STMICROELECTRONICS L6398

L6398
High voltage high and low side driver
Features
■
High voltage rail up to 600 V
■
dV/dt immunity ±50 V/ns in full temperature
range
■
Driver current capability:
– 290 mA source,
– 430 mA sink
$)0
■
Switching times 75/35 ns rise/fall with 1 nF load
■
3.3 V, 5 V TTL/CMOS input comparators with
hysteresis
■
Integrated bootstrap diode
■
Fixed 320 ns dead-time
■
Interlocking function
■
Compact and simplified layout
■
Bill of material reduction
■
Flexible, easy and fast design
3/
Description
The L6398 is a high-voltage device manufactured
with the BCD “OFF-LINE” technology. It is a single
chip half-bridge gate driver for N-channel power
MOSFET or IGBT.
The high side (floating) section is designed to
stand a voltage rail up to 600 V. The logic inputs
are CMOS/TTL compatible down to 3.3 V for easy
interfacing microcontroller/DSP.
Applications
■
Motor driver for home appliances, factory
automation, industrial drives and fans.
Table 1.
April 2011
Device summary
Order codes
Package
Packaging
L6398N
DIP-8
Tube
L6398D
SO-8
Tube
L6398DTR
SO-8
Tape and reel
Doc ID 18199 Rev 3
1/16
www.st.com
16
Contents
L6398
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5
4.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.1
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6
Waveforms definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8
Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.1
CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/16
Doc ID 18199 Rev 3
L6398
Block diagram
1
Block diagram
Figure 1.
Block diagram
#005453"1%3*7&3
7$$
67
%&5&$5*0/
7
'-0"5*/(4536$563&
GSPN-7(
)*/
)7(
%3*7&3
-0(*$
4
3
4)005
5)306()
13&7&/5*0/
)7(
065
7$$
%&"%5*.&
(/%
#005
67
%&5&$5*0/
-&7&4)*'5&3
-*/
-7(
%3*7&3
-7(
!-V
Doc ID 18199 Rev 3
3/16
Pin connection
2
L6398
Pin connection
Figure 2.
Pin connection (top view)
-*/
#005
)*/
)7(
7$$
065
(/%
-7(
!-V
Table 2.
Pin description
Pin n #
Pin name
Type
1
LIN
I
Low side driver logic input (active low)
2
HIN
I
High side driver logic input (active high)
3
VCC
P
Lower section supply voltage
4
GND
P
Ground
5
LVG (1)
O
Low side driver output
6
OUT
P
High side (floating) common voltage
O
High side driver output
P
Bootstrapped supply voltage
(1)
7
HVG
8
BOOT
Function
1. The circuit guarantees less than 1 V on the LVG and HVG pins (@ Isink = 10 mA), with VCC > 3 V. This
allows omitting the “bleeder” resistor connected between the gate and the source of the external MOSFET
normally used to hold the pin low.
4/16
Doc ID 18199 Rev 3
L6398
3
Truth table
Truth table
Table 3.
Truth table
Input
Output
LIN
HIN
LVG
HVG
H
L
L
L
L
H
L
L
L
L
H
L
H
H
L
H
Doc ID 18199 Rev 3
5/16
Electrical data
L6398
4
Electrical data
4.1
Absolute maximum ratings
Table 4.
Absolute maximum rating
Value
Symbol
Parameter
Unit
Min
Max
Vcc
Supply voltage
-0.3
21
V
Vout
Output voltage
Vboot - 21
Vboot + 0.3
V
Vboot
Bootstrap voltage
-0.3
620
V
Vhvg
High side gate output voltage
Vout - 0.3
Vboot + 0.3
V
Vlvg
Low side gate output voltage
-0.3
Vcc + 0.3
V
Logic input voltage
-0.3
15
V
Allowed output slew rate
50
V/ns
Ptot
Total power dissipation (TA = 25 °C)
800
mW
TJ
Junction temperature
150
°C
Tstg
Storage temperature
150
°C
Vi
dVout/dt
-50
Note:
ESD immunity for pins 6, 7 and 8 is guaranteed up to 1 kV (human body model)
4.2
Thermal data
Table 5.
Thermal data
Symbol
Rth(JA)
4.3
Parameter
Thermal resistance junction to ambient
DIP-8
Unit
150
100
°C/W
Recommended operating conditions
Table 6.
Recommended operating conditions
Symbol
Pin
Vcc
3
VBO (1)
8-6
Vout
6
Parameter
Test condition
Min
Max
Unit
Supply voltage
10
20
V
Floating supply voltage
9.8
20
V
580
V
800
kHz
125
°C
Output voltage
fsw
Switching frequency
TJ
Junction temperature
- 11
(2)
HVG, LVG load CL = 1 nF
1. VBO = Vboot - Vout
2. LVG off. Vcc = 10 V
Logic is operational if Vboot > 5 V
6/16
SO-8
Doc ID 18199 Rev 3
-40
L6398
Electrical characteristics
5
Electrical characteristics
5.1
AC operation
Table 7.
