[AK7755] AK7755 DSP with Mono ADC Stereo CODEC + Mic/Lineout Amp 1. General Description The AK7755 is a highly integrated digital signal processor, including a mono ADC, a stereo audio CODEC, a MIC pre-amplifier, a line-out amplifier and digital audio I/F. The audio DSP has 2560step at fs = 48kHz parallel processing power. As the AK7755 is a RAM based DSP, it is programmable for user requirements such as high performance hands free function and acoustic effects. The AK7755 is available in a space saving small 36-pin QFN package. 2. Features DSP - Word length: 24-bit (Data RAM 24-bit floating point) - Instruction cycle: 8.1ns (2560fs at fs=48kHz) - Multiplier 24 x 24 → 48-bit (double precision available) - Divider 20 / 20 → 20-bit (with floating point normalization function) - ALU: 52-bit arithmetic operation (with overflow margin 4-bit) - Program RAM: 4096 × 36-bit - Coefficient RAM: 2048 × 24-bit - Data RAM: 2048 × 24-bit (24-bit floating point) - Offset Register: 32 × 13-bit - Delay RAM: 8192 × 24-bit - Accelerator Coefficient RAM: 2048 × 20-bit - Accelerator Data RAM: 2048 × 16-bit - JX pins (Interrupt) - Master/Slave Operation - Master Clock: 2560fs (Internally Generated by PLL from 32, 48, 64, 128, 256 and 384fs clock) Two Digital Interfaces (I/F1, I/F2) - Digital Signal Input Port (4ch): MSB justified 24-bit, LSB justified 24/20/16-bit, I2S - Digital Signal Input Port (6ch): MSB justified 24-bit, LSB justified 24/20/16-bit, I2S - Short / Long Frame - 24-bit linear, 8-bit A-law, 8-bit μ-law - TDM 256fs (8ch) MSB justified and I2S formats Stereo 24-bit ADC: - Sampling Frequency: fs=8kHz ~ 96kHz - ADC Characteristics S/(N+D): 91dB, DR, S/N: 102dB - Two-Channel Analog Input Selector (Differential, Single-ended Input) - Channel Independent Mic Analog Gain Amplifier (0~18dB (2dB Step), 18~36dB (3dB Step)) - Analog DRC (Dynamic Range Control) - Channel Independent Digital Volume (24~-103dB, 0.5dB Step Mute) - Digital HPF for DC Offset Cancelling Mono 24-bit ADC - Sampling Frequency: 8kHz ~ 96kHz - ADC Characteristics S/(N+D): 90dB; DR, S/N: 100dB - Line Amplifier: 21dB ~ -21dB, 3dB Step - Digital Volume (24dB ~ -103dB, 0.5dB step, Mute) - Digital HPF for DC Offset Cancelling 014006643-E-00 2014/10 -1- [AK7755] Stereo 24-bit DAC - Sampling Frequency: fs=8kHz ~ 96kHz - Digital Volume (12dB ~ -115dB, 0.5step, Mute) - Digital De-emphasis Filter (tc=50/15us, fs=32kHz, 44.1kHz, 48kHz) Line Output - Single-ended Output - S/(N+D): 91dB, DR, S/N: 106dB - Stereo Analog Volume (+0dB ~ -28dB, 2.0dB step, Mute) Analog Mixer Digital Mixer 4ch Digital Microphone Interface I2C Bootloader - EEPROM Mat Selectable μP Interface: SPI, I2C-bus (400kHz Fast Mode) Power supply Analog (AVDD): 3.0V ~ 3.6V (typ. 3.3V) Digital1 (DVDD): 1.14V ~ 1.3V (typ. 1.2V) (External Power Supply or Internal Regulator is selectable) I/F (TVDD): 1.7V ~ 3.6V (typ. 3.3V) Operating Temperature Range: -40C ~ 85C Package: 36-pin QFN (0.5mm pitch) 014006643-E-00 2014/10 -2- [AK7755] 3. Table of Contents 1. General Description ................................................................................................................................................. 1 2. Features.................................................................................................................................................................... 1 3. Table of Contents ..................................................................................................................................................... 3 4. Block Diagram and Functions ................................................................................................................................. 4 ■ Block Diagram .......................................................................................................................................... 4 ■ DSP Block Diagram .................................................................................................................................. 5 5. Pin Configurations and Functions ........................................................................................................................... 6 ■ Ordering Guide .......................................................................................................................................... 6 ■ Pin Layout ................................................................................................................................................. 6 ■ Pin Functions ............................................................................................................................................. 9 ■ Handling of Unused Pin .......................................................................................................................... 10 6. Absolute Maximum Ratings .................................................................................................................................. 11 7. Recommended Operating Conditions .................................................................................................................... 11 8. Electrical Characteristics ....................................................................................................................................... 12 ■ Analog Characteristics ............................................................................................................................ 12 ■ DC Characteristics ................................................................................................................................... 17 ■ Power Consumptions ............................................................................................................................... 17 ■ Digital Filter Characteritics ..................................................................................................................... 18 ■ Switching Characteristics ........................................................................................................................ 19 9. Functional Description .......................................................................................................................................... 26 ■ System Clock ........................................................................................................................................... 26 ■ Control Register Settings......................................................................................................................... 30 ■ Power-up Sequence ................................................................................................................................. 52 ■ LDO (Internal Circuit Drive Regulator).................................................................................................. 55 ■ Power-down Sequence ............................................................................................................................ 55 ■ Power-down and Reset ............................................................................................................................ 56 ■ RAM Clear .............................................................................................................................................. 58 ■ Serial Data Interface ................................................................................................................................ 59 ■ μP Interface Setting and Pin Status ......................................................................................................... 66 ■ SPI Interface (I2CSEL pin = “L”) ........................................................................................................... 66 ■ I2C Bus Interface (I2CSEL pin= “H”) ..................................................................................................... 79 ■ Analog Input Block ................................................................................................................................. 84 ■ ADC Block .............................................................................................................................................. 87 ■ DAC Blocks ............................................................................................................................................ 90 ■ Analog Output Block............................................................................................................................... 