High Luminous Efficacy Warm White LED Emitter LZ9-00WW00 LZ9-00W900 Key Features High Luminous Efficacy, Warm White LED CRI 80 and 90 options Can dissipate up to 20W Ultra-small foot print – 7.0mm x 7.0mm Surface mount ceramic package with integrated glass lens Low Thermal Resistance (1.3°C/W) Very high Luminous Flux density JEDEC Level 1 for Moisture Sensitivity Level Autoclave complaint (JEDEC JESD22-A102-C) Lead (Pb) free and RoHS compliant Reflow solderable (up to 6 cycles) Emitter available on MCPCB (optional) Full suite of TIR secondary optics family available Part Number Options Base part number Part number Description LZ9-00WW00-xxxx 9-die emitter CRI 80 minimum LZ9-00W900-xxxx 9-die emitter CRI 90 minimum LZ9-J0WW00-xxxx 9-die emitter CRI 80 minimum on Star MCPCB in 1x9 electrical configuration LZ9-J0W900-xxxx 9-die emitter CRI 90 minimum on Star MCPCB in 1x9 electrical configuration LZ9-K0WW00-xxxx 9-die emitter CRI 80 minimum on Star MCPCB in 3x3 electrical configuration LZ9-K0W900-xxxx 9-die emitter CRI 90 minimum on Star MCPCB in 3x3 electrical configuration Notes: 1. See “Part Number Nomenclature” for full overview on LED Engin part number. LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Bin Kit Option Codes WW, Warm-White (2700K – 3000K – 3500K) CRI 80 Minimum: LZ9-x0WW00-xxxx Kit number suffix 0000 Min flux Bin Color Bin Ranges Description X 6A1, 6A2, 6B1, 6B2, 6A4, 6A3, 6B4, 6B3, 6D1, 6D2, 6C1, 6C2, 6D4, 6D3, 6C4, 6C3, 7A1, 7A2, 7B1, 7B2, 7A4, 7A3, 7B4, 7B3, 7D1, 7D2, 7C1, 7C2, 7D4, 7D3, 7C4, 7C3, 8A1, 8A2, 8B1, 8B2, 8A4, 8A3, 8B4, 8B3, 8D1, 8D2, 8C1, 8C2, 8D4, 8D3, 8C4, 8C3 full distribution flux; full distribution CCT 2700K CRI 80 Minimum: LZ9-x0WW00-xxxx Kit number suffix Min flux Bin Color Bin Ranges Description 0027 X 8A1, 8A2, 8B1, 8B2, 8A4, 8A3, 8B4, 8B3, 8D1, 8D2, 8C1, 8C2, 8D4, 8D3, 8C4, 8C3 full distribution flux; 2700K ANSI CCT bin 0227 X 8A2, 8B1, 8A3, 8B4, 8D2, 8C1, 8D3, 8C4 0427 X 8A3, 8B4, 8D2, 8C1 full distribution flux; 2700K ANSI CCT half bin full distribution flux; 2700K ANSI CCT quarter bin 3000K-3500K CRI 80 Minimum: LZ9-x0WW00-xxxx Kit number suffix Min flux Bin Color Bin Ranges Description 0030 X 7A1, 7A2, 7B1, 7B2, 7A4, 7A3, 7B4, 7B3, 7D1, 7D2, 7C1, 7C2, 7D4, 7D3, 7C4, 7C3 full distribution flux; 3000K ANSI CCT bin 0230 X 7A2, 7B1, 7A3, 7B4, 7D2, 7C1, 7D3, 7C4 0430 X 7A3, 7B4, 7D2, 7C1 0035 X 6A1, 6A2, 6B1, 6B2, 6A4, 6A3, 6B4, 6B3, 6D1, 6D2, 6C1, 6C2, 6D4, 6D3, 6C4, 6C3 0235 X 6A2, 6B1, 6A3, 6B4, 6D2, 6C1, 6D3, 6C4 0435 X 6A3, 6B4, 6D2, 6C1 full distribution flux; 3000K ANSI CCT half bin full distribution flux; 3000K ANSI CCT quarter bin full distribution flux; 3500K ANSI CCT bin full distribution flux; 3500K ANSI CCT half bin full distribution flux; 3500K ANSI CCT quarter bin 2 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com WW, Warm-White (2700K – 3000K – 3500K) CRI 90 Minimum: LZ9-x0W900-xxxx Kit number suffix 0000 Min flux Bin Color Bin Ranges Description V 6A1, 6A2, 6B1, 6B2, 6A4, 6A3, 6B4, 6B3, 6D1, 6D2, 6C1, 6C2, 6D4, 6D3, 6C4, 6C3, 7A1, 7A2, 7B1, 7B2, 7A4, 7A3, 7B4, 7B3, 7D1, 7D2, 7C1, 7C2, 7D4, 7D3, 7C4, 7C3, 8A1, 8A2, 8B1, 8B2, 8A4, 8A3, 8B4, 8B3, 8D1, 8D2, 8C1, 8C2, 8D4, 8D3, 8C4, 8C3 full distribution flux; full distribution CCT 2700K CRI 90 Minimum: LZ9-x0W900-xxxx Kit number suffix Min flux Bin Color Bin Ranges Description 0027 V 8A1, 8A2, 8B1, 8B2, 8A4, 8A3, 8B4, 8B3, 8D1, 8D2, 8C1, 8C2, 8D4, 8D3, 8C4, 8C3 full distribution