AC operation electrical characteristics (VCC = 15 V; TJ = +25 °C)
Symbol
ton
toff
Pin
1, 2
vs
5, 7
DT
tr
tf
Parameter
Test condition
High/low side driver turn-on Vout = 0 V
propagation delay
Vboot = Vcc
CL = 1 nF
High/low side driver turn-off
VIN = 0 to 3.3 V
propagation delay
See Figure 3
Min
Typ
Max Unit
50
125
200
ns
50
125
200
ns
225
320
415
ns
Dead time (1)
CL = 1 nF
Rise time
CL = 1 nF
75
120
ns
Fall time
CL = 1 nF
35
70
ns
5, 7
1. See Figure 4 on page 9.
Figure 3.
Timing
LIN
50%
50%
tr
tf
90%
LVG
10%
10%
ton
HIN
90%
toff
50%
50%
tr
tf
90%
HVG
90%
10%
10%
ton
toff
Doc ID 18199 Rev 3
7/16
Electrical characteristics
L6398
5.2
DC operation
Table 8.
DC operation electrical characteristics (VCC = 15 V; TJ = + 25 °C)
Symbol
Pin
Vcc_hys
Parameter
Test condition
Min
Typ
Max
Unit
1.2
1.5
1.8
V
Vcc UV turn ON threshold
9
9.5
10
V
Vcc UV turn OFF threshold
7.6
8
8.4
V
Vcc UV hysteresis
Vcc_thON
Vcc_thOFF
3
Iqccu
Undervoltage quiescent
supply current
Vcc = 7 V
LIN = 5 V; HIN = GND;
90
150
μA
Iqcc
Quiescent current
Vcc = 15 V
LIN = 5 V; HIN = GND;
380
440
μA
Bootstrapped supply voltage section (1)
VBO_hys
VBO_thON
VBO_thOFF
8
VBO UV hysteresis
0.8
1
1.2
V
VBO UV turn ON threshold
8.2
9
9.8
V
VBO UV turn OFF threshold
7.3
8
8.7
V
IQBOU
Undervoltage VBO quiescent
current
VBO = 7 V, LIN = HIN = 5V
30
60
μA
IQBO
VBO quiescent current
VBO = 15 V, LIN = HIN = 5V
190
240
μA
High voltage leakage current
Vhvg = Vout = Vboot = 600 V
10
μA
ILK
Bootstrap driver on resistance
RDS(on)
(2)
LVG ON
120
Ω
Driving buffers section
Iso
Isi
5,
7
High/low side source short
circuit current
VIN = Vih (tp < 10 μs)
200
290
mA
High/low side sink short
circuit current
VIN = Vil (tp < 10 μs)
250
430
mA
Logic inputs
Vil
Low logic level voltage
High logic level voltage
Vih
Vil_S
0.8
V
1, 2
1, 2
IHINh
2.25
Single input voltage
LIN and HIN connected
together and floating
HIN logic “1” input bias
current
HIN = 15 V
HIN logic “0” input bias
current
HIN = 0 V
110
V
175
0.8
V
260
μA
1
μA
20
μA
1
μA
2
IHINl
ILINl
LIN logic “0” input bias current LIN = 0 V
3
6
1
ILINh
LIN logic “1” input bias current LIN = 15 V
1. VBO = Vboot - Vout
2. RDSON is tested in the following way: RDSON = [(VCC - VCBOOT1) - (VCC - VCBOOT2)] / [I1(VCC,VCBOOT1) - I2(VCC,VCBOOT2)]
where I1 is pin 8 current when VCBOOT = VCBOOT1, I2 when VCBOOT = VCBOOT2.
8/16
Doc ID 18199 Rev 3
L6398
Waveforms definitions
Figure 4.
Dead time and interlocking waveforms definitions
G
HIN
INTE
RLO
CKIN
CONTROL SIGNAL EDGES
OVERLAPPED:
INTERLOCKING + DEAD TIME
RLO
CKIN
G
LIN
INTE
6
Waveforms definitions
LVG
DTHL
DTLH
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
SYNCHRONOUS (*):
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
BUT INSIDE THE DEAD TIME:
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
OUTSIDE THE DEAD TIME:
DIRECT DRIVING
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
(*) HIN and LIN can be connected togheter and driven by just one control signal
Doc ID 18199 Rev 3
9/16
Typical application diagram
L6398
7
Typical application diagram
Figure 5.