92 ■ Simple Write Error Check ....................................................................................................................... 94 ■ EEPROM Interface.................................................................................................................................. 95 ■ Digital Microphone Interface .................................................................................................................. 99 ■ Digital Mixer ......................................................................................................................................... 100 10. Recommended External Circuits ....................................................................................................................... 101 ■ Connection Diagram.............................................................................................................................. 101 ■ Peripheral Circuit .................................................................................................................................. 105 11. Package .............................................................................................................................................................. 107 ■ Outline Dimensions ............................................................................................................................... 107 ■ Package & Lead frame material ............................................................................................................ 107 ■ Marking ................................................................................................................................................. 108 12. Revision History ................................................................................................................................................ 109 IMPORTANT NOTICE ........................................................................................................................................ 109 014006643-E-00 2014/10 -3- [AK7755] 4. Block Diagram and Functions ■ Block Diagram Figure 1. Block Diagram 014006643-E-00 2014/10 -4- [AK7755] ■ DSP Block Diagram CP0, CP1 Pointer DP0, DP1 Coefficient RAM Data RAM 2048w x 24-Bit(20.4f) 2048w×24-Bit OFREG 32w x 13-Bit DLP0, DLP1 Delay RAM 8192w x 24-Bit(20.4f) CBUS(24-Bit) DBUS(28-Bit) MPX24 Micon I/F MPX24 X Serial I/F Control PRAM DEC Y 4096w×36-Bit Multiply 24 ×24 → 48-Bit PC Stack : 5level(max) 28-Bit 48-Bit TMP 12×24-Bit PTMP(LIFO) 6×24-Bit MUL DBUS 2×16/20/24-Bit DIN4 2×16/20/24-Bit DIN3 2×16/20/24-Bit DIN2 2×16/20/24-Bit DIN1 ALU 2×16/20/24-Bit DOUT4 52-Bit 2×16/20/24-Bit DOUT3 2×16/20/24-Bit DOUT2 2×16/20/24-Bit DOUT1 SHIFT 52-Bit 48-Bit A B Overflow Margin: 4-Bit 52-Bit DR0 3 Accelerator 52-Bit Coefficient RAM (ACCRAM) 2048w x 20-Bit Over Flow Data Generator Division 2020→20 Data RAM (ACDRAM) 2048w x 16-Bit Peak Detector Figure 2. DSP Block Diagram 014006643-E-00 2014/10 -5- [AK7755] 5. Pin Configurations and Functions ■ Ordering Guide -40 +85C 36-pin QFN (0.5mm pitch) Evaluation Board for AK7755 AK7755EN/VN AKD7755 OUT3 OUT2 DVSS DVDD/AVDRV LDOE PDN AVDD CSN/CAD/MATSEL SI/EXTEEP 27 26 25 24 23 22 21 20 19 ■ Pin Layout OUT1 28 18 SCLK/SCL AVDD 29 17 SO/SDA AVSS 30 16 SDOUT1/EEST IN4/INN2/DMCLK2 31 15 SDOUT2/JX3/MAT0 IN3/INP2/DMDAT2 32 14 SDOUT3/JX2/MAT1 IN2/INN1/DMCLK1 33 13 DVSS IN1/INP1/DMDAT1 34 12 TVDD LIN 35 11 XTI AVDD 36 10 XTO 36pin QFN 1 2 3 4 5 6 7 8 9 VCOM AVSS I2CSEL SDIN2/JX1 SDIN1/JX0 STO/RDY LRCK BICK CLKO (TOP VIEW) PIN Input Output I/O Power Figure 3. Pin Layout 014006643-E-00 2014/10 -6- [AK7755] OUT3 OUT2 DVSS DVDD/AVDRV LDOE PDN AVDD CSN SI 27 26 25 24 23 22 21 20 19 I2CSEL pin = “L” OUT1 28 18 SCLK AVDD 29 17 SO AVSS 30 16 SDOUT1/EEST IN4/INN2/DMCLK2 31 15 SDOUT2/JX3 IN3/INP2/DMDAT2 32 14 SDOUT3/JX2 IN2/INN1/DMCLK1 33 13 DVSS IN1/INP1/DMDAT1 34 12 TVDD LIN 35 11 XTI AVDD 36 10 XTO 36pin QFN 1 2 3 4 5 6 7 8 9 VCOM AVSS I2CSEL=“L” SDIN2/JX1 SDIN1/JX0 STO/RDY LRCK BICK CLKO (TOP VIEW) PIN Input Output I/O Power OUT3 OUT2 DVSS DVDD/AVDRV LDOE PDN AVDD CAD EXTEEP=“L” 27 26 25 24 23 22 21 20 19 I2CSEL pin = “H”, EXTEEP pin = “L” OUT1 28 18 SCL AVDD 29 17 SDA AVSS 30 16 SDOUT1/EEST IN4/INN2/DMCLK2 31 15 SDOUT2/JX3 IN3/INP2/DMDAT2 32 14 SDOUT3/JX2 IN2/INN1/DMCLK1 33 13 DVSS IN1/INP1/DMDAT1 34 12 TVDD LIN 35 11 XTI AVDD 36 10 XTO 36pin QFN 1 2 3 4 5 6 7 8 9 VCOM AVSS I2CSEL=“H” SDIN2/JX1 SDIN1/JX0 STO/RDY LRCK BICK CLKO (TOP VIEW) 014006643-E-00 PIN Input Output I/O Power 2014/10 -7- [AK7755] OUT3 OUT2 DVSS DVDD/AVDRV LDOE PDN AVDD MATSEL=“L” EXTEEP=“H” 27 26 25 24 23 22 21 20 19 I2CSEL pin = “H”, EXTEEP pin = “H”, MATSEL pin = “L” OUT1 28 18 SCL AVDD 29 17 SDA AVSS 30 16 SDOUT1/EEST IN4/INN2/DMCLK2 31 15 SDOUT2/JX3 IN3/INP2/DMDAT2 32 14 SDOUT3/JX2 IN2/INN1/DMCLK1 33 13 DVSS IN1/INP1/DMDAT1 34 12 TVDD LIN 35 11 XTI AVDD 36 10 XTO 36pin QFN 1 2 3 4 5 6 7 8 9 VCOM AVSS I2CSEL=“H” SDIN2/JX1 SDIN1/JX0 STO/RDY LRCK BICK CLKO (TOP VIEW) PIN Input Output I/O Power OUT3 OUT2 DVSS DVDD/AVDRV LDOE PDN AVDD MATSEL=“H” EXTEEP=“H” 27 26 25 24 23 22 21 20 19 I2CSEL pin = “H”, EXTEEP pin = “H”, MATSEL pin = “H” OUT1 28 18 SCL AVDD 29 17 SDA AVSS 30 16 SDOUT1/EEST IN4/INN2/DMCLK2 31 15 MAT0 IN3/INP2/DMDAT2 32 14 MAT1 IN2/INN1/DMCLK1 33 13 DVSS IN1/INP1/DMDAT1 34 12 TVDD LIN 35 11 XTI AVDD 36 10 XTO 36pin QFN 1 2 3 4 5 6 7 8 9 VCOM AVSS I2CSEL=“H” SDIN2/JX1 SDIN1/JX0 STO/RDY LRCK BICK CLKO (TOP VIEW) 014006643-E-00 PIN Input Output I/O Power 2014/10 -8- [AK7755] ■ Pin Functions No. Pin Name I/O 1 VCOM O 2 AVSS - 3 I2CSEL I SDIN2 JX1 SDIN1 JX0 STO RDY LRCK BICK CLKO I I I I O O I/O I/O O 4 5 6 7 8 9 10 XTO O 11 XTI I 12 TVDD 13 DVSS SDOUT3 JX2 14 MAT1 I O I SDOUT2 JX3 O I MAT0 I 15 SDOUT1 EEST SO 17 SDA 16 SCLK I O O O I/O I 18 SCL 19 I/O SI I EXTEEP I Function Common Voltage Output Pin of Analog Block ▪ Connect a 2.2μF capacitor between AVSS. ▪ Do not connect to an external circuit. Analog Ground Pin 0V I2C-BUS Select Pin ▪ I2CSEL pin = “L”: SPI Interface ▪ I2CSEL pin = “H”: I2C-bus Interface The I2CSEL pin must be fixed to “L” (DVSS) or “H” (TVDD). Serial Data Input2 Pin External Conditional Jump1 Pin (JX1E bit = “1”) Serial Data Input1 Pin External Conditional Jump0 Pin (JX0E bit = “1”) Status Output Pin RDY Pin LR Channel Select Pin (Internal pull-down) Serial Bit Clock Output Pin (Internal pull-down) Clock Output Pin Crystal oscillator output pin ▪ When a crystal oscillator is used, connect it between XTI and XTO. ▪ When a crystal oscillator is not used, leave this pin as open. Crystal oscillator input pin ▪ When a crystal oscillator is used, connect it between XTI and XTO. ▪ When a crystal oscillator is not used, connect this pin to the external clock or leave open. Digital IO Power Supply Pin: 1.7~3.6V (typ. 3.3V) Ground Pin 0V Serial Data Output3 Pin External Conditional Jump2 Pin (JX2E bit = “1”) I2CSEL pin = EXTEEP pin = MATSEL pin = “H” EEPROM Download Mat Select Address1 Serial Data Output2 Pin External Conditional Jump3 Pin (JX3E bit = “1”) I2CSEL pin = EXTEEP pin = MATSEL pin = “H” EEPROM Download Mat Select Address0 Serial Data Output1 Pin EEPROM Interface Status SO Pin (I2CSEL pin = “L”) I2CBUS Interface (I2CSEL pin = “H”) Serial Data Clock Pin for SPI Interface (I2CSEL pin = “L”) ▪ Set this pin to “H” when there is no clock input. I2CBUS Interface Pin (I2CSEL pin = “H”) EEPROM Download This becomes an output pin when EXTEEP pin = “H”. Serial Data Input Pin for SPI Interface (I2CSEL pin = “L”) ▪ Set this pin to “L” when not used. EEPROM Download Control Pin (I2CSEL pin = “H”) 014006643-E-00 2014/10 -9- [AK7755] ChipSelectN Pin for SPI Interface (I2CSEL pin = “L”) ▪ Set this pin to “H” when the AK7755 is in power-down mode or when the microprocessor I/F is not used. 20 CAD I I2CBUS Address Pin (I2CSEL pin = “H”) MATSEL I EEPROM Mat Select Pin (I2CSEL pin = EXTEEP pin = “H”) 21 AVDD - Analog Power Supply Pin: (typ. 3.3V) Power-down N Pin 22 PDN I ▪ The AK7755 can be powered-down by this pin. ▪ Set this pin to “L” upon power-up the AK7755. LDO Select Pin LDOE pin = “L”: 24 pin External 1.2V Power Supply 23 LDOE I LDOE pin = “H”: 24 pin LDO Output (LDO Drive) The LDOE pin must be fixed to “L(DVSS)” or “H(TVDD)”. DVDD I Power Supply Pin for Digital Core: (typ. 1.2V) LDO Output (LDOE pin = “H”) 24 AVDRV O Connect a 1uF capacitor between this pin and DVSS. This pin must not be connected to an external circuit. 