flux; 2700K ANSI CCT bin 0227 V 8A2, 8B1, 8A3, 8B4, 8D2, 8C1, 8D3, 8C4 0427 V 8A3, 8B4, 8D2, 8C1 full distribution flux; 2700K ANSI CCT half bin full distribution flux; 2700K ANSI CCT quarter bin 3000K-3500K CRI 90 Minimum: LZ9-x0W900-xxxx Kit number suffix Min flux Bin Color Bin Ranges Description 0030 W 7A1, 7A2, 7B1, 7B2, 7A4, 7A3, 7B4, 7B3, 7D1, 7D2, 7C1, 7C2, 7D4, 7D3, 7C4, 7C3 full distribution flux; 3000K ANSI CCT bin 0230 W 7A2, 7B1, 7A3, 7B4, 7D2, 7C1, 7D3, 7C4 0430 W 7A3, 7B4, 7D2, 7C1 0035 W 6A1, 6A2, 6B1, 6B2, 6A4, 6A3, 6B4, 6B3, 6D1, 6D2, 6C1, 6C2, 6D4, 6D3, 6C4, 6C3 0235 W 6A2, 6B1, 6A3, 6B4, 6D2, 6C1, 6D3, 6C4 0435 W 6A3, 6B4, 6D2, 6C1 full distribution flux; 3000K ANSI CCT half bin full distribution flux; 3000K ANSI CCT quarter bin full distribution flux; 3500K ANSI CCT bin full distribution flux; 3500K ANSI CCT half bin full distribution flux; 3500K ANSI CCT quarter bin Note: 1. Default bin kit option is -0000 3 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Warm White Chromaticity Groups Standard Chromaticity Groups plotted on excerpt from the CIE 1931 (2°) x-y Chromaticity Diagram. Coordinates are listed below in the table. 4 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Warm White Bin Coordinates Bin code 6A1 6A4 6D1 6D4 7A1 7A4 7D1 7D4 8A1 8A4 8D1 8D4 CIEx 0.3889 0.3915 0.3981 0.3953 0.3889 0.3953 0.3981 0.4048 0.4017 0.3953 0.4017 0.4048 0.4116 0.4082 0.4017 0.4082 0.4116 0.4183 0.4147 0.4082 0.4147 0.4183 0.4242 0.4203 0.4147 0.4203 0.4242 0.43 0.4259 0.4203 0.4259 0.43 0.4359 0.4316 0.4259 0.4316 0.4359 0.4418 0.4373 0.4316 0.4373 0.4418 0.4475 0.4428 0.4373 0.4428 0.4475 0.4532 0.4483 0.4428 0.4483 0.4532 0.4589 0.4538 0.4483 0.4538 0.4589 0.4646 0.4593 0.4538 CIEy 0.369 0.3768 0.38 0.372 0.369 0.372 0.38 0.3832 0.3751 0.372 0.3751 0.3832 0.3865 0.3782 0.3751 0.3782 0.3865 0.3898 0.3814 0.3782 0.3814 0.3898 0.3919 0.3833 0.3814 0.3833 0.3919 0.3939 0.3853 0.3833 0.3853 0.3939 0.396 0.3873 0.3853 0.3873 0.396 0.3981 0.3893 0.3873 0.3893 0.3981 0.3994 0.3906 0.3893 0.3906 0.3994 0.4008 0.3919 0.3906 0.3919 0.4008 0.4021 0.3931 0.3919 0.3931 0.4021 0.4034 0.3944 0.3931 Bin code 6A2 6A3 6D2 6D3 7A2 7A3 7D2 7D3 8A2 8A3 8D2 8D3 CIEx 0.3915 0.3941 0.401 0.3981 0.3915 0.3981 0.401 0.408 0.4048 0.3981 0.4048 0.408 0.415 0.4116 0.4048 0.4116 0.415 0.4221 0.4183 0.4116 0.4183 0.4221 0.4281 0.4242 0.4183 0.4242 0.4281 0.4342 0.43 0.4242 0.43 0.4342 0.4403 0.4359 0.43 0.4359 0.4403 0.4465 0.4418 0.4359 0.4418 0.4465 0.4523 0.4475 0.4418 0.4475 0.4523 0.4582 0.4532 0.4475 0.4532 0.4582 0.4641 0.4589 0.4532 0.4589 0.4641 0.47 0.4646 0.4589 CIEy 0.3768 0.3848 0.3882 0.38 0.3768 0.38 0.3882 0.3916 0.3832 0.38 0.3832 0.3916 0.395 0.3865 0.3832 0.3865 0.395 0.3984 0.3898 0.3865 0.3898 0.3984 0.4006 0.3919 0.3898 0.3919 0.4006 0.4028 0.3939 0.3919 0.3939 0.4028 0.4049 0.396 0.3939 0.396 0.4049 0.4071 0.3981 0.396 0.3981 0.4071 0.4085 0.3994 0.3981 0.3994 0.4085 0.4099 0.4008 0.3994 0.4008 0.4099 0.4112 0.4021 0.4008 0.4021 0.4112 0.4126 0.4034 0.4021 Bin code 6B1 6B4 6C1 6C4 7B1 7B4 7C1 7C4 8B1 8B4 8C1 8C4 5 CIEx 0.3941 0.3968 0.404 0.401 0.3941 0.401 0.404 0.4113 0.408 0.401 0.408 0.4113 0.4186 0.415 0.408 0.415 0.4186 0.4259 0.4221 0.415 0.4221 0.4259 0.4322 0.4281 0.4221 0.4281 0.4322 0.4385 0.4342 0.4281 0.4342 0.4385 0.4449 0.4403 0.4342 0.4403 0.4449 0.4513 0.4465 0.4403 0.4465 0.4513 0.4573 0.4523 0.4465 0.4523 0.4573 0.4634 0.4582 0.4523 0.4582 0.4634 0.4695 0.4641 0.4582 