[AK7782] AK7782 Dual Audio DSP with 24bit 5ch ADC & SRC GENERAL DESCRIPTION The AK7782 is an audio digital signal processor with integrated 24bit 5ch ADCs, an 8:2 stereo input selector and sample rate converters that support 2ch inputs and the frequency up to 96kHz. The ADC supports wide range of sampling frequency from 7.35kHz to 96kHz. Two integrated audio DSPs have high performance processing speed of 2560step/fs (at 48kHz sampling), and two 6k-word delay RAMs allow surround processing, time alignment adjusting and FIR filtering. As the AK7782 is a RAM based DSP, it is programmable for various user requirements. It is housed in a 100pin LQFP package. FEATURES [DSP1/DSP2] □ Word Length: 28-bits □ Instruction Cycle Time: 8.1ns (2560fs, fs=48kHz) □ Processing Step: 2560 steps (max) /fs= 48kHz, 44.1kHz (Normal Speed) 15360 steps (max) /fs= 8kHz, 7.35kHz 1280 steps (max) fs= 96kHz, 88.2kHz (Double Speed) □ Multiplier: 24 x 16 → 40-bits (double precision available) □ Divider: 24 ÷ 24 → 24-bits (floating point normalization function) □ ALU: 44-bit arithmetic operation (with 4-bit overflow margin) □ 24-bit arithmetic and logic operation Data Shift: Right shift after multiplication 1, 2, 4, 5, 8, 14, 15-bits Right shift BUS 1, 2, 3, 4, 8, 14, 15-bits Left shift after multiplication 1, 2, 3, 4, 8, 15-bits Left shift BUS 1, 2, 3, 4, 6, 8, 15-bits Indirect shifting function Program RAM (PRAM): 2048word x 36-bits □ □ Coefficient RAM (CRAM): 2048word x 16-bits □ Data RAM (DRAM): 2048word x 28-bits □ Offset Register (OFREG): 64word x 13-bits □ Delay RAM (DLRAM): 168kbit (four types) ● 6kword 28-bits ● 4kword 28-bits + 4kword 14-bits ● 3kword 28-bits + 6kword 14-bits ● 3kword 28-bits + 3kword 28-bits (Linear) □ Register: 44-bits x 4 (ACC) [for ALU] 28-bits x 12 (TMP) [DBUS connection] 28-bits x 6 steps stack (PTMP) [DBUS connection] MS1337-E-00 2011/11 - 1- [AK7782] [Stereo ADC, Common for ADC1 and ADC2] □ 24-bit 2ch x 2 □ S/(N+D): 90dB (fs=48kHz) □ D-range: 96dBA (fs=48kHz) □ S/N: 96dBA (fs=48kHz) □ 8ch bidirectional analog input selector □ High-pass filter (HPF) for DC offset cancellation □ fs=7.35kHz ~ 96kHz [Mono ADC] □ 24bit 1ch □ S/(N+D) 88dB (fs=48kHz) □ D-range 95dBA (fs=48kHz) □ S/N 95dBA (fs=48kHz) □ High-pass filter (HPF) for DC offset cancellation □ fs=7.35kHz ~ 96kHz □ Digital volume control [DSP1/DSP2 In/Output Digital Interface] □ Serial Data Input: 14ch (including ADC block) □ Serial Data Output: 16ch (each DSP outputs are 14ch) □ Microcomputer Interface: 1ch In/Out or I2C-bus [SRC, Common for SRC1 and SRC2] □ 2ch x 2 □ fs=7.35kHz ~ 96kHz [General] □ PLL □ 3.3V±0.3V, 1.8V ±0.1V □ Operational Temperature: -40°C ~ 85°C □ 100pin LQFP MS1337-E-00 2011/11 - 2- [AK7782] AINL8, AINR8 2 2 2 2 AINM AINL5, AINR5 2 AINL6 AINR6 2 AINL7, AINR7 AINL3, AINR3 2 AINL4, AINR4 AINL+,AINR+ AINL+,AINR+ 4 AINL2, AINR2 ■ Block Diagram pull down Hi-z 3 VSS3 8 3 6 DVDD ASEL2[2:0] ASEL1[2:0] ctrl reg sw ADC1 ADC2 ADCM VOL 3 AVDD 3 VREFH VREF MUX VCOM VREFL 3 VSS1 OUTASEL1 0 1 2 3 SDIN7/JX2 JX2 SDIN6 / JX1 P1IN6SEL JX1 SDIN5 P1IN5SEL P1SDIN7 0 1 P2IN7SEL P1SDOUT7 0 1 2 3 0 1 2 3 P1SDIN6 P2SDIN7 0 1 2 3 0 1 2 3 P1SDIN5 P1SDOUT5 IRPT1 P1SDOUT3 GPO10 SDIN2(32bit) P1SDIN2 P1SDOUT2 P2IN5SEL 0 1 2 3 0 OUTAEN 0 1 2 3 P2SDOUT7 P2SDIN3 P1SDIN1 P1SDOUT1 JX12 SRC1I SRC1O SRC1LRCKO SRC1BICKO JX11 JX10 SRC1 DSP1 SRC1LRCKI SRC1BICKI JX12E JX11E OUT5EN P2SDIN1 SDOUT5 OUT4SEL 0 1 2 3 P2SDOUT4 GPO21 OUT4EN P2SDOUT3 GPO20 SDOUT4(32bit) OUT3SEL 0 1 2 3 OUT3EN SDOUT3(32bit) OUT2SEL 0 1 2 3 OUT2EN SDOUT2(32bit) OUT1SEL1 0 1 2 3 0 1 2 3 SDOUT6 OUT5SEL1 P2SDOUT5 IRPT2 P2SDIN2 1 P2IN2SEL OUT6SEL P2SDOUT6 P2SDOUT2 0 0 1 2 3 P2SDIN5 SDOUT7 OUT7EN OUT6EN 0 1 2 3 P2SDIN4 1 P2IN4SEL 0 SRCLRCK SRCBICK SDOUTA 3 0 1 2 3 P2SDIN6 1 P2IN3SEL RSRC1RSTN 1 MSEL P2IN6SEL P1SDIN3 PSRCRSTN 2 3 P1SDOUT6 SDIN3(32bit) PSRCSMUTE 0 OUT7SEL P1SDOUT4 GPO11 RSRC1SMUTE OUTASEL2 1 2 2 P1SDIN4 P1IN1SEL 0 3 P1IN7SEL SDIN4(32bit) SDIN1 2 VSS2 7 DVDD18 I/O OUT1EN SDOUT1 P2SDOUT1 JX22E JX22 P2IN1SEL JX21E JX21 JX10E JX20E JX20 JX2 JX1 JX0 WDT1EN WDT1 CRCE SRC1UNLOCK DSP2 SRC2LRCK SRC2BICK NC STO WDT2EN WDT2 LOCK1E LOCK2E 0 1 2 3 RSRC2SMUTE SRC2I SRC2O SRC2LRCKO SRC2BICKO CRC RSRCRST2N 0 1 SRC2 MICIF SRC2CKO SRC2LRCKI 1 SRC2CKI I2CSEL SDA 2 0 2 SCLK/SCL SO 0 2 SI/CAD0 RQN/CAD1 2 0 1 1 TESTO SRC2ISEL RDY SRC2BICKI SRC2UNLOCK LRCLKO BITCLKO TESTI2 TESTI1 CKM[2:0] 3 XTI XTO CONTROLLER CKRSTN PCKRSTN RCKRSTN PDSPRSTN RDSPRSTN (Master="H",Slave="L") SMODE DSPRSTN SRESETN PADRSTN RADRSTN ADRSTN LFLT CLKO1 LRCLKI BITCLKI INITRSTN Figure 1. Block Diagram MS1337-E-00 2011/11 - 3- [AK7782] ■ DSP Block Diagram (Common for DSP1 and DSP2) DLP0, DLP1 DP0, DP1 CP0, CP1 DLRAM 6kw x 28bit DRAM 2048w x 28bit CRAM 2048w x 16bit etc OFREG 64w x 13bit CBUS(16bit) DBUS(28bit) MPX16 Micon I/F MPX24 X Control DEC Y PRAM 2048w x 36bit Multiply 16bit x 24bit → 40bit PC Stack: 5level(max) TMP 28bit 40bit 12 x 28bit PTMP(LIFO) 6 x 28bit MUL 44bit A DBUS 2 x 24/24.4bit SDIN7 SHIFT 2 x 24/24.4bit SDIN6 44bit 2 x 24/24.4bit SDIN5 2 x 24/20/16/32/24.4bit SDIN4 2 x 24/20/16/32/24.4bit SDIN3 2 x 24/20/16/32/24.4bit SDIN2 2 x 24/24.4bit SDIN1 B ALU 44bit Overflow Margin: 4bit 44bit DR0-3 44bit Over Flow Data Generator Division 24÷24→24 Serial I/F 2 x 24/24.4bit SDOUT7 2 x 24/24.4bit SDOUT6 2 x 24/24.4bit SDOUT5 2 x 24/16/32/24.4bit SDOUT4 2 x 24/16/32/24.4bit SDOUT3 2 x 24/16/32/24.4bit SDOUT2 2 x 24/24.4bit SDOUT1 Peak Detector MS1337-E-00 2011/11 - 4- [AK7782] ■ Ordering Guide -40 ∼ +85°C 100pin LQFP (0.5mm pitch) Evaluation Board for AK7782 AK7782VQ AKD7782 RDY STO SDOUTA1 SDOUT6 SDOUT7 DVDD DVDD18 VSS3 SDIN6/JX1 SDIN7/JX2 JX0 SDIN1 SRCBICK SRCLRCK PSRCRSTN SDA DVDD18 VSS3 DVDD PSRCSMUTE VSS2 VSS1 AVDD TESTI2 NC ■ Pin Layout 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 NC AINM 76 77 50 49 AINR4 78 48 VSS3 AINL4 79 47 DVDD18 AINR3 80 81 46 45 SCLK/SCL AINL3 AINR2 82 44 RQN/CAD1 AINL2 43 42 PDSPRSTN AVDD 83 84 VREFH 85 41 PCKRSTN VCOM 86 40 INITRSTN VREFL 39 38 VSS3 VSS1 87 88 AINR- 89 37 LRCLKI AINR+ 36 35 BITCLKI AINL- 90 91 AINR+ 92 34 SDIN4 AINR5 93 94 33 32 SDIN3 AINL5 AINR6 95 31 DVDD18 AINL6 96 30 VSS3 AINR7 97 98 29 28 DVDD AINL7 AINR8 99 27 SDOUT5 AINL8 100 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 SDOUT4 100 pin LQFP SDOUT3 SDOUT2 SDOUT1 BITCLKO LRCLKO VSS3 DVDD DVDD18 CKM[2] CKM[0] DVDD18 CKM[1] XTO VSS3 XTI DVDD VSS3 VSS2 SRC2BICK SRC2LRCK TESTI1 I2CSEL AVDD LFLT VSS1 (TOP VIEW) SO DVDD SI/CAD0 PADRSTN DVDD18 SDIN5 SDIN2 CLKO1 pin Input Output I/O Power Figure 2. Pin Layout MS1337-E-00 2011/11 - 5- [AK7782] PIN/FUNCTION No. Pin Name I/O Function Filter Connection Pin for AK7782 Core PLL When using the PLL function, connect with R (1.5kΩ) and C (47nF) in series and connected to analog ground (VSS1) Ground Pin 0V (silicon board potential) Power Supply Pin for Analog Block 3.3V (typ) Test Pin (Internal pull-down) Connect to VSS3 I2C-bus Select Pin “L”: Normal Microcomputer Interface “H”: I2C-bus selected mode. SCL and SDA are active. I2CSEL must be fixed to “L” (VSS3) or “H” (DVDD). LR Clock Input Pin for SRC2 BIT Clock Input Pin for SRC2 Ground Pin (silicon board potential) Connect to VSS1 Classification 1 LFLT O Analog Output 2 3 VSS1 AVDD - 4 TESTI1 I 5 I2CSEL I 6 7 SRC2LRCK SRC2BICK I I 8 VSS2 - 9 DVDD - Power Supply Pin for Digital Block 3.3V (typ) Digital Power Supply 10 VSS3 - Ground Pin 0V Power Supply 11 XTI I 12 XTO O 13 14 15 16 17 VSS3 DVDD18 CKM [1] CKM [0] CKM [2] I I I 18 DVDD18 - 19 20 VSS3 DVDD - Power Supply Test I2C Select SRC2 Power Supply Crystal Oscillator Input Pin Connect a crystal oscillator between the XTI pin and XTO pin or input an external clock into the XTI pin when not using a crystal oscillator. System Clock Crystal Oscillator Output Pin Connect a crystal oscillator between the XTI pin and XTO pin or leave open when using an external clock source. Ground Pin 0V Power Supply Power Supply Pin for Digital Block 1.8V (typ) Clock Mode Select Pin Mode Select Clock Mode Select Pin Clock Mode Select Pin Digital Power Power Supply Pin for Digital Block 1.8V (typ) Supply Ground Pin 0V Power Supply Power Supply Pin for Digital Block 3.3V (typ) MS1337-E-00 2011/11 - 6- [AK7782] No. Pin Name 21 LRCLKO I/O O Function LR Channel Select Pin Master mode: Outputs 1fs clock. Slave mode: Outputs LRCLKI clock. Serial bit Clock Output Pin Master mode: Outputs 64fs clock. Slave mode: Outputs BITCLKI clock DSP Serial Data Output Pin Outputs “L” during initial reset. The output data is selected by CONT7 D3, D2. DSP Serial Data Output Pin Outputs “L” during initial reset. The output data is selected by CONT7 D5, D4. DSP Serial Data Output Pin Outputs “L” during initial reset. The output data is selected by CONT7 D7, D6. DSP Serial Data Output Pin Outputs “L” during initial reset. The output data is selected by CONT6 D1, D0. DSP Serial Data Output Pin Outputs “L” during initial reset. The output data is selected by CONT6 D3, D2. Clock Output Pin 1 Output frequency can be set by control registers. Outputs “L” during initial reset. 22 BITCLKO O 23 SDOUT1 O 24 SDOUT2 O 25 SDOUT3 O 26 SDOUT4 O 27 SDOUT5 O 28 CLKO1 O 29 DVDD - Power Supply Pin for Digital Block 3.3V (typ) 30 31 VSS3 DVDD18 - 32 SDIN2 I 33 SDIN3 I 34 SDIN4 I 35 SDIN5 I Ground Pin 0V Power Supply Pin for Digital Block 1.8V (typ) DSP Serial Data Input Pin Supports floating point input F24.4: MSB 32-bit and 24-bit / LSB 24-bit, 20-bit and 16-bit. Connect to VSS3 when this pin is not used. DSP Serial Data Input Pin Supports floating point input F24.4: MSB 32-bit and 24-bit / LSB 24-bit, 20-bit and 16-bit. Connect to VSS3 when this pin is not used. DSP Serial Data Input Pin Supports floating point input F24.4: MSB 32-bit and 24-bit / LSB 24-bit, 20-bit and 16-bit. Connect to VSS3 when this pin is not used. DSP Serial Data Input Pin Supports floating point input F24.4: MSB 24-bit / LSB 24-bit, 20-bit and 16-bit. Connect to VSS3 when this pin is not used. MS1337-E-00 Classification System Clock Digital Block Serial Data Output Clock Output Digital Power Supply Power Supply Digital Block Serial Data Input Digital Block Serial Data Input 2011/11 - 7- [AK7782] No. 36 37 Pin Name BITCLKI LRCLKI I/O I Serial bit Clock input Pin I LR channel select Input Pin Function 38 DVDD18 - Power Supply Pin for Digital Block 1.8V (typ) 39 VSS3 - 40 INITRSTN I 41 PCKRSTN I System Clock 42 PADRSTN I 43 PDSPRSTN I RQN I CAD1 I SI I CAD0 I SCLK I SCL I Ground Pin 0V Initial Reset N Pin (for device initialization) The AK7782 is initialized by the INITRSTN pin = “L”. This pin must be “L” upon power-up the AK7782. CKM[2:0] Pin settings can be change when the INITRSTN pin = “L”. Clock Reset N Pin The internal clock is reset by the PCKRSTN pin = “L”. Setting of CKM[2:0] can be changed by the PCKRSTN pin = “L”, even if the INITRSTN pin is “H”. ADC Reset N Pin ADC1, ADC2 and ADCM are reset by the PADRSTN pin = “L”. Control register RADRSTN bit= “0” can also reset these blocks. The AK7782 is in system reset state when PADRSTN and PDSPRSTN pins = “L”. DSP Reset N Pin DSP1 and DSP2 are reset by the PDSPRSTN= “L”. Control Register RDSRE bit = “0” can also reset these blocks . The AK7782 is in system reset state when PADRSTN and PDSPRSTN pins = “L”. Microcomputer Interface Request N Pin (I2CSEL= “L”) Set this pin to “H” during initial reset or when not interfacing to a microcomputer. I2C-bus Address Pin 1 (I2CSEL= “H”) Serial Data Input Pin for Microcomputer Interface (I2CSEL= “L”) Set this pin to “L” when not used. I2C-bus address Pin 0 (I2CSEL= “H”) Serial Data Clock Pin for Microcomputer Interface (I2CSEL= “L”) Set this pin to “H” when there is no clock input. SCL I2C-bus Interface Pin (I2CSEL= “H”) 47 DVDD18 - Power Supply Pin for Digital Block 1.8V (typ) 48 VSS3 - Ground Pin 0V 49 DVDD - Power Supply Pin for Digital Block 3.3V (typ) 50 SO O Serial Data Output Pin for Microcomputer Interface Outputs “Hi-z” when the RQN pin = “H”. Outputs “Hi-z” during initial reset. 44 45 46 Classification MS1337-E-00 Digital Power Supply Power Supply Reset Microcomputer I/F I2C Microcomputer I/F I2C Microcomputer I/F I2C Digital Power Supply Power Supply Digital Power Supply Microcomputer I/F 2011/11 - 8- [AK7782] No. Pin Name I/O 51 O RDY Function Data write ready Pin for Microcomputer Interface Status Output Pin “H”: Normal operation “L”: WDT, CRC error or SRCUNLOCK status (Figure 1) Outputs “H” during initial reset. Serial Data Output Pin Supports MSB 24-bit. Outputs “L” during initial reset. Serial Data Output Pin Supports MSB 24-bit. Outputs “L” during initial reset. Serial Data Output Pin Supports MSB 24-bit. Outputs “L” during initial reset. 52 STO O 53 SDOUTA1 O 54 SDOUT6 O 55 SDOUT7 O 56 DVDD - Power Supply Pin for Digital Block 3.3V (typ) 57 VSS3 - Ground Pin 0V 58 DVDD18 - Power Supply Pin for Digital Block 1.8V (typ) SDIN7 I JX2 I SDIN6 I JX1 I 61 JX0 I 62 SDIN1 I 63 SRCBICK I SRCLRCK I 59 60 64 65 66 67 68 69 70 71 Classification Microcomputer I/F Status Digital Block Serial Data Output Digital Power Supply Power Supply Digital Power Supply DSP Serial Data Input Pin Digital Block Connect to VSS3 when this pin is not used. This pin supports 24-bit Serial Data Input MSB justified, floating point F24.4. Conditional Jump Pin Condition Connect to VSS3 when this pin is not used. DSP Serial Data Input Pin Digital Block Connect to VSS3 when this pin is not used. This pin supports 24-bit Serial Data Input MSB justified, floating point F24.4. Conditional Jump Pin Connect to VSS3 when this pin is not used. Condition Conditional Jump Pin Connect to VSS3 when this pin is not used. DSP/SRC Serial Data Input Pin Digital Block Connect to VSS3 when this pin is not used. This pin supports 24-bit Serial Data Input MSB justified, floating point F24.4. SRC Serial bit Clock Input Pin SRC1 SRC LR channel Select Input Pin I2CSEL Pin = “L” O Outputs “L”. SDA I2C I2CSEL Pin= “H” I/O SDA I2C-bus Interface SRC Reset N Pin SRC1 and SRC2 blocks are reset by the PSRCRSTN pin = “L”. Reset PSRCRSTN I Control register RSRCRSTN bit = “0” can also reset these blocks. Digital Power DVDD18 - Power Supply Pin for Digital Block 1.8V (typ) Supply VSS3 - Ground Pin 0V Power Supply Digital Power DVDD - Power Supply Pin for Digital Block 3.3V (typ) Supply Ground Pin 0V (silicon board potential) Power Supply VSS2 Connect to VSS1. SRC Soft Mute Pin PSRC SRC1 and SRC2 blocks are soft muted by the PSRCSMUTE pin = SRC I SMUTE “H”. Control register RSRCSMUTE bit = “1” can also soft mutes these blocks. MS1337-E-00 2011/11 - 9- [AK7782] No. Pin Name I/O Function Classification 72 TESTI2 I Test Pin (Internal pull-down) Connect to VSS3. Test 73 AVDD - Power Supply Pin for Analog Block 3.3V (typ) Analog Power Supply 74 VSS1 - Ground Pin 0V (silicon board potential) Power Supply 75 NC - 76 NC - 77 78 79 80 81 82 83 AINM AINR4 AINL4 AINR3 AINL3 AINR2 AINL2 I I I I I I I NC Pin Connect to VSS1. NC Pin Connect to VSS1. ADCM Mono Single-ended Input Pin Rch Single-ended Input Pin for ADC1 or ADC2 Lch Single-ended Input Pin for ADC1 or ADC2 Rch Single-ended Input Pin for ADC1 or ADC2 Lch Single-ended Input Pin for ADC1 or ADC2 Rch Single-ended Input Pin for ADC1 or ADC2 Lch Single-ended Input Pin for ADC1 or ADC2 84 AVDD - Power Supply Pin for analog Block 3.3V (typ) NC NC Analog Input Analog Power Supply Reference voltage Input Pin for analog Block Connect this pin to AVDD, and connect a 0.1μF and 10μF capacitors Analog Input between this pin and VSS1. Common voltage Output Pin for analog Block 86 VCOM O Analog Output Connect a 0.1μF and 10μF capacitors between this pin and VSS1. Do not connect to external circuits. Reference voltage input Pin for analog Block 87 VREFL I Analog Input Normally, this pin is connected to VSS1. 88 VSS1 - Ground Pin 0V (silicon board potential) Power Supply 89 AINRI Rch Differential Input Pin for ADC1 or ADC2 90 AINR+ I Rch Differential Input Pin for ADC1 or ADC2 91 AINLI Lch Differential Input Pin for ADC1 or ADC2 92 AINL+ I Lch Differential Input Pin for ADC1 or ADC2 93 AINR5 I Rch Single-ended Input Pin for ADC1 or ADC2 94 AINL5 I Lch Single-ended Input Pin for ADC1 or ADC2 Analog Input 95 AINR6 I Rch Single-ended Input Pin for ADC1 or ADC2 96 AINL6 I Lch Single-ended Input Pin for ADC1 or ADC2 97 AINR7 I Rch Single-ended Input Pin for ADC1 or ADC2 98 AINL7 I Lch Single-ended Input Pin for ADC1 or ADC2 99 AINR8 I Rch Single-ended Input Pin for ADC1 or ADC2 100 AINL8 I Lch Single-ended Input Pin for ADC1 or ADC2 Note 1. All digital input pins must not be allowed to float. Note 2. If analog input pins (AINR-, AINR+, AINL-, AINL+, AINL2~8, AINR2~8, AINM) are not used, leave them open. Note 3. The I2CSEL pin should be fixed to “L” (VSS3) or “H” (DVDD). 