25 DVSS - Ground Pin 0V 26 OUT2 O Line Output 2 Pin 27 OUT3 O Line Output 3 Pin 28 OUT1 O Line Output 1 Pin 29 AVDD - Analog Power Supply Pin: 3.3V (typ) 30 AVSS - Analog Ground Pin 0V IN4/INN2 I ADC Input Pin (AINE bit = “1”) 31 DMCLK2 O Digital MIC Clock Output 2 Pin (DMIC2 bit = “1”) IN3/INP2 I ADC Input Pin (AINE bit = “1”) 32 DMDAT2 I Digital MIC Clock Input 2 Pin (DMIC2 bit = “1”) IN2/INN1 I ADC Input Pin (AINE bit = “1”) 33 DMCLK1 O Digital MIC Clock Output 1 Pin (DMIC1 bit = “1”) IN1/INP1 I ADC Input Pin (AINE bit = “1”) 34 DMDAT1 I Digital MIC Clock Input 1 Pin (DMIC1 bit = “1”) 35 LIN I Mono ADC Input Pin 36 AVDD - Analog Power Supply Pin: 3.3V (typ) Note 1. All digital input pins must not be allowed to float. If analog input pins are not used, leave them open. The I2CSEL pin, LDOE pin and CAD/MATSEL pin should be fixed to “L” (DVSS) or “H” (TVDD). CSN I ■ Handling of Unused Pin The unused I/O pins must be processed appropriately as below. Classification Pin Name LIN, IN1/INP1/DMDAT1, IN2/INN1/DMCLK1, Analog IN3/INP2/DMDAT2, IN4/INN2/DMCLK2, OUT1, OUT2, OUT3 STO/RDY, CLKO, XTI, XTO, SDOUT3/ JX2/MAT1, SDOUT2/JX3/MAT0, SDOUT1/EEST, SO/SDA, LRCK, BICK Digital I2CSEL, SDIN2/JX1, SDIN1/JX0, SCLK/SCL, SI/EXTEEP, CSN/CAD/MATSEL, LDOE 014006643-E-00 Setting These pins must be open. These pins must be open. These pins must be connected to DVSS. 2014/10 - 10 - [AK7755] 6. Absolute Maximum Ratings (AVSS=DVSS=0V; Note 2) Parameter Symbol min max Power Supplies Analog AVDD -0.3 4.3 Digital1(I/F) TVDD -0.3 4.3 Digital2(Core) DVDD -0.3 1.6 DVSS-AVSS (Note 2) ΔGND -0.3 0.3 Input Current, Any Pin Except Supplies IIN ±10 - Analog Input Voltage (Note 3) VINA -0.3 (AVDD+0.3)≤4.3 Digital Input Voltage (Note 4) VIND -0.3 (TVDD+0.3)≤4.3 Ambient Temperature Ta -40 85 Storage Temperature Tstg -65 150 Note 2. All voltages with respect to ground. AVSS and DVSS must be the same voltage. Note 3. The maximum analog input voltage is smaller value between (AVDD+0.3)V and 4.3V. Note 4. The maximum digital input voltage is smaller value between (DVDD+0.3)V and 4.3V. Unit V V V V mA V V ℃ ℃ WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 7. Recommended Operating Conditions (AVSS=DVSS=0V; Note 2) Parameter Symbol min typ max Unit Power Supplies Analog AVDD 3.0 3.3 3.6 V Digital1(I/F) TVDD 1.7 3.3 3.6 V Digital2(Core) DVDD 1.14 1.2 1.3 V Note 5. AVDD and TVDD must be powered up first before DVDD when DVDD is supplied externally (LDOE pin = “L”). In this case, the power-up sequence between AVDD and TVDD is not critical. When using the internal regulator (LDOE pin = “H”), the power-up sequence between AVDD and TVDD is not critical. But all power supplies must be ON before starting operation of the AK7755 by PDN pin = “H”. Note 6. Do not turn off the power supply of the AK7755 with the power supply of the surrounding device turned on. Pull-up of SDA and SCL pins must not exceed TVDD. * AKM assumes no responsibility for the usage beyond the conditions in this datasheet. 014006643-E-00 2014/10 - 11 - [AK7755] 8. Electrical Characteristics ■ Analog Characteristics 1. MIC Amplifier Gain (Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V) Parameter min MIC Input Impedance 14 AMP MGNL[3:0]bits=0h, MGNR[3:0]bits=0h MGNL[3:0]bits=1h, MGNR[3:0]bits=1h MGNL[3:0]bits=2h, MGNR[3:0]bits=2h MGNL[3:0]bits=3h, MGNR[3:0]bits=3h MGNL[3:0]bits=4h, MGNR[3:0]bits=4h MGNL[3:0]bits=5h, MGNR[3:0]bits=5h MGNL[3:0]bits=6h, MGNR[3:0]bits=6h MGNL[3:0]bits=7h, MGNR[3:0]bits=7h Gain MGNL[3:0]bits=8h, MGNR[3:0]bits=8h MGNL[3:0]bits=9h, MGNR[3:0]bits=9h MGNL[3:0]bits=Ah, MGNR[3:0]bits=Ah MGNL[3:0]bits=Bh, MGNR[3:0]bits=Bh MGNL[3:0]bits=Ch, MGNR[3:0]bits=Ch MGNL[3:0]bits=Dh, MGNR[3:0]bits=Dh MGNL[3:0]bits=Eh, MGNR[3:0]bits=Eh MGNL[3:0]bits=Fh, MGNR[3:0]bits=Fh typ 20 0 2 4 6 8 10 12 14 16 18 21 24 27 30 33 36 max Unit kΩ dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB 2. Line-in Amplifier Gain (Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V) Parameter min typ max Unit Line-in Input Impedance 14 20 kΩ AMP LIGN[3:0]bits=0h 0 dB LIGN[3:0]bits=1h -3 dB LIGN[3:0]bits=2h -6 dB LIGN[3:0]bits=3h -9 dB LIGN[3:0]bits=4h -12 dB LIGN[3:0]bits=5h -15 dB LIGN[3:0]bits=6h -18 dB LIGN[3:0]bits=7h -21 dB Gain (Note 7) LIGN[3:0]bits=8h N/A dB LIGN[3:0]bits=9h +3 dB LIGN[3:0]bits=Ah +6 dB LIGN[3:0]bits=Bh +9 dB LIGN[3:0]bits=Ch +12 dB LIGN[3:0]bits=Dh +15 dB LIGN[3:0]bits=Eh +18 dB LIGN[3:0]bits=Fh +21 dB Note 7. If the output signal of line-in amplifier is input to the analog mixer, +18dB gain is added to the signal at the mixer. 014006643-E-00 2014/10 - 12 - [AK7755] 3. MIC Amp + ADC Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V; Signal Frequency 1kHz; Sampling Rate fs=48kHz; Measurement Frequency =20Hz to 20kHz Sampling Rate fs=96kHz; Measurement Frequency =20Hz to 40kHz CKM mode0(CKM[2:0]= “000”); BITFS[1:0]= “00” (64fs); Differential Input Mode Parameter min typ max MIC Amp Resolution 24 + ADC Dynamic Characteristics (Differential Input mode) Fs=48kHz (Note 12) 80 91 Fs=48kHz (Note 13) 88 S/(N+D) (-1dBFS) Fs=96kHz (Note 12) 89 Fs=96kHz (Note 13) 85 Fs=48kHz (A-weighted) (Note 12) 94 102 Dynamic Fs=48kHz (A-weighted) (Note 13) 93 Range Fs=96kHz (Note 12) 95 (Note 8) Fs=96kHz (Note 13) 89 Fs=48kHz (A-weighted) (Note 12) 94 102 Fs=48kHz (A-weighted) (Note 13) 93 S/N Fs=96kHz (Note 12) 95 Fs=96kHz (Note 13) 89 Inter-Channel Isolation (Note 9) 90 105 DC accuracy (Differential Input) Channel Gain Mismatch 0.0 0.3 Analog Input (Note 12) ±2.0 ±2.2 ±2.4 Input Voltage (Differential Input) (Note 10) (Note 13) ±0.277 (Note 12) 2.0 2.2 2.4 Input Voltage (Single-ended Input) (Note 11) (Note 13) 0.277 Note 8. S/(N+D) when -60dB FS signal is applied. Note 9. Indicates inter-channel isolation between Lch and Rch when –1dBFS signal is input. Note 10. INP1/INN1 and INP2/INN2 pins. Note 11. IN1, IN2, IN3 and IN4 pins. Note 12. MGNL/R[3:0] bits = 0h (0dB) Note 13. MGNL/R[3:0] bits = 9h (18dB) 014006643-E-00 Unit Bit dB dB dB dB dB Vp-p Vp-p 2014/10 - 13 - [AK7755] 4. Line-in Amp + ADC Ta=25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V; Signal Frequency 1kHz; Sampling Rate fs=48kHz; Measurement Frequency =20Hz to 20kHz Sampling Rate fs=96kHz; Measurement Frequency =20Hz to 40kHz CKM mode0(CKM[2:0]= “000”); BITFS[1:0]= “00” (64fs); Parameter Line-in Amp Resolution + ADC Dynamic Characteristics Fs=48kHz (Note 16) Fs=48kHz (Note 17) S/(N+D) (-1dBFS) Fs=96kHz (Note 16) Fs=96kHz (Note 17) Fs=48kHz (A-weighted) (Note 16) Dynamic Fs=48kHz (A-weighted) (Note 17) Range Fs=96kHz (Note 16) (Note 14) Fs=96kHz (Note 17) Fs=48kHz (A-weighted) (Note 16) Fs=48kHz (A-weighted) (Note 17) S/N Fs=96kHz (Note 16) Fs=96kHz (Note 17) Analog Input Input Voltage (Note 15) (Note 16) (Note 17) Note 14. S/(N+D) when -60dB FS signal is applied. Note 15. The Lin pin. Note 16. LIGN[3:0] bits = 0h (0dB) Note 17. LIGN[3:0] bits = Eh (+18 dB) 014006643-E-00 min typ 77 90 86 88 85 100 90 95 86 100 90 95 86 92 92 2.00 2.20 0.277 max 24 Unit Bit dB dB dB 2.40 Vp-p 2014/10 - 14 - [AK7755] 5. Line-out AMP Gain Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V Parameter LOVOL1[3:0]bits=0h, LOVOL2[3:0]bits=0h, LOVOL3[3:0]bits=0h LOVOL1[3:0]bits=1h, LOVOL2[3:0]bits=1h, LOVOL3[3:0]bits=1h LOVOL1[3:0]bits=2h, LOVOL2[3:0]bits=2h, LOVOL3[3:0]bits=2h LOVOL1[3:0]bits=3h, LOVOL2[3:0]bits=3h, LOVOL3[3:0]bits=3h LOVOL1[3:0]bits=4h, LOVOL2[3:0]bits=4h, LOVOL3[3:0]bits=4h LOVOL1[3:0]bits=5h, LOVOL2[3:0]bits=5h, LOVOL3[3:0]bits=5h LOVOL1[3:0]bits=6h, LOVOL2[3:0]bits=6h, LOVOL3[3:0]bits=6h LOVOL1[3:0]bits=7h, LOVOL2[3:0]bits=7h, Line LOVOL3[3:0]bits=7h -out Gain LOVOL1[3:0]bits=8h, LOVOL2[3:0]bits=8h, AMP LOVOL3[3:0]bits=8h LOVOL1[3:0]bits=9h, LOVOL2[3:0]bits=9h, LOVOL3[3:0]bits=9h LOVOL1[3:0]bits=Ah, LOVOL2[3:0]bits=Ah, LOVOL3[3:0]bits=Ah LOVOL1[3:0]bits=Bh, LOVOL2[3:0]bits=Bh, LOVOL3[3:0]bits=Bh LOVOL1[3:0]bits=Ch, LOVOL2[3:0]bits=Ch, LOVOL3[3:0]bits=Ch LOVOL1[3:0]bits=Dh, LOVOL2[3:0]bits=Dh, LOVOL3[3:0]bits=Dh LOVOL1[3:0]bits=Eh, LOVOL2[3:0]bits=Eh, LOVOL3[3:0]bits=Eh LOVOL1[3:0]bits=Fh, LOVOL2[3:0]bits=Fh, LOVOL3[3:0]bits=Fh 014006643-E-00 min typ max Unit mute dB -28 dB -26 dB -24 dB -22 dB -20 dB -18 dB -16 dB -14 dB -12 dB -10 dB -8 dB -6 dB -4 dB -2 dB 0 dB 2014/10 - 15 - [AK7755] 6. DAC+Line-out Amp Ta= 25C; AVDD=TVDD=3.3V; DVDD=1.2V; AVSS=DVSS=0V; Signal Frequency 1kHz; Sampling Rate fs=48kHz; Measurement Frequency =20Hz to 20kHz Sampling Rate fs=96kHz; Measurement Frequency =20Hz to 40kHz CKM mode0(CKM[2:0]=000); BITFS[1:0] bits = “00”; LOVOL1/2/3[3:0] bits = Fh(0dB); Parameter min typ max Resolution 24 DAC Dynamic Characteristics 1 (OUT1, OUT2, OUT3) fs=48kHz 80 91 S/(N+D) (0 dBFS) fs=96kHz 89 fs=48kHz (A-weighted) 100 106 Dynamic Range (Note 18) fs=96kHz 101 fs=48kHz (A-weighted) 100 106 S/N fs=96kHz 101 Inter-Channel Isolation (f=1kHz) (Note 19) 90 110 DC accuracy Channel Gain Mismatch 0.0 0.5 Analog Output Output Voltage (Note 20) 2.28 2.51 2.74 Load Resistance 10 Load Capacitance 30 Note 18. S/(N+D) when -60dB FS signal is applied. Note 19. Indicates inter-channel isolation between Lch and Rch of DAC when –1dBFS signal is input. Note 20. Full-scale output voltage. The output voltage is proportional to AVDD (AVDD x 0.76). 