0.4641 0.4695 0.4756 0.47 0.4641 CIEy 0.3848 0.393 0.3966 0.3882 0.3848 0.3882 0.3966 0.4001 0.3916 0.3882 0.3916 0.4001 0.4037 0.395 0.3916 0.395 0.4037 0.4073 0.3984 0.395 0.3984 0.4073 0.4096 0.4006 0.3984 0.4006 0.4096 0.4119 0.4028 0.4006 0.4028 0.4119 0.4141 0.4049 0.4028 0.4049 0.4141 0.4164 0.4071 0.4049 0.4071 0.4164 0.4178 0.4085 0.4071 0.4085 0.4178 0.4193 0.4099 0.4085 0.4099 0.4193 0.4207 0.4112 0.4099 0.4112 0.4207 0.4221 0.4126 0.4112 Bin code 6B2 6B3 6C2 6C3 7B2 7B3 7C2 7C3 8B2 8B3 8C2 8C3 CIEx 0.3968 0.3996 0.4071 0.404 0.3968 0.404 0.4071 0.4146 0.4113 0.404 0.4113 0.4146 0.4222 0.4186 0.4113 0.4186 0.4222 0.4299 0.4259 0.4186 0.4259 0.4299 0.4364 0.4322 0.4259 0.4322 0.4364 0.443 0.4385 0.4322 0.4385 0.443 0.4496 0.4449 0.4385 0.4449 0.4496 0.4562 0.4513 0.4449 0.4513 0.4562 0.4624 0.4573 0.4513 0.4573 0.4624 0.4687 0.4634 0.4573 0.4634 0.4687 0.475 0.4695 0.4634 0.4695 0.475 0.4813 0.4756 0.4695 CIEy 0.393 0.4015 0.4052 0.3966 0.393 0.3966 0.4052 0.4089 0.4001 0.3966 0.4001 0.4089 0.4127 0.4037 0.4001 0.4037 0.4127 0.4165 0.4073 0.4037 0.4073 0.4165 0.4188 0.4096 0.4073 0.4096 0.4188 0.4212 0.4119 0.4096 0.4119 0.4212 0.4236 0.4141 0.4119 0.4141 0.4236 0.426 0.4164 0.4141 0.4164 0.426 0.4274 0.4178 0.4164 0.4178 0.4274 0.4289 0.4193 0.4178 0.4193 0.4289 0.4304 0.4207 0.4193 0.4207 0.4304 0.4319 0.4221 0.4207 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Luminous Flux Bins, 2700K CRI 80 Minimum Table 1: Bin Code Minimum Radiant Flux (Φv) @ IF = 700mA [1,2] (lm) Maximum Radiant Flux (Φv) @ IF = 700mA [1,2] (lm) X 1085 1357 Y 1357 1696 Luminous Flux Bins, 3000K-3500K CRI 80 Minimum Table 2: Bin Code Minimum Radiant Flux (Φv) @ IF = 700mA [1,2] (lm) Maximum Radiant Flux (Φv) @ IF = 700mA [1,2] (lm) X 1085 1357 Y 1357 1696 Luminous Flux Bins, 2700K CRI 90 Minimum Table 3: Bin Code Minimum Radiant Flux (Φv) @ IF = 700mA [1,2] (lm) Maximum Radiant Flux (Φv) @ IF = 700mA [1,2] (lm) V 695 868 W 868 1085 Luminous Flux Bins, 3000K-3500K CRI 90 Minimum Table 4: Bin Code Minimum Radiant Flux (Φv) @ IF = 700mA [1,2] (lm) Maximum Radiant Flux (Φv) @ IF = 700mA [1,2] (lm) W 868 1085 X 1085 1357 Notes for Table 1, 2, 3 and 4: 1. Luminous flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements. 6 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Forward Voltage Range per String Table 5: Bin Code Minimum Forward Voltage (VF) @ IF = 700mA [1,2] (V) Maximum Forward Voltage (VF) @ IF = 700mA [1,2] (V) 0 9.0 10.8 Notes for Table 5: 1. LED Engin maintains a tolerance of ± 0.04V for forward voltage measurements. 2. Forward Voltage per string of 3 LED dies connected in series. Absolute Maximum Ratings Table 6: Parameter Symbol Value Unit IF IF IFP VR Tstg TJ Tsol 800 700 1000 See Note 3 -40 ~ +150 150 260 6 mA mA mA V °C °C °C [1] DC Forward Current at Tjmax=135°C DC Forward Current at Tjmax=150°C [1] Peak Pulsed Forward Current [2] Reverse Voltage Storage Temperature Junction Temperature Soldering Temperature [4] Allowable Reflow Cycles Autoclave Conditions [5] 121°C at 2 ATM, 100% RH for 168 hours ESD Sensitivity [6] > 8,000 V HBM Class 3B JESD22-A114-D Notes for Table 6: 1. Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature. Follow the curv es in Figure 10 for current de-rating. 2: Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%. 3. LEDs are not designed to be reverse biased. 4. Solder conditions per JEDEC 020c. See Reflow Soldering Profile Figure 3. 