Application diagram
7$$
#005453"1%3*7&3
67
%&5&$5*0/
7
'-0"5*/(4536$563&
GSPN-7(
-*/
#005
67
%&5&$5*0/
)7
)7(
%3*7&3
-0(*$
-&7&4)*'5&3
'30.$0/530--&3
4
$CPPU
)7(
065
3
4)005
5)306()
13&7&/5*0/
50-0"%
'30.$0/530--&3
)*/
(/%
7$$
%&"%5*.&
-7(
%3*7&3
-7(
!-V
10/16
Doc ID 18199 Rev 3
L6398
8
Bootstrap driver
Bootstrap driver
A bootstrap circuitry is needed to supply the high voltage section. This function is normally
accomplished by a high voltage fast recovery diode (Figure 6). In the L6398 a patented
integrated structure replaces the external diode. It is realized by a high voltage DMOS,
driven synchronously with the low side driver (LVG), with diode in series, as shown in
Figure 7. An internal charge pump (Figure 7) provides the DMOS driving voltage.
8.1
CBOOT selection and charging
To choose the proper CBOOT value the external MOS can be seen as an equivalent
capacitor. This capacitor CEXT is related to the MOS total gate charge:
Equation 1
Q gate
C EXT = ------------V gate
The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss.
It has to be:
Equation 2
CBOOT >>> CEXT
e.g.: if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop would be
300 mV.
If HVG has to be supplied for a long time, the CBOOT selection has to take into account also
the leakage and quiescent losses.
e.g.: HVG steady state consumption is lower than 190 μA, so if HVG TON is 5 ms, CBOOT has
to supply 1 μC to CEXT. This charge on a 1 μF capacitor means a voltage drop of 1V.
The internal bootstrap driver gives a great advantage: the external fast recovery diode can
be avoided (it usually has great leakage current).
This structure can work only if VOUT is close to GND (or lower) and in the meanwhile the
LVG is on. The charging time (Tcharge) of the CBOOT is the time in which both conditions are
fulfilled and it has to be long enough to charge the capacitor.
The bootstrap driver introduces a voltage drop due to the DMOS RDSon (typical value:
120 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it
must be taken in to account.
The following equation is useful to compute the drop on the bootstrap DMOS:
Equation 3
Q gate
V drop = I ch arg e R dson → V drop = ------------------ R dson
T ch arg e
Doc ID 18199 Rev 3
11/16
Bootstrap driver
L6398
where Qgate is the gate charge of the external power MOS, Rdson is the on resistance of the
bootstrap DMOS and Tcharge is the charging time of the bootstrap capacitor.
For example: using a power MOS with a total gate charge of 30nC the drop on the bootstrap
DMOS is about 1 V, if the Tcharge is 5 μs. In fact:
Equation 4
30nC
V drop = --------------- ⋅ 120Ω ∼ 0.7V
5μs
Vdrop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode
can be used.
Figure 6.
Bootstrap driver with high voltage fast recovery diode
DBOOT
VCC
BOOT
H.V.
HVG
CBOOT
OUT
TO LOAD
LVG
Figure 7.
Bootstrap driver with internal charge pump
BOOT
VCC
H.V.
HVG
CBOOT
OUT
TO LOAD
LVG
12/16
Doc ID 18199 Rev 3
L6398
9
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Table 9.
DIP-8 mechanical data
mm.
inch
Dim.
Min
A
Typ
Max
Min
3.32
Typ
Max
0.131
a1
0.51
0.020
B
1.15
1.65
0.045
0.065
b
0.356
0.55
0.014
0.022
b1
0.204
0.304
0.008
0.012
D
E
10.92
7.95
9.75
0.430
0.313
0.384
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
6.6
0.260
I
5.08
0.200
L
3.18
3.81
Z
Figure 8.
1.52
0.125
0.150
0.060
Package dimensions
Doc ID 18199 Rev 3
13/16
Package mechanical data
L6398
Table 1. SO-8 mechanical data
mm.
inch
Dim.
Min
Typ
Max
Min
Typ
Max
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.004
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
(1)
4.80
5.00
0.189
0.197
E
3.80
4.00
0.15
0.157
D
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
0° (min.), 8° (max.)
ddd
0.10
0.004
1. Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs
shall not exceed 0.15mm (.006inch) in total (both side).
Figure 9.
14/16
Package dimensions
Doc ID 18199 Rev 3
L6398
10
Revision history
Revision history
Table 10.
Document revision history
Date
Revision
Changes
14-Dec-2010
1
First release.
16-Feb-2011
2
Updated Table 8.
01-Apr-2011
3
Typo in coverpage
Doc ID 18199 Rev 3
15/16
L6398
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
16/16
Doc ID 18199 Rev 3