014006643-E-00 Unit Bit dB dB dB dB dB Vp-p kΩ pF 2014/10 - 16 - [AK7755] ■ DC Characteristics (Ta= -40 to 85C, AVDD=3.3V, DVDD=1.2V, TVDD=1.7 to 3.6V, AVSS=DVSS=0V) Parameter Symbol min typ max High Level Input Voltage VIH 80%TVDD Low Level Input Voltage VIL 20%TVDD SCL, SDA High Level Input Voltage VIH 70%TVDD SCL, SDA Low Level Input Voltage VIL 30%TVDD DMDAT1, DMDAT2 High Level Input Voltage VIH2 65%AVDD (DMIC1, DMIC2 bit = “1”) DMDAT1, DMDAT2 Low Level Input Voltage VIL2 35%AVDD (DMIC1, DMIC2 bit = “1”) TVDD-0.3 VOH High Level Output Voltage Iout= -100A (Note 21) 0.3 VOL Low Level Output Voltage Iout=100A (Note 22) TVDD≥2.0V VOL 0.4 SDA Low Level Output Voltage Iout=3mA TVDD<2.0V VOL 20%TVDD DMCLK1, DMCLK2 High Level Output Voltage VOH2 AVDD-0.4 Iout = -80A (DMIC1, DMIC2 bit = “1”) DMCLK1, DMCLK2 Low Level Output Voltage VOL2 0.4 Iout = 80A (DMIC1, DMIC2 bit = “1”) Input Leak Current (Note 23) Iin ±10 77 Input Leak Current at Pulled-down Pins (Note 24) Iid 17 Input Leak Current at XTI pin lix Note 21. Except XTO pin Note 22. Except SDA and XTO pins. Note 23. Internal Pulled-down pins, except the XTI pin Note 24. The LRCK, BICK, SDOUT2/JX3/MAT0 and SDOUT3/JX2/MAT1 pins are internal pulled-down pins (typ. 43 kΩ@3.3V). ■ Unit V V V V V V V V V V V A A A Power Consumptions (Ta=25C, AVDD=3.0 to 3.6V (typ=3.3V, max=3.6V), TVDD=1.7 to 3.6V (typ=3.3V, max=3.6V), DVDD=1.14 to 1.3V (typ=1.2V, max=1.3V), AVSS=DVSS=0V) Parameter min typ max AVDD 16 24 Power consumptions in operation 1 (Note 25) TVDD 3 4.5 (LDOE pin = “L”) DVDD 25 40 AVDD 48 72 Power consumptions in operation 2 (Note 25) (LDOE pin = “H”) TVDD 3 4.5 AVDD 10 Power consumptions in power-down TVDD 10 (PDN pin= “L”, LDOE pin = “L”) DVDD 200 Power consumptions in power-down AVDD 1 (PDN pin= “L”, LDOE pin = “H”) TVDD 1 Note 25. DVDD power consumption will be changed depending on DSP programs. (e.g. It will be 6mA when using AKM’s Hands Free program.) 014006643-E-00 Unit mA mA mA mA mA uA uA uA uA uA 2014/10 - 17 - [AK7755] ■ Digital Filter Characteritics 1. ADC (Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V, fs=48kHz (Note 26)) Parameter Symbol min typ max Unit Passband PB 0 20.7 kHz +0.14dB ~ 0.12dB (Note 27) -0.87dB 21.6 kHz -3.0dB 22.8 kHz Stoppband SB 28.4 kHz Passband Ripple (Note 27) PR ±0.14 dB Stopband Ripple (Note 28, Note 29) SA 65 dB Group Delay Distorsion 0 μs △GD Group Daley (Ts=1/fs) GD 12.5 Ts Note 26. The passband and stopband frequencies scale with “fs” (system sampling rate). The characteristic of the high pass filter is not included. Note 27. The passband is from DC to 18.9kHz when fs=48kHz. Note 28. The stopband is 28kHz to 3.044MHz when fs=48kHz. Note 29. When fs = 48kHz, the analog modulator samples the input signal at 3.072MHz. There is no attenuation of an input signal in band (n x 3.072MHz ±21.99kHz; n=0, 1, 2, 3…) of integer times of the sampling frequency by the digital filter. 2. DAC (Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V, fs=48kHz) Parameter Symbol min Typ max Unit PB Passband (Note 30) (±0.05dB) 0 21.7 kHz (-6.0dB) 24 kHz Stopband (Note 30) SB 26.2 kHz Passband Ripple PR ±0.05 dB Stopband Attenuation SA 64 dB Group Delay (Ts=1/fs) (Note 31) GD 24 Ts Digital Filter + Analog Filter Amplitude Characteristics 20Hz to 20.0kHz ±0.5 dB Note 30. The passband and stopband frequencies are proportional to “fs” (system sampling rate), and represents PB=0.4535 × fs(@0.05dB) and SB=0.5465 × fs, respectively. Note 31. The digital filter delay is calculated as the time from setting data into the input register until an analog signal is output. 014006643-E-00 2014/10 - 18 - [AK7755] ■ Switching Characteristics 1. System Clock (Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V, CL=20pF) Parameter Symbol min typ max Unit a) with a Crystal Oscillator: 11.2896 MHz CKM[2:0]bits=0h fXTI 12.288 16.9344 CKM[2:0]bits=1h fXTI MHz 18.432 b) with an External Clock Duty Cycle 40 50 60 % 11.2896 CKM[2:0]bits=0h,2h fXTI 11.0 12.4 MHz 12.288 16.9344 CKM[2:0]bits=1h fXTI 16.5 18.6 MHz 18.432 LRCK Frequency (Note 32) fs 8 48 96 kHz BICK Frequency (Note 33) TDM256 bit = “0” High Level Width tBCLKH 64 ns (Normal Interface) Low Level Width tBCLKL 64 ns Frequency 6.2 fBCLK 0.23 3.072 MHz TDM256 bit = “1” High Level Width tBCLKH 32 ns (TDM Interface) Low Level Width tBCLKL 32 ns Frequency 12.3 fBCLK 1.8 12.288 MHz Note 32. RCK frequency and sampling rate (fs) should be the same. Note 33. When BICK is the source of the master clock, it should be synchronized to LRCK and have stable frequency. 1/fXTI 1/fXTI tXTI=1/fXTI XTI VIH VIL 1/fs ts=1/fs 1/fs VIH LRCK VIL 1/fBCLK 1/fBCLK tBCLK=1/fBCLK VIH BICK VIL tBCLKH tBCLKL Figure 4. System Clock Timing 014006643-E-00 2014/10 - 19 - [AK7755] 2. Power Down (Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V) Parameter Symbol min typ max Unit PDN Pulse Width (Note 34) tRST 600 ns Note 34. The PDN pin must be set “L” when power up the AK7755. PDN tRST VIL Figure 5. Reset Timing 3. Serial Data Interface SDIN1, SDIN2, SDOUT1, SDOUT2, SDOUT3 (Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V, CL=20pF) Parameter Symbol min typ max Unit Slave Mode Delay Time from BICK “↑” to LRCK (Note 35) tBLRD 20 ns Delay Time from LRCK to BICK “↑” (Note 35) tLRBD 20 ns Serial Data Input Latch Setup Time tBSIDS 20 ns Serial Data Input Latch Hold Time tBSIDH 20 ns Delay Time from LRCK to Serial Data Output (Note 36) tLRD 20 ns Delay Time from BICK “↓” to LRCK Output (Note 37) tBSOD 20 ns Master Mode 32, 48 BICK Frequency fBCLK fs 64, 256 BICK Duty Cycle 50 % 12 Delay Time from BICK “↓” to LRCK (Note 37) tMBL -12 ns Serial Data Input Latch Setup Time tBSIDS 20 ns Serial Data Input Latch Hold Time tBSIDH 20 ns Delay Time from LRCK to Serial Data Output (Note 36) tLRD 20 ns Delay Time from BICK “↓” or “↑”to LRCK Output (Note 37) tBSOD 20 ns SDINn → SDOUTn (n=1, 2) Delay Time from SDINn to SDOUTn Output tIOD 60 ns Note 35. BICK edge must not occur at the same time as LRCK edge. If BICK polarity was inverted, the counting edge of BICK will be “↓”. Note 36. Except I2S. Note 37. When the polarity of BICK1 is inverted, delay time is from BICK1 “↑”. SDOUT n=1,2,3 Nn 50%TVDD tIOD SDINn n=1,2 VIH D Figure 6. Serial Interface Delay Time from SDINn to SDOUTn Output 014006643-E-00 VIH VIL D D 2014/10 - 20 - [AK7755] 3-1. Slave Mode VIH VIL D LRCK tBLRD D tLRBD D BICK VIH VIL D tBSIDS D tBSIDH VIH VIL D SDINn n=1,2 D Figure 7. Serial Interface Input Timing in Slave Mode VIH VIL D LRCK D tLRD D BICK VIH VIL D tBSOD tLRD tBSOD D D SDOUTn D n=1,2,3 D 50%TVDD D Figure 8. Serial Interface Output Timing in Slave Mode 3-2. Master Mode LRCK 50%TVDD D tMBL tMBL D BICK 50%TVDD tBSIDS D tBSIDH VIH VIL D SDINn n=1,2 D Figure 9. Serial Interface Input Timing in Master Mode LRCK 50%TVDD tLRD D BICK tLRD SDOUTn D n=1,2,3 tBSOD D D 50%TVDD tBSOD D D 50%TVDD D Figure 10. Serial Interface Output Timing in Master Mode 014006643-E-00 2014/10 - 21 - [AK7755] 4. SPI Interface 4-1. Clock Reset (CKRESTN bit = “0”) (Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V, CL=20pF) Parameter Symbol min typ max Unit Microcontroller Interface Signal SCLK Frequency fSCLK 3.5 MHz SCLK Low Level Width tSCLKL 120 ns SCLK High Level Width tSCLKH 120 ns Microcontroller → AK7755 CSN High Level Width tWRQH 300 ns Time from CSN “↑” to PDN “↑” tRST 360 ns Time from PDN“↑” to CSN “↓” tIRRQ 1 ms Time from RQN“↓” to SCLK“↓” tWSC 360 ns Time from SCLK“↑” to CSN“↑” tSCW 480 ns SI Latch Setup Time tSIS 120 ns SI Latch Hold Time tSIH 120 ns AK7755 → Microcontroller SO Output Delay Time from SCLK “↓” tSOS 120 ns SO Output Hold Time from SCLK “↑” tSOH 120 ns (Note 38) Note 38. Except when input the eighth bit of the command code. 4-2. PLL Clock (CKRESTN bit = “1”) (Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V, CL=20pF) Parameter Symbol min typ max Unit Microcontroller Interface Signal SCLK Frequency fSCLK 7 MHz SCLK Low Level Width tSCLKL 60 ns SCLK High Level Width tSCLKH 60 ns Microcontroller → AK7755 CSN High Level Width tWRQH 150 ns Time from CSN “↑” to PDN “↑” tRST 180 ns Time from PDN“↑” to CSN “↓” tIRRQ 1 ms Time from RQN“↓” to SCLK“↓” tWSC 150 ns Time from SCLK“↑” to CSN“↑” tSCW 240 ns SI Latch Setup Time tSIS 60 ns SI Latch Hold Time tSIH 60 ns AK7755 → Microcontroller SO Output Delay Time from SCLK “↓” tSOS 60 ns SO Output Hold Time from SCLK “↑” tSOH 60 ns (Note 38) Note 39. It takes 10ms at maximum until PLL is locked, after setting CKRESTN bit to “1” from “0”. 