5. Autoclave Conditions per JEDEC JESD22-A102-C. 6. LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ9-00Wx00 in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1. Optical Characteristics @ TC = 25°C Table 7: Parameter Symbol Luminous Flux (@ IF = 700mA) [1] Luminous Efficacy (@ IF =350mA) Color Rendering Index (CRI) Viewing Angle [2] Total Included Angle [3] Φv Ra 2Θ½ Θ0.9 Minimum CRI 80 3000K2700K 3500K 1250 1350 73 79 82 Minimum CRI 90 3000K2700K 3500K 900 950 53 56 92 110 110 120 110 120 Notes for Table 7: 110 120 1. Luminous flux typical value is for all 9 LED dies operating concurrently at rated current. 2. Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is ½ of the 120peak value. 3. Unit lm lm/W Degrees Degrees Total Included Angle is the total angle that includes 90% of the total luminous flux. 7 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Electrical Characteristics @ TC = 25°C Table 8: Parameter Symbol Typical Unit Forward Voltage per String (@ IF = 700mA) VF 9.7 V Temperature Coefficient of Forward Voltage (per String) ΔVF/ΔTJ -6.0 mV/°C Thermal Resistance (Junction to Case) RΘJ-C 1.3 °C/W IPC/JEDEC Moisture Sensitivity Level Table 9 - IPC/JEDEC J-STD-20 MSL Classification: Soak Requirements Floor Life Standard Accelerated Level Time Conditions Time (hrs) Conditions Time (hrs) Conditions 1 Unlimited ≤ 30°C/ 85% RH 168 +5/-0 85°C/ 85% RH n/a n/a Notes for Table 9: 1. The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer’s exposure time (MET) between bake and bag and the floor life of maximum time allowed out of the bag at the end user of distributor’s facility. Average Lumen Maintenance Projections Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original light output remaining at a defined time period. Based on accelerated lifetime testing, LED Engin projects that the LZ Series will deliver, on average, 70% Lumen Maintenance at 65,000 hours of operation at a forward current of 700 mA per die. This projection is based on constant current operation with junction temperature maintained at or below 120°C. 8 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Mechanical Dimensions (mm) Emitter pin layout Emitter Emitter channel pin Ch1 - 23, 24 Ch1 Die Color A White B White Ch1 + 17, 18 E White Ch2 - 2, 3 D White F White Ch2 Ch2 + 14, 15 H White Ch3 - 5, 6 C White G White I White Ch3 Ch3+ 11, 12 NC pins: 1, 4, 7, 8, 9, 10, 13, 16, 19, 20, 21, 22 DNC pins: none Figure 1: Package outline drawing. Notes for Figure 1: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. Notes: NC = Not internally Connected (Electrically isolated) DNC = Do Not Connect (Electrically Non isolated) Recommended Solder Pad Layout (mm) Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad. Note for Figure 2a: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. 2. This pad layout is “patent pending”. 9 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Recommended Solder Mask Layout (mm) Figure 2b: Recommended solder mask opening (hatched area) for anode, cathode, and thermal pad. Note for Figure 2b: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. Reflow Soldering Profile Figure 3: Reflow soldering profile for lead free soldering. 