASH. PROTRUSION AND GATE
BURR SHALL NOT EXCEED 0.140 MM
(0.0055”) PER SIDE.
4. DIMENSION “B” DOES NOT INCLUDE
INTER−LEAD FLASH OR PROTRUSION.
INTER−LEAD FLASH AND PROTRUSION
SHALL NOT E3XCEED 0.140 (0.0055”) PER
SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH
THICKNESS OF 0.0076−0.0203 MM.
(300−800 “).
6. ALL TOLERANCE UNLESS OTHERWISE
SPECIFIED ±0.0508 (0.0002 “).
−X−
A
8
J
−Y−
5
DETAIL E
B
L
1
4
R
S
G
P
U
C
−T−
SEATING
PLANE
H
0.10 (0.004) T
K
D
N
0.10 (0.004)
M
R 0.10 TYP
T X Y
V
M
F
DETAIL E
MILLIMETERS
MIN
MAX
1.90
2.10
2.20
2.40
0.60
0.90
0.17
0.25
0.20
0.35
0.50 BSC
0.40 REF
0.10
0.18
0.00
0.10
3.00
3.20
0_
6_
5_
10 _
0.23
0.34
0.23
0.33
0.37
0.47
0.60
0.80
0.12 BSC
DIM
A
B
C
D
F
G
H
J
K
L
M
N
P
R
S
U
V
INCHES
MIN
MAX
0.075
0.083
0.087
0.094
0.024
0.035
0.007
0.010
0.008
0.014
0.020 BSC
0.016 REF
0.004
0.007
0.000
0.004
0.118
0.126
0_
6_
5_
10 _
0.010
0.013
0.009
0.013
0.015
0.019
0.024
0.031
0.005 BSC
SOLDERING FOOTPRINT*
3.8
0.15
0.50
0.0197
1.8
0.07
0.30
0.012
1.0
0.0394
SCALE 8:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
5
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NL37WZ17/D