014006643-E-00 2014/10 - 22 - [AK7755] VIH VIL SCLK tSCLKL tSCLKH 1/fSCLK 1/fSCLK VIH PDN VIL VIH CSN VIL tRST tIRRQ Figure 11. SPI Interface Timing 1 VIH VIL tWRQH CSN VIH SI VIL tSIS tSIH VIH VIL SCLK tWSC tSCW tWSC tSCW Figure 12. SPI Interface Timing 2 (Microcontroller → AK7755) VIH VIL SCLK VIH SO VIL tSOS tSOH Figure 13. SPI Interface Timing 3 (AK7755 → Microcontroller) 014006643-E-00 2014/10 - 23 - [AK7755] 5. I2C-BUS Interface (Ta= -40 to 85C; AVDD=3.0 to 3.6V, TVDD=1.7 to 3.6V, DVDD=1.14 to 1.3V, AVSS=DVSS=0V, CL=20pF) Parameter Symbol min typ max Unit I2C Timing SCL clock frequency fSCL 400 kHz Bus Free Time Between Transmissions tBUF 1.3 s Start Condition Hold Time (prior to first Clock pulse) tHD:STA 0.6 s Clock Low Time tLOW 1.3 s Clock High Time tHIGH 0.6 s Setup Time for Repeated Start Condition tSU:STA 0.6 s SDA Hold Time from SCL Falling tHD:DAT 0 0.9 s SDA Setup Time from SCL Rising tSU:DAT 0.1 s Rise Time of Both SDA and SCL Lines tR 0.3 s Fall Time of Both SDA and SCL Lines tF 0.3 s Setup Time for Stop Condition tSU:STO 0.6 s Pulse Width of Spike Noise Suppressed By Input Filter tSP 0 50 ns Capacitive load on bus Cb 400 pF VIH SDA VIL tBUF tLOW tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT tSU:STA tSU:STO Start Stop Start Figure 14. I2C BUS Interface Timing 6. Digital Microphone Interface (AVDD=3.0~3.6V, TVDD=1.7~3.6V, DVDD=1.14~1.3V, AVSS=DVSS=0V, Ta= -40C~85C; CL=100pF) Parameter Symbol min typ max DMDAT1, DMDAT2 Serial Data Input Latch Setup Time tDMDS 50 Serial Data Input Latch Hold Time tDMDH 0 Unit ns ns DMCLK1, DMCLK2 Clock Frequency (Note 40) fDMCK 0.5 64fs 6.2 Duty Cycle dDMCK 40 50 60 Rise Time tDMCKR 10 Fall Time tDMCKF 10 Note 40. Clock frequency is determined by the sampling rate (fs) selected by DFS[2:0] bits. 014006643-E-00 MHz % ns ns 2014/10 - 24 - [AK7755] tDMCK 65%AVDD 50%AVDD 35%AVDD DMCLK1/2 tDMCKL tDMCKF tDMCKR fDMCK = 1 / tDMCK dDMCK = 100 x tDMKL / tDMCK 50%AVDD DMCLK1/2 tDMDS tDMDH VIH2 DMDAT1/2 VIL2 DCLKP1, DCLKP2 bit = “1” 50%AVDD DMCLK1/2 tDMDS tDMDH VIH2 DMDAT1/2 VIL2 DCLKP1, DCLKP2 bit = “0” Figure 15. Digital Microphone Interface Timing Wave Form 014006643-E-00 2014/10 - 25 - [AK7755] 9. Functional Description ■ System Clock Master/Slave mode switching, clock source pin select for internal master clock (MCLK) generating clock (ICLK), and ICLK frequency change are controlled by CKM [2:0] clock mode select bits. CKM[2:0] bits can only be set during clock reset. Use of crystal oscillator XTI(12.288MHz) 0 000 Master XTI DFS[2:0]bits Available 1 001 Master XTI DFS[2:0]bits XTI(18.432MHz) Available XTI(12.288MHz), BICK, Not 2 010 Slave XTI DFS[2:0]bits LRCK Available Not 3 011 Slave BICK DFS[2:0]bits BICK, LRCK Available Not 5 101 Slave BICK Fs=16kHz Fixed BICK, LRCK(fs=8kHz) Available Note 41. The sampling frequency is set by DFS[2:0] bits (CONT00). The BICK frequency is set by BITFS[1:0] bits. Note 42. In CKM mode 2, XTI, BICK and LRCK must be synchronized but the phase is not critical. Note 43. CKM mode5 is the mode that operates DSP, ADC and DAC by 16kHz sampling frequency when LRCK sampling frequency is 8kHz. The BICK sampling frequency for LRCK is set by BITFS[1:0] bits. CKM mode CKM [2:0] Master Slave ICLK Source Sampling Frequency fs (Note 41) Input pin(s) required for system clock 1. Relationship between MCLK Generating Clock (ICLK) and MCLK CKM mode 0/1/2 XTI Pin ICLK Divider REFCLK PLL MCLK (MCLK Source) CKM mode 3/5 BICK Pin ICLK Divider REFCLK PLL MCLK (MCLK Source) Figure 16. Relation Ship between ICLK and MCLK 2. Sampling Frequency Select FS mode 0 1 2 3 4 5 6 7 DFS[2:0] 000 001 010 011 100 101 110 111 fs: Sampling Frequency 8kHz 12kHz (11.025kHz) 16kHz 24kHz (22.05kHz) 32kHz 48kHz (44.1kHz) 96kHz (88.2kHz) N/A 014006643-E-00 2014/10 - 26 - [AK7755] 2-1. Master Mode (CKM mode 0, 1: Using XTI Input Clock) CKM mode 0 1 CKM [2:0] 000 001 XTI fs:48kHz series 12.288MHz 18.432MHz fs:44.1kHz series 11.2896MHz 16.9344MHz fs: Sampling Frequency Input Frequency Range Use of Chrystal (MHz) Oscillator 11.0 to 12.4 Available 16.7 to 18.6 Available Input system clock to the XTI pin by setting BITFS[1:0] bits. The internal counter which is synchronized to XTI generates LRCK(1fs) and BICK(64fs, 48fs, 32fs, 256fs). BICK frequency can be selected by BITFS[1:0] bits. The BICK output will be in two different frequencies if setting BITFS[1:0] bits = 1h (48kHz) when the sampling frequency is 12kHz, 24kHz, 48kHz or 96kHz (DFS[2:0]). LRCK and BICK are not output during system reset. XTI XTI External Clock XTO AK7755 XTO Figure 17. Using Crystal Oscillator (CKM mode 0/1) AK7755 Using External Clock (CKM mode 0/1) 2-2. Slave Mode1 (CKM mode 2: XTI Input Clock) CKM mode 2 CKM [2:0] 010 XTI fs:48kHz 12.288MHz fs:44.1kHz 11.2896MHz fs: sampling frequency Input Frequency Range Use of Chrystal Oscillator (MHz) 11.0 to 12.4 Not Available Required System Clocks are XTI, LRCK and BICK. XTI and LRCK must be synchronized, but the phase between these clocks is not important. The system sampling rate is controlled by DFS[2:0] bits. The sampling frequency of BICK is set by BITFS[1:0] bits. 2-3. Slave Mode 2 (CKM mode 3: BICK Input Clock) In CKM mode 3, required system clocks are BICK and LRCK. In this mode, BICK is used for clock source instead of XTI. This clock is multiplied directly by a PLL to generate the master clock (MCLK). Therefore BICK with two different frequencies cannot be used. BICK and LRCK must be synchronized. Set BICK frequency for LRCK by BITFS[1:0] bits. The sampling rate is determined by DFS[2:0] bits setting. In applications which do not need the XTI pin of the AK7755, leave this pin open. 014006643-E-00 2014/10 - 27 - [AK7755] 2-4. Slave Mode 3 (CKM mode 5: BICK Input Clock) CKM mode5 is the mode that operates DSP, ADC and DAC by 16kHz sampling frequency when LRCK sampling frequency is 8kHz. Set BICK frequency against LRCK by BITFS[1:0] bits. Each sampling frequency is fixed (LRCK = 8kHz, DSP/ADC/DAC = 16kHz). AK7755 LRCK BICK SDIN1 SDOUT1 (fs=8kHz) 16k/8k Converter DSP/ADC/DAC (fs=16kHz) SDIN2 SDOUT2 SDOUT3 (fs=16kHz) Figure 18. Slave Mode3 (CKM mode5) Sampling Frequency Setting DFS [2:0] 0h 0h 0h 0h 1h 1h 1h 1h 2h 2h 2h 2h 3h 3h 3h 3h 4h 4h 4h 4h 5h 5h 5h 5h 6h 6h 6h 6h 7h fs 8kHz 8kHz 8kHz 8kHz 12kHz 12kHz 12kHz 12kHz 16kHz 16kHz 16kHz 16kHz 24kHz 24kHz 24kHz 24kHz 32kHz 32kHz 32kHz 32kHz 48kHz 48kHz 48kHz 48kHz 96kHz 96kHz 96kHz 96kHz N/A fs: Sampling Frequency BITFS BICK Frequency [1:0] BICK 44.1kHz series 48kHz series 0h 64fs 470.4kHz 512kHz 1h 48fs 352.8kHz 384kHz 2h 32fs 235.2kHz 256kHz 3h 256fs 1881.6kHz 2048kHz 0h 64fs 705.6kHz 768kHz 1h 48fs N/A N/A 2h 32fs 352.8kHz 384kHz 3h 256fs 2822.4kHz 3072kHz 0h 64fs 940.8kHz 1024kHz 1h 48fs 705.6kHz 768kHz 2h 32fs 470.4kHz 512kHz 3h 256fs 3763.2kHz 4096kHz 0h 64fs 1.4112MHz 1.536MHz 1h 48fs 1058.4MHz 1.152MHz 2h 32fs 705.6kHz 768kHz 3h 256fs 5.6448MHz 6.144MHz 0h 64fs 1.8816MHz 2.048MHz 1h 48fs 1.4112MHz 1.536MHz 2h 32fs 0.9408MHz 1.024MHz 3h 256fs 7.5264MHz 8.192MHz 0h 64fs 2.8224MHz 3.072MHz 1h 48fs 2.1168MHz 2.304MHz 2h 32fs 1.4112MHz 1.536MHz 3h 256fs 11.2896MHz 12.288MHz 0h 64fs 5.6448MHz 6.144MHz 1h 48fs 4.2336MHz 4.608MHz 2h 32fs 2.8224MHz 3.072MHz 3h 256fs 22.5792MHz 24.576MHz - - - - (N/A: Not available) Table 1. Clock Select 014006643-E-00 2014/10 - 28 - [AK7755] BITFS[1:0] bits = 0h @(LRIF[1:0] bits = 0h) LRCK Right ch Left ch BICK 32×BICK 32×BICK Figure 19. BITFS[1:0] bits = 0h(64fs) (LRIF[1:0]bits = 0h) BITFS[1:0] bits = 1h @(LRIF[1:0] bits = 0h) LRCK Right ch Left ch BICK 24×BICK 24×BICK Figure 20. BITFS[1:0] bit s= 1h(48fs) (LRIF[1:0]bits = 0h) BITFS[1:0] bits = 2h @(LRIF[1:0] bits = 0h) LRCK Right ch Left ch BICK 16×BICK 16×BICK Figure 21. BITFS[1:0] bits = 2h(32fs) (LRIF[1:0]bits = 0h) Refer to Figure 40 and Figure 42 when BITFS[1:0] bits = 3h (256fs). 