85 VREFH I MS1337-E-00 2011/11 - 10- [AK7782] ■ Handling of Unused Pins Unused I/O pins must be connected appropriately. Pin Name AINL+, AINL-, AINR+, AINR-, AINL2, AINR2, AINL3, AINR3, AINL4, AINR4, Analog AINL5, AINR5, AINL6, AINR6, AINL7, AINR7, AINL8, AINR8, AINM XTO, LRCLKO, BITCLKO, SDOUT1, SDOUT2, SDOUT3, SDOUT4, SDOUT5, CLKO1, SO, RDY, STO, SDOTUA1, SDOUT6, SDOUT7, SDA (I2CSEL= “L”) Digital TESTI1, SRC2LRCK, SRC2BICK, XTI, SDIN2, SDIN3, SDIN4, SDIN5, PCKRSTN, PADRSTN, SDIN7/JX2, SDIN6/JX1, JX0, SDIN1, SRCBICK, SRCLRCK, PSRCRSTN, PSRCSMUTE, TESTI2 Relationship between the I2CSEL pin and the SDA I2CSEL Normal Microcomputer L Interface L I2C-bus H H MS1337-E-00 INITRSTN L H L H Setting Leave Open Leave Open Connect to VSS3 SDA L L “Hi-Z” → pull-up function 2011/11 - 11- [AK7782] ABSOLUTE MAXIMUM RATINGS (VSS1=VSS2=VSS3=0V; Note 4) Parameter Symbol min Power Supply Voltage Analog (AVDD) VA -0.3 Digital (DVDD) VD -0.3 Digital (DVDD18) VD18 -0.3 |VSS1(VSS2) – VSS3| (Note 5) ΔGND -0.3 Input Current (except for power supply pin) IIN – Analog Input Voltage AINL+, AINL-, AINR+, AINR-, VINA -0.3 AINL2~8, AINR2~8, AINM VREFH, VREFL Digital Input Voltage VIND -0.3 Operational Ambient Temperature Ta -40 Storage Temperature Tstg -65 Note 4. All voltages with respect to ground. Note 5. VSS1, VSS2 and VSS3 must be connected to the same ground plane. max Unit 4.3 4.3 2.5 +0.3 ±10 V V V V mA (VA+0.3) ≤ 4.3 V (VD+0.3) ≤ 4.3 85 150 V °C °C WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. RECOMMENDED OPERATION CONDITION (VSS1=VSS2=VSS3=0V; Note 4) Parameter Symbol min typ max Unit Power Supply Voltage AVDD VA 3.0 3.3 3.6 V DVDD VD 3.0 3.3 3.6 V DVDD18 VD18 1.7 1.8 1.9 V AVDD-DVDD ΔVDD -0.3 0 +0.3 V Reference Voltage (VREF) VREFH (Note 6) VRH VA V VREFL (Note 7) VRL 0.0 V Note 4. All voltages with respect to ground. Note 6. The VREFH pin is normally connected to AVDD. Note 7. The VREFL pin is normally connected to VSS1. Note 8. The analog input voltage is proportional to the (VREFH-VREFL) voltage. Note 9. The power-up sequence between AVDD, DVDD and DVDD18 is not critical. The INITRSTN pin should be held “L” when power is supplied. The INITRSTN pin is allowed to be “H” after all power supplies are applied and settled. Note 10. Do not turn off the power supply of the AK7782 when the power supplies of the surrounding device are turned on in I2C-bus mode (I2CSEL pin = “H”). Pull-up resistors at SDA and SCL pins must be connected to the DVDD voltage or less. (A diode exists for DVDD in the SDA and SCL pins.) WARNING: AKM assumes no responsibility for the usage beyond the conditions in the datasheet. MS1337-E-00 2011/11 - 12- [AK7782] ANALOG CHARACTERISTICS (1) Analog Characteristics 1-1) ADC (Ta=25°C; AVDD=DVDD=3.3V; DVDD18=1.8V, VREFH=AVDD, VREFL=VSS1, BITCLK=64fs; Signal frequency 1kHz; Measurement frequency=20Hz~20kHz@48kHz, 20Hz~40kHz@96kHz; ADC full differential input (ADC1, ADC2); CKM Mode 0 (CKM[2:0]=000), during SRC reset, unless otherwise specified.) Parameter min typ max Unit Resolution 24 Bits Stereo ADC Dynamic Characteristics S/(N+D) fs = 48kHz (-1dBFS) Note 11) 82 90 dB ADC1 fs = 96kHz (-1dBFS) 87 dB ADC2 Dynamic Range fs = 48kHz (A-filter) Note 11, Note 12) 88 96 dB fs = 96kHz 93 dB S/N fs = 48kHz (A-filter) Note 11) 88 96 dB fs = 96kHz 93 dB Inter-channel Isolation (f=1kHz) Note 13) 90 115 dB DC Accuracy Channel Gain Mismatch 0.0 0.3 dB Analog Input Input Voltage (Differential Input) Note 14) ±1.85 ±2.00 ±2.15 Vp-p Input Voltage (Single-ended Input) Note 15) 1.85 2.00 2.15 Vp-p Input Impedance Note 16) 22 33 kΩ Resolution 24 Bits Mono ADC Dynamic Characteristics S/(N+D) fs = 48kHz (-1dBFS) 78 88 dB ADCM fs = 96kHz (-1dBFS) 87 dB Dynamic Range fs = 48kHz (A-filter) Note 12) 87 95 dB fs = 96kHz 92 dB dB S/N fs = 48kHz (A-filter) 87 95 dB fs = 96kHz 92 Analog Input Input Voltage Note 17) 1.85 2.00 2.15 Vp-p Input Impedance Note 18) 22 33 kΩ Note 11. Values are not guaranteed with single-ended inputs. Note 12. S/(N+D) when -60dB signal is applied. Note 13. Inter-channel isolation between L-channel and R-channel at –1dBFS signal input. Note 14. AINL+, AINL-, AINR+, and AINR- pins. The full scale for differential input voltage is (± FS= ± (VREFH-VREFL) x (2.0/3.3)). Note 15. AINL2~L8, and AINR2~R8 pins. The full scale of single-ended input voltage (FS=(VREFH-VREFL) x (2.0/3.3)). Note 16. AINL+, AINL-, AINR+, AINR-, AINL2~L8, and AINR2~R8 pins. Note 17. AINM pin. The full scale of input voltage is (FS=(VREFH-VREFL) x (2.0/3.3)). Note 18. AINM pin. MS1337-E-00 2011/11 - 13- [AK7782] 1-2) SRC (Ta=25°C; AVDD = 3.3V; DVDD=3.3V; DVDD18=1.8V; data = 24bit; measurement bandwidth = 20Hz∼ FSO/2, unless otherwise specified.) Parameter Symbol min typ max Unit Resolution 24 Bits Input Sample Rate FSI 7.35 96 kHz Output Sample Rate FSO 7.35 96 kHz THD+N (Input= 1kHz, 0dBFS) FSO/FSI=44.1kHz/48kHz -112 dB FSO/FSI=44.1kHz/96kHz -112 dB FSO/FSI=48kHz/44.1kHz -112 dB FSO/FSI=48kHz/96kHz -112 dB FSO/FSI=48kHz/8kHz -111 -103 dB FSO/FSI=8kHz/48kHz -112 dB FSO/FSI=8kHz/44.1kHz -100 dB Dynamic Range (Input= 1kHz, -60dBFS) FSO/FSI=44.1kHz/48kHz 113 dB FSO/FSI=44.1kHz/96kHz 113 dB FSO/FSI=48kHz/44.1kHz 113 dB FSO/FSI=48kHz/96kHz 113 dB FSO/FSI=48kHz/8kHz 109 112 dB FSO/FSI=8kHz/48kHz 113 dB FSO/FSI=8kHz/44.1kHz 113 dB Dynamic Range (Input= 1kHz, -60dBFS, A-weighted FSO/FSI=44.1kHz/48kHz 115 dB Ratio between Input and Output Sample Rate FSO/FSI 0.167 6 MS1337-E-00 2011/11 - 14- [AK7782] DC CHARACTERISTICS (Ta=-40°C~85°C, AVDD=DVDD=3.0~3.6V, DVDD18=1.7~1.9V) Parameter Symbol min High Level Input Voltage Note 19) VIH 80%DVDD Low Level Input Voltage Note 19) VIL SCL, SDA High Level Input Voltage VIH 70%DVDD SCL, SDA Low Level Input Voltage VIL VOH DVDD-0.5 High Level Output Voltage Iout=-100μA VOL Low Level Output Voltage Iout=100μA Note 20) SDA Low Level Output Voltage Iout=3mA VOL Input Leak Current Note 21) Iin Input Leak Current (pull-down pin) Note 22) Iid Input Leak Current (XTI pin) Iix typ max Unit V 20%DVDD V V 30%DVDD V V 0.5 V 0.4 V ±10 μA 22 μA 26 μA Note 19. Except for the SDA pin and the SCL pin (when I2CSEL= “1”). The SCLK pin is included when I2CSEL = “0”. Note 20. Except for the SDA pin. Note 21. Except for the XTI pin and pull-down pins. Note 22. Pull-down pins (typ. 150kΩ) are the TESTI1 and TESTI2 pins. POWER CONSUMPTION (Ta=25°C, AVDD=DVDD=3.0~3.6V(typ=3.3V, max=3.6V), DVDD18=1.7~1.9V(typ=1.8V, max=1.9V)) Parameter min typ max Unit Power Supply Current (Note 23) 1) a) AVDD 52 70 mA b) DVDD 8 15 mA c) DVDD18 140 210 mA Note 23. The current of DVDD18 changes depending on the system frequency and contents of the DSP program. MS1337-E-00 2011/11 - 15- [AK7782] DIGITAL FILTER CHARACTERISTICS 1) ADC1, ADC2 (Ta=-40°C~85°C; AVDD=DVDD=3.0~3.6V; DVDD18=1.7~1.9V; fs=48kHz (Note 24)) Parameter Symbol min typ max Unit Passband (±0.005dB) (Note 25) PB 0 21.5 kHz (-0.02dB) 21.768 kHz (-6.0dB) 23.99 kHz Stopband SB 26.54 kHz Passband Ripple (Note 25) PR ±0.005 dB Stopband Attenuation (Note 26, Note 27) SA 80 dB Group Delay Distortion 0 ΔGD μs Group Delay (Ts=1/fs) GD 29 Ts Digital Delay Filter + Analog Filter Amplitude Characteristics 20Hz~20.0kHz ±0.01 dB Note 24. Frequency of each amplitude characteristic is in proportion to fs (sampling rate). The characteristic of the high pass filter is not included. Note 25. The passband is from DC to 21.5kHz when fs=48kHz. Note 26. The stopband is from 26.5kHz to 3.0455MHz when fs = 48kHz. Note 27. When fs = 48 kHz, the analog modulator samples the analog input at 3.072MHz. There is no attenuation of an input signal in band of integer times (n x 3.072MHz ± 21.99kHz; n=0, 1, 2, 3…) of the sampling frequency by the digital filter. 2) ADCM (Ta=-40°C ~85°C; AVDD=DVDD=3.0~3.6V; DVDD18=1.7~1.9V fs=48kHz; (Note 24)) Parameter Symbol min typ max Unit Passband (±0.005dB) (Note 25) PB 0 21.5 kHz (-0.02dB) 21.768 kHz (-6.0dB) 23.99 kHz Stopband SB 26.54 kHz Passband Ripple (Note 25) PR ±0.005 dB Stopband Attenuation (Note 26, Note 27) SA 80 dB Group Delay Distortion 0 ΔGD μs Group Delay (Ts=1/fs) (Note 28) GD 29 Ts Digital Delay Filter + Analog Filter Amplitude Characteristics 20Hz~20.0kHz ±0.1 dB Note 24. Frequency of each amplitude characteristic is in proportion to fs (sampling rate). The characteristic of the high pass filter is not included. Note 25. The passband is from DC to 21.5kHz when fs=48kHz. Note 26. The stopband is from 26.5kHz to 3.0455MHz when fs = 48kHz. Note 27. When fs = 48 kHz, the analog modulator samples the analog input at 3.072MHz. There is no attenuation of an input signal in band of integer times (n x 3.072MHz ± 21.99kHz; n=0, 1, 2, 3…) of the sampling frequency by the digital filter. Note 28. 1Ts additional delay occurs in VOL + MUX path. MS1337-E-00 2011/11 - 16- [AK7782] 3) SRC (Common for SRC1 and SRC2) (Ta=-40°C ~85°C; AVDD=DVDD=3.0~3.6V, DVDD18=1.7~1.9V) Parameter Symbol min typ max Passband -0.01dB 0.980≤FSO/FSI≤6.000 PB 0 0.4583FSI 0.900≤FSO/FSI<0.990 PB 0 0.4167FSI 0.533≤FSO/FSI<0.909 PB 0 0.2182FSI 0.490≤FSO/FSI<0.539 PB 0 0.2177FSI 0.450≤FSO/FSI<0.495 PB 0 0.1948FSI 0.225≤FSO/FSI<0.455 PB 0 0.0917FSI 0.167≤FSO/FSI<0.227 PB 0 0.0917FSI Stopband 0.980≤FSO/FSI≤6.000 SB 0.5417FSI 0.900≤FSO/FSI<0.990 SB 0.5021FSI 0.533≤FSO/FSI<0.909 SB 0.2974FSI 0.490≤FSO/FSI<0.539 SB 0.2812FSI 0.450≤FSO/FSI<0.495 SB 0.2604FSI 0.225≤FSO/FSI<0.455 SB 0.1573FSI 0.167≤FSO/FSI<0.227 SB 0.1354FSI Passband Ripple 0.225≤FSO/FSI≤6.000 PR ±0.01 0.167≤FSO/FSI<0.227 PR ±0.0612 Stopband Attenuation 0.450≤FSO/FSI≤6.000 SA 95.2 0.167≤FSO/FSI<0.455 SA 92.3 Group Delay (Ts=1/fs) (Note 29) GD 56 Note 29. SRC delay time is calculated from the rising edge of SRCLRCK just after data input to the rising edge of LRCLKO just after data output, when there is no phase difference between SRCLRCK and LRCLKO. MS1337-E-00 Unit kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz dB dB dB dB Ts 2011/11 - 17- [AK7782] SWITCHING CHARACTERISTICS [#h indicates hexadecimal numbers. (#=0, 1, 2 ~ 9, A, B, C, D, E, F)] 1) System Clock (Ta=-40°C~85°C, AVDD=DVDD=3.0~3.6V, DVDD18=1.7~1.9V) Parameter Symbol min XTI CKM[2:0] 0h, 1h, 2h, 3h a) with a Crystal Oscillator CKM[2:0]=0h, 2h fXTI CKM[2:0]=1h, 3h fXTI b) with an External Clock Duty Cycle CKM[2:0]=0h, 2h CKM[2:0]=1h, 3h LRCLKI Frequency (Note 30) fXTI fXTI fs 40 11.0 16.5 7.35 typ 11.2896 12.288 16.9344 18.432 50 48 BITCLKI Frequency High Level Width tBCLKH 64 Low Level Width tBCLKL 64 fBCLK 64 a) CKM[2:0]=2h, 3h Duty Cycle 40 50 CKM[2:0]=2h, 3h 0.23 b) CKM[2:0]=4h, 5h (Note 31) 64 fBCLK Duty Cycle 40 50 CKM[2:0]=4h fBCLK 2.75 CKM[2:0]=5h fBCLK 5.5 Note 30. LRCLK frequency and sampling rate (fs) should be the same. Note 31. BITCLKI is a source of master clock. It should be 64 times fs correctly. (Ta=-40°C ~85°C, AVDD=DVDD=3.0~3.6V, DVDD18=1.7~1.9V) Parameter Symbol min SRCLRCK Frequency (Note 30) fs 7.35 SRCBICK Frequency High Level Width Low Level Width (Note 32) Duty Cycle 64 64 32 40 0.23 Note 30. LRCLK frequency and sampling rate (fs) should be the same. Note 32. The maximum value 128fs is achieved when fs ≤ 48kHz. typ 48 tBCLKH tBCLKL fBCLK MS1337-E-00 max 50 Unit MHz MHz 60 12.4 18.6 96 % MHz MHz kHz 60 3.1 6.2 ns ns fs % MHz fs % MHz MHz max 96 Unit kHz 128 60 6.2 ns ns fs % MHz 60 6.2 2011/11 - 18- [AK7782] 2) Reset (Ta=-40°C ~85°C, AVDD=DVDD=3.0~3.6V; DVDD18=1.7~1.9V) Parameter Symbol min INITRSTN (Note 33) tRST 600 PCKRSTN tRST 600 PADRSTN tRST 600 PDSPRSTN tRST 600 PSRCRSTN tRST 600 Note 33. The INITRSTN pin must be “L” when power-up the AK7782. typ max Unit ns ns ns ns ns 3) Audio Interface 3-1) SDIN1~ SDIN7, SDOUT1~ SDOUT7 and SDOUTA1 (supports up to fs=96kHz) MSB, LSB justified and I2S Compatible Format (Ta=-40°C ~85°C, AVDD=DVDD=3.0~3.6V, DVDD18=1.7~1.9V, CL=20pF) Parameter Symbol Slave Mode CKM[2:0]=2h, 3h, 4h, 5h Delay Time from BITCLKI “↑” to LRCLKI (Note 34) tBLRD Delay Time from LRCLKI to BITCLKI “↑” (Note 34) tLRBD Delay Time from LRCLKI/O to Serial Data Output tLRD Delay Time from BITCLKI/O to Serial Data Output tBSOD Serial Data Input Latch Setup Time tBSIDS Serial Data Input Latch Hold Time tBSIDH Master Mode CKM[2:0]=0h, 1h BITCLKO Frequency fBCLK BITCLKO Duty Cycle Delay Time from BITCLKI “↓” to LRCLKO tMBL Delay Time from LRCLKO to Serial Data Output tLRD Delay Time from BITCLKO to Serial Data Output tBSOD Serial Data Input Latch Setup Time tBSIDS Serial Data Input Latch Hold Time tBSIDH Note 34. BITCLKI edge must not occur at the same time as LRCLKI edge. min typ max Unit 40 40 ns ns ns ns ns ns 20 20 40 40 64 50 -20 40 40 40 40 40 fs % ns ns ns ns ns 3-2) SDIN1 and SDIN5 (SRC1I and SRC2I Inputs) (supports up to fs=96kHz) (Ta=-40°C ~85°C, AVDD=DVDD=3.0~3.6V, DVDD18=1.7~1.9V) Parameter Symbol min Slave Mode Delay Time from SRCBICK1 “↑” to SRCLRCK1 (Note 35) tBLRD 20 Delay Time from SRCLRCK1 to SRCBICK1 “↑” (Note 35) tLRBD 20 Serial Data Input Latch Setup Time tBSIDS 40 Serial Data Input Latch Hold Time tBSIDH 40 Note 35. SRCBICK1 edge must not occur at the same time as SRCLRCK1 edge. MS1337-E-00 typ max Unit ns ns ns ns 2011/11 - 19- [AK7782] 4) Microprocessor Interface (Ta=-40°C ~85°C, AVDD=DVDD=3.0~3.6V; DVDD18=1.7~1.9V, CL=20pF) Parameter Symbol min Microprocessor Interface Signal SCLK Frequency fSCLK SCLK Low Level Width tSCLKL 200 SCLK High Level Width tSCLKH 200 Microprocessor → AK7782 Time from PDSPRSTN, PADRSTN“↓” to RQN“↓” tREW 500 Time from RQN“↑” to PDSPRSTN, PADRSTN“↑” tWRE 500 RQN High Level Width tWRQH 500 Time from RQN“↓” to SCLK“↓” tWSC 500 Time from SCLK“↑” to RQN“↑” tSCW 800 SI Latch Setup Time tSIS 200 SI Latch Hold Time tSIH 200 AK7782 ← Microprocessor Delay Time from SCLK “↓” to SO Output tSOS Delay Time from SCLK “↑” to SO Output tSOH 200 Time from RQN “↓” to SO Hi-Z Release tRQHR (Iout=±360μA) Time from RQN “↑” to SO Hi-Z set (Iout=±360μA) tRQHS MS1337-E-00 typ max Unit 2.1 MHz ns ns ns ns ns ns ns ns ns 200 ns ns 600 ns 600 ns 2011/11 - 20- [AK7782] 5) I2C-BUS Interface (Ta=-40°C ~85°C, AVDD=DVDD=3.0~3.6V, DVDD18=1.7~1.9V) Parameter Symbol I2C Timing SCL clock frequency fSCL Bus Free Time Between Transmissions tBUF Start Condition Hold Time (prior to first Clock pulse) tHD:STA Clock Low Time tLOW Clock High Time tHIGH Setup Time for Repeated Start Condition tSU:STA min max tHD:DAT 0 SDA Setup Time from SCL Rising Rise Time of Both SDA and SCL Lines tSU:DAT tR 0.1 Fall Time of Both SDA and SCL Lines tF Setup Time for Stop Condition Pulse Width of Spike Noise Suppressed By Input Filter Capacitive load on bus tSU:STO tSP 0.6 0 Unit 400 kHz μs μs μs μs μs 0.9 μs 0.3 μs μs 0.3 μs 50 μs ns 400 pF 1.3 0.6 1.3 0.6 0.6 SDA Hold Time from SCL Falling Cb typ 2 Note 36. I C-bus is a trademark of NXP B.V. MS1337-E-00 2011/11 - 21- [AK7782] ■ Timing Diagram 1) System Clock 1/fXTI 1/fXTI tXTI=1/fXTI VIH XTI VIL 1/fs ts=1/fs 1/fs VIH LRCLKI SRCLRCK VIL 1/fBCLK 1/fBCLK tBCLK=1/fBCLK VIH BITCLKI SRCBICK VIL tBCLKH tBCLKL Figure 3. System Clock 2) Reset INITRSTN PCKRSTN tRST PADRSTN VIL PDSPRSTN PSRCRSTN Figure 4. Reset MS1337-E-00 2011/11 - 22- [AK7782] 3) Audio Interface LRCLKI 50%DVDD LRCLKO tBLRD tMB tMBL tLRBD BITCLKI 50%DVDD BITCLKO tLRD tBSOD SDOUT * 50%DVDD tBSIDS tBSIDH SDIN * 50%DVDD SDIN * =SDIN1, SDIN2, SDIN3, SDIN4, SDIN5, SDIN6, SDIN7 SDOUT * =SDOUT1, SDOUT2, SDOUT3, SDOUT4, SDOUT5, SDOUT6, SDOUT7, SDOUTA1 Figure 5. Standard / I2C Compatible Format SRCLRCK SRCLRCK2 50%DVDD tBLRD tLRBD 50%DVDD SRCBICK SRCBICK2 tBSIDS SRCI= SDIN1,SDIN5 tBSIDH 50%DVDD Figure 6. SRC MS1337-E-00 2011/11 - 23- [AK7782] 4) Microprocessor Interface VIH VIL RQN VIH VIL SCLK tSCLKL tSCLKH 1/fSCLK 1/fSCLK Figure 7. Microprocessor Interface Signal tWRE tREW PDSPRSTN VIL PADRSTN VIH VIL tWRQH RQN tWSC VIH SI VIL tSIS tSIH VIH VIL SCLK tSCW tWSC tSCW Figure 8. Microprocessor → AK7782 VIH VIL SCLK VIH SO VIL tSOS tSOH Figure 9. AK7782 → Microprocessor Note 37. The timing diagram during RUN state is identical except PDSPRSTN and PASRSTN are “H”. MS1337-E-00 2011/11 - 24- [AK7782] VIH VIL RQN tRQHS tRQHR Hi-Z SO Figure 10. SO Output Timing 5) I2C-bus Interface VIH SDA VIL tBUF tLOW tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT Start tSU:STA tSU:STO Start Stop Figure 11. I2C-bus Interface MS1337-E-00 2011/11 - 25- [AK7782] OPERATION OVERVIEW ■ Pin Settings 1. CKM[2:0] Clock Mode Select Pin Master/Slave mode switching, MCLK/ICLK (internal master clock/generating clock) clock source pin select, and ICLK frequency change are controlled by CKM [2:0] clock mode select pins. CKM[2:0] pins can only be set during initial reset or clock reset. CKM CKM Master MCLK Input frequency for MCLK Input pin(s) required for Use of crystal Mode [2:0] Slave source generating clock (ICLK) system clock oscillator 0 000 Master XTI 12.288MHz (Note 38) XTI Available 1 001 Master XTI 18.432MHz (Note 38) XTI Available 2 010 Slave XTI 12.288MHz (Note 38) XTI, BITCLKI, LRCLKI Available 3 011 Slave XTI 18.432MHz (Note 38) XTI, BITCLKI, LRCLKI Available 4 100 Slave BITCLKI 64fs(fs=48,44.1kHz) BITCLKI, LRCLKI 5 101 Slave BITCLKI 64fs(fs=96,88.2kHz) BITCLKI, LRCLKI 6 110 TEST N/A N/A N/A 7 111 TEST N/A N/A N/A Note 38. On operating fs=44.1kHz series, multiply 44.1/48. (11.2896MHz in Mode 0 or 2, 16.9344MHZ in Mode 1 or 3) Note 39. CKM modes 6 and 7 are for testing purpose only. These modes cannot be used. Note 40. Sampling Frequency (fs) for CKM Mode 0~3 are set by control register CONT00. Note 41. In CKM Mode is 2 or 3, XTI and LRCLKI must be synchronized, but the phase between these clocks is not important. Note 42. fs is fixed in CKM Modes 4 and 5. Control register settings are ignored. Note 43. In CKM mode 4 or 5, 64-times clock of LRCLKI frequency must be input to BITCLKI. BITCLKI and LRCLKI must be synchronized. [Description rule] Regarding the input / output levels in this datasheet, the low level is represented as “L” and