10 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Typical Radiation Pattern 100 90 Relative Intensity (%) 80 70 60 50 40 30 20 10 0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Angular Displacement (Degrees) Figure 4: Typical representative spatial radiation pattern. Typical Relative Spectral Power Distribution 1.0 Relative Spectral Power 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 380 430 480 530 580 630 680 730 780 830 Wavelength (nm) Figure 5: Typical relative spectral power vs. wavelength @ TC = 25°C, 3000K CRI 80 11 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Typical Dominant CCT Shift over Temperature 0.02 0.015 Cx 0.01 Cy Cx, Cy 0.005 3E-17 -0.005 -0.01 -0.015 -0.02 0 10 20 30 40 50 60 70 80 90 100 Case Temperature (°C) Figure 6: Typical dominant wavelength shift vs. Case temperature. Typical Relative Light Output 180 Relatiive Light Output (%) 160 140 120 100 80 60 40 20 0 0 200 400 600 800 1000 IF - Forward Current (mA) Figure 7: Typical relative light output vs. forward current @ T C = 25°C 12 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Typical Normalized Radiant Flux over Temperature Relatiive Light Output (%) 110 100 90 80 70 60 0 10 20 30 40 50 60 70 80 90 100 Case Temperature (°C) Figure 8: Typical relative light output vs. case temperature. Typical Forward Voltage Characteristics per String 1200 IF - Forward Current (mA) 1000 800 600 400 200 0 6.0 7.0 8.0 9.0 10.0 11.0 VF - Forward Voltage (V) 1 Figure 9: Typical forward current vs. forward voltage @ TC = 25°C. Note for Figure 9: 1. Forward Voltage per string of 3 LED dies connected in series. 13 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Current De-rating 1000 IF - Maximum Current (mA) 800 700 (Rated) 600 400 R J-A = 4°C/W R J-A = 5°C/W R J-A = 6°C/W 200 0 0 25 50 75 100 125 150 Maximum Ambient Temperature (°C) Figure 10: Maximum forward current vs. ambient temperature based on T J(MAX) = 150°C. Notes for Figure 10: 1. Maximum current assumes that all 9 LED dice are operating concurrently at the same current. 2. RΘJ-C [Junction to Case Thermal Resistance] for the LZ9-00Wx00 is typically 1.3°C/W. 3. RΘJ-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance]. 14 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Emitter Tape and Reel Specifications (mm) Figure 11: Emitter carrier tape specifications (mm). Figure 12: Emitter Reel specifications (mm). 15 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Part-number Nomenclature The LZ Series base part number designation is defined as follows: LZA–BCDEFG–HIJK A – designates the number of LED die in the package 1 for single die emitter package 4 for 4-die emitter package 9 C for 9-die emitter package for 12-die emitter package P for 25-die emitter package B – designates the package level 0 for Emitter only Other letters indicate the addition of a MCPCB. See appendix “MCPCB options” for details C – designates the radiation pattern 0 for Clear domed lens (Lambertian radiation pattern) 1 for Flat-top 3 for Frosted domed lens D and E – designates the color U6 Ultra Violet (365nm) UA Violet (400nm) DB Dental Blue (460nm) B2 Blue (465nm) G1 Green (525nm) A1 Amber (590nm) R1 Red (623nm) R2 Deep Red (660nm) R3 Far Red (740nm) R4 Infrared (850nm) WW Warm White (2700K-3500K) W9 Warm White CRI 90 Minimum (2700K-3500K) NW Neutral White (4000K) CW Cool White (5500K-6500K) W2 Warm & Cool White mixed dies MC RGB MA RGBA MD RGBW (6500K) F and G – designates the package options if applicable See “Base part number” on page 2 for details. Default is “00” H, I, J, K – designates kit options See “Bin kit options” on page 2 for details. Default is “0000” Ordering information: For ordering LED Engin products, please reference the base part number above. The base part number represents our standard full distribution flux and wavelength range. Other standard bin combinations can be found on page 2. For ordering products with custom bin selections, please contact a LED Engin sales representative or authorized distributor. 