014006643-E-00 2014/10 - 29 - [AK7755] ■ Control Register Settings Control registers are reset by a power down release (PDN pin = “L” → “H”). Since control registers CONT00-CONT01 are related to clock generation, they must be changed during clock reset (CKRSTN bit (CONT01: D0) = “0”). CONT12-CONT19 can be written during operation. The other control registers must be changed during clock reset or system reset (CRESETN bit (CONT0F: D3) and DSPRESETN bit (CONT0F: D2) = “0”) to avoid errors and noises. CONT0D: D6, CONT1A: D4, CONT26: D0 and CONT2A: D7 bits must be set to “1” during system reset. Once these bits are set to “1”, the value will be kept until power down the AK7755 (PDN pin = “L”). Do not write to the CONT1F-CONT25, CONT27-CONT29 and CONT2B-CONT3F registers. CONT00-CONT1E, CONT26, CONT2A Name CONT00 CONT01 CONT02 CONT03 CONT04 CONT05 CONT06 CONT07 CONT08 CONT09 CONT0A CONT0B CONT0C CONT0D CONT0E CONT0F CONT10 CONT11 CONT12 CONT13 CONT14 CONT15 CONT16 CONT17 CONT18 CONT19 CONT1A CONT1B CONT1C CONT1D CONT1E CONT26 CONT2A D7 D6 D5 D4 D3 D2 0 CKM[2] CKM[1] CKM[0] AINE DFS[2] JX2E LRDOWN BITFS[1] BITFS[0] CLKS[2] CLKS[1] TDM256 BCKP LRIF[1] LRIF[0] TDMMODE[1] TDMMODE[0] DIF2[1] DIF2[0] DOF2[1] DOF2[0] BANK[3] BANK[2] DRMS[1] DRMS[0] DRAM[1] DRAM[0] POMODE 0 ACCRAM JX3E FIRMODE1 FIRMODE2 SUBMODE1 SUBMODE2 CLRN DEM[1] DEM[0] DIFDA[1] DIFDA[0] 0 DIF1[2] DOF4[1] DOF4[0] DOF3[1] DOF3[0] 0 DOF1[2] SELDAI[1] SELDAI[0] SELDO3[1] SELDO3[0] SELDO2[1] SELDO2[0] DIFR INR DIFL INL LO3SW3 LO3SW2 CLKOE BICKE LRCKE 0 0 OUT3E 0 0 0 0 0 0 DSM 0 ATSPAD ATSPDA 0 SELDO1[2] STO 1 0 0 0 0 PMADR PMADL PMAD2L PMLO3 PMLO2 PMLO1 0 0 PML1 LRDETN CRESETN DSPRESETN WDTEN CRCE PLLLOCKE SOCFG SELSTO 0 CKADJ[7] CKADJ[6] CKADJ[5] CKADJ[4] CKADJ[3] CKADJ[2] MGNR[3] MGNR[2] MGNR[1] MGNR[0] MGNL[3] MGNL[2] LIGN[3] LIGN[2] LIGN[1] LIGN[0] LOVOL3[3] LOVOL3[2] LOVOL2[3] LOVOL2[2] LOVOL2[1] LOVOL2[0] LOVOL1[3] LOVOL1[2] VOLADL[7] VOLADL[6] VOLADL[5] VOLADL[4] VOLADL[3] VOLADL[2] VOLADR[7] VOLADR[6] VOLADR[5] VOLADR[4] VOLADR[3] VOLADR[2] VOLAD2L[7] VOLAD2L[6] VOLAD2L[5] VOLAD2L[4] VOLAD2L[3] VOLAD2L[2] VOLDAL[7] VOLDAL[6] VOLDAL[5] VOLDAL[4] VOLDAL[3] VOLDAL[2] VOLDAR[7] VOLDAR[6] VOLDAR[5] VOLDAR[4] VOLDAR[3] VOLDAR[2] ADMUTE AD2MUTE DAMUTE 1 ADRCRE ADRCLE AMGNR[3] AMGNR[2] AMGNR[1] AMGNR[0] AMGNL[3] AMGNL[2] 0 0 0 0 0 0 VOLAD2R[7] VOLAD2R[6] VOLAD2R[5] VOLAD2R[4] VOLAD2R[3] VOLAD2R[2] DMIC1 DMCLKP1 DMCLKE1 DMIC2 DMCLKP2 DMCLKE2 0 0 0 0 0 0 1 0 0 0 0 0 014006643-E-00 D1 DFS[1] CLKS[0] JX1E BANK[1] WAVP[1] D0 DFS[0] CKRESETN JX0E BANK[0] WAVP[0] Default 00h 00h 00h 00h 00h MEMDIV[1] MEMDIV[0] 00h DIF1[1] DIF1[0] DOF1[1] DOF1[0] SELMIX[1] SELMIX[0] LO3SW1 SELMIX[2] OUT2E OUT1E 0 0 SELDO1[1] SELDO1[0] 0 DLS PMDAR PMDAL PMAD2R DLRDY 0 CKADJEN CKADJ[1] CKADJ[0] MGNL[1] MGNL[0] LOVOL3[1] LOVOL3[0] LOVOL1[1] LOVOL1[0] VOLADL[1] VOLADL[0] VOLADR[1] VOLADR[0] VOLAD2L[1] VOLAD2L[0] VOLDAL[1] VOLDAL[0] VOLDAR[1] VOLDAR[0] MICRZCE MICLZCE AMGNL[1] AMGNL[0] 0 0 VOLAD2R[1] VOLAD2R[0] 0 0 0 1 0 0 00h 00h 00h 00h 00h 00h 00h 80h 00h 00h 00h 00h 00h 00h 00h 30h 30h 30h 18h 18h 00h 00h 00h 30h 00h 00h 00h 2014/10 - 30 - [AK7755] CONT00: Clock Setting 1, Analog Input Setting Write during clock reset. W C0h R 40h Name CONT00 D7 0 D6 CKM[2] D5 CKM[1] D4 CKM[0] D6, D5, D4: CKM[2:0] Clock Mode Setting CKM CKM Master Main Clock mode [2:0] Slave 0 000 Master XTI=12.288MHz fixed 1 001 Master XTI=18.432MHz fixed 2 010 Slave XTI=12.288MHz fixed 3 011 Slave BICK 5 101 Slave BICK D3 AINE D2 DFS[2] D1 DFS[1] D0 DFS[0] fs System Clock fs=8~96kHz fs=8~96kHz fs=8~96kHz fs=8~96kHz XTI XTI XTI, BICK, LRCK BICK, LRCK BICK, LRCK(fs=8kHz) fs=16kHz Default 00h (default) TDM256 bit (CONT02: D7) = “1” cannot be used in CKM mode5. D3: AINE Analog Input Setting (IN1/INP1, IN2/INN1, IN3/INP2, IN4/INN2 pin) 0: Not Using Analog Input (default) 1: Using Analog Input Set AINE bit to “1” first before other control register settings when using the IN1/INP1, IN2/INN1, IN3/INP2 and IN4/INN2 pins as analog inputs. The AK7755 starts charging to a capacitor connected to each pin by this setting. Set AINE bit to “0” when using digital microphones (DMIC1 or DMIC2 bit (CONT1E: D7, D4)= “1”). D2, D1, D0: DFS[2:0] Sampling Frequency fs DFS mode DFS[2:0] 0 000 8kHz (default) 1 001 12kHz 2 010 16kHz 3 011 24kHz 4 100 32kHz 5 101 48kHz 6 110 96kHz 7 111 N/A Multiply 44.1/48 to calculate the values for multiple sampling frequencies of 44.1kHz. Write “0” into the “0” registers. 014006643-E-00 2014/10 - 31 - [AK7755] CONT01: Clock Setting 2 and JX2 Setting Write during clock reset. W R Name D7 C1h 41h CONT01 JX2E D6 LR DOWN D5 BITFS [1] D4 BITFS [0] D3 CLKS [2] D2 CLKS [1] D1 CLKS [0] D0 CK RESETN Default 00h D7: JX2E External Conditional Jump 2 Enable 0: JX2 is Disabled (default), No. 14-pin output (SDOUT3) when OUT3E bit (CONT0A:D2) = “1” 1: JX2 is Enabled, No. 14-pin Input D6: LRDOWN LRCK Sampling Frequency Select 0: LRCK Sampling frequency set by DFS[2:0] bits (CONT00: D2-D0). (default) 1: LRCK Half frequency of the setting value by DFS[2:0] bits The AK7755 can output the LRCK which is half frequency of the setting value by DFS[2:0] bits in master mode (CKM mode 0, 1(CONT00: D6-D4)). This mode is used when LRCK/BICK/SDIN1/SDOUT1 is driven by fs= 8kHz while the AK7755 is driven by fs= 16kHz in master mode. LRDOWN bit = “1” cannot be set when TDM256 bit (CONT02: D7) = “1”. D5, D4: BITFS[1:0] BICK fs Select BITFS BITFS BICK Note mode [1:0] 0 00 64fs 512kHz(@fs=8kHz),3.072MHz(@fs=48kHz) (default) 1 01 48fs 384kHz(@fs=8kHz),2.304MHz(@fs=48kHz) 2 10 32fs 256kHz(@fs=8kHz),1.536MHz(@fs=48kHz) 3 11 256fs 2.048MHz(@fs=8kHz),12.288MHz(@fs=48kHz) This setting is valid in both slave and master modes. Set the BICK input sampling frequency against LRCK, in Slave mode (CKM2, 3 and 5). Set the BICK output sampling frequency against LRCK in Master mode (CKM0 and 1). The BICK output will be in two different frequencies if setting BITFS[1:0] bits = 1h (48kHz) when the sampling frequency is 12kHz, 24kHz, 48kHz or 96kHz (DFS[2:0]). D3, D2, D1: CLKS[2:0] CLKO Output Clock Select CLKS mode CLKS[2:0] fs=48kHz fs=44.1kHz 0 000 12.288MHz 11.2896MHz 1 001 6.144MHz 5.6448MHz 2 010 3.072MHz 2.8224MHz 3 011 8.192MHz 7.5264MHz 4 100 4.096MHz 3.7632MHz 5 101 2.048MHz 1.8816MHz 6 110 256fs 256fs 7 111 XTI or BICK XTI or BICK (default) D0: CKRESETN Clock Reset 0: Clock Reset (default) 1: Clock Reset Release 014006643-E-00 2014/10 - 32 - [AK7755] CONT02: Serial Data Format, JX1, 0 Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default C2h 42h CONT02 TDM256 BCKP LRIF[1] LRIF[0] TDM TDM JX1E JX0E 00h MODE[1] MODE[0] D7: TDM256, TDM Select 0: Normal Interface (default) 1: TDM Interface BICK is fixed to 256fs. Set BITFS[1:0] bits = 3h (CONT01: D5, D4). Format is selected by LRIF[1:0] bits setting (CONT02: D5, D4). In this mode, CKM mode 5(CONT00: D6-D4) is not available. TDM256 bit cannot be set to “1” when LRDOWN bit (CONT00: D6) = “1”. In TDM mode, a 96kHz sampling frequency is not available. DFS[2:0] bits (CONT00: D2-D0) setting must be lower than 5h (48kHz). D6: BCKP BICK Edge Select BCKP bit BICK edge referenced to LRCK edge 0 falling (FE) 1 rising (RE) (default) D5, D4: LRIF[1:0] LRCK I/F Format Mode LRIF[1:0]bit Digital I/F Format 0 00 Standard (MSB justified/ LSB justified) (default) 1 01 I2S Compatible 2 10 PCM Short Frame 3 11 PCM Long Frame In standard format mode, MSB justified and 24/20/16 bit LSB justified formats are selectable by DIF1 bits (CONT06: D2-D0), DIF2 bits (CONT03: D7, D6), DIFDA bits (CONT06: D5, D4), DOF1 bits (CONT07: D2-D0), DOF2 bits (CONT03: D5, D4), DOF3 bits (CONT07: D5, D4), and DOF4 bits (CONT07: D7, D6). In other modes, MSB justified format should be selected by DIF1-2 bits, DAF bit and DOF1-4 bits. D3, D2: TDMMODE[1:0] DSPDIN3, DSPDIN4 Input Source Select (Valid when TDM256bit = “1”) Mode 0 1 2 3 TDMMODE [1:0] 00 01 10 11 DSPDIN4 Lch DSPDIN4 Rch DSPDIN3 Lch DSPDIN3 Rch SDIN1 SLOT7 SDOUTAD Lch SDOUTAD Lch N/A SDIN1 SLOT8 SDOUTAD Rch SDOUTAD Rch N/A SDIN1 SLOT5 SDIN1 SLOT5 SDOUTAD2 Lch N/A SDIN1 SLOT6 SDIN1 SLOT6 SDOUTAD2 Rch N/A (default) D1: JX1E External Conditional Jump1 Enable 0: JX1 is invalid (default) 1: JX1 is valid D0: JX0E External Conditional jump0 Enable 0: JX0 is invalid (default) 1: JX0 is valid 014006643-E-00 2014/10 - 33 - [AK7755] CONT03: Delay RAM, DSP Input / Output Setting W C3h R 43h Name D7 CONT03 0 D6 0 D5 