the high level is represented as “H”. The registers or bus pins (such as CKM[2:0] is represented “0” and “1”. ##h indicates hexadecimal numbers. (# = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) MS1337-E-00 2011/11 - 26- [AK7782] CKM Mode 0/1/2/3 ICLK XTI pin Divider REFCLK MCLK PLL (MCLK source) ICLK BITCLKI pin CKM Mode 4/5 Divider REFCLK MCLK PLL (MCLK source) MCLK 122.88MHz or 112.896MHz Figure 12. Relationship between MCLK Generating Clock (ICLK) MCLK 1-1. Master Mode (CKM Mode 0/1) CKM Mode 0 1 CKM [2:0] 000 001 XTI fs: 48kHz 12.288MHz 18.432MHz fs: 44.1kHz 11.2896MHz 16.9344MHz fs: sampling frequency Input frequency range Use of crystal (MHz) oscillator 11.0~12.4 Available 16.7~18.6 Available Input system clock to the XTI pin. The internal counter which is synchronized to XTI generates LRCLKO (1fs) and BITCLKO (64fs). LRCLKO and BITCLKO are not output during initial reset state (INITRSTN pin= “L”) and system reset state. When the LRCLKI and BITCLKI pins are not used, input “L” level (VSS3) to these pins. The system clock for the AK7782 can be supplied to the XTI pin by following methods. In CKM mode 0~3, connect a crystal oscillator between XTI and XTO pins, or supply appropriate system clock to the XTI pin. XTI XTI External Clock XTO XTO AK7782 Use of Crystal Oscillator: CKM Mode 0-3 AK7782 Use of External Clock: CKM Mode 0-3 * Sampling rate for CKM Mode 0~3 are set by control register CONT00. MS1337-E-00 2011/11 - 27- [AK7782] 1-2. Slave Mode (using XTI) (CKM Mode 2/3) CKM Mode 2 3 CKM [2:0] 010 011 XTI fs: 48kHz 12.288MHz 18.432MHz fs: 44.1kHz 11.2896MHz 16.9344MHz fs: sampling frequency Input frequency range Use of crystal (MHz) oscillator 11.0~12.4 Available 16.7~18.6 Available Required system clocks are XTI, LRCLKI and BITCLKI. XTI and LRCLKI must be synchronized, but the phase between these clocks is no important. LRCLKI and BITCLKI are directly output to the LRCLKO and BITCLKO pins, respectively. DVD etc. (Master device) XTI LRCLKI BITCLKI Clk Gen. CKM2, 3 LRCLKO BITCLKO DAC etc. (Slave device) AK7782 CLKO MS1337-E-00 2011/11 - 28- [AK7782] 1-3. Slave Mode (BITCLKI Input) (CKM Mode 4/5) In CKM mode 4 or 5, BITCLKI is the master clock source instead of XTI. The master clock (MCLK) is generated from the clock input to BITCLKI by an internal PLL. This clock is multiplied by the internal PLL, therefore 64-times clock (64fs) of LRCLKI frequency must be input to the BITCLKI pin. BITCLKI must be synchronized with LRCLKI. CKM Mode 4 5 CKM [2:0] 100 101 BITCLKI BITCLKI 64fs(fs=48,44.1kHz) 64fs(fs=96,88.2kHz) fs: 48kHz 3.072MHz 6.144MHz fs: sampling frequency Input frequency fs: 44.1kHz range 2.8224MHz 2.75~3.1MHz 5.6448MHz 5.5~6.2MHz XTI 0 1 Divider PLL XTO BITCLKI External Clock MCLK CKM[2:0] “1”: when CKM[2:0]=4h or 5h BITCLK AK7782 Figure 13. Internal Connection Block Diagram • The sampling rate is determined by the CKM [2:0] pin settings. Control Register DFS mode settings (CONT00) are ignored. • In system applications where the AK7782 is used in CKM Modes 4, or 5 only (when XTI is not used), set the XTI pin = “L” (VSS3) 1-4. CKM[2:0] Pin Setting Changing the CKM [2:0] pin setting after power-on must be made during Initial Reset (INITRSTN pin= “L”) or during Clock Reset (INITRSTN pin= “L” → “H”, PCKRSTN pin = “L”, RCKRSTN bit = “0”). MS1337-E-00 2011/11 - 29- [AK7782] 1-5. CKM[2:0] Pin Setting and Input-Output Interface Slave/ Master M M M M M M M M S S S S S S S S S S CKM Mode 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 2,3 4 5 CKM [2:0] 00X 00X 00X 00X 00X 00X 00X 00X 01X 01X 01X 01X 01X 01X 01X 01X 100 101 DFS Mode 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 - DFS [2:0] 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 - fs(kHz) Normal 48, 44.1 Double 96, 88.2 N/A 32, 29.4 12, 11.025 24, 22.05 16, 14.7 8, 7.35 Normal 48,44.1 Double 96,88.2 N/A 32, 29.4 12, 11.025 24, 22.05 16, 14.7 8, 7.35 Normal 48,44.1 Double 96,88.2 BITCLK MSB, LSB justified 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs I2S Compatible 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs 64fs (X: Don’t care) Note 44. DFS mode is set by CONT00 DFS[2:0] (D7, D6, D5) bits. MS1337-E-00 2011/11 - 30- [AK7782] ■ Control Register Setting The AK7782 Control Register is set through a microprocessor interface. All registers are initialized by initial reset (INITRSTN pin = “L”). When power-up the AK7782, initial reset must always be made to determine register settings. W R C0h 40h Name CONT00 C1h 41h CONT01 C2h 42h CONT02 C3h 43h CONT03 C4h 44h CONT04 C5h 45h CONT05 C6h 46h CONT06 C7h 47h CONT07 C8h 48h CONT08 C9h CAh 49h 4Ah CONT09 CONT0A CBh 4Bh CONT0B CCh 4Ch CONT0C CDh 4Dh CONT0D CEh 4Eh CONT0E CFh 4Fh CONT0F D0h D1h 50h 51h CONT10 CONT11 D2h 52h CONT12 D3h 53h CONT13 D4h 54h CONT14 D5h 55h CONT15 D6h 56h CONT16 D7 D6 D5 D4 D3 D2 D1 CLK1S[0] RCK RSTN 00h Reserved Reserved 00h Reserved Reserved 00h P1 WAVP[0] P1 IN1SEL[1] P2 IN1SEL[1] OUT4 SEL[1] P1 EFEN P1 IN1SEL[0] P2 IN1SEL[0] OUT4 SEL[0] MSEL[1] MSEL[0] 00h CLKO1EN 00h OUT1EN BICKOEN 00h 00h TEST 00h TEST 00h TEST 00h TEST 00h TEST 00h TEST MUX[0] 00h 00h Reserved Reserved 00h SRC1 SEMIAUTO SRC2 SEMIAUTO PSADCM SRC1 AUTOSEL SRC2 AUTOSEL Reserved Reserved Reserved DFS[2] DFS[1] DFS[0] DIFI2S CLK1S[2] CLK1S[1] P1 DATARAM P2 DATARAM P2 WAVM P1 IN7SEL[1] P2 IN7SEL[1] OUT7 SEL[1] OUT3 SEL[1] OUTA SEL2[1] OUTAEN P2JX2E P2 WDTEN P1 DIF7 P2 DIF7 P1 DOF7 P2 DOF7 VOL[5] ASEL2[2] SRC2 ISEL[1] SRC1 BIEDGE SRC2 BIEDGE PSDSP2 RSRC2 SMUTE P1 BANK[1] P2 BANK[1] P2 WAVP[1] P1 IN7SEL[0] P2 IN7SEL[0] OUT7 SEL[0] OUT3 SEL[0] OUTA SEL2[0] OUT7EN P2JX1E P1 WDTEN P1 DIF6 P2 DIF6 P1 DOF6 P2 DOF6 VOL[4] ASEL2[1] SRC2 ISEL[0] SRC1 IDIF[2] SRC2 IDIF[2] PSDSP1 RSRC1 SMUTE P1 BANK[0] P2 BANK[0] P2 WAVP[0] P1 IN6SEL[1] P2 IN6SEL[1] OUT6 SEL[1] OUT2 SEL[1] OUTA SEL1[1] OUT6EN P2JX0E P1 POMODE P2 POMODE P2 EFEN P1 IN6SEL[0] P2 IN6SEL[0] OUT6 SEL[0] OUT2 SEL[0] OUTA SEL1[0] OUT5EN P1JX2E SRC2 LOCKE P1 DIFD[2] P2 DIFD[2] P1 DOFD[2] P2 DOFD[2] VOL[2] ASEL1[2] SRC2 CKI[0] SRC1 IDIF[0] SRC2 IDIF[0] PSSRC1 RDSP RSTN P1 SS[1] P2 SS[1] P1 WAVM P1 IN5SEL[1] P2 IN5SEL[1] OUT5 SEL[1] OUT1 SEL[1] P2 IN4SEL OUT4EN P1JX1E SRC1 LOCKE P1 DIFD[1] P2 DIFD[1] P1 DOFD[1] P2 DOFD[1] VOL[1] ASEL1[1] SRC2 CKO[1] SRC1 BIFS[1] SRC2 BIFS[1] PSADC2 RAD RSTN P1 SS[0] P2 SS[0] P1 WAVP[1] P1 IN5SEL[0] P2 IN5SEL[0] OUT5 SEL[0] OUT1 SEL[0] P2 IN3SEL OUT3EN P1JX0E P2 IN2SEL OUT2EN LRCKOEN TEST TEST P1 DIFD[0] P2 DIFD[0] P1 DOFD[0] P2 DOFD[0] VOL[0] ASEL1[0] SRC2 CKO[0] SRC1 BIFS[0] SRC2 BIFS[0] PSADC1 P1 DIF1 P2 DIF1 P1 DOF1 P2 DOF1 TEST MUX[1] Reserved CRCE P1 DIF5 P2 DIF5 P1 DOF5 P2 DOF5 VOL[3] ASEL2[0] SRC2 CKI[1] SRC1 IDIF[1] SRC2 IDIF[1] PSSRC2 RSRC RSTN Default D0 Note 45. Command codes and register settings other than those specified above should not be executed. Note 46. Writing to CONT00 may only be executed during System Reset. Note 47. “0” must be written into Test bits. MS1337-E-00 2011/11 - 31- 00h 00h 00h 00h 00h 00h 00h 00h [AK7782] 1) CONT00: Sampling Rate and Input Interface Select Write during system reset. W R Name D7 C0h 40h CONT00 DFS[2] D6 DFS[1] D5 DFS[0] D4 DIFI2S D3 CLK1S [2] D2 CLK1S [1] D1 CLK1S [0] D0 RCK RSTN Default 00h D7, D6, D5: DFS[2:0] Sampling Rate Setting fs: sampling frequency DFS DFS CKM fs(kHz) fs(kHz) DSP maximum ADC Mode [2:0] Mode 48kHz family 44.1kHz family STEP Operation 0 000 0-3 48 44.1 2560 ○ (default) 1 001 0-3 96 88.2 1280 ○ 2 010 0-3 N/A N/A 3 011 0-3 32 29.4 3840 ○ 4 100 0-3 12 11.025 10240 ○ 5 101 0-3 24 22.05 5120 ○ 6 110 0-3 16 14.7 7680 ○ 7 111 0-3 8 7.35 15360 ○ 4 48 44.1 2560 ○ 5 96 88.2 1280 ○ Note 48. DFS mode is available in CKM mode 0~3. Note 49. Sampling frequencies shown in DFS mode 0~7 can only be selected. Note 50. DFS mode2 is not available. D4: DIFI2S Audio Interface Select 0: MSB, LSB justified (default) 1: I2S Compatible When I2S Compatible mode is selected, all audio interface input and output pins should be set to I2S compatible mode. The AK7782 audio interface setting should be MSB-justified. D3, D2, D1: CLK1S[2:0] CLKO1 Output Clock Select The CLKO1 output is stopped during initial reset and clock reset. During system reset, the CLKO1 output is not stopped, so that a click noise occurs by changing CLK1S mode. CLK1S Mode CLK1S[2:0] fs=48kHz family fs=44.1kHz family 0 000 12.288MHz 11.2896MHz (default) 1 001 6.144MHz 5.6448MHz 2 010 3.072MHz 2.8224MHz 3 011 8.192MHz 7.5264MHz 4 100 4.092MHz 3.7632MHz 5 101 2.048MHz 1.8816MHz 6 110 24.576MHz 22.5792MHz 7 111 XTI XTI XTI signal is output in CLK1S mode 7. D0: RCKRSTN Clock Reset N Register 0: Clock Reset (default) 1: Clock Reset Release Set the PCKRSTN pin to “L” (VSS3) when changing RCKRSTN bit. MS1337-E-00 2011/11 - 32- [AK7782] 2) CONT01: DSP1 RAM Control Write during system reset or DSP reset. W R Name D7 D6 P1 P1 C1h 41h CONT01 DATARAM BANK[1] D5 P1 BANK[0] D7: P1DATARAM DSP1 DATARAM Addressing Select DSP1 DATARAM A(000h-3FFh) 1024word Mode 0 Ring Addressing 1 Ring Addressing Pointer DP0 D6, D5: P1BANK[1:0] DSP1 DLRAM Mode Setting DSP1 DLRAM Mode P1BANK[1:0] Ring 28bit 0 00 6144word 1 01 4096word 2 10 3072word 3 11 3072word D4 P1 POMODE B(400h-7FFh) 1024word Ring Addressing Linear Addressing DP1 Ring 14bit D3 D2 P1 P1 SS[1] SS[0] D1 D0 Default 0 0 00h (default) Linear 28bit (default) 4096word 6144word 3072word D4: P1POMODE DSP1 DLRAM Pointer 0 Select 0: OFRAM (default) 1: DBUS direct D3, D2: P1SS[1:0] DSP1 DLRAM Sampling Setting DSP1 SS Mode P1SS[1:0] Sampling Setting 0 00 Address is updated at every sampling (default) 1 01 Address is updated at every 2 samplings 2 10 Address is updated at every 4 samplings 3 11 Address is updated at every 8 samplings Note 51. When mode 1/2/3 is selected, aliasing noise may be generated. Note 52. Ring 14bit is supported in DSP1 DLRAM mode 1 and 2. (Ring 28bit is supported in DSP1 DLRAM mode 0 and 3) D1: Reserved 0: Normal Operation (default) Write “0” into this bit. D0: Reserved 0: Normal Operation (default) Write “0” into this bit. MS1337-E-00 2011/11 - 33- [AK7782] 3) CONT02: DSP2 RAM Control Write during system reset or DSP reset. W R Name D7 D6 D5 D4 D3 P2 P2 P2 P2 P2 C2h 42h CONT02 DATARAM BANK[1] BANK[0] POMODE SS[1] D7: P2DATARAM DSP2 DATARAM Addressing Select DSP2 DATARAM Mode A(000h-3FFh) 1024word 0 Ring Addressing 1 Ring Addressing Pointer DP0 D6, D5: P2BANK[1:0] DSP2 DLRAM Mode Setting DSP2 DLRAM Mode P2BANK[1:0] Ring 28bit 0 00 6144word 1 01 4096word 2 10 3072word 3 11 3072word D2 P2 SS[0] B(400h-7FFh) 1024word Ring Addressing Linear Addressing DP1 Ring 14bit D1 D0 Default 0 0 00h (default) Linear 28bit (default) 4096word 6144word 3072word D4: P2POMODE DSP2 DLRAM Pointer 0 Select 0: OFRAM (default) 1: DBUS direct D3, D2: P2SS[1:0] DSP2 DLRAM Sampling Setting DSP2 SS Mode P2SS[1:0] Sampling Setting 0 00 Address is updated at every sampling (default) 1 01 Address is updated at every 2 samplings 2 10 Address is updated at every 4 samplings 3 11 Address is updated at every 8 samplings Note 53. When mode 1/2/3 is selected, aliasing noise may be generated. Note 54. Ring 14bit is supported in DSP2 DLRAM mode 1 and 2. (Ring 28bit is supported in DSP2 DLRAM mode 0 and 3) D1: Reserved 0: Normal Operation (default) Write “0” into this bit. D0: Reserved 0: Normal Operation (default) Write “0” into this bit. MS1337-E-00 2011/11 - 34- [AK7782] 4) CONT03 DSP2 & DSP1 RAM Control Write during system reset or DSP reset. W C3h R Name 43h CONT03 D7 P2 WAVM D6 P2 WAVP[1] D5 P2 WAVP[0] D4 P2 EFEN D3 P1 WAVM D2 P1 WAVP[1] D1 P1 WAVP[0] D0 P1 EFEN Default 00h D7: P2WAVM DSP2 CRAM WAV Mode Select 0: 1/4 Mode (default) 1: 1/2 Mode 1/4 mode has an advantage of CRAM memory size but calculation precision drops down. D6, D5: P2WAVP[1:0] DSP2 CRAM Memory Assignment DSP2 WAVP Mode P2WAVP[1:0] P2WAVM bit = “0” 0 00 33word 1 01 65word 2 10 129word 3 11 257word P2WAVM bit = “1” 65word 129word 257word 513word Number of FFT Point 128 256 512 1024 (default) D4: P2EFEN DSP2 Instruction EF, SJ and IN Enable 0: EF, SJ, IN Disable (default) 1: EF, SJ, IN Enable D3: P1WAVM DSP1 CRAM WAV Mode Select 0: 1/4 Mode (default) 1: 1/2 Mode 1/4 mode has an advantage of CRAM memory size but calculation precision drops down. D2, D1: P1WAVP[1:0] DSP1 CRAM Memory Assignment DSP1 WAVP Mode P1WAVP[1:0] P1WAVM bit = “0” 0 00 33word 1 01 65word 2 10 129word 3 11 257word P1WAVM bit = “1” 65word 129word 257word 513word Number of FFT Point 128 256 512 1024 (default) D0: P1EFEN DSP1 Instruction EF, SJ and IN Enable 0: EF, SJ, IN Disable (default) 1: EF, SJ, IN Enable MS1337-E-00 2011/11 - 35- [AK7782] 5) CONT04 DSP1 Input Select Write during system reset or DSP reset. W R Name D7 D6 P1IN7 P1IN7 C4h 44h CONT04 SEL[1] SEL[0] D5 P1IN6 SEL[1] D4 P1IN6 SEL[0] D7, D6: P1IN7SEL[1:0] DSP1 SDIN7 Input Select DSP1 IN7SEL Mode P1IN7SEL[1:0] DSP1 SDIN7 0 00 ADC2 1 01 SDIN7/JX2 pin 2 10 SRC1O 3 11 ADCM D5, D4: P1IN6SEL[1:0] DSP1 SDIN6 Input Select DSP1 IN6SEL Mode P1IN6SEL[1:0] DSP1 SDIN6 0 00 ADC1 1 01 SDIN6/JX1 pin 2 10 ADCM 3 11 SRC1O D3, D2: P1IN5SEL[1:0] DSP1 SDIN5 Input Select DSP1 IN5SEL Mode P1IN5SEL[1:0] DSP1 SDIN5 0 00 SDIN5 pin 1 01 SRC2O 2 10 ADC1 3 11 ADCM D1, D0: P1IN1SEL[1:0] DSP1 SDIN1 Input Select DSP1 IN1SEL Mode P1IN1SEL[1:0] DSP1 SDIN1 0 00 SDIN1 pin 1 01 SRC1O 2 10 SRC2O 3 11 ADC2 MS1337-E-00 D3 P1IN5 SEL[1] D2 P1IN5 SEL[0] D1 P1IN1 SEL[1] D0 P1IN1 SEL[0] Default 00h (default) (default) (default) (default) 2011/11 - 36- [AK7782] 6) CONT05 DSP2 Input Select Write during system reset or DSP reset. W R Name D7 D6 P2IN7 P2IN7 C5h 45h CONT05 SEL[1] SEL[0] D5 P2IN6 SEL[1] D7, D6: P2IN7SEL[1:0] DSP2 SDIN7 Input Select DSP2 IN7SEL Mode P2IN7SEL[1:0] DSP2 SDIN7 0 00 ADC2 1 01 SDIN7/JX2 pin 2 10 SRC1O 3 11 DSP1 SDOUT7 D5, D4: P2IN6SEL[1:0] DSP2 SDIN6 Input Select DSP2 IN6SEL Mode P2IN6SEL[1:0] DSP2 SDIN6 0 00 ADC1 1 01 SDIN6/JX1 pin 2 10 ADCM 3 11 DSP1 SDOUT6 D3, D2: P2IN5SEL[1:0] DSP2 SDIN5 Input Select DSP2 IN5SEL Mode P2IN5SEL[1:0] DSP2 SDIN5 0 00 SDIN5 pin 1 01 SRC2O 2 10 ADC1 3 11 DSP1 SDOUT5 D1, D0: P2IN1SEL[1:0] DSP2 SDIN1 Input Select DSP2 IN1SEL Mode P1IN2SEL[1:0] DSP2 SDIN1 0 00 SDIN1 pin 1 01 SRC1O 2 10 SRC2O 3 11 DSP1 SDOUT1 MS1337-E-00 D4 P2IN6 SEL[0] D3 P2IN5 SEL[1] D2 P2IN5 SEL[0] D1 P2IN1 SEL[1] D0 P2IN1 SEL[0] Default 00h (default) (default) (default) (default) 2011/11 - 37- [AK7782] 7) CONT06 Output Pin Select Write during system reset or DSP reset. W R Name D7 D6 OUT7 OUT7 C6h 46h CONT06 SEL[1] SEL[0] D5 OUT6 SEL[1] D4 OUT6 SEL[0] D7, D6: OUT7SEL[1:0] SDOUT7 pin Output Select OUT7SEL Mode OUT7SEL[1:0] SDOUT7 pin 0 00 DSP1 SDOUT7 1 01 DSP2 SDOUT7 2 10 ADCM 3 11 SRC2O D5, D4: OUT6SEL[1:0] SDOUT6 pin Output Select OUT6SEL Mode OUT6SEL[1:0] SDOUT6 pin 0 00 DSP1 SDOUT6 1 01 DSP2 SDOUT6 2 10 ADC1 3 11 ADC2 D3, D2: OUT5SEL[1:0] SDOUT5 pin Output Select OUT5SEL Mode OUT5SEL[1:0] OUT5SEL Output 0 00 DSP1 SDOUT5 1 01 DSP2 SDOUT5 2 10 DSP1 IRPT 3 11 DSP2 IRPT D1, D0: OUT4SEL[1:0] SDOUT4 pin Output Select OUT4SEL Mode OUT4SEL[1:0] OUT4SEL Output 0 00 DSP1 SDOUT4 1 01 DSP2 SDOUT4 2 10 DSP1 GPO1 3 11 DSP2 GPO1 MS1337-E-00 D3 OUT5 SEL[1] D2 OUT5 SEL[0] D1 OUT4 SEL [1] D0 OUT4 SEL[0] Default 00h (default) (default) (default) (default) 2011/11 - 38- [AK7782] 8) CONT07 Output Pin Select Write during system reset or DSP reset. W R Name D7 D6 OUT3 OUT3 C7h 47h CONT07 SEL[1] SEL[0] D5 OUT2 SEL[1] D4 OUT2 SEL[0] D7, D6: OUT3SEL[1:0] SDOUT3 pin Output Select OUT3SEL Mode OUT3SEL[1:0] SDOUT3 pin 0 00 DSP1 SDOUT3 1 01 DSP2 SDOUT3 2 10 DSP1 GPO0 3 11 DSP2 GPO0 D5, D4: OUT2SEL[1:0] SDOUT2 pin Output Select OUT2SEL Mode OUT2SEL[1:0] SDOUT2 pin 0 00 DSP1 SDOUT2 1 01 DSP2 SDOUT2 2 10 MUXOUT 3 11 SRC2O D3, D2: OUT1SEL[1:0] SDOUT1 pin Output Select OUT1SEL Mode OUT1SEL[1:0] OUT1SEL Output 0 00 DSP1 SDOUT1 1 01 DSP2 SDOUT1 2 10 MUXOUT 3 11 SRC1O D1, D0: MSEL[1:0] MUX Source Select MSEL Mode MSEL[1:0] 0 00 1 01 2 10 3 11 MSELOUT DSP1 SDOUT1 DSP1 SDOUT5 DSP2 SDOUT1 DSP2 SDOUT5 MS1337-E-00 D3 OUT1 SEL[1] D2 OUT1 SEL[0] D1 MSEL [1] D0 Default MSEL[0] 00h (default) (default) (default) (default) 2011/11 - 39- [AK7782] 9) CONT08 SDOUTA Output Select, DSP2 Input Select Write during system reset or DSP reset. W R Name D7 D6 OUTA OUTA C8h 48h CONT08 SEL2[1] SEL2[0] D5 OUTA SEL1[1] D4 D3 D2 D1 OUTA P2 P2 P2 SEL1[0] IN4SEL IN3SEL IN2SEL D7, D6: OUTASEL2[1:0] SDOUTA pin Output Select 2 OUTASEL2 Mode OUTASEL2[1:0] SDOUTA pin 0 00 OUTASEL1 Output 1 01 SRC2O 2 10 DSP1 SDOUT7 3 11 DSP1 SDOUT7 D5, D4: OUTASEL1[1:0] SDOUTA pin Output Select 1 OUTASEL1 Mode OUTASEL1[1:0] OUTASEL1 Output 0 00 MUXOUT 1 01 ADC1 2 10 ADC2 3 11 SRC1O D0 CLKO1 EN Default 00h (default) (default) D3: P2IN4SEL DSP2 SDIN4 Input Select 0: SDIN4 pin (default) 1: DSP1 SDOUT4 D2: P2IN3SEL DSP2 SDIN3 Input Select 0: SDIN3 pin (default) 1: DSP1 SDOUT3 D1: P2IN2SEL DSP2 SDIN2 Input Select 0: SDIN2 pin (default) 1: DSP1 SDOUT2 D0: CLKO1EN 0: CLKO1 Output Enable (default) 1: CLKO1 pin= “L” MS1337-E-00 2011/11 - 40- [AK7782] 10) CONT09: Output Enable Setting Write during system reset or DSP reset. W R Name D7 D6 C9h 49h CONT09 OUTAEN OUT7EN D5 OUT6EN D4 D3 OUT5EN OUT4EN D2 D1 D0 OUT3EN OUT2EN OUT1EN Default 00h D7: OUTAEN 0: SDOUTA Output Enable (default) 1: SDOUTA pin= “L” D6: OUT7EN 0: SDOUT7 Output Enable (default) 1: SDOUT7 pin= “L” D5: OUT6EN 0: SDOUT6 Output