16 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com LZ9 MCPCB Family Part number LZ9-Jxxxxx LZ9-Kxxxxx Type of MCPCB 1-channel (1x9 string) 1-channel (3x3 strings) Diameter (mm) Emitter + MCPCB Typical Vf Typical If Thermal Resistance (V) (mA) (oC/W) 19.9 1.3 + 0.2 = 1.5 29.1 700 19.9 1.3 + 0.2 = 1.5 9.7 2100 Mechanical Mounting of MCPCB o Mechanical stress on the emitter that could be caused by bending the MCPCB should be avoided. The stress can cause the substrate to crack and as a result might lead to cracks in the dies. o Therefore special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws. Maximum torque should not exceed 1 Nm (8.9 lbf/in). o Care must be taken when securing the board to the heatsink to eliminate bending of the MCPCB. This can be done by tightening the three M3 screws (or #4-40) in steps and not all at once. This is analogous to tightening a wheel of an automobile o It is recommended to always use plastic washers in combination with three screws. Two screws could more easily lead to bending of the board. o If non taped holes are used with self-tapping screws it is advised to back out the screws slightly after tighten (with controlled torque) and retighten the screws again. Thermal interface material o To properly transfer the heat from the LED to the heatsink a thermally conductive material is required when mounting the MCPCB to the heatsink o There are several materials which can be used as thermal interface material, such as thermal paste, thermal pads, phase change materials and thermal epoxies. Each has pro’s and con’s depending on the application. For our emitter it is critical to verify that the thermal resistance is sufficient for the selected emitter and its environment. o To properly transfer the heat from the MCPCB to the heatsink also special attention should be paid to the flatness of the heatsink. Wire soldering o For easy soldering of wires to the MCPCB it is advised to preheat the MCPCB on a hot plate to a maximum of 150°. Subsequently apply the solder and additional heat from the solder iron to initiate a good solder reflow. It is recommended to use a solder iron of more than 60W. We advise to use lead free, no-clean solder. For example SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601) 17 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com LZ9-Jxxxxx 1 channel, Standard Star MCPCB (1x9) Dimensions (mm) Notes: • Unless otherwise noted, the tolerance = ± 0.2 mm. • Slots in MCPCB are for M3 or #4-40 mounting screws. LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces. LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink. The thermal resistance of the MCPCB is: RΘC-B 0.2°C/W. This low thermal resistance is possible by utilizing a copper based MCPCB with pedestal design. The emitter thermal slug is in direct contact with the copper core. There are several vendors that offer similar solutions, some of them are: Bridge-Semiconductor, Rayben, Bergquist, SinkPad. Components used MCPCB: ESD chips: Jumpers: MHE-301 copper BZX585-C47 CRCW06030000Z0 (Rayben) (NXP, for 9 LED die) (Vishay) Pad layout Ch. 1 MCPCB Pad 1 2 String/die