0 D4 0 D3 BANK[3] D2 BANK[2] D1 BANK[1] D0 BANK[0] Default 00h D7, D6: DIF2[1:0] DSP DIN2 Input Format Select DIF2 Mode DIF2[1:0] Input Data Format 0 00 MSB (24-bit) (default) 1 01 LSB 24-bit 2 10 LSB 20-bit 3 11 LSB 16-bit Set “00” for I2S compatible, PCM Short and PCM Long formats. Set “11” when BITFS[1:0] bits (CONT01: D5, D4) = 2h (32fs). D5, D4: DOF2[1:0] DSP DOUT2 Output Format Select DOF2 Mode DOF2[1:0] Output Data Format 0 00 MSB (24-bit) (default) 1 01 LSB 24-bit 2 10 LSB 20-bit 3 11 LSB 16-bit 2 Set “00” for I S compatible, PCM Short and PCM Long formats. Set “11” when BITFS[1:0] bits = 2h (32fs). D3, D2, D1, D0: BANK[3:0] DLRAM BANK Partition [3:0] mode 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 1001 9-15 1111 DLRAM mode Setting Delay RAM Bank1 Bank0 Linear 20.4f Ring 20.4f 0 8192 words 1024 words 7168 words 2048 words 6144 words 3072 words 5120 words 4096 words 4096 words 5120 words 3072 words 6144 words 2048 words 7168 words 1024 words 8192 words 0 (default) N/A 014006643-E-00 2014/10 - 34 - [AK7755] CONT04: Data RAM, CRAM Setting W R Name D7 D6 D5 D4 D3 D2 D1 C4h 44h CONT04 DRMS[1] DRMS[0] DRAM[1] DRAM[0] POMODE 0 Default WAVP[1] WAVP[0] 00h D7, D6: DRMS[1:0] DRAM mode 0 1 2 3 Data RAM Size Setting DSP Data RAM DRMS Bank1 Bank0 [1:0] Memory Memory size[words] size[words] 00 512 1536 01 1024 1024 10 1536 512 11 N/A D0 D5, D4: DRAM[1:0] Data RAM Addressing mode Setting DSP Data RAM Addressing DRAM mode [1:0] Bank1 DP1 Bnak0 DP0 0 00 Ring Ring 1 01 Ring Linear 2 10 Linear Ring 3 11 Linear Linear (default) (default) D3: POMODE DLRAM Pointer 0 Select 0: DBUS Immediate (default) 1: OFREG D1, D0: WAVP[1:0] CRAM Memory Assignment WAVP mode WAVP[1:0] FFT Point Number 0 00 33word 128 1 01 65word 256 2 10 129word 512 3 11 257word 1024 (default) Write “0” into the “0” registers. 014006643-E-00 2014/10 - 35 - [AK7755] CONT05: Accelerator Setting, JX3 Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default ACCRAM FIR FIR SUB SUB MEM MEM C5h 45h CONT05 JX3E 00h CLRN MODE1 MODE2 MODE1 MODE2 DIV[1] DIV[0] D7: ACCRAMCLRN Accelerator CRAM Clear Setting 0: Accelerator CRAM is cleared by 0 data after releasing reset. (default) 1: Accelerator CRAM is not cleared after releasing reset. D6: JX3E External Conditional Jump3 Enable 0: JX3 Disable (default), No. 15 pin output (SDOUT2) when OUT2E bit (CONT0A:D1) = “1” 1: JX3 Enable, No. 15 pin Input D5: FIRMODE1 Accelerator Ch1 Operation Select 0: Adaptive Filter (default) 1: FIR Filter D4: FIRMODE2 Accelerator Ch2 Operation Select 0: Adaptive Filter (default) 1: FIR Filter D3: SUBMODE1 Accelerator Ch1 Mode Select 0: Fullband (default) 1: Subband D2: SUBMODE2 Accelerator Ch2 Mode Select 0: Fullband (default) 1: Subband D1, D0: MEMDIV[1:0] Accelerator Memory Select MODE MEMDIV[1:0] ch1 ch2 0 00 2048 (default) 1 01 1792 256 2 10 1536 512 3 11 1024 1024 Write “0” into the “0” registers. 014006643-E-00 2014/10 - 36 - [AK7755] CONT06: DAC De-emphasis, DAC and DSP Input Format Settings W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default C6h 46h CONT06 DEM[1] DEM[0] DIFDA[1] DIFDA[0] 0 DIF1[2] DIF1[1] DIF1[0] 00h D7, D6: DEM[1:0] DAC De-emphasis Setting (50/15μs) DEM mode DEM[1:0] Sampling Frequency fs 0 00 OFF (default) 1 01 48kHz 2 10 44.1kHz 3 11 32kHz D5, D4: DIFDA[1:0] DAC Input Format Select DIFDA mode DIFDA[1:0] Input Data Format 0 00 MSB justified (24-bit) (default) 1 01 LSB justified 24-bit 2 10 LSB justified 20-bit 3 11 LSB justified 16-bit Set “00” for I2S Compatible, PCM Short and PCM Long formats. Set “11” when BITFS[1:0] bits (CONT01: D5, D4) =2h (32fs). Set “00” when connecting MIXOUT or DSP-DOUT4 to DAC input. D2, D1, D0: DIF1[2:0] DSP DIN1 Input Format Select DIF1 Mode DIF1[2:0] Input Data Format 0 000 MSB (24-bit) (default) 1 001 LSB 24-bit 2 010 LSB 20-bit 3 011 LSB 16-bit 4 100 MSB 8-bit μ-Law 5 101 MSB 8-bit A-Law 6 110 N/A 7 111 N/A 2 Set “000” for I S Compatible, PCM Short and PCM Long formats. Set “011” when BITFS[1:0]=2h (32fs). Write “0” into the “0” registers. 014006643-E-00 2014/10 - 37 - [AK7755] CONT07: DSP Output Format Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default C7h 47h CONT07 DOF4[1] DOF4[0] DOF3[1] DOF3[0] 0 DOF1[2] DOF1[1] DOF1[0] 00h D7, D6: DOF4[1:0] DSP DOUT4 Output Format Select DOF4 mode DOF4[1:0] Output Data Format 0 00 MSB justified (24-bit) (default) 1 01 LSB justified 24-bit 2 10 LSB justified 20-bit 3 11 LSB justified 16-bit Set “00” for I2S Compatible, PCM Short and PCM Long formats. Set “11” when BITFS[1:0] bits (CONT01: D5, D4) =2h (32fs). Set “00” when connecting to the DAC. D5, D4: DOF3[1:0] DSP DOUT3 Output Format Select DOF3 mode DOF3[1:0] Output Data Format 0 00 MSB justified (24-bit) (default) 1 01 LSB justified 24-bit 2 10 LSB justified 20-bit 3 11 LSB justified 16-bit Set “00” for I2S Compatible, PCM Short and PCM Long formats. Set “11” when BITFS[1:0] bits=2h (32fs). D2, D1, D0: DOF1[2:0] DSP DOUT1 Output Format Select DOF1 mode DOF1[2:0] Output Data Format 0 000 MSB (24-bit) (default) 1 001 LSB 24-bit 2 010 LSB 20-bit 3 011 LSB 16-bit 4 100 MSB 8-bit μ-Law 5 101 MSB 8-bit A-Law 6 110 N/A 7 111 N/A Set “000” for I2S Compatible, PCM Short and PCM Long formats. Set “011” when BITFS[1:0] bits=2h (32fs). Write “0” into the “0” registers. 014006643-E-00 2014/10 - 38 - [AK7755] CONT08: DAC Input, SDOUT2/3 Output, Digital Mixer Input Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default SELDAI SELDAI SELDO3 SELDO3 SELDO2 SELDO2 SELMIX SELMIX C8h 48h CONT08 00h [1] [0] [1] [0] [1] [0] [1] [0] D7, D6: SELDAI[1:0] DAC Input Select SELDAI mode SELDAI[1:0] Input Data 0 00 DSP DOUT4 (default) 1 01 MIXOUT 2 10 SDIN2 3 11 SDIN1 Set DIFDA[1:0] bits (CONT06: D5, D4) = 0h when selecting DSP DOUT4 or MIXOUT. D5, D4: SELDO3[1:0] SDOUT3 pin Output Select SELDO3 mode SELDO3[1:0] Output Data 0 00 DSP DOUT3 (default) 1 01 MIXOUT 2 10 DSP DOUT4 3 11 SDOUTAD2 The output format is fixed to MSB 24-bit when selecting SDOUTAD2 or MIXOUT. D3, D2: SELDO2[1:0] SDOUT2 pin Output Select SELDO2 mode SELDO2[1:0] Output Data 0 00 DSP DOUT2 (default) 1 01 GP1 2 10 SDIN2 3 11 SDOUTAD2 The output format is fixed to MSB 24-bit when selecting SDOUTAD2. (CONT09 D0), D1, D0: SELMIX[2:0] Digital Mixer Input Select SELMIX mode SELMIX[2:0] MIXOUT Lch MIXOUT Rch 1 000 SDOUTAD Lch SDOUTAD Rch SDOUTAD Lch/2 1 001 SDOUTAD Rch + SDOUTAD2 Lch/2 SDOUTAD Rch /2 2 010 SDOUTAD Lch + SDOUTAD2 Rch/2 SDOUTAD2 Lch 3 011 SDOUTAD2 Rch 4 100 DSP-DOUT4 Lch SDOUTAD2 Rch 5 101 SDOUTAD2 Lch DSP-DOUT4 Rch 6 110 DSP-DOUT4 Lch SDOUTAD Rch 7 111 SDOUTAD Lch DSP-DOUT4 Rch 014006643-E-00 (default) 2014/10 - 39 - [AK7755] CONT09: Analog Input / Output Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default C9h 49h CONT09 DIFR INR DIFL INL LO3SW3 LO3SW2 LO3SW1 SELMIX[2] 00h D7, D6: DIFR, INR ADC Rch Analog Input DIFR bit INR bit ADC Rch 0 0 IN3 (default) 0 1 IN4 1 X INP2/INN2 ADC Lch DIFL bit MIC-Amp Lch INR bit IN3/INP2 pin IN4/INN2 pin D5, D4: DIFL, INL ADC Lch Analog Input DIFL bit INL bit ADC Lch 0 0 IN1 (default) 0 1 IN2 1 X INP1/INN1 AK7755 INL bit IN1/INP1 pin IN2/INN1 pin ADC Rch DIFR bit MIC-Amp Rch Figure 22. Analog Input Select D3: LO3SW3 OUT3 Mixing Select 3 0: LIN off (default) 1: LIN on D2: LO3SW2 OUT3 Mixing Select 2 0: DAC Rch off (default) 1: DAC Rch on D1: LO3SW1 OUT3 Mixing Select 1 0: DAC Lch off (default) 1: DAC Lch on AK7755 Mono ADC LIN pin Stereo DAC Lch OUT1 pin LOVOL1[3:0] LIGN[3:0] Stereo DAC Rch OUT2 pin LO3SW1 LO3SW2 LO3SW3 LOVOL2[3:0] M I X OUT3 pin LOVOL3[3:0] Figure 23. OUT3 Output Select D0: SELMIX[2] Digital Mixer Input Select Refer to CONT08: D1, D0, SELMIX[2:0] bits 014006643-E-00 2014/10 - 40 - [AK7755] CONT0A: CLK and SDOUT Output Setting W CAh R 4Ah Name D7 CONT0A CLKOE D6 BICKOE D5 LRCKOE D4 0 D3 D2 D1 D0 Default 0 OUT3E OUT2E OUT1E 00h D7: CLKOE CLKO pin Setting 0: CLKO= “L” (default) 1: CLKO Output Enable D6: BICKOE BICK pin Output Setting 0: BICKO= “L” (default) 1: BICKO Output Enable This setting is invalid in Slave mode (CKM mode 2, 3, and 5 (CONT00: D6-D4)). D5: LRCKOE LRCK pin Output Setting (Master Mode) 0: LRCKO= “L” (default) 1: LRCKO Output Enable This setting is invalid in Slave mode (CKM mode2, 3 and 5). D2: OUT3E 0: SDOUT3= “L” (default) 1: SDOUT3 Output Enable Valid when JX2E bit (CONT01: D7) = “0” D1: OUT2E 0: SDOUT2= “L” (default) 1: SDOUT2 Output Enable Valid when JX3E bit (CONT05: D6) = “0” D0: OUT1E 0: SDOUT1= “L” (default) 1: SDOUT1 Output Enable Write “0” into the “0” registers. CONT0B: TEST Setting W R Name D7 CBh 4Bh CONT0B 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 0 Default 00h Write “0” into the “0” registers. 