Enable (default) 1: SDOUT6 pin= “L” D4: OUT5EN 0: SDOUT5 Output Enable (default) 1: SDOUT5 pin= “L” D3: OUT4EN 0: SDOUT4 Output Enable (default) 1: SDOUT4 pin= “L” D2: OUT3EN 0: SDOUT3 Output Enable (default) 1: SDOUT3 pin= “L” D1: OUT2EN 0: SDOUT2 Output Enable (default) 1: SDOUT2 pin= “L” D0: OUT1EN 0: SDOUT1 Output Enable (default) 1: SDOUT1 pin= “L” MS1337-E-00 2011/11 - 41- [AK7782] 11) CONT0A: JX Enable Setting, LRCLKO and BITCLKO Output Enable Setting Write during system reset or DSP reset. W R Name D7 D6 P2 P2 CAh 4Ah CONT0A JX2E JX1E D7: P2JX2E DSP2 JX2 Select 0: DSP2 JX2 Setting Disable 1: DSP2 JX2 Setting Enable (default) D6: P2JX1E DSP2 JX1 Select 0: DSP2 JX1 Setting Disable 1: DSP2 JX1 Setting Enable (default) D5: P2JX0E DSP2 JX0 Select 0: DSP2 JX0 Setting Disable 1: DSP2 JX0 Setting Enable (default) D4: P1JX2E DSP1 JX2 Select 0: DSP1 JX2 Setting Disable 1: DSP1 JX2 Setting Enable (default) D3: P1JX1E DSP1 JX1 Select 0: DSP1 JX1 Setting Disable 1: DSP1 JX1 Setting Enable (default) D2: P1JX0E DSP1 JX0 Select 0: SP1 JX0 Setting Disable 1: DSP1 JX0 Setting Enable (default) D5 P2 JX0E D4 P1 JX2E D3 P1 JX1E D2 D1 D0 Default P1 LRCKOEN BICKOEN 00h JX0E D1: LRCKOEN 0: LRCLKO Output Enable (default) 1: LRCLKO pin= “L” D0: BICKOEN 0: BITCLKO Output Enable (default) 1: BITCLKO pin= “L” MS1337-E-00 2011/11 - 42- [AK7782] 12) CONT0B: DSP Block Setting Write during system reset or DSP reset. W R Name CBh 4Bh CONT0B D7 P2 WDTEN D6 P1 WDTEN D5 CRCE D4 SRC2 LOCKE D3 SRC1 LOCKE D2 D1 D0 TEST TEST TEST Default 00h D7: P2WDTEN 0: DSP2 WDT Enable (default) 1: DSP2 WDT Disable WDT: Watch dog timer D6: P1WDTEN 0: DSP1 WDT Enable (default) 1: DSP1 WDT Disable D5: CRCE 0: CRC Disable (default) 1: CRC Enable D4: SRC2LOCKE 0: SRC2LOCK Disable 1: SRC2LOCK Enable (default) D3: SRC1LOCKE 0: SRC1LOCK Disable 1: SRC1LOCK Enable (default) D3, D2, D1: TEST 000: Normal Operation 001-111: Not Available (default) MS1337-E-00 2011/11 - 43- [AK7782] 13) CONT0C: DSP1 Input Interface Select Write during system reset or DSP reset. W R Name D7 D6 P1 P1 CCh 4Ch CONT0C DIF7 DIF6 D5 P1 DIF5 D4 P1 DIFD[2] D3 P1 DIFD[1] D2 P1 DIFD[0] D1 P1 DIF1 D0 Default TEST 00h D7: P1DIF7 DSP1 SDIN7 Input Format Select P1DIF7 Mode P1DIF7 Input Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point Note 55. Set P1DIF7 mode to 0 when DSP1 SDIN7 is connected to ADC2, ADCM or SRC1O. D6: P1DIF6 DSP1 SDIN6 Input Format Select P1DIF6 Mode P1DIF6 Input Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point Note 56. Set P1DIF6 mode to 0 when DSP1 SDIN6 is connected to ADC1, ADCM or SRC1O. D5: P1DIF5 DSP1 SDIN5 Input Format Select P1DIF5 Mode P1DIF5 Input Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point Note 57. Set P1DIF5 mode to 0 when DSP1 SDIN5 is connected to ADC1, ADCM or SRC2O. D4, D3, D2: P1DIFD[2:0] DSP1 SDIN4, DSP1 SDIN3, DSP1 SDIN2 Input Format Select P1DIFD Mode P1DIFD Input Format 0 000 MSB (24bit) (default) 1 001 LSB 24bit 2 010 LSB 20bit 3 011 LSB 16bit 4 100 MSB F24.4 floating point 5 101 MSB 32bit 6 110 N/A 7 111 N/A Note 58. Set P1DIFD mode to 0 in I2S compatible mode (DIFI2S bit = “1”). D1: P1DIF1 DSP1 SDIN1 Input Format Select P1DIF1 Mode P1DIF1 Input Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point Note 59. Set P1DIF1 mode to 0 when DSP1 SDIN1 is connected to ADC2, SRC1O or SRC2O. D0: TEST 0: Normal Operation 1: Not Available MS1337-E-00 2011/11 - 44- [AK7782] 14) CONT0D: DSP2 Input Interface Select Write during system reset or DSP reset. W R Name D7 D6 P2 P2 CDh 4Dh CONT0D DIF7 DIF6 D5 P2 DIF5 D4 D3 D2 P2 P2 P2 DIFD[2] DIFD[1] DIFD[0] D1 P2 DIF1 D0 TEST Default 00h D7: P2DIF7 DSP2 SDIN7 Input Format Select P2DIF7 Mode P2DIF7 Input Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point Note 60. Set P2DIF7 mode to 0 when DSP2 SDIN7 is connected to ADC2 or SRC1O. D6: P2DIF6 DSP2 SDIN6 Input Format Select P2DIF6 Mode P2DIF6 Input Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point Note 61. Set P2DIF6 mode to 0 when DSP2 SDIN6 is connected to ADC1 or ADCM. D5: P2DIF5 DSP2 SDIN5 Input Format Select P2DIF5 Mode P2DIF5 Input Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point Note 62. Set P2DIF5 mode to 0 when DSP2 SDIN5 is connected to ADC1 or SRC2O. D4, D3, D2: P2DIFD[2:0] DSP2 SDIN4, DSP2 SDIN3, DSP2 SDIN2 Input Format Select P2DIFD Mode P2DIFD Input Format 0 000 MSB (24bit) (default) 1 001 LSB 24bit 2 010 LSB 20bit 3 011 LSB 16bit 4 100 MSB F24.4 floating point 5 101 MSB 32bit 6 110 N/A 7 111 N/A Note 63. Set P2DIFD mode to 0 in I2S compatible mode (DIFI2S bit = “1”). D1: P2DIF1 DSP2 SDIN1 Input Format Select P2DIF1 Mode P2DIF1 Input Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point Note 64. Set P2DIF1 mode to 0 when DSP2 SDIN1 is connected to SRC1O or SRC2O. D0: TEST 0: Normal Operation 1: Not Available (default) MS1337-E-00 2011/11 - 45- [AK7782] 15) CONT0E: DSP1 Output Interface Select Write during system reset or DSP reset. W R Name D7 D6 P1 P1 CEh 4Eh CONT0E DOF7 DOF6 D5 P1 DOF5 D4 P1 DOFD[2] D3 P1 DOFD[1] D2 P1 DOFD[0] D1 P1 DOF1 D0 Default TEST 00h D7: P1DOF7 DSP1 SDOUT7 Output Format Select P1DOF7 Mode P1DOF7 Output Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point D6: P1DOF6 DSP1 SDOUT6 Output Format Select P1DOF6 Mode P1DOF6 Output Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point D5: P1DOF5 DSP1 SDOUT5 Output Format Select P1DOF5 Mode P1DOF5 Output Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point D4, D3, D2: P1DOFD[2:0] DSP1 SDOUT4,DSP1 SDOUT3,DSP1 SDOUT2 Output Format Select P1DOFD Mode P1DOFD Output Format 0 000 MSB (24bit) (default) 1 001 LSB 24bit 2 010 LSB 20bit 3 011 LSB 16bit 4 100 MSB F24.4 floating point 5 101 MSB 32bit 6 110 N/A 7 111 N/A Note 65. Set P1DOFD mode to 0 in I2S compatible mode (DIFI2S bit= “1”). D1: P1DOF1 DSP1 SDOUT1 Output Format Select P1DOF1 Mode P1DOF1 Output Format 0 0 MSB (24bit) (default) 1 1 MSB F24.4 floating point D0: TEST 0: Normal Operation 1: Not Available (default) MS1337-E-00 2011/11 - 46- [AK7782] 16) CONT0F: DSP2 Output Interface Select Write during system reset or DSP reset. W R Name D7 D6 P2 P2 CFh 4Fh CONT0F DOF7 DOF6 D5 P2 DOF5 D4 P2 DOFD[2] D7: P2DOF7 DSP2 SDOUT7 Output Format Select P2DOF7 Mode P2DOF7 Output Format 0 0 MSB (24bit) 1 1 MSB F24.4 floating point D6: P2DOF6 DSP2 SDOUT6 Output Format Select P2DOF6 Mode P2DOF6 Output Format 0 0 MSB (24bit) 1 1 MSB F24.4 floating point D5: P2DOF5 DSP2 SDOUT5 Output Format Select P2DOF5 Mode P2DOF5 Output Format 0 0 MSB (24bit) 1 1 MSB F24.4 floating point D3 P2 DOFD[1] D2 P2 DOFD[0] D1 P2 DOF1 D0 Default TEST 00h (default) (default) (default) D4, D3, D2: P2DOFD[2:0] DSP2 SDOUT4, DSP2 SDOUT3, DSP2 SDOUT2 Output Format Select P2DOFD Mode P2DOFD Output Format 0 000 MSB (24bit) (default) 1 001 LSB 24bit 2 010 LSB 20bit 3 011 LSB 16bit 4 100 MSB F24.4 floating point 5 101 MSB 32bit 6 110 N/A 7 111 N/A Note 66. Set P2DOFD mode to 0 in I2S compatible mode (DIFI2S bit= “1”). D1: P2DOF1 DSP2 SDOUT1 Output Format Select P2DOF1 Mode P2DOF1 Output Format 0 0 MSB (24bit) 1 1 MSB F24.4 floating point D0: TEST 0: Normal Operation 1: Not Available (default) (default) MS1337-E-00 2011/11 - 47- [AK7782] 17) CONT10: ADCM Volume Setting W D0h R 50h Name D7 CONT10 VOL[5] D6 VOL[4] D5 VOL[3] D4 D3 D2 D1 VOL[2] VOL[1] VOL[0] TEST D0 TEST Default 00h D7, D6, D5, D4, D3, D2: VOL[5:0] ADCM Volume Setting VOL[5] VOL[4] VOL[3] VOL[2] VOL[1] VOL[0] Volume (dB) 0 0 0 0 0 0 0 (default) 0 0 0 0 0 1 -2 0 0 0 0 1 1 -4 0 0 0 1 0 0 -6 0 0 0 1 0 1 -8 0 0 0 1 1 1 -10 0 0 1 0 0 0 -12 0 0 1 0 0 1 -14 0 0 1 0 1 1 -16 0 0 1 1 0 0 -18 0 0 1 1 0 1 -20 0 0 1 1 1 1 -22 0 1 0 0 0 0 -24 0 1 0 0 0 1 -26 0 1 0 0 1 1 -28 0 1 0 1 0 0 -30 0 1 0 1 0 1 -32 0 1 0 1 1 1 -34 0 1 1 0 0 0 -36 0 1 1 0 0 1 -38 0 1 1 0 1 1 -40 0 1 1 1 0 0 -42 0 1 1 1 0 1 -44 0 1 1 1 1 1 -46 1 0 0 0 0 0 -48 1 0 0 0 0 1 -50 1 0 0 0 1 1 -52 1 0 0 1 0 0 -54 1 0 0 1 0 1 -56 1 0 0 1 1 1 -58 1 0 1 0 0 0 -60 1 1 1 1 -∞ D1: TEST 0: Normal Operation 1: Not Available (default) D0: TEST 0: Normal Operation 1: Not Available (default) MS1337-E-00 2011/11 - 48- [AK7782] 18) CONT11: ADC2 and ADC1 Analog Switch Select W D1h R 51h Name CONT11 D7 ASEL2[2] D6 ASEL2[1] D5 ASEL2[0] D7, D6, D5: ASEL2[2:0] ADC2 Input Selector Setting ASEL2[2:0] Selected Analog Input Pin 000 AINL-, AINL+, AINR-, AINR+ 001 AINL2, AINR2 010 AINL3, AINR3 011 AINL4, AINR4 100 AINL5, AINR5 101 AINL6, AINR6 110 AINL7, AINR7 111 AINL8, AINR8 D4, D3, D2: ASEL1[2:0] ADC1 Input Selector Setting ASEL1[2:0] Selected Analog Input Pin 000 AINL-, AINL+, AINR-, AINR+ 001 AINL2, AINR2 010 AINL3, AINR3 011 AINL4, AINR4 100 AINL5, AINR5 101 AINL6, AINR6 110 AINL7, AINR7 111 AINL8, AINR8 D4 ASEL1[2] D3 D2 D1 ASEL1[1] ASEL1[0] MUX[1] Default 00h (default) (default) D1, D0: MUX[1:0] MUX Input Select MUX Mode MUX[1:0] MUXOUT Lch Output MUXOUT Rch Output 0 00 MSELOUT Lch MSELOUT Rch 1 01 MSELOUT Lch ADCM 2 10 ADCM MSELOUT Rch 3 11 ADCM ADCM Note 67. L channel and R channel output the same data in MUX Mode 3. MS1337-E-00 D0 MUX[0] (default) 2011/11 - 49- [AK7782] 19) CONT12: SRC2 Data, Clock Setting Write during system reset or DSP reset. W R Name D7 SRC2 D2h 52h CONT12 ISEL[1] D7, D6: SRC2ISEL[1:0] SRC2I Select SRC2ISEL Mode SRC2ISEL[1:0] 0 00 1 01 2 10 3 11 D6 SRC2 ISEL[0] D5 SRC2 CKI[1] SRC2I SDIN5 pin SDIN1 pin DSP1 SDOUT1 DSP2 SDOUT1 D4 SRC2 CKI[0] D3 SRC2 CKO[1] D2 SRC2 CKO[0] D1 D0 Default 0 0 00h (default) D5, D4: SRC2CKI[1:0] SRC2 Input Clock Select SRC2CKI Mode SRC2CKI[1:0] SRC2LRCKI 0 00 SRC2LRCK pin 1 01 SRCLRCK pin 2 10 LRCLKO 3 11 N/A SRC2BICKI SRC2BICK pin SRCBICK pin BITCLKO N/A D3, D2: SRC2CKO[1:0] SRC2 Output Clock Select SRC2CKO Mode SRC2CKO[1:0] SRC2LRCKO 0 00 LRCLKO 1 01 SRCLRCK pin 2 10 SRC2LRCK pin 3 11 N/A SRC2BICKO BITCLKO SRCBICK pin SRC2BICK pin N/A (default) (default) D1: Reserved 0: Normal Operation (default) Write “0” into this bit. D0: Reserved 0: Normal Operation (default) Write “0” into this bit. MS1337-E-00 2011/11 - 50- [AK7782] 20) CONT13: SRC1 Setting Write during system reset or DSP reset. W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default SRC1 SRC1 SRC1 SRC1 SRC1 SRC1 SRC1 SRC1 00h D3h 53h CONT13 BIEDGE IDIF[2] IDIF[1] IDIF[0] BIFS[1] BIFS[0] SEMIAUTO AUTOSEL D7: SRC1BIEDGE SRC1BICKI Edge Select 0: Rising Edge of SRC1LRCKI 1: Falling Edge of SRC1LRCKI This setting is valid only when the SRC1 input interface setting is in PCM mode (SRC1IDIF mode 6 or 7). D6, D5, D4: SRC1IDIF[2:0] SRC1I Input Interface Select SRC1IDIF Mode 0 1 2 3 4 5 6 7 SRC1IDIF[2:0] 000 001 010 011 100 101 110 111 fsi: SRC1 Input Sampling Rate Input Format SRC1BICKI LSB 16bit ≥ 32fsi (default) LSB 20bit ≥ 40fsi MSB 24/20bit ≥ 48fsi I2S Compatible 24/16bit ≥ 48fsi or 32fsi LSB 24bit ≥ 48fsi N/A PCM SHORT SRC1BIFS[1:0] Setting PCM LONG SRC1BIFS[1:0] Setting D3, D2: SRC1BIFS[1:0] SRC1BICKI fs Select SRC1BIFS Mode 0 1 2 3 SRC1BIFS[1:0] 00 01 10 11 SRC1BICKI 32fsi 64fsi 128fsi 48fs (default) D1: SRC1SEMIAUTO SRC1 Soft Mute SEMIAUTO Function Switch 0: SRC1 SEMIAUTO OFF 1: SRC1 SEMIAUTO ON D0: SRC1AUTOSEL SRC1 Soft Mute SEMIAUTO mode Release Time Setting 0: 2205/fso (default) 1: 8820/fso Note 68. The output format of SRC1 is fixed to 24-bit MSB justified. MS1337-E-00 2011/11 - 51- [AK7782] 21) CONT14: SRC2 Setting Write during system reset or DSP reset. W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default SRC2 SRC2 SRC2 SRC2 SRC2 SRC2 SRC2 SRC2 00h D4h 54h CONT14 BIEDGE IDIF[2] IDIF[1] IDIF[0] BIFS[1] BIFS[0] SEMIAUTO AUTOSEL D7: SRC2BIEDGE SRC2BICKI Edge Select 0: Rising Edge of SRC2LRCKI (default) 1: Falling Edge of SRC2LRCKI This setting is valid only when the SRC2 input interface setting is in PCM mode (SRC2IDIF mode 6 or 7). D6, D5, D4: SRC2IDIF[2:0] SRC2I Input Interface Select SRC2IDIF Mode 0 1 2 3 4 5 6 7 SRC2IDIF[2:0] 000 001 010 011 100 101 110 111 fsi: SRC2 Input Sampling Rate Input Format SRC2BICKI LSB 16bit ≥ 32fsi (default) LSB 20bit ≥ 40fsi MSB24/20bit ≥ 48fsi I2S Compatible 24/16bit ≥ 48fsi or 32fsi LSB 24bit ≥ 48fsi N/A PCM SHORT SRC2BIFS[1:0] Setting PCM LONG SRC2BIFS[1:0] Setting D3, D2: SRC2BIFS[1:0] SRC2BICKI fs Select SRC2BIFS Mode 0 1 2 3 SRC2BIFS[1:0] 00 01 10 11 SRC2BICKI 32fsi 64fsi 128fsi 48fs (default) D1: SRC2SEMIAUTO SRC2 Soft Mute SEMIAUTO Function Switch 0: SRC2 SEMIAUTO OFF (default) 1: SRC2 SEMIAUTO ON D0: SRC2AUTOSEL SRC2 Soft Mute SEMIAUTO Mode Release Time Setting 0: 2205/fso (default) 1: 8820/fso Note 69. The output format of SRC2 is fixed to 24-bit MSB justified. MS1337-E-00 2011/11 - 52- [AK7782] 22) CONT15: Power Save Setting W D5h R 55h Name CONT15 D7 PSDSP2 D6 PSDSP1 D5 PSSRC2 D4 PSSRC1 D3 PSADC2 D2 PSADC1 D1 PSADCM D0 0 Default 00h D7: PSDSP2 DSP2 Power Save 0: Normal Operation (default) 1: DSP2 Power Save When not using DSP2, DSP2 block can be set to power-save mode by setting this bit to “1”. Write “0” to return to the normal Operation. D6: PSDSP1 DSP1 Power Save 0: Normal Operation (default) 1: DSP1 Power Save When not using DSP1, DSP1 block can be set to power-save mode by setting this bit to “1”. Write “0” to return to the normal Operation. D5: PSSRC2 SRC2 Power Save 0: Normal Operation (default) 1: SRC2 Power Save When not using SRC2, SRC2 block can be set to power-save mode by setting this bit to “1”. Write “0” to return to the normal Operation. D4: PSSRC1 SRC1 Power Save 0: Normal Operation (default) 1: SRC1 Power Save When not using SRC1, SRC1 block can be set to power-save mode by setting this bit to “1”. Write “0” to return to the normal Operation. D3: PSADC2 ADC2 Power Save 0: Normal Operation (default) 1: ADC2 Power Save When not using ADC2, ADC2 block can be set to power-save mode by setting this bit to “1”. Write “0” to return to the normal Operation. D2: PSADC1 ADC1 Power Save 0: Normal Operation (default) 1: ADC1 Power Save When not using ADC1, ADC1 block can be set to power-save mode by setting this bit to “1”. Write “0” to return to the normal Operation. D1: PSADCM ADCM Power Save 0: Normal Operation (default) 1: ADCM Power Save When not using ADCM, ADCM block can be set to power-save mode by setting this bit to “1”. Write “0” to return to the normal Operation. D0: Reserved 0: Normal Operation (default) Write “0” into this bit. MS1337-E-00 2011/11 - 53- [AK7782] 23) CONT16: Reset Control W R Name D6h 56h CONT16 D7 RSRC2 SMUTE D6 RSRC1 SMUTE D5 RSRC RSTN D4 RDSP RSTN D3 RADC RSTN D2 D1 D0 Default 0 0 0 00h D7: RSRC2SMUTE 0: SRC2 SOFT MUTE OFF (default) 1: SRC2 SOFT MUTE ON When RSRC2SMUTE register is used to control soft mute, the PSRCSMUTE pin should be tied “L”. D6: RSRC1SMUTE 0: SRC1 SOFT MUTE OFF (default) 1: SRC1 SOFT MUTE ON When RSRC1SMUTE register is used to control soft mute, the PSRCSMUTE pin should be tied “L”. D5: RSRCRSTN SRC Reset N Register 0: SRC1, SRC2 Reset (default) 1: SRC1, SRC2 Reset Release When RSRCRSTN register is used to control soft mute, the PSRCRSTN pin should be tied “L”. D4: RDSPRSTN DSP Reset N Register DSP1, DSP2 Reset (default) 1: DSP1, DSP2 Reset Release When RDSPRSTN register is used to control soft mute, the PDSPRSTN pin should be tied “L”. D3: RADCRSTN ADC Reset N Register 0: ADC1, ADC2, ADCM Reset (default) 1: ADC1, ADC2, ADCM Reset Release When RADCRSTN register is used to control soft mute, the PADRSTN pin should be tied “L”. D2: Reserved 0: Normal Operation (default) Write “0” into this bit. D1: Reserved 0: Normal Operation (default) Write “0” into this bit. D0: Reserved 0: Normal Operation (default) Write “0” into this bit. MS1337-E-00 2011/11 - 54- [AK7782] ■ Reset 1. Hardware Reset and Software Reset The AK7782 has six Reset functions: Initial Reset, System Reset, Clock Reset, ADC Reset, DSP Reset and SRC reset. Initial Reset is controlled by INITRSETN pin Hardware Reset only. Other resets are controlled by a pin (hardware reset) or register (software reset). The difference between Hardware Reset and Software Reset is only the method of pin setting or register setting. When using Hardware Reset, the R*RSTN bit should be “0”. When using Software Reset, the P*RSTN pin should be connected to VSS3. The relationship between Hardware Reset and Software Reset is shown below. P*RSTN (Hard) *RSTN R*RSTN(Soft) *=CK, AD, DSP, SRC Figure 14. Logical Relationship between Hardware and Software Resets *: CK, AD, DSP, SRC P*RSTN (Hard) L (0) L (0) H (1) H (1) R*RSTN (Soft) 0 1 0 1 *RSTN 0 1 1 1 Reset Reset Release (Soft) Reset Release (Hard) Not Used (Release Reset) The software reset register is configured with an 8-bit command code and 8-bit data and it becomes valid on the rising edge of SCLK where data D0 written (refer to section ■ Microcontroller Interface). The default condition after initial reset is set to 0 (reset condition) P*RSTN (Hard) “L” RQN 1 8 9 SCLK SI (Soft) 16 D7 Command D0 Data *RSTN (Internal) Figure 15. Soft Reset The sequence of Hardware reset and software reset are the same. In the following description, reset pins and registers are described as *RSTN. Figure 15 shows a software reset example. 