Function 1/ABCDEF GHI Cathode Anode + 18 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com LZ9-Kxxxxx 1 channel, Standard Star MCPCB (3x3) Dimensions (mm) Notes: • Unless otherwise noted, the tolerance = ± 0.2 mm. • Slots in MCPCB are for M3 or #4-40 mounting screws. LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces. LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink. The thermal resistance of the MCPCB is: RΘC-B 0.2°C/W. This low thermal resistance is possible by utilizing a copper based MCPCB with pedestal design. The emitter thermal slug is in direct contact with the copper core. There are several vendors that offer similar solutions, some of them are: Bridge-Semiconductor, Rayben, Bergquist, SinkPad. Components used MCPCB: ESD chips: MHE-301 copper PESD1LIN,115 (Rayben) (NXP, for 3 LED die) Pad layout Ch. 1 MCPCB Pad 1 2 String/die Function 1/ABE 2/DFH 3/CGI Cathode Anode + 19 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com LZ9 secondary TIR optics family LLxx-3T06-H Optical Specification degrees degrees Optical 4 efficiency % LLSP-3T06-H 17 36 90 5.4 LLNF-3T06-H 26 49 90 2.2 LLFL-3T06-H 39 83 90 1.2 Part number 1 Beam angle 2 Field angle 3 On-axis 5 intensity cd/lm Notes: 1. Lenses can also be ordered without the holder. Replace –H with –O for this option. 2. Beam angle is defined as the full width at 50% of the max intensity (FWHM). 3. Field angle is defined as the full width at 10% of the max intensity. 4. Optical efficiency is defined as the ratio between the incoming flux and the outgoing flux. 5. On-axis intensity is defined as the ratio between the total input lumen and the intensity in the optical center of the lens. 20 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Typical Relative Intensity over Angle 100% LZ9 emitter LLSP-3T06-H 80% Relative Intensity LLNF-3T06-H LLFL-3T06-H 60% 40% 20% 0% -90 -60 -30 0 30 60 90 Angle (degrees) General Characteristics Symbol Value Rating Unit Height from Seating Plane 19.20 Typical mm Width 38.90 Typical mm Mechanical Material Lens PMMA Holder Polycarbonate Optical 1 Transmission (>90%) λ 410-1100 Min-Max. nm Storage Temperature Tstg -40 ~ +110 Min-Max. °C Operating Temperature Tsol -40 ~ +110 Min-Max. °C Environmental Notes: 1. It is not recommended to use a UV emitter with this lens due to lower transmission at wavelengths < 410nm. 21 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Mechanical Dimensions Lens with Holder Lens 22 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Company Information LED Engin, Inc., based in California’s Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient lighting experiences. The LuxiGen™ Platform — an emitter and lens combination or integrated module solution, delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors, including whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target. The small size combined with powerful output allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required. LED Engin’s packaging technologies lead the industry with products that feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient solid state lighting solutions. LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions. LED Engin reserves the right to make changes to improve performance without notice. Please contact [email protected] or (408) 922-7200 for more information. 23 LZ9-00WW00, LZ9-00W900 (1.2-02/07/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com