2. Initial Reset Initial reset is required to initialize all blocks of the AK7782. As INITRSTN pin= “L”, all control registers are initialized, and internal counters; ADC, SRC, DSP, PLL, and etc. are stopped. When changing the INITRSTN pin to “H”, VREF circuit (Analog reference voltage) and PLL for master clock starts operating and control register writing become valid. CKM[2:0] pin setting, that is to change the clock frequency of the XTI pin input clock (CKM mode 0/1/2/3) or the BITCLKI pin input clock (CKM mode 4/5), must be executed during initial reset or clock reset. CKM[2:0] pins are related to main PLL circuit and internal counter control. Therefore, changing these pin sates must be executed during initial reset or clock reset, otherwise it may cause erroneous operation. MS1337-E-00 2011/11 - 55- [AK7782] Pin State during Initial Reset (Output pins, Input/Output pins) Pin Pin I/O Pin State Pin No. Name during Initial Reset No. 1 LFLT O H 50 12 XTO O Hi-Z 51 21 LRCLKO O L 52 22 BITCLKO O L 53 23 SDOUT1 O L 54 24 SDOUT2 O L 55 25 SDOUT3 O L 65 26 27 28 SDOUT4 SDOUT5 CLKO1 O O O L L L 76 86 Pin Name SO RDY STO SDOUTA1 SDOUT6 SDOUT7 SDA I/O O O O O O O IO TESTO VCOM O O Pin State during Initial Reset Hi-Z H H L L L L (I2CSEL=L) Hi-Z (I2CSEL=H) Hi-Z L 3. Clock Reset After initial reset is released (INITRSTN pin = “H”), the AK7782 enters clock reset condition with the PCKRSTN pin = “L” and RCKRSTN bit = “0”. Release clock reset when system clocks (XTI in CKM mode 0 or 1) (XTI, LRCLKI and BITCLKI in CKM mode 2 or 3) (LRCLKI and BITCLKI in CKM mode 4 or 5) are stabled. After clock reset is released, PLL starts operation and generates a master clock. DSP programs, coefficient data and other data can not be sent to the AK7782 until the PLL reaches stable oscillation (18ms). The ADC or DSP block of the AK7782 will start operation by ADRSTN bit = “1” or DSPRSTN bit = “1”, respectively after DSP programs, coefficients and data are input. The setting of CKM[2:0] pins and input clock frequency can be changed during clock reset (PCKRSTN pin = “L”, RCKRSTN bit = “0” and INITRSTN pin = “H”). The AK7782 also becomes clock reset state by changing the PCKRSTN pin to “L” from “H” or RCKRSTN bit to “0” from “1”, during system reset. INITRSTN PCKRSTN SRESETN(Intenal) ICLK (XTI or BITCLKI) Stabilization of new Changes of pin setting input clock PLL oscillation Transferable time stabilized (18ms) of DSP program and input clock Figure 16. PCKRSTN pin Clock Reset (Hardware Rest) Timing during Initial Rest PCKRSTN= “L” 600ns(min) RQN SCLK (Simplified) SI SRESETN (Internal) Stabilization of new input clock D6h 00h C0h 00h C0h RCKRSTN=0 02h D6h 18h CKRSTN=1 CKRSTN (Internal) Changes of pin setting PLL Oscillation Transferable time of command and input clock Stabilized (18ms) code and DSP program Figure 17. RCKRSTN bit Clock Reset (Soft Reset) Timing during Normal Operation MS1337-E-00 2011/11 - 56- [AK7782] 4. System Reset System reset is defined as when ADC reset (ADRSTN bit = “0”) and DSP reset (DSPRSTN bit = “0”) are on after Clock reset release (PCKRSTN pin = “H” or RCKRSTN bit = “1”). PADRSTN (Hard) RADRSTN(Soft) ADRSTN Internal SRESETN PDSPRSTN (Hard) DSPRSTN RDSPRSTN(Soft) Figure 18. System Reset Diagram ADRSTN DSPRSTN 0 0 1 1 0 1 0 1 Internal SRESETN 0 1 1 1 Status System reset DSP in operation, ADC reset (System reset release) DSP reset, ADC in operation (System reset release) DSP, ADC operation (System reset release) Writing to programs is executed during this System reset condition (except writing during RUN or when changing DSP program during ADC operation). The ADC and DSP blocks are in Reset condition during System Reset, and SRC block is not available. LRCLKO and BITCLKO in Master mode are stopped. System Reset is released when either ADRSTN bit or DSPRSTN bit is changed to “1” from “0”, then the internal counters start operation. ADC block outputs data in 130LRCK (max) after System reset is released. (2.75ms@fs=48kHz, 16.5ms@fs=8kHz) In Slave mode, internal clocks start operation on the rising edge of LRCLK (on the falling edge in I2S mode) when the System reset is released (ADRSTN bit = “1” or DSPRSTN bit = “1”). Timing adjustment between external clock (LRCLKI, BITCLKI) and internal clock operation may only be made at this time. Therefore, do not stop LRCLKI and BITCLKI or do not change frequency of these clocks after releasing System reset. However, if the phase difference between LRCLKI and internal timing during operation is within 16fs, internal timing maintains operation. When the phase difference becomes larger than this range, phase adjustment synchronized with the rising edge of LRCLKI (falling edge in I2S mode) is made. This function avoids the loss of synchronization between the AK7782 and external circuitry due to noise, but normal data is not output momentarily. It takes 4LRCLK (max) for phase adjustment between external clocks (LRCLKI and BITCLKI) and internal timing. This function cannot be used for phase adjustment of clocks and clock frequency changes in normal operation. MS1337-E-00 2011/11 - 57- [AK7782] 5. Relationship between Resets and Internal Operation (1) Conditions on Hardware Reset (pin: Pin Name, ctreg: Control Register Name) INITRSTN (pin) PCKRSTN (pin) PDSPRSTN (pin) PADRSTN (pin) RCKRSTN (ctreg) RDSPRSTN (ctreg) RADRSTN (ctreg) SRESETN (Internal) REF Circuit Main PLL Except CLKO1 XTI Outputs CLKO1 XTI Outputs LRCLKO (Slave) (Master) BITCLKO (Slave) (Master) DSP Block ADC Block Initial Reset Clock Reset System Reset DSP Reset Release ADC Reset Release DSP+ADC Reset Release L L L L 0 0 0 0 Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop H L L L 0 0 0 0 Active Stop Stop Active LRCLKI Stop BITCLKI Stop Stop Stop H H L L 0 0 0 0 Active Active Active Active LRCLKI Stop BITCLKI Stop Stop Stop H H H L 0 0 0 1 Active Active Active Active LRCLKI Active BITCLKI Active Active Stop H H L H 0 0 0 1 Active Active Active Active LRCLKI Active BITCLKI Active Stop Active H H H H 0 0 0 1 Active Active Active Active LRCLKI Active BITCLKI Active Active Active (2) Conditions on Software Reset (pin: Pin Name, ctreg: Control Register Name) Initial Reset INITRSTN (pin) L PCKRSTN (pin) L PDSPRSTN (pin) L PADRSTN (pin) L RCKRSTN (ctreg) 0 RDSPRSTN (ctreg) 0 RADRSTN (ctreg) 0 SRESETN (Internal) 0 REF Circuit Stop Main PLL Stop Except CLKO1 XTI Outputs Stop CLKO1 XTI Outputs Stop LRCLKO (Slave) Stop (Master) Stop BITCLKO (Slave) Stop (Master) Stop DSP Block Stop ADC Block Stop Conditions of (1) and (2) can be mixed. Clock Reset System Reset DSP Reset Release ADC Reset Release DSP+ADC Reset Release H L L L 0 0 0 0 Active Stop Stop Active LRCLKI Stop BITCLKI Stop Stop Stop H L L L 1 0 0 0 Active Active Active Active LRCLKI Stop BITCLKI Stop Stop Stop H L L L 1 1 0 1 Active Active Active Active LRCLKI Active BITCLKI Active Active Stop H L L L 1 0 1 1 Active Active Active Active LRCLKI Active BITCLKI Active Stop Active H L L L 1 1 1 1 Active Active Active Active LRCLKI Active BITCLKI Active Active Active MS1337-E-00 2011/11 - 58- [AK7782] ■ Power-up Sequence The AK7782 should be powered up on the INITRSTN pin= “L”, PCKRSTN pin = “L”, PDSPRSTN pin = “L” and PADRSTN pin = “L”. This INITRSTN pin = “L” initializes control resisters and internal circuits (Note 70). After all powers are supplied, REF circuit (analog reference voltage) starts operation by setting the INITRSTN pin = “H”. Then, main PLL starts operation by setting PCKRSTN pin = “H” after stabilized system clock is input (Note 71). The main PLL generates master clock (MCLK). Downloading DSP program by external clocks is prohibited until the PLL oscillation is stabilized. Note 70. To assure initialization, power must be supplied. Note 71. When the PCKRSTN pin is fixed “L” and clock reset operation is controlled only by the Control Register (Software reset), release Clock Reset by setting CONT00 D0 (RCKRSTN) = “1”. Note System clocks (CKM mode0/1: XTI; CKM mode 2/3: XTI, LRCLKI, BITCLKI; CKM mode 4/5: LRCLKI, BITCLKI) should not be stopped except during Initial reset (INITRSTN pin = “L”) or Clock reset (INITRSTN pin = “H” & RCKRSTN bit = “0”). AVDD DVDD DVDD18 INITRSTN CKRSTN SRESETN (Internal) XTI(CKM Mode 0-3) BITCLKI(CKM Mode 4,5) (Internal PLLCLK) CLKO1 Power OFF INITRSTN Release Bring CKRST “H” Transmission of command codes Transfer time of command codes and after Power-up after crystal is prohibited until PLL reached DSP program (no time limitation) oscillation stabilizes stable oscillation (18ms) Pin settings should be completed CLKO1 Output Start (18ms max) Figure 19. Power-up Sequence MS1337-E-00 2011/11 - 59- [AK7782] ■ RAM Clear The AK7782 has a RAM clear function. After the DSP reset release, DRAM and DLRAM are cleared by “0”. The required time to clear RAM is about 7*LRCLK (max) + 4096*MCLK (internal master clock) in slave mode, and 3*LRCK (max) + 4096*MCLK in master mode. For example, in slave mode, it is (7/48kHz)+(4096/122.88MHz)=179μs when fs=48kHz, and (7/8kHz)+(4096/122.88MHz)=908μs when fs=8kHz. In a RAM clear sequence, it is possible to send data to DSP. (DSP is stopped during RAM clear sequence. Data is accepted automatically after this sequence is completed.) INITRSTN PDSPRSTN RAM Clear (Internal) DSP Start (Internal) RAM Clear Period DSP Program Start Figure 20. RAM Clear Sequence ■ Audio Data Interface Serial Audio Data pins SDIN1, SDIN2, SDIN3, SDIN4, SDIN5, SDIN6, SDIN7, SDOUT1, SDOUT2, SDOUT1, SDOUT2, SDOUT3, SDOUT4, SDOUT5, SDOUT6, SDOUT7 and SDOUTA1 pins are interfaced with external systems using LRCLKI, BITCLKI, LRCLKO and BITCLKO clocks. The data format is 2's complement MSB first. Input/Output format supports I2S compatible, MSB justified and LSB justified. When settings are in I2S mode, all Input/Output audio data and DSP signal are limited to I2S format. BITCLKI only corresponds to 64fs. The input format of SDIN2, SDIN3 and SDIN4 is corresponds to 24-bit MSB, 24/20/16-bit LSB, F24.4 floating point MSB and 32-bit MSB justified. The data format setting for SDIN2-4 is in common. The input formats of SDIN1, SDIN5, SDIN6 and SDIN7 correspond to 24-bit MSB and F24.4 floating point MSB justified. The data format settings of SDIN1, SDIN5, SDIN 6 and SDIN7 can be set individually by control register settings. The data format setting of SDIN2, SDIN3 and SDIN4 are in common. When connecting ADC1, ADC2, ADCM, SRC1O and SRC2O to SDIN1, SDIN5, SDIN6 and SDIN7, set control registers to MSB justified. (same as I2S mode). The output format of SDOUT2, SDOUT3 and SDOUT4 corresponds to 24-bit MSB, 24/20/16bit LSB, F24.4 floating point MSB, 32-bit MSB justified. The data format setting for SDOUT2, SDOUT3, and SDOUT4 are in common. The output format of DSOUT1, SDOUT5, SDOUT6 and SDOUT7 corresponds to 24-bit MSB and F24.4 floating point MSB justified. The data format setting of SDIN1, SDIN5, SDIN 6 and SDIN7 can be set individually by control register settings. ADCM outputs are the same for both L and R channels. MS1337-E-00 2011/11 - 60- [AK7782] 1) MSB/LSB Justified: DIFI2S bit= “0” (CONT00 D4) Left ch LRCLKO Right ch BITCLKO 31 30 29 28 27 SDIN1~7 DIF Mode 0 SDOUT1~7 DOF Mode 0 SDOUTA1 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 M 22 2120 19 2 1 L M 22 21 20 19 2 1 L M:MSB,L:LSB M 22 2120 19 2 1 L M 22 21 20 19 2 1 L M:MSB,L:LSB Figure 21. Master Mode (CKM Mode 0, 1) MSB Justified (24-bit), BITCLK64fs Left ch LRCLKO Right ch BITCLKO 31 30 SDIN2~4 DIFD Mode 1 SDIN2~4 DIFD Mode 2 SDIN2~4 DIFD Mode 3 SDOUT2~4 DOFD Mode 1 SDOUT2~4 DOFD Mode 2 SDOUT2~4 DOFD Mode 3 23 22 21 20 19 18 17 16 15 14 1 0 31 30 23 22 21 20 19 18 17 16 15 14 1 0 Don’t care M 22 21 20 19 18 17 16 15 14 1 L Don’t care M 22 21 20 19 18 17 16 15 14 1 L Don’t care M 18 17 16 15 14 1 L Don’t care 1 L Don’t care M 14 M 18 17 16 15 14 1 L Don’t care M:MSB,L:LSB M 14 1 L MSB 22 21 20 19 18 17 16 15 14 1 L MSB 22 21 20 19 18 17 16 15 14 1 L MSB 18 17 16 15 14 1 L MSB 18 17 16 15 14 1 L MSB 14 1 L MSB 14 1 L Figure 22. Master Mode (CKM Mode 0, 1) LSB Justified, BITCLK64fs MS1337-E-00 2011/11 - 61- [AK7782] Left ch LRCLKI Right ch BITCLKI 31 30 29 28 27 SDIN1~7 DIF Mode 0 SDOUT1~7 DOF Mode 0 SDOUTA1 LRCLKO 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 M 22 2120 19 2 1 L M 22 21 20 19 2 1 L M:MSB,L:LSB M 22 2120 19 2 1 L M 22 21 20 19 2 1 L M:MSB,L:LSB Left ch Right ch BITCLKO Figure 23. Slave Mode (CKM Mode 2~5) MSB Justified (24bit), BITCLK64fs Left ch LRCLKI Right ch BITCLKI 31 30 SDIN2~4 DIFD Mode 1 SDIN2~4 DIFD Mode 2 SDIN2~4 DIFD Mode 3 SDOUT2~4 DOFD Mode 1 SDOUT2~4 DOFD Mode 2 SDOUT2~4 DOFD Mode 3 LRCLKO 23 22 21 20 19 18 17 16 15 14 1 0 31 30 23 22 21 20 19 18 17 16 15 14 1 0 Don’t care M 22 21 20 19 18 17 16 15 14 1 L Don’t care M 22 21 20 19 18 17 16 15 14 1 L Don’t care M 18 17 16 15 14 1 L Don’t care M 18 17 16 15 14 1 L Don’t care M 14 1 L Don’t care M 14 1 L M:MSB,L:LSB MSB 22 21 20 19 18 17 16 15 14 1 L MSB 22 21 20 19 18 17 16 15 14 1 L MSB 18 17 16 15 14 1 L MSB 18 17 16 15 14 1 L MSB 14 1 L MSB 14 1 L Left ch Right ch BITCLKO Figure 24. Slave Mode (CKM Mode 2~5) LSB Justified, BITCLK64fs MS1337-E-00 2011/11 - 62- [AK7782] Left ch LRCLKO Right ch BITCLKO 31 30 29 28 27 SDIN1, 5~7 DIF Mode 1 SDIN2, 3, 4 DIF Mode 4 SDOUT1, 5~7 DOF Mode 1 SDOUT2, 3, 4 DOF Mode 4 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 M 22 2120 19 2 1 L S3S2S1S0 M 22 21 20 19 2 1 L S3 S2 S1 S0 M 22 2120 19 2 1 L S3S2S1S0 M 22 21 20 19 2 1 L S3 S2 S1 S0 M 22 2120 19 2 1 L S3S2S1S0 M 22 21 20 19 2 1 L S3 S2 S1 S0 M 22 2120 19 2 1 L S3S2S1S0 M 22 21 20 19 2 1 L S3 S2 S1 S0 Figure 25. Master Mode (CKM Mode 0, 1) MSB Justified (24-bit), BITCLK64fs, DIF7/6/5/1 Mode 1, DIFD Mode 4, DOF7/6/5/1 Mode 1, DOFD Mode 4 Left ch LRCLKO Right ch BITCLKO 31 30 29 28 27 SDIN1, 5~7 DIF Mode 0 SDIN2, 3, 4 DIF Mode 5 SDOUT1, 5~7 DOF Mode 0 SDOUT2, 3, 4 DOF Mode 5 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 M 22 21 20 19 10 9 8 7 6 5 4 3 2 1 0 M 22 2120 19 2 1 L M 30 2928 27 10 9 8 7 6 5 4 3 2 1 L M 30 2928 27 10 9 8 7 6 5 4 3 2 1 L M 22 2120 19 2 1 L 2 1 L M 30 2928 27 10 9 8 7 6 5 4 3 2 1 L M 30 2928 27 M 22 21 20 19 2 1 L 10 9 8 7 6 5 4 3 2 1 L Figure 26. Master Mode (CKM Mode 0, 1) MSB Justified (24-bit), BITCLK64fs, DIF7/6/5/1 Mode 0, DIFD Mode 5, DOF7/6/5/1 Mode 0, DOFD Mode 5 MS1337-E-00 2011/11 - 63- [AK7782] Left ch LRCLKI Right ch BITCLKI 31 30 29 28 27 SDIN1, 5~7 DIF Mode 1 SDIN2, 3, 4 DIF Mode 4 SDOUT1, 5~7 DOF Mode 1 SDOUT2, 3, 4 DOF Mode 4 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 M 22 2120 19 2 1 L S3S2S1S0 M 22 21 20 19 2 1 L S3 S2 S1 S0 M 22 2120 19 2 1 L S3S2S1S0 M 22 21 20 19 2 1 L S3 S2 S1 S0 M 22 2120 19 2 1 L S3S2S1S0 M 22 21 20 19 2 1 L S3 S2 S1 S0 M 22 2120 19 2 1 L S3S2S1S0 M 22 21 20 19 2 1 L S3 S2 S1 S0 Left ch LRCLKO Right ch BITCLKO Figure 27. Slave Mode (CKM Mode 0, 1) MSB Justified (24-bit), BITCLK64fs, DIF7/6/5/1 Mode 1, DIFD Mode 4, DOF7/6/5/1 Mode 1, DOFD Mode 4 Left ch LRCLKI Right ch BITCLKI 31 30 29 28 27 SDIN1, 5~7 DIF Mode 0 SDIN2, 3, 4 DIF Mode 5 SDOUT1, 5~7 DOF Mode 0 SDOUT2, 3, 4 DOF Mode 5 LRCLKO 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 M 22 21 20 19 10 9 8 7 6 5 4 3 2 1 0 M 22 2120 19 2 1 L M 30 2928 27 10 9 8 7 6 5 4 3 2 1 L M 30 2928 27 10 9 8 7 6 5 4 3 2 1 L M 22 2120 19 2 1 L 2 1 L M 30 2928 27 10 9 8 7 6 5 4 3 2 1 L M 30 2928 27 M 22 21 20 19 Left ch 2 1 L 10 9 8 7 6 5 4 3 2 1 L Right ch BITCLKO Figure 28. Slave Mode (CKM Mode 0, 1) MSB Justified (24-bit), BITCLK64fs, DIF7/6/5/1 Mode 0, DIFD Mode 5, DOF7/6/5/1 Mode 0, DOFD Mode 5 MS1337-E-00 2011/11 - 64- [AK7782] 2) I2S Compatible Format: DIFI2S bit= “1” (CONT00 D4) Left ch LRCLKO Right ch BITCLKO 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 SDIN1~7 M 22 21 20 3 2 1 L M 22 21 20 3 2 1 L SDOUT1~7 SDOUTA1 M 22 21 20 3 2 1 L M 22 21 20 3 2 1 L M:MSB,L:LSB M:MSB,L:LSB When using this mode, set all input and output formats to MSB-justified 24-bit. Figure 29. Master Mode (CKM Mode 0~1) Left ch LRCLKI Right ch BITCLKI 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 SDIN1~7 M 22 21 20 3 2 1 L M 22 21 20 3 2 1 L SDOUT1~7 SDOUTA1 M 22 21 20 3 2 1 L M 22 21 20 3 2 1 L LRCLKO Left ch M:MSB,L:LSB M:MSB,L:LSB Right ch BITCLKO When using this mode, set all input and output formats to MSB-justified 24-bit. Figure 30. Slave Mode (CKM Mode 2~5) MS1337-E-00 2011/11 - 65- [AK7782] ■ Microcontroller Interface (I2CSEL pin= “L”) 1. Configuration The access format is Command code (8-bit) + Address + Data (MSB first). Bit Length Command 8 MSB bit is R/W flag. Remaining 7-bits are for access area such as PRAM/CRAM registers. Address 16 / 0 Valid only for those cases where accessed areas have addresses such as PRAM/CRAM/OFREG. When no address is assigned, there is no data. Data See the Write or Read data. following section Note 72. The address of PRAM is fixed to “0”. RQN SCLK don’tcare (L/H ) SI Command (8bit) SO Hi-Z Address (16bit or 0bit ) d on’tcare (L/H) Data ( write ) Data ( read ) Low or Echo back Hi-Z SO is in Hi-Z condition while RQN=High 2. Command Codes BIT7 BIT6 BIT5 Area to be Accessed Access area and accompanying data BIT7 BIT6 BIT5 BIT4 BIT4 BIT3 BIT2 BIT1 BIT0 Accompanying Data to the Accessed Area BIT3~0 0 0 1 0 0100 0 0 1 0 0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0100 0010 1000 0110 1100 1010 0000 0001 0110 1000 0111 1001 Register Address Register Address 0010 0000 Confirmation of write preparation to CRAM/OFRAM during RUN Confirmation of write preparation to CRAM2/OFRAM during RUN CRAM Read during DSP reset. OFRAM Read during DSP reset PRAM Read during DSP reset CRAM2 Read during DSP reset OFRAM2 Read during DSP reset PRAM2 Read during DSP reset DSP1 Error Status Read DSP2 Error Status Read MICR Read @DSP1 MIR2 Read @DSP1 MICR Read @DSP2 MIR2 Read @DSP2 Registers 00~0F Read Registers 10~16 Read CRC result Read Device Identification MS1337-E-00 2011/11 - 66- [AK7782] 3. Address All address notations are LSB-justified. When accessing Command codes, BIT [6:4] = 000 ~ 011, 16-bit address assignment must be followed. When accessing Command codes, BIT [6:4] = 100 ~ 111, no address assignment is required. 4. Data Length of write data is variable depending on the write area size. When accessing RAM, write data to sequential address locations by writing data continuously. Write Command Code Address Data Length 80h~8Fh 16bit Assignment 16bit × n A2h A4h B2h B4h B8h F4h 16bit Assignment 16bit Assignment 16bit Assignment 16bit Assignment 16bit Assignment None None None 16bit × n 16bit × n 40bit × n 8bit 90h~9Fh 16bit Assignment 16bit × n ACh A6h BCh B6h BAh F5h 16bit Assignment 16bit Assignment 16bit Assignment 16bit Assignment 16bit Assignment None None None 16bit × n 16bit × n 40bit × n 8bit 10h~1Fh 16bit Assignment 16bit × n AEh 16bit Assignment None ADh 16bit Assignment None BEh BDh BFh F6h C0h~CFh D0h~D6h F2h 16bit Assignment 16bit Assignment 16bit Assignment None None None None 16bit × n 16bit × n 40bit × n 8bit 8bit 8bit 16bit Content CRAM/OFRAM Write preparation during RUN. BIT3:BIT0 of the command code determines the amount of write operations (80h # of write: 1, 81h # of write: 2, ----, 8Fh # of write: 16). If the actual amount of write operations exceeds the defined amount, that data will be ignored. Execution of OFRAM Write during RUN: address is ignored. Execution of CRAM Write during RUN: address is ignored. OFRAM Write during DSP reset. CRAM Write during DSP reset. PRAM Write during DSP reset. DSP1 JX writing CRAM2/OFRAM2 Write preparation during RUN. BIT3:BIT0 of the command code determines the amount of write operations (90h # of write: 1, 91h # of write: 2, ----, 9Fh # of write: 16). If the actual amount of write operations exceeds the defined amount, that data will be ignored. Execution of OFRAM2 Write during RUN: address is ignored. Execution of CRAM2 Write during RUN: address is ignored. OFRAM2 Write during DSP reset. CRAM2 Write during DSP reset. PRAM2 Write during DSP reset. DSP2 JX Writing CRAM&CRAM2, OFRAM&OFRAM2 Write preparation during RUN. BIT3:BIT0 of the command code determines the amount of write operations (10h # of write: 1, 11h # of write: 2, ----, 1Fh # of write: 16). If the actual amount of write operations exceeds the defined amount, that data will be ignored. Execution of OFRAM & OFRAM2 Write during RUN: address is ignored. Execution of CRAM & CRAM2 Write during RUN: address is ignored. OFRAM & OFRAM2 Write during DSP reset. CRAM & CRAM2 Write during DSP reset. PRAM & PRAM2 Write during DSP reset. DSP1 & DSP2 JX code Write Registers 00h~0Fh Write Registers 10h~17h Write CRC Write MS1337-E-00 2011/11 - 67- [AK7782] Read Length of the read data is variable depending on the read area size. When accessing the RAM, data may be read from sequential address locations by reading data continuously. Command Address Data Content Code Length 24h None 16bit × n Confirmation of CRAM, OFRAM Write preparation during RUN 32h 16bit Assignment 16bit × n OFRAM Read during DSP reset. 34h 16bit Assignment 16bit × n CRAM Read during DSP reset. 16bit PRAM Read during DSP reset. 38h 40bit × n ALL0 70h None 8bit DSP1 Error Status Read. MIR1 Read @DSP1 28-bit data is upper-bit-justified. Lower 4-bits are validity flags. 76h None 32bit Valid at 0000. MIR2 Read @DSP1 28-bit data is upper-bit-justified. Lower 4-bits are validity flags. 78h None 32bit Valid at 0000. 26h 3Ch 36h 16bit × n 16bit × n 16bit × n 71h None 16bit Assignment 16bit Assignment 16bit ALL0 None 77h None 32bit 79h None 32bit 40h~4Fh 50h~56h 72h 60h None None None None 8bit 8bit 16bit 8bit 3Ah 40bit × n 8bit Confirmation of CRAM2, OFRAM2 Write during RUN. OFRAM2 Read during DSP reset CRAM2 Read during DSP reset PRAM2 Read during DSP reset DSP2 Error Status Read MIR1 Read @DSP2 28-bit data is upper-bit-justified. Lower 4-bits are validity flags. Valid at 0000. MIR2 Read @DSP2 28-bit data is upper-bit-justified. Lower 4-bits are validity flags. Valid at 0000. Registers 00h~0Fh Read Registers 10h~17h Read CRC result Read Device identification MS1337-E-00 2011/11 - 68- [AK7782] 5. Echo Back Mode The AK7782 has an Echo-back mode where written-data is output on the SO pin one after another. (1) Write RQN SI COMMAND SO IN VALID ADDRESS1 ADDRESS2 COMMAND ADDRESS1 DATA1 DATA2 ADDRESS2 don’ tcare (L/H) DATA1 COMMAND Hi-Z IN VALID ADDRESS1 COMMAND Data is output on the SO pin delaying the time for 8bit from SI input. Figure 31. Echo-back Mode Writing 1 RQN SI 0xB4 SO INVALID 0x00 COMMAND 0x00 ADDRESS1 BIT15~8 ADDRESS2 BIT7~0 Dummy 8bit DATA1 DATA2 Hi-Z It is possible to write 8bit dummy data in order to verify the written data. During PRAM or PRAM2 writing, if the dummy data is more than 40bit, this dummy data is accepted. (more than 16bit when CRAM, CRAM2, OFRAM or OFRAM2 writing) Figure 32. Echo-back Mode Writing 2 (2) Read RQN SI COMMAND SO IN VALID ADDRESS1 ADDRESS2 COMMAND ADDRESS1 d on’tcare (L/ H) COMMAND READ DATA READ DATA Hi-Z IN VALID ADDRESS1 COMMAND Echo-back mode is not completely performed when reading, and read data output is prioritized. The figure above is when reading PRAM or PRAM2. Figure 33. Echo-back Mode Reading MS1337-E-00 2011/11 - 69- [AK7782] 6. Format 6-1. Write Operation during DSP Reset Program RAM (PRAM, PRAM2) Writing (during DSP) (1) COMMAND B8h, BAh, BFh (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7 ~ A0 (4) DATA1 0 0 0 0 D35 D34 D33 D32 (5) DATA2 D31~D24 (6) DATA3 D23~D16 (7) DATA4 D15~D8 (8) DATA5 D7~D0 Five bytes of data may be written continuously for each address. Coefficient RAM (CRAM, CRAM2) Writing (during DSP) (1) COMMAND B4h, B6h, BDh (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7~A0 (4) DATA2 D15~D8 (5) DATA3 D7~D0 Two bytes of data may be written continuously for each address. Offset RAM(OFRAM, OFRAM2) Writing (during DSP Reset) (1) COMMAND B2h, BCh, BEh (2) ADDRESS1 00000000 (3) ADDRESS2 0 0 A5 A4 A3 A2 A1 A0 (4) DATA1 0 0 0 D12 D11 D10 D9 D8 (5) DATA2 D7~D0 Two bytes of data may be written continuously for each address. 6-2. Write Operation during DSP Reset and RUN Control Register Writing (during DSP Reset and RUN) SI (1) COMMAND C0h~CFh, D0h~D6h (2) DATA D7~D0 Note 73. Write operation may be limited depending on register settings during RUN. External Conditional Jump Code Writing (during DSP Reset and RUN) SI (1) COMMAND F4h, F5h, F6h (2) DATA D7~D0 CRC code Writing (during DSP Reset and RUN) SI (1) COMMAND F2h (2) DATA D15~D8 (3) DATA D7~D0 MS1337-E-00 2011/11 - 70- [AK7782] 6-3. Write Operation during RUN Coefficient RAM (CRAM, CRAM2, and CRAM&CRAM2 together), Offset RAM (OFRAM, OFRAM2, and OFRAM & OFRAM2 together) Write Preparation (during RUN): The preparation sequence is the same for both coefficient and offset RAM. SI (1) COMMAND 80h~8Fh (one data at 80h, sixteen data at 8Fh) 90h~9Fh (one data at 90h, sixteen data at 9Fh) 10h~1Fh (one data at 10h, sixteen data at 1Fh) (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7~A0 (4) DATA1 D15~D8 (5) DATA2 D7~D0 Two bytes of data may be written continuously for each address. Note 74. The COMMAND determines the length of the data. Coefficient RAM (CRAM, CRAM2, and CRAM & CRAM2 together) Execute SI (1) COMMAND A4h, A6h, ADh (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 Offset RAM (OFRAM, OFRAM2, and OFRAM & OFRAM2 together) Execute SI (1) COMMAND A2h, ACh, AEh (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 Note 75. The COMMAND determines the length of the data. If the written data exceeds the allotted amount, the excess data is ignored. MS1337-E-00 2011/11 - 71- [AK7782] 6-4. Read Operation during DSP Reset Program RAM (PRAM, PRAM2) Read (during DSP Reset) SI SO (1) COMMAND 38h, 3Ah (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7 ~ A0 (4) DATA1 0 0 0 0 D35 D34 D33 D32 (5) DATA2 D31~D24 (6) DATA3 D23~D16 (7) DATA4 D15~D8 (8) DATA5 D7~D0 Five bytes of data may be read continuously for each address. Coefficient RAM (CRAM, CRAM2) Read (during DSP Reset) SI SO (1) COMMAND 34h, 36h (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7~A0 (4) DATA1 D15~D8 (5) DATA2 D7~D0 Two bytes of data may be read continuously for each address. Offset RAM (OFRAM, OFRAM2) Read (during DSP Reset) SI SO (1) COMMAND 32h, 3Ch (2) ADDRESS1 00000000 (3) ADDRESS2 0 0 A5 A4 A3 A2 A1 A0 (4) DATA1 0 0 0 D12 D11 D10 D9 D8 (5) DATA2 D7~D0 Two bytes of data may be read continuously for each address. MS1337-E-00 2011/11 - 72- [AK7782] 6-5. Read Operation during DSP Reset and RUN Control Register Reading (during DSP Reset and RUN) SI (1) COMMAND 40h~4Fh, 50h~56h (2) DATA Device Identification (during DSP Reset and RUN) SI (1) COMMAND 60h (2) DATA CRC Result Reading (during DSP Reset and RUN) SI (1) COMMAND 72h (2) DATA (3) DATA SO D7~D0 SO D7 1 D5 0 8 D4 0 D3 0 D2 0 2 D1 1 D0 0 SO D15~D8 D7~D0 Error Status Reading (during DSP Reset and RUN) SI SO (1) COMMAND 70h, 71h (2) DATA D7 CRCERRN D6 0 D6 D5 D4 WDTERRN GPO0 GPO1 D3 0 D2 0 D1 0 D0 0 6-6. Read Operation during RUN CRAM, CRAM2 / OFRAM, OFRAM2 Write Preparation Reading (during RUN) SI SO (1) COMMAND 24h, 26h (2) ADDRESS1 A15~A8 (3) ADDRESS2 A8~A0 (4) DATA1 D15~D8 (5) DATA2 D7~D0 MIR1/2 Reading (during RUN) SI SO (1) COMMAND 76h (DSP1 MICR Read) 78h (DSP1 MIR2 Read) 77h (DSP2 MICR Read) 79h (DSP2 MIR2 Read) (2) DATA1 D27~D20 (3) DATA2 D19~D12 (4) DATA3 D11~D4 (5) DATA4 D3 D2 D1 D0 (flag) (flag) (flag) (flag) Note 76. Data is valid only when all flags are zero. The data is ignored when all flag bit is “1”. MS1337-E-00 2011/11 - 73- [AK7782] 7. Timing 7-1. RAM Writing Timing during Reset Write to Program RAM (PRAM, PRAM2), Coefficient RAM (CRAM, CRAM2) and Offset RAM (OFRAM, OFRAM2) during System Reset in the order of Command code, Address and Data. When writing Data to consecutive address locations, continue to input data only. When writing data at separated address locations, set RQN pin to “L” from “H” and then input command code, address and data in this order. Writing to PRAM at separated address locations is not possible. PDSPRSTN (Control Register Setting is omitted) RQN SCLK SI don’tcare (L/H) Command Address DATA DATA DATA DATA DATA don’tcare (L/H) DATA don’tcare (L/H) RDY = “H” Figure 34. Writing to RAM at Consecutive Address Locations PDSPRSTN (Control Register Setting is Omitted) RQN SCLK SI don’tcare (L/H) Command Address DATA don’tcare (L/H) Command Address RDY = “H” Figure 35. Writing to RAM at Separated Address Location 7-2. RAM Writing Timing during RUN Use this operation to rewrite Coefficient RAM (CRAM, CRAM2) and Offset RAM (OFRAM, OFRAM2) during RUN. 1) Write Preparation After inputting the assigned command code (8-bit) to select the number of data from 1 to 16, input the start address of data writing (16-bit) and the data in this order. 2) Write Preparation Data Confirmation After write preparation, the write data can be confirmed. Address and Data are read in this order by write preparation data confirmation command “24h” or “26h”. The data will be “0001h” when reading more than write preparation data. Execute write preparation again when the address and data are garbled by external noise. 3) Write Execution Upon completion of this operation, execute RAM write during RUN by inputting the corresponding command code and address (16-bit all 0) in this order. Note 77. Execute Write preparation before a write execution. When writing to RAM without write preparation sequence, a malfunction occurs. Access operation by microcontroller is prohibited until RDY changes to “H”. Write modification of RAM contents is executed whenever the RAM address for modification is assigned. For example, when 5 Data are written, from RAM address “10”, it is executed as shown below. MS1337-E-00 2011/11 - 74- [AK7782] RAM execution address 7 8 9 Write execution position 10 ↓ ○ 11 ↓ ○ 13 16 11 12 ↓ ○ ↑ 13 ↓ ○ 14 ↓ ○ 15 Note: Address “13” is not executed until rewriting address “12”. PDSPRSTN= “H” RQN E.g. when # of DATA is 4 SCLK SI CRAM,OFRAM Command 83h CRAM2,OFRAM2 Command 93h don’tcare (L/H) Command RDY = “H” Address DATA DATA DATA don’tcare (L/H) DATA CRAM,OFRAM 80h(# of DATA: 1) ~ 8Fh(# of DATA: 16) CRAM2,OFRAM2 90h(# of DATA: 1) ~ 9Fh(# of DATA: 16) Figure 36. CRAM, OFAM Write Preparation PDSPRSTN=H RQN SCLK SI don’tcare (L/H) 24h, 26h INVALID SO don’tcare (L/H) Address DATA DATA DATA DATA Hi-Z RDY=H Figure 37. CRAM, OFRAM Write Preparation PDSPRSTN= “H” RQN SCLK SI don’tcare (L/H) RDY Command 00000000 00000000 don’tcare (L/H) max 400ns CRAM A4h, OFRAM A2h CRAM2 A6h, OFRAM2 ACh RDYLG (Note 78) Note 78. When internal write is finished, RDY changes to high, and it cannot be accessed from the microcontroller. While the RQN pin is “L” level, the RDY signal remains at a “L” level. Figure 38. CRAM, OFRAM Write MS1337-E-00 2011/11 - 75- [AK7782] 7-3. External Conditional Jump External Conditional Jump Code Writing (during DSP and RUN) (1) COMMAND F4h, F5h, F6h (2) DATA D7~D0 External Conditional Jump code can be input during both DSP Reset and RUN. Input data is set to the designated register on the rising edge of LRCLK (LRCLKI, LRCLKO). The RDY pin changes to “L” when the command code is transferred, and it changes to “H” when write operations are completed. When any single bit of “1” data in 8-bit External Jump code matches an “1” bit data in the IFCON field, a Jump instruction is executed. Then, the RDY pin changes to “H” when the rise of LRCLKO is captured. Access operation by microcontroller is prohibited until the RDY pin changes to “H”. IFCON field is the area where the external conditions are written. This Jump code is reset to 00h by setting the INITRSTN pin to “L”, but it is not reset by System Reset. (F4h: DSP1, F5h: DSP2, F6h: Both DSP1 and 2) 7 ■ 4 3 2 1 0 ■ ■ ■ ■ ■ ↑ Check if “1” of IFCON field corresponds with External Condition Jump Code including Jump pins by at least one at the same location. 16 ↓ 9 IFCON Field ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ External Conditional Jump Code 6 ■ 5 ■ PDSPRSTN (Control Register Setting is Omitted) SCLK don’tcare (L/H) SI F4h D7… D0 don’tcare (L/H) Lch RQN Rch LRCLK RDY Figure 39. External Conditional Jump Code Writing Timing (in DSP Reset, JX write example of DSP1) PDSPRSTN = “H” SCLK SI don’tcare (L/H) F4h D7 …. D0 don’tcare (L/H) RQN L ch R ch LRCLK RDY Figure 40. External Conditional Jump Code Writing Timing (RUN, JX wrote example of DSP1) MS1337-E-00 2011/11 - 76- [AK7782] 7-4. RAM Reading Timing during DSP Reset Read Program RAM (PRAM), Coefficient RAM (CRAM) and Offset REG (OFREG) during DSP reset in the order of input Command code and Address. PRAM address is fixed to 0h. After writing the Command, the data comes out from the SO pin synchronous with falling edge of SCLK. (The SI pin input data is “Don’t care”) When reading Data at consecutive address locations, continue to input SCLK as is. PDSPRSTN RQN SCLK don’tcare (L/H) SI SO HI-Z Command don’tcare (L/H) Address DATA Echo-back Output DATA DATA DATA DATA HI-Z RDY Figure 41. RAM Reading at Consecutive Address 7-5. RAM Reading during DSP Reset and RUN Read control registers, device identification codes, error statuses and CRC results during RUN or DSP Reset state. These codes are input in the order of Command and Address. After completing Command code write, the data comes out from the SO pin synchronous with falling edge of SCLK. (The SI pin input data is “Don’t care”) PDSPRSTN RQN SCLK SI don’tcare (L/H) SO HI-Z Command Address don’tcare (L/H) Echo-back Output DATA HI-Z RDY Figure 42. RAM Reading during DSP Reset PDSPRSTN=H RQN SCLK SI SO don’tcare (L/H) HI-Z Command Address don’tcare (L/H) DATA Echo-back Output HI-Z RDY Figure 43. RAM Reading during RUN MS1337-E-00 2011/11 - 77- [AK7782] ■ I2C Bus Interface (I2CSEL pin= “H”) I2C BUS mode (including 400kHz FAST mode) is enabled when the I2CSEL pin = “H”. (3.4MHz Hs-mode is not supported) 1. Data Transfer In order to access any IC devices on the I2C BUS, input a start condition first, followed by a single slave address that includes the device address. IC devices on the BUS compare this slave address with their own addresses and the IC device that has an identical address with the slave-address generates an acknowledgement. An IC device with the identical address then executes either a read or write operation. After the command execution, input a Stop condition. 1-1. Data Change Change the data on the SDA line while the SCL line is “L”. SDA line condition must be stable and fixed while the clock is “H”. Change the Data line condition between “H” and “L” only when the clock signal on the SCL line is “L”. Change the SDA line condition while SCL line is “H” only when the start condition or stop condition is input. SCL SDA DATA LINE STABLE: DATA VALID CHANGE OF DATA ALLOWED Figure 44. Data Change MS1337-E-00 2011/11 - 78- [AK7782] 1-2. Start Condition and Stop Condition A start condition is generated by the transition of “H” to “L” on the SDA line while the SCL line is “H”. All instructions are initiated by a Start condition. A stop condition is generated by the transition of “L” to “H” on the SDA line while the SCL line is “H”. All instructions end by a Stop condition. SCL SDA START CONDITION STOP CONDITION Figure 45. Start Condition and Stop Condition 1-3. Repeated Start Condition When a Start condition is received again instead of a Stop condition, the bus changes to a Repeated Start condition. A Repeated Start condition is functionally the same as a Start condition. SCL SDA START CONDITION Repeated Start CONDITION Figure 46. Repeated Start Condition 1-4. Acknowledge An external device that is sending data to the AK7782 releases the SDA line (“H”) after receiving one byte of data. An external device that receives data from the AK7782 then sets the SDA line to “L” at the next clock. This operation is called “acknowledgement”, and it enables verification that the data transfer has been properly executed. The AK7782 generates an acknowledgement upon receipt of a Start condition and a Slave address. For a write instruction, an acknowledgement is generated whenever receipt of each byte is completed. For a read instruction, succeeded by generation of an acknowledgement, the AK7782 releases the SDA line after outputting data at the designated address, and it monitors the SDA line condition. When the Master side generates an acknowledgement without sending a Stop condition, the AK7782 outputs data at the next address location. When no acknowledgement is generated, the AK7782 ends data output (not acknowledged). MS1337-E-00 2011/11 - 79- [AK7782] Clock pulse for acknowledge SCL FROM MASTER 1 8 9 DATA OUTPUT BY TRANSMITTER DATA OUTPUT BY RECEIVER not acknowledge acknowledge START CONDITION Figure 47. Generation of Acknowledgement 1-5. The First Byte The First Byte, which includes the Slave-address, is input after the Start condition is set, and a target IC device that will be accessed on the bus is selected by the Slave-address. The Slave-address is configured with the upper 7-bits. Data of the upper 5-bits is “00110”. The next 2 bits are the address bits that select the desired IC, which are set by the CAD1 and CAD0 pins. When the Slave-address is inputted, an external device that has the identical device address generates an acknowledgement and instructions are then executed. The 8th bit of the First Byte (lowest bit) is allocated as the R/W Bit. When the R/W Bit is “1”, the read instruction is executed, and when it is “0”, the write instruction is executed. Note 79. In this document, there is a case that describes a “Write Slave-address assignment” when both address bits match and a Slave-address at R/W Bit = “0” is received. There is a case that describes a “Read Slave-address assignment” when both address bits match and a Slave-address at R/W Bit = “1” is received. 0 0 1 1 0 CAD1 CAD0 R/W (CAD1, CAD0 are set by pins) Figure 48. First Byte Configuration 1-6. The Second and Succeeding Bytes The data format of the second and succeeding bytes of the AK7782 Transfer / Receive Serial data (command code, address and data in microcontroller interface format) on the I2C BUS are all configured with a multiple of 8-bits. When transferring or receiving those data on the I2C BUS, they are divided into an 8-bit data stream segment and they are transferred / received with the MSB side data first with an acknowledgement in-between. MS1337-E-00 2011/11 - 80- [AK7782] Example) When transferring / receiving A1B2C3 (hex) 24-bit serial data in microprocessor interface format: 2 (1) Microcomputer interface Format A1 B2 (1)I C Format C3 A1 B2 A 24BIT 8BIT C3 A 8BIT 8BIT A …Acknowledge Figure 49. Division of Data Note 80. In this document, there is a case that describes a write instruction command code, which is received at the second byte as “Write Command”. There is a case that describes a read instruction command code, which is received at the second byte as “Read Command”. 2. Write Sequence In the AK7782, when a “Write-Slave-address assignment” is received at the first byte, the write command at the second byte and data at the third and succeeding bytes are received. At the data block, address and write data are received in a single-byte unit each in accordance with a command code. The number of write data bytes (*1 in Figure 50) is fixed by the received command code. Usable command codes in write sequence are listed below as “(Table 1) List of Usable Command Codes in Write Sequence”. S SLAD W A Cmd A Data A Stp repeat N times (*1) Figure 50. Write Sequence MS1337-E-00 2011/11 - 81- [AK7782] Command Code 80h~8Fh Address Data Length 2byte 2byte × n A2h A4h B2h B4h B8h F4h 90h~9Fh 2byte 2byte 2byte 2byte 2byte None 2byte None None 2byte × n 2byte × n 5byte × n 1byte 2byte × n ACh A6h BCh B6h BAh F5h 10h~1Fh 2byte 2byte 2byte 2byte 2byte None 2byte None None 2byte × n 2byte × n 5byte × n 1byte 2byte × n AEh 2byte None ADh BEh BDh BFh F6h C0h~CFh 2byte 2byte 2byte 2byte None None None 2byte × n 2byte × n 5byte × n 1byte 1byte Content Write preparation while CRAM/OFRAM is running. BIT3 ~ BIT0 of the command code assign # of write operation (0x80:1, 0x81:2,…, 0x8F: 16). Write operation exceeding the assigned # of write, abandons the data. Write execution while OFRAM is running; Address is ignored Write execution while CRAM is running; Address is ignored OFRAM Write (during DSP Reset) CRAM Write (during DSP Reset) PRAM Write (during DSP Reset) DSP1 JX Write Write preparation while CRAM2/OFRAM2 is running. BIT3 ~ BIT0 of the command code assign # of write operation (0x90:1, 0x91:2,…, 0x9F: 16). Write operation exceeding the assigned # of write, abandons the data. Write execution while OFRAM2 is running; Address is ignored Write execution while CRAM2 is running; Address is ignored OFRAM2 Write (during DSP Reset) CRAM2 Write (during DSP Reset) PRAM2 Write (during DSP Reset) DSP2 JX Writing Write preparation while CRAM&CRAM2/OFRAM&OFRAM2 is running. BIT3 ~ BIT0 of the command code assign # of write operation (0x10:1, 0x11:2,…, 0x1F: 16). Write operation exceeding the assigned # of write, abandons the data. Write execution while OFRAM & OFRAM2 are running; Address is ignored. Write execution while CRAM & CRAM2 are running; Address is ignored. OFRAM & OFRAM2 Write (during DSP Reset) CRAM & CRAM2 Write (during DSP Reset) PRAM & PRAM2 Write (during DSP Reset) DSP1 & DSP2 JX Write Registers 00h~0Fh Write (Write operation may be limited depending on register settings during RUN) D0h~D6h None 1byte Registers 10h~16h Write F2h None 1byte CRC Write Note 81. Length of write data is variable with the areas to be written. When accessing RAM for writing, it is possible to write data at sequential address locations by writing data continuously. Do not write a command code other than shown above. Table 1. List of Usable Command Codes in Write Sequence MS1337-E-00 2011/11 - 82- [AK7782] 3. Read Sequence In the AK7782, when a “write- slave-address assignment” is received at the first byte, the read command at the second byte and the data at the third and succeeding bytes are received. At the data block, the address is received in a single byte unit in accordance with a read command code. In a command code without address assignment, the sequence does not have to be repeated (*2 in Figure 51). When the last address byte (or command code if no address assignment is specified) is received and an acknowledgement is transferred, the read command waits for the next restart condition. When a “read slave-address assignment” is received at the first byte, data is transferred at the second and succeeding bytes. The number of readable data bytes (*3 in Figure 51) is fixed by the received read command. After reading the last byte, assure that a “not acknowledged” signal is received. If this “not acknowledged” signal is not received, the AK7782 continues to send data regardless whether data is present or not, and since it did not release the BUS, the stop condition cannot be properly received. Usable command codes in read sequence are listed in Table 2: List of Usable Read Command Codes in Read Sequence. S SLAD W A Cmd A Data A rS SLAD Repeat N times (*2) R A Data A Data Na Stp Repeat N-1 times (*3) Figure 51. Read Sequence Command Code Address 24h 32h 34h 38h 70h 76h None 2byte 2byte 2byte None None Data Length Content 2byte × n 2byte × n 2byte × n 5byte × n 1byte 4byte CRAM/OFRAM Write Preparation Data Read (during RUN) OFRAM Read (during DSP Reset) CRAM Read (during DSP Reset) PRAM Read (during DSP Reset) DSP1 Error Status Read MIR1 Read @DSP1 28-bit data is upper-bit-justified. Lower 4-bits are for validity flags. Valid at 0000. 78h None 4byte MIR2 Read @DSP1 28-bit data is upper-bit-justified. Lower 4-bits are for validity flags. Valid at 0000. 26h None 2byte × n CRAM2/OFRAM2 Write Preparation Data Read (during RUN) 3Ch 2byte 2byte × n OFRAM2 Read (during DSP Reset) 36h 2byte 2byte × n CRAM2 Read (during DSP Reset) 3Ah 2byte 5byte × n PRAM2 Read (during DSP Reset) 71h None 1byte DSP2 Error Status Read 77h None 4byte MIR1 Read @DSP2 28-bit data is upper-bit-justified. Lower 4-bits are for validity flags. Valid at 0000. 79h None 4byte MIR2 Read @DSP2 28-bit data is upper-bit-justified. Lower 4-bits are for validity flags. Valid at 0000. 40h~4Fh None 1byte Registers 00h~0Fh Read 50h~56h None 1byte Registers 10h~16h Read 60h None 1byte Device Identification 72h None 2byte CRC result Read Note 82. Length of read data is variable with the areas to be read. When accessing RAM for reading, it is possible to read data at sequential address locations by reading data continuously. Note 83. Do not read a command code other than shown above. Table 2. List of Usable Read Command Codes in Read Sequence MS1337-E-00 2011/11 - 83- [AK7782] 4. Not Acknowledged 4-1. Slave address receiving when the RDY pin is Low The AK7782 does not accept command codes until the RDY pin is set to a high level, when a command is received to set the RDY pin to a low level. In order to confirm the RDY pin condition, a “Write Slave-Address assignment” should be sent after the Start condition. If the RDY pin is then at a low level, “Acknowledgement” is not generated at the succeeding clock (generation of “Not Acknowledged”). After sending “Not Acknowledged”, the BUS is released and all receiving data are ignored until the next start condition (behaves as if it received a Slave address of other device). Refer to (3) and (4) of Figure 52 “RDY Pin Condition and Acknowledgement”. (1) After Slave-address (2) While RDY is Low, “Not (3) “Not Acknowledged” is (4) “Acknowledgement” is matching is confirmed, RDY Acknowledged” is generated generated as RDY is already generated as RDY is already condition is ignored after receiving Slave-address “L” at the Receive Start point “H” at the Receive Start point of Slave-address of Slave-address … Data A Stp S SLAD W Na … S SLAD W Na … S SLAD W A … RDY Figure 52. RDY pin Condition and Acknowledgement MS1337-E-00 2011/11 - 84- [AK7782] 4-2. When Read Slave-address assignment is received without receiving Read command code Data read in the AK7782 can be made only in the previously documented Read sequence. Data cannot be read out without receiving a read command code. In the AK7782, a “Not Acknowledged” is generated when a “Read Slave-address Assignment” without proper receipt of read command is received. Under this condition, which occurs when RDY pin shifts from low level to high level after a “Write Slave-address assignment” in the read sequence and before a “Read Slave-address assignment” (Note 84), “Not Acknowledged” is generated in return. Note 84. This condition may be avoided by assigning a read Slave-address only when the acknowledgement is confirmed, by utilizing the acknowledge-polling feature. Slave-address writing assignment I2C bus S SLAD W Na Cmd Slave-address reading assignment Na xxx Na rS SLAD R Na Read command code is not received Repeated N times RDY Without receiving read command and code, “Not Acknowledged” is transmitted even when “Read Slave-address assignment” is received at RDY= “H” Figure 53. Read Slave-Address Assignment without Receiving Read Command Code MS1337-E-00 2011/11 - 85- [AK7782] Limitation in use of I2C Interface The I2C Interface does not support the following features: (1) No operation in Hs mode (max: 3.4MHz) (Supports FAST mode (max: 400kHz) (2) Echo-Back function in Microcontroller Interface Format (3) Error Status Read Note 85. Do not turn off the power of the AK7782 during the power supplies of surrounding devices are turned on. The pull-up of SDA and SCL of I2C BUS must not exceed DVDD. (The diode exists for DVDD in the SDA and SCL pins.) Note 86. The meaning of symbols in I2C format in Figure 50 ~ Figure 53. SLAD …Slave Address (7 bits) Cmd …Command Code (8 bits) S …Start Condition rS …Repeated Start Condition Stp …Stop Condition W …R / W bit, the lowest bit of the first byte is at write (= 0) condition, Write (1 bit) R …R / W bit, the lowest bit of the first byte is at read (= 1) condition, Read (1 bit) A …Acknowledge (1 bit) Na …Not Acknowledge (1 bit) (Gray) … (Gray) where it is controlled by Master device. (White) … (White) where it is controlled by Slave device. It is done by the AK7782 MS1337-E-00 2011/11 - 86- [AK7782] ■ ADC Block 1. ADC High-pass Filter The AK7782 ADC has digital High Pass Filter (HPF) for DC offset cancellation. The cut-off frequency of the HPF is approximately 1Hz (at fs=48kHz). This cut-off frequency is shown below. Sampling frequency (fs) 96kHz 48kHz 44.1kHz 32kHz 8kHz Cut-off frequency 1.86Hz 0.93Hz 0.86Hz 0.62Hz 0.16Hz 2. ADCM Digital Volume (VOL) The ADCM output port has a digital volume control. After setting the control register, the output level changes in 2LRCLK cycle (max) after the rising edge of the RQN. This function does not have neither soft transition nor zero crossing detection. Click noise must be muted externally when changing the volume during an operation. When writing to theVOL5-0 bits continuously, the control register should be written with an interval more than 2LRCLK cycles from the rising edge of RQN. This volume setting is initialized by initial reset but it is not initialized by system reset. VOL mode VOL[5] VOL[4] VOL[3] VOL[2] VOL[1] VOL[0] Volume (dB) 00 0 0 0 0 0 0 0 (default) 01 0 0 0 0 0 1 -2 03 0 0 0 0 1 1 -4 04 0 0 0 1 0 0 -6 05 0 0 0 1 0 1 -8 07 0 0 0 1 1 1 -10 08 0 0 1 0 0 0 -12 09 0 0 1 0 0 1 -14 0B 0 0 1 0 1 1 -16 0C 0 0 1 1 0 0 -18 0D 0 0 1 1 0 1 -20 0F 0 0 1 1 1 1 -22 10 0 1 0 0 0 0 -24 11 0 1 0 0 0 1 -26 13 0 1 0 0 1 1 -28 14 0 1 0 1 0 0 -30 15 0 1 0 1 0 1 -32 17 0 1 0 1 1 1 -34 18 0 1 1 0 0 0 -36 19 0 1 1 0 0 1 -38 1B 0 1 1 0 1 1 -40 1C 0 1 1 1 0 0 -42 1D 0 1 1 1 0 1 -44 1F 0 1 1 1 1 1 -46 20 1 0 0 0 0 0 -48 21 1 0 0 0 0 1 -50 23 1 0 0 0 1 1 -52 24 1 0 0 1 0 0 -54 25 1 0 0 1 0 1 -56 27 1 0 0 1 1 1 -58 28 1 0 1 0 0 0 -60 3C-3F 1 1 1 1 -∞ MS1337-E-00 2011/11 - 87- [AK7782] 3. ADCM MUX The ADCM volume setting output and DSP serial data output can be mixed by the MUX circuit. MSEL[1:0] bits select the DSP serial data from DSP1 SDOUT1, DSP1 SDOUT5, DSP2 SDOUT1 and DSP2 SDOUT5. L or R channel can be selected by MUX[1:0] bits. The path is changed in 2LRCLK cycles (max) after the rising edge of RQN when control register settings are changed. Click noise should be muted externally or 00000h Data should be output for 4LRCLK cycles when changing the MUX mode during an operation. The MUX mode setting is initialized by initial reset but it is not initialized by system reset. MUX Mode 0 1 2 3 4 5 6 7 8 9 A B C D E F MSEL[1:0] 00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11 MUX[1:0] 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 L channel Output DSP1 SDOUT1 Lch DSP1 SDOUT1 Lch ADCM ADCM DSP1 SDOUT5 Lch DSP1 SDOUT5 Lch ADCM ADCM DSP2 SDOUT1 Lch DSP2 SDOUT1 Lch ADCM ADCM DSP2 SDOUT5 Lch DSP2 SDOUT5 Lch ADCM ADCM R channel Output DSP1 SDOUT1 Rch ADCM DSP1 SDOUT1 Rch ADCM DSP1 SDOUT5 Rch ADCM DSP1 SDOUT5 Rch ADCM DSP2 SDOUT1 Rch ADCM DSP2 SDOUT1 Rch ADCM DSP2 SDOUT5 Rch ADCM DSP2 SDOUT5 Rch ADCM 4. ADCM VOL + MUX Delay Time The delay time from ADCM serial output to SDOUT1, SDOUT2 and SDOUTA1 pins through VOL + MUX is 1Ts (1/fs). The delay time from DSP1 SDOUT1, DSP1 SDOUT5, DSP2 SDOUT1 or DSP2 SDOUT5 serial output to SDOUT1, SDOUT2 and SDOUTA1 pins through MUX is also 1Ts (1/fs). Set an 1Ts (1/fs) delay to the output timing of DSP SDOUT by a program when synchronizing the output of SDOUT1, SDOUT2 and SDOUTA1 pins with the output of other SDOUT pins. MS1337-E-00 2011/11 - 88- [AK7782] ■ SRC 1. General Description 1-1. Sampling Rate The AK7782 includes a stereo digital sampling rate converter (SRC). The input sampling rate is supported from 7.35kHz to 96kHz (FSI). The output sampling frequency (FSO) is 7.35kHz ~ 96kHz. When sampling rate ratio FSO/FSI is more than 1, the output sampling rate is converted to 7.35kHz ~ 96kHz. Available sampling rate ratio FSO/FSI = 0.167~6.0. (1) Up Sampling (0.98 ≤ FSO/FSI ≤ 6.00) Following sampling rates are supported. FSO FSI FSO/FSI Pass Band 96kHz 96kHz 1.00 44.00kHz 96kHz 88.2kHz 1.09 40.42kHz 96kHz 48kHz 2.00 22.00kHz 96kHz 44.1kHz 2.18 20.21kHz 88.2kHz 88.2kHz 1.00 40.42kHz 88.2kHz 48kHz 1.84 22.00kHz 88.2kHz 44.1kHz 2.00 20.21kHz 48kHz 48kHz 1.00 22.00kHz 48kHz 44.1kHz 1.09 20.21kHz 48kHz 32kHz 1.50 14.67kHz 48kHz 24kHz 2.00 11.00kHz 48kHz 16kHz 3.00 7.33kHz 48kHz 12kHz 4.00 5.50kHz 48kHz 8kHz 6.00 3.67kHz 44.1kHz 44.1kHz 1.00 20.21kHz 44.1kHz 32kHz 1.38 14.67kHz 44.1kHz 24kHz 1.84 11.00kHz 44.1kHz 16kHz 2.76 7.33kHz 44.1kHz 12kHz 3.68 5.50kHz 44.1kHz 8kHz 5.51 3.67kHz Stop Band 52.00kHz 47.78kHz 26.00kHz 23.89kHz 47.78kHz 26.00kHz 23.89kHz 26.00kHz 23.89kHz 17.33kHz 13.00kHz 8.67kHz 6.50kHz 4.33kHz 23.89kHz 17.33kHz 13.00kHz 8.67kHz 6.50kHz 4.33kHz (2) Down Sampling (0.167 ≤ FSO/FSI < 0.99) Supported sampling ratios (FSO/FSI) are 0.92, 0.54, 0.50, 0.46, 0.25, 0.181 and 0.167. FSO FSI FSO/FSI Pass Band Stop Band 44.1kHz 48kHz 0.92 20.00kHz 24.10kHz 48kHz 88.2kHz 0.54 19.25kHz 26.23kHz 48kHz 96kHz 0.50 20.90kHz 27.00kHz 44.1kHz 88.2kHz 0.50 19.20kHz 24.81kHz 16kHz 32kHz 0.50 6.97kHz 9.00kHz 8kHz 16kHz 0.50 2.48kHz 4.50kHz 44.1kHz 96kHz 0.46 18.70kHz 25.00kHz 8kHz 32kHz 0.25 2.93kHz 3.98kHz 8kHz 48kHz 0.167 4.40kHz 6.50kHz 8kHz 44.1KHz 0.181 4.04kHz 5.97kHz MS1337-E-00 2011/11 - 89- [AK7782] 1-2. SRC Input/Output Interfaces (1) Input Interface Format The SDIN1 pin is for SRC1 input (SRC1I). The SDIN5 pin, SDIN1 pin, internal node P1SDOUT1, and P2SDOUT1 are for SRC2 input (SRC2I) (Figure 1). The input interface format is set by control registers CONT13 and CONT14. These registers should be set during system reset. This audio interface supports MSB first, 2’s complement data format. CONT13, CONT14 1. D7: BIEDGE SRC BICK Select 0: Falling edged of SRCLRCKI SRCLRCKI tBCLK SF SRCBICKI 63 62 61 60 59 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 1: Rising edged of SRCLRCKI SRCLRCKI tBCLK SF SRCBICKI 63 62 61 60 59 2. 3. 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 D6, D5, D4: IDIF[2:0] SRC Input Interface Select fsi: SRC input sampling rate IDIF Mode IDIF[2] IDIF[1] IDIF[0] Input Format 0 0 0 0 LSB 16bit 1 0 0 1 LSB 20bit 2 0 1 0 MSB 24/20bit 3 0 1 1 I2S Compatible 24/16bit 4 1 0 0 LSB 24bit 5 1 0 1 N/A 6 1 1 0 PCM SHORT(24bit) 7 1 1 1 PCM LONG(24bit) 10 9 8 7 6 5 4 3 2 1 0 SRC BICK ≥ 32fsi ≥ 40fsi ≥ 48fsi ≥ 48fsi or 32fsi ≥ 48fsi BIFS[1:0] Setting BIFS[1:0] Setting D3, D2: BIFS[1:0] SRCBICKI Select BIFS Mode BIFS[1] BIFS[0] SRCBICKI 0 0 0 32fsi 1 0 1 64fsi 2 1 0 128fsi 3 1 1 48fsi Note 87. This setting is necessary when operating in IDIF mode 6 or 7. MS1337-E-00 2011/11 - 90- [AK7782] Left ch SRCLRCKI Right ch SRCBICKI 31 30 SRC1I,SRC2I IDIF Mode 4 SRC1I,SRC2I IDIF Mode 1 SRC1I,SRC2I IDIF Mode 0 23 22 21 20 19 18 17 16 15 14 1 0 31 30 23 22 21 20 19 18 17 16 15 14 1 0 Don’t care M 22 21 20 19 18 17 16 15 14 1 L Don’t care M 22 21 20 19 18 17 16 15 14 1 L Don’t care M 18 17 16 15 14 1 L Don’t care M 18 17 16 15 14 1 L Don’t care M 14 1 L Don’t care M 14 1 L M:MSB,L:LSB Figure 54. IDIF Mode 0, 1, 4 @BIEDGE=0, SRCBICKI 64fs Left ch SRCLRCKI Right ch SRCBICKI SRC1I,SRC2I IDIF Mode 2 31 30 29 28 27 M 22 2120 19 10 9 8 7 6 5 4 3 2 1 2 1 L 0 31 30 29 28 27 M 22 21 20 19 10 9 8 7 6 5 4 3 2 1 0 2 1 L M:MSB,L:LSB Figure 55. IDIF Mode 2 @BIEDGE=0, SRCBICKI 64fs Left ch SRCLRCKI Right ch SRCBICKI SRC1I,SRC2I IDIF Mode 2 23 22 21 20 19 18 17 16 23 6 5 4 3 2 1 0 23 22 21 20 19 18 17 16 7 6 5 4 3 2 1 0 M 22 21 20 19 18 17 16 7 6 5 4 3 2 1 L M 22 21 20 19 18 17 16 7 6 5 4 3 2 1 L M:MSB L:LSB Figure 56. IDIF Mode 2 @BIEDGE=0, SRCBICKI 48fs Left ch SRCLRCKI Right ch SRCBICKI SRC1I,SRC2I IDIF Mode 3 31 30 29 28 27 M 22 21 20 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 3 2 1 L M 22 21 20 10 9 8 7 6 5 4 3 2 1 0 3 2 1 L M:MSB,L:LSB Figure 57. IDIF Mode 3 @BIEDGE=0, SRCBICI 64fs SRCLRCKI tBCLK SF SRCBICKI SRC1I,SRC2I IDIF Mode 6 63 62 61 60 59 M 22 21 20 19 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 2 1 L L ch M 22 21 20 19 10 9 8 7 6 5 4 3 2 1 0 2 1 L R ch tBCLK x 32 Figure 58. IDIF Mode 6 @BIEDGE=1, BIFS[1:0]=1h MS1337-E-00 2011/11 - 91- [AK7782] tBCLK SF SRCLRCKI SRCBICKI 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SRC1I,SRC2I IDIF Mode 6 M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 L M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 L Lch tBCLK x 16 M:MSB L:LSB R ch Figure 59. IDIF Mode 6 @BIEDGE=1, BIFS[1:0]=0h 1 ≤ tBCLK ≤ 60 LF SRCLRCKI SRCBICKI SRC1I,SRC2I IDIF Mode 7 63 62 61 60 59 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 M 22 21 20 19 2 1 L L ch tBCLK M 22 21 20 19 10 9 8 7 6 5 4 3 2 1 0 2 1 L M:MSB,L:LSB R ch tBCLK x 32 Figure 60. IDIF Mode 7 @BIEDGE=1, BIFS[1:0]=1h 1 ≤ tBCLK ≤ 28 LF tBCLK SRCLRCKI SRCBICKI 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SRIN1-3 IDIF Mode 7 M:MSB M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 L M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 L L:LSB L ch R ch tBCLK x 16 Figure 61. IDIF Mode 7 @BIEDGE=1, BIFS[1:0]=0h MS1337-E-00 2011/11 - 92- [AK7782] (2) Output Interface Format The SRC output format is fixed to MSB justified 24-bit 2’s complement. The output data is synchronized with internal clock LRCLKO and BITCLKO. I²S compatible format is available by setting a control register CONT00 DIFI2S bit = “1”. Set DSP input format MSB justified when connecting the SRC output to the DSP. Left ch LRCKO Right ch BICKO 31 30 29 28 27 SRC1O,SRC2O M 22 2120 19 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 2 1 L M 22 21 20 19 10 9 8 7 6 5 4 3 2 1 0 2 1 L M:MSB,L:LSB Figure 62. CONT00 DIFI2S (D4) bit= “0” Left ch LRCKO Right ch BICKO 31 30 29 28 27 SRC1O,SRC2O M 22 21 20 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 3 2 1 L M 22 21 20 10 9 8 7 6 5 4 3 2 1 0 3 2 1 L M:MSB,L:LSB Figure 63. CONT00 DIFI2S (D4) bit= “1” MS1337-E-00 2011/11 - 93- [AK7782] 2. Soft Mute 2-1. Manual Mode The soft mute operation is performed in the digital domain of the SRC output. When PSRCSMUTE pin is set to “H”, the SRC output data are attenuated by −∞ in 1024 LRCLKO cycles. When the PSRCSMUTE pin is set to “L”, the mute is cancelled and the output attenuation gradually changes to 0dB in 1024 LRCLKO cycles. If the soft mute is cancelled before mute state, the attenuation is discontinued and returned to 0dB by the same cycles. The soft mute is effective for changing the signal source. (SRC1 and SRC2 can be soft muted independently by RSRC1SMUTE and RSRC2SMUTE bits) SRCSMUTE (PSRCSMUTE pin) (RSRC*SMUTE bit) 0dB Attenuation Level at SRCOUT -∞dB (2) (1) (1) Figure 64. Soft Mute Manual Mode (1) The output data is attenuated to −∞ in 1024 LRCLKO cycles (1024/fso). (2) If the soft mute is cancelled before attenuating to −∞, the attenuation is discontinued and returned to 0dB by the same number of clock cycles. 2-2. Semi-Auto Mode Soft mute semi-auto mode is enabled by setting SRC1SEMIAUTO or SRC2SEMIAUTO bit to “1”. The soft mute is cancelled automatically after keeping the mute for 50ms or 200ms (@FSO=44.1kHz) by setting RSRCRSTN bit “0” → “1” or PSRCRSTN pin “L” → “H”. If the PSRCSMUTE pin is “H”, soft mute is still ON even SRC reset is released. The mute time varies according to SRC1AUTOSEL bit, SRC2AUTOSEL bit setting and FSO as shown below. AUTOSEL register 0 1 Period 2205/fso×1 8820/fso×1 P S R C R S T N pin R S R C R S T N b it P S R C S M U T E p in R S R C 1S M U T E b it R S R C 2S M U T E b it FSO=44.1kHz 50ms 200ms FSO=48kHz 46ms 184ms FSO=88.2kHz 25ms 100ms FSO=96kHz 23ms 92ms “L ” or “0 ” D on ’t C ar e “L ” o r “0 ” (1 ) 0d B A tte n u ation 220 5/fso -∞ (2 ) GD SRCO (S R C 1 O , S R C 2O ) Figure 65. Soft Mute Semi-Auto Mode (1) The output attenuation level returns to 0dB in 1024LRCKO cycles (1024/fso). (2) The digital output corresponding to the digital input has group delay (GD). MS1337-E-00 2011/11 - 94- [AK7782] 3. SRC System Reset Bringing the PSRCRSTN pin = “L” resets both SRC1 and SRC2, and initializes the digital filters. When the PSRCRSTN pin = “L”, output of the SRCOUT pin is “L”. The PSRCRSTN pin must be “L” upon power-up the AK7782. The SRC outputs the data within 50ms by releasing the SRC reset after the clock is input. Until then, the SRCO outputs “L”. Before releasing the SRC system reset, the SRC setting should be completed. Case 1 External clocks (Input port) Don’t care Input Clocks 1 Input Clocks 2 Don’t care SRCnI (n=1, 2) Don’t care Input Data 1 Input Data 2 Don’t care LRCKO BICKO (Output port) Don’t care Output Clocks 1 Output Clocks 2 Don’t care SRCRST < 50ms (Internal state) Power-down SRCnO (n=1, 2) < 50ms Normal operation PLL lock & fs detection “0” data PLL lock & fs detection PD Normal data “0” data Normal operation Power-down Normal data “0” data SRCUNLOCK Figure 66. System Reset 1 Case 2 External clocks (Input port) (No Clock) SRCnI (n=1, 2) External clocks (Output port) Input Clocks Don’t care (Don’t care) Input Data Don’t care (Don’t care) Output Clocks Don’t care SRCRST (Internal state) Power-down SRCnO (n=1, 2) < 50ms PLL Unlock “0” data PLL lock & fs detection Normal operation Power-down Normal data “0” data SRCUNLOCK Figure 67. System Reset 2 MS1337-E-00 2011/11 - 95- [AK7782] 4. Clock Change 4-1. Internal Reset Function for Clock Change The SRC block of the AK7782 executes an internal reset automatically when the in/output clock is stopped. Normal data will be output within 50ms after the clock is restarted. 4-2. Clock Change Sequence Clock change sequence is shown in Figure 68. clocks (input or output) state 1 (unknown) SRCRST < 50ms(SETSRC=”L”) (interlal state) SRCnO (n=1, 2) normal operation Power down PLL locktime & fs detection normal operation Note 86 normal data SRCSMUTE (Note87,recommended) Att.Level state 2 normal data 1024/fso 1024/fso 0dB -∞dB Figure 68. Clock Change Sequence Note 88. The data on SRCO may cause a clicking noise. This click noise can be prevented by inputting “0” data to the SRCI from GD before a SRC system reset. It makes the data on SRCO remain as “0”. (p55 ) Note 89. The click noise (Note 88) can be removed by SRC soft mute. Refer to p54 “CONT16: D7, D6”. 5. UNLOCK SRC states are output from the STO pin when SRC1LOCKE and SRC2LOCKE bits = “1”. The STO pin outputs “H” if the Ratio detection of the SRC is finished. If not, the STO pin outputs “L”. The STO pin also outputs “L” during SRC reset (SRCRSTN bit = “0”) and when a clock over 96kHz is input to the SRCLRCK pin. SRC output is “L” when the STO pin is “L”. MS1337-E-00 2011/11 - 96- [AK7782] SYSTEM DESIGN 1. Typical Connection Diagrams Digital +3.3V 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 10μ 9 CLOCK CONTROL 15,16,17 Rd 12 20 29 49 56 DVDD x 6 69 I2CSEL SDA CKM[2:0] STO 51 50 RQN 44 SI 45 SCLK 46 INITRSTN 40 PCKRSTN 41 PADRSTN 42 PDSPRSTN 43 AK7782 XTI 37 LRCLKI 36 BITCLKI 28 CLKO1 22 BITCLKO 21 LRCLKO CLOCK 61 PSRCRSTN TESTI1,2 NC JX0 JUMP NC Analog Lch+ 92 AINL+ Analog Lch- 91 AINL- Analog Rch+ 90 AINR+ 89 AINR- Analog RchAnalog Lch 83,81,79,94,96,98,100 Analog Rch 82,80,78,93,95,97,99 77 Analog Mono C R 1 73 10μ 3 PSRCSMUTE SRCLRCK SRCBICK I/F RESET CONTROL 66 4,72 76 75 6 7 SRC 71 64 63 AINR2~AINR8 AINM SDIN1 SDIN2~7 LFLT SDOUTA1 AVDD SDOUT1~7 62 32-35,59,60 53 23-27,54,55 Audio I/F VCOM 86 AVDD 0.1μ 10μ 0.1μ 84 10μ SRC2BICK Micom 0.1μ Analog +3.3V 10μ SRC2LRCK AINL2~AINL8 52 SO CL 11 “L” 65 RDY XTO CL 5 0.1μ 85 10,13,19,30,39,48,57,68 VSS1 AVDD VREFL VREFH VSS2 VSS3 14 2,74,88 87 8,70 DVDD18 x 7 18 31 38 47 58 67 Digital +1.8V 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 10μ Figure 69. Hardware Reset (I2CSEL pin= “L”) MS1337-E-00 2011/11 - 97- [AK7782] Digital +3.3V 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 10μ 9 CLOCK CONTROL 15,16,17 Rd 12 20 29 49 56 DVDD x 6 69 I2CSEL STO CKM[2:0] 11 51 SO SDA 50 65 CAD1 44 CAD0 45 SCL 46 INITRSTN 40 PCKRSTN 41 PADRSTN 42 XTO AK7782 XTI 37 LRCLKI 36 BITCLKI 28 CLKO1 22 BITCLKO 21 LRCLKO CLOCK 61 PDSPRSTN PSRCRSTN TESTI1,2 JX0 JUMP Analog Lch+ 92 AINL+ Analog Lch- 91 AINL- Analog Rch+ 90 AINR+ Analog Rch- 89 AINR- Analog Lch 83,81,79,94,96,98,100 Analog Rch 82,80,78,93,95,97,99 77 Analog Mono C R 1 73 10μ 3 CONTROL 6 7 SRC 71 64 63 AINR2~AINR8 AINM SDIN1 SDIN2~7 LFLT SDOUTA1 SDOUT1~7 AVDD 62 32-35,59,60 53 23-27,54,55 Audio I/F VCOM 86 AVDD 0.1μ 10μ 0.1μ 84 10μ SRCBICK RESET 0.1μ Analog +3.3V 10μ 75 SRCLRCK I/F 4,72 NC PSRCSMUTE Micom 43 76 SRC2BICK I2C 66 NC SRC2LRCK AINL2~AINL8 “H” RDY CL CL 5 52 0.1μ 85 10,13,19,30,39,48,57,68 VSS1 AVDD VREFL VREFH VSS2 VSS3 14 2,74,88 87 8,70 DVDD18 x 7 18 31 38 47 58 67 Digital +1.8V 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 0.1μ 10μ Figure 70. Software Reset (I2CSEL pin= “H”) MS1337-E-00 2011/11 - 98- [AK7782] 2. Peripheral Circuits 2-1. Ground and Power Supply To minimize digital noise coupling, AVDD, DVDD and DVDD18 should be individually de-coupled at the AK7782. System analog power is supplied to AVDD. Power supply should be wired separately and connected as close as possible to where the supplies are brought onto the printed circuit board. Decoupling capacitors, particularly small capacity capacitors, should be connected as close as possible to the AK7782. 2-2. Reference Voltage The input voltage difference between the VREFH pin and the VREFL pin determines the full scale of analog input. Normally, connect AVDD to VREFH, and connect VSS1 to VREFL pins. Connect a 0.1μF ceramic capacitor to the VREF pin to eliminate the effects of high frequency noise in parallel with an appropriate 10μF electrolytic capacitor between this pin and VSS1. The ceramic capacitor in particular should be connected as close as possible to the pin. To avoid coupling to the AK7782, digital signals and clock signals should be kept away as far as possible from the VREFH and VREFL pins. VCOM is used as the common voltage of the analog signal. A 10μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached between VCOM pin and VSS1 pin eliminates the effects of high frequency noise. The ceramic capacitor should be connected as close as possible to the pin. Do not draw current from the VCOM pin. 2-3. Analog Input Analog input signals are applied to the modulator through the input pin of each channel. The input voltage is ±FS=± (VREFH-VREFL)×2.0/3.3. When VREFH = 3.3V and VREFL = 0.0V, the input range is within ±2.00Vpp (typ). The output code format is given in terms of 2's complements. The AK7782 samples the analog inputs at 3.072MHz when fs=48kHz. The digital filter rejects noise from 30kHz to 3.042MHz. The AK7782 includes an anti-aliasing filter (RC filter) to attenuate a noise around 3.042MHz~3.072MHz. No external low-pass filter is needed in front of the ADC for normal audio signal. However, an external low-pass filter should be connected before the ADC for the signal which has large out-of-band noise such as D/A converted signals. The analog source voltage to the AK7782 is +3.3V typical. Voltage of AVDD + 0.3V or more, voltage of VSS1 - 0.3V or less, and current of 10mA or more must not be applied to analog input pins. Excessive current will damage the internal protection circuit and will cause latch-up, damaging the IC. Accordingly, if the external analog circuit voltage is ±15V, the analog input pins must be protected from signals with the absolute maximum rating or more. 10k Signal 22μ + 10k 10k 68p + +12V 10k 2.0Vpp 68p + + LME49720MA AIN+ 2.2μ + 2.2μ AIN2.0Vpp Figure 71. Input Buffer Circuit Example (Differential Input) After initial reset is released, the internal operating point level AVDD/2 occurs on analog input pins (AINL+, AINL-, AINR+, AINR-, AINL2~L8, AINR2~R8, AINM) of the AK7782. MS1337-E-00 2011/11 - 99- [AK7782] 2-4. Connection to Digital Circuit Connect CMOS logic or low voltage logic circuits to digital output pins of the AK7782 to minimize digital noise coupling. Adequate CMOS logics are 74HC and 74AC series, and low-voltage logics are 74LV, 74LV-A, 74ALVC and 74AVC series. 2-5. Cristal Oscillator The resistor and capacitor values for the oscillator RC circuit are shown in the table below. CKM Mode 0, 2 1, 3 R1 max 70Ω 50Ω C0 max 5pF 5pF XTI, XTO pin Capacity 10pF or 15pF or 22pF 10pF or 15pF 2-6. LFLT pin External Connection A resistor and a capacitor with a following specification should be connected to the LFLT pin (pin #1). R [kΩ] 1.5±5% C [nF] 47± 30% MS1337-E-00 2011/11 - 100- [AK7782] PACKAGE 100-pin LQFP (Unit: mm) 1.60 Max. 16.0 14.0 76 50 100 26 14.0 16.0 0.10±0.05 51 75 25 1 0.5 0.22±0.05 0.09~0.20 0.10 M 1.0 S 0°~10° 0.60±0.15 0.10 S ■ Package & Lead frame material Package molding compound: Epoxy Lead frame material: Cu Lead frame surface treatment: Solder (Pb free) plate MS1337-E-00 2011/11 - 101- [AK7782] MARKING AK7782VQ XXXXXXX 1) Pin #1 indication 2) Date Code: XXXXXXX(7 digits) 3) Marking Code: AK7782VQ REVISION HISTORY Date (YY/MM/DD) 11/11/02 Revision 00 Reason First Edition Page MS1337-E-00 Contents 2011/11 - 102- [AK7782] IMPORTANT NOTICE z These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products. z Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein. z Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. z AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here: Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. z It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. MS1337-E-00 2011/11 - 103-