014006643-E-00 2014/10 - 41 - [AK7755] CONT0C: ADC, DAC Volume Transition Time and SDOUT1 Output Settings W R Name CCh 4Ch CONT0C D7 D6 D5 DSM 0 D4 D3 D2 ATSPAD ATSPDA 0 D1 D0 Default SELDO1[2] SELDO1[1] SELDO1[0] 00h D7: DSM Delta Sigma Module Sampling CLK Setting 0: DSMCLK 256fs (default) 1: DSMCLK 12.288MHz D5: ATSPAD ADC Volume Transition Time Setting 0: 1/fs (default) 1: 4/fs D4: ATSPDA DAC Volume Transition Time Setting 0: 1/fs (default) 1: 4/fs D2, D1, D0: SELDO1[2:0] SDOUT1 Pin Output Select SELDO1 mode SELDO1[2:0] Output Data 0 000 DSP DOUT1 (default) 1 001 GP0 2 010 SDIN1 3 011 SDOUTAD 4 100 EEST 5 101 SDOUTAD2 6 110 N/A 7 111 N/A The output format is fixed to MSB 24-bit when selecting SDOUTAD or SDOUTAD2. Write “0” into the “0” registers. CONT0D: STO Status Read and EEPROM Download Setting W CDh R 4Dh Name D7 CONT0D STO D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 DLS Default 80h D7: STO Status Output 0: Internal Error Status 1: Normal Operation (default) This is a read only register. D6: 1 Thise bit should be set to “1” during system reset (CRESETN bit (CONT0F:D3) = “0” and DSPRESETN bit (CONT0F: D2) = “0”). D0: DLS Start EEPROM Downloading 0: Normal Operation (default) 1: Start EEPROM Downloading This setting is valid when the I2CSEL pin= “H”. Register settings and DSP programs can be downloaded from an external EEPROM by setting the EXTEEP pin = “H” or DLS bit = “1”. However, when selecting memory mat (I2CSEL pin = MATSEL pin = “H”), downloading cannnot be executed by DLS bit. Write “0” into the “0” registers. 014006643-E-00 2014/10 - 42 - [AK7755] CONT0E: ADC, DAC, Lineout Power Management W R Name D7 D6 D5 CEh 4Eh CONT0E PMADR PMADL PMAD2L D4 D3 D2 D1 D0 PMLO3 PMLO2 PMLO1 PMDAR PMDAL Default 00h D7: PMADR Power Management (MIC-Amp Rch + ADC Rch) 0: Power-down (default) 1: Start Normal Operation after releasing CODEC Reset (CRESETN bit (CONT0F: D3) = “1”). D6: PMADL Power Management (MIC-Amp Lch + ADC Lch) 0: Power- down (default) 1: Start Normal Operation after releasing CODEC Reset (CRESETN bit = “1”). D5: PMAD2L Power Management (ADC2 Lch) 0: Power- down (default) 1: Start Normal Operation after releasing CODEC Reset (CRESETN bit = “1”). D4: PMLO3 Lineout 3 Power Management 0: Power- down (default) 1: Normal Operation D3: PMLO2 Lineout 2 Power Management 0: Power- down (default) 1: Normal Operation D2: PMLO1 Lineout 1 Power Management 0: Power- down (default) 1: Normal Operation D1: PMDAR Power Management (DAC Rch) 0: Power- down (default) 1: Start Normal Operation after releasing CODEC Reset (CRESETN bit = “1”). D0: PMDAL Power Management (DAC Lch) 0: Power- down (default) 1: Start Normal Operation after releasing CODEC Reset (CRESETN bit = “1”). 014006643-E-00 2014/10 - 43 - [AK7755] CONT0F: Reset Settings, Lineout and Digital MIC2 Rch Power Managements W CFh R 4Fh Name D7 D6 D5 CONT0F 0 0 PML1 D4 LRDETN D3 CRESETN D2 D1 D0 Default DSPRESETN PMAD2R DLRDY 00h D5: PMLI Line-in Power Management 0: Power-down (default) 1: Normal Operation D4: LRDETN Slave Mode Automatic System Reset Setting 0: LRCK Detect ON (default) 1: LRCK Detect OFF When this bit is “0”, if the LRCK is stopped or the LRCK phase is shifted more than 1/4fs, the AK7755 enters system reset state automatically. D3: CRESETN CODEC Reset N 0: CODEC Reset (default) 1: CODEC Reset Release CODEC means the ADC and the DAC. D2: DSPRESETN DSP Reset N 0: DSP Reset (default) 1: DSP Reset Release The AK7755 is in system reset state when CRESETN bit = “0” and DSPRESETN bit = “0”. D1: PMAD2R Power Managements of ADC2 Rch (only when using digital microphone) 0: Power-down (default) 1: The AK7755 enters normal operation after releasing CODEC Reset (CRESETN bit = “1”). D0: DLRDY DSP Download Ready 0: Normal Operation (default) 1: Program Downloading DSP programs and coefficient data can be downloaded by setting this bit to “1” during clock reset (CKRESETN bit = “0”) or when the main clock is stopped. This bit must be set to “0” after finishing the downloading. Write “0” into the “0” registers. 014006643-E-00 2014/10 - 44 - [AK7755] CONT10: Function Settings W R Name D7 D6 D0h 50h CONT10 WDTEN CRCE D5 D4 D3 D2 D1 D0 Default PLLLOCKE SOCFG SELSTO 0 0 CKADJEN 00h D7: WDTEN WDT (watchdog timer) Setting 0: WDTE Enable (default) 1: WDTE Disable D6: CRCE CRC (cyclic redundancy check) Setting 0: CRC Disable (default) 1: CRC Enable D5: PLLLOCKE PLL LOCK Detection 0: PLL LOCK Disable (default) 1: PLL LOCK Enable D4: SOCFG SO pin Hi-Z Select 0: Hi-Z (default) 1: CMOSL D3: SELSTO STO/RDY Pin Selecting Status Out 0: STO (default) 1: RDY D0: CKADJEN Clock Adjustment Enable 0: CKADJ DISABLE (default) 1: CKADJ ENABLE Write this bit to “1” when setting CONT11 CKADJ[7:0] bits. Write “0” into the “0” registers. CONT11: DSPMCLK Availability Ratio Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default CK CK CK CK CK CK CK CK D1h 51h CONT11 00h ADJ[7]) ADJ[6]) ADJ[5]) ADJ[4]) ADJ[3]) ADJ[2]) ADJ[1]) ADJ[0]) D7-D0: CKADJ [7:0] DSPMCLK Availability Ratio Setting Availability = (256-CKADJ) / 256 0000_0000: 100% driving (Normal) (default) 0000_0001: 99.6% driving • • • 1000_0000: 50% driving • • • 1111_1110: 0.8% driving 1111_1111: 0.4% driving Set CONT10 CKADJEN bit to “1” when using this register. DSPMCLK must always be more than 10 times of SCLK. For example, when SCLK is 2MHz, the setting should be lower than 0hD6 (214) since CKADJ[7:0] < 256 – (2 x 10 x 256) / 122.88 = 214.33. 014006643-E-00 2014/10 - 45 - [AK7755] CONT12: Microphone Gain Setting W R D2h 52h Name D7 MGNR CONT12 [3] D6 MGNR [2] D5 MGNR [1] D4 MGNR [0] D3 MGNL [3] D2 MGNL [2] D1 MGNL [1] D0 MGNL [0] Default 00h D7, D6, D5, D4: MGNR[3:0] Microphone Input Rch Gain Setting MGNR mode MGNR[3:0] Microphone Input Rch Gain (default) 0 0000 0dB 1 0001 2dB 2 0010 4dB 3 0011 6dB 4 0100 8dB 5 0101 10dB 6 0110 12dB 7 0111 14dB 8 1000 16dB 9 1001 18dB A 1010 21dB B 1011 24dB C 1100 27dB D 1101 30dB E 1110 33dB F 1111 36dB D3, D2, D1, D0: MGNL[3:0] Microphone Input Lch Gain MGNL mode MGNL[3:0] Microphone Input Lch Gain 0dB 0 0000 1 0001 2dB 2 0010 4dB 3 0011 6dB 4 0100 8dB 5 0101 10dB 6 0110 12dB 7 0111 14dB 8 1000 16dB 9 1001 18dB A 1010 21dB B 1011 24dB C 1100 27dB D 1101 30dB E 1110 33dB F 1111 36dB 014006643-E-00 (default) 2014/10 - 46 - [AK7755] CONT13: Line-in/Lineout 3 Volume Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default LOVOL3 LOVOL3 LOVOL3 LOVOL3 D3h 53h CONT13 LIGN[3] LIGN[2] LIGN[1] LIGN[0] 00h [3] [2] [1] [0] ・D7, D6, D5, D4: LIGN[3:0] Line-in Volume Setting LIGN mode LIGN[3:0] Line-in Volume Setting 0 0000 0dB 1 0001 -3dB 2 0010 -6dB 3 0011 -9dB 4 0100 -12dB 5 0101 -15dB 6 0110 -18dB 7 0111 -21dB 8 1000 N/A 9 1001 +3dB A 1010 +6dB B 1011 +9dB C 1100 +12dB D 1101 +15dB E 1110 +18dB F 1111 +21dB ・D3, D2, D1, D0: LOVOL3[3:0] Line-out 3 Volume Setting LOVOL3 mode LOVOL3[3:0] Line-out 3 Volume Setting 0 0000 Mute 1 0001 -28dB 2 0010 -26dB 3 0011 -24dB 4 0100 -22dB 5 0101 -20dB 6 0110 -18dB 7 0111 -16dB 8 1000 -14dB 9 1001 -12dB A 1010 -10dB B 1011 -8dB C 1100 -6dB D 1101 -4dB E 1110 -2dB F 1111 0dB 014006643-E-00 (default) (default) 2014/10 - 47 - [AK7755] CONT14: Line-out 1, Line-out 2 Volume Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default LOVOL2 LOVOL2 LOVOL2 LOVOL2 LOVOL1 LOVOL1 LOVOL1 LOVOL1 D4h 54h CONT14 00h [3] [2] [1] [0] [3] [2] [1] [0] D7, D6, D5, D4: LOVOL2[3:0] Line-out 2 Volume Setting LOVOL2 mode LOVOL2[3:0] Lineout 2 Volume Setting 0 0h Mute 1 1h -28dB 2 2h -26dB 3 3h -24dB 4 4h -22dB 5 5h -20dB 6 6h -18dB 7 7h -16dB 8 8h -14dB 9 9h -12dB A Ah -10dB B Bh -8dB C Ch -6dB D Dh -4dB E Eh -2dB F Fh 0dB (default) D3, D2, D1, D0: LOVOL1[3:0] Line-out 1 Volume Setting LOVOL1 mode LOVOL1[3:0] Lineout 1 Volume Setting 0 0h Mute 1 1h -28dB 2 2h -26dB 3 3h -24dB 4 4h -22dB 5 5h -20dB 6 6h -18dB 7 7h -16dB 8 8h -14dB 9 9h -12dB A Ah -10dB B Bh -8dB C Ch -6dB D Dh -4dB E Eh -2dB F Fh 0dB (default) CONT15-16-17: ADC, ADC2 Lch Digital Volume Setting W R Name D7 D6 D5 VOL VOL VOL D5h 55h CONT15 ADL[7] ADL[6] ADL[5] VOL VOL VOL D6h 56h CONT16 ADR[7] ADR[6] ADR[5] VOL VOL VOL D7h 57h CONT17 AD2L[7] AD2L[6] AD2L[5] Refer to “2-3. ADC, ADC2 digital volume”. D4 VOL ADL[4] VOL ADR[4] VOL AD2L[4] 014006643-E-00 D3 VOL ADL[3] VOL ADR[3] VOL AD2L[3] D2 VOL ADL[2] VOL ADR[2] VOL AD2L[2] D1 VOL ADL[1] VOL ADR[1] VOL AD2L[1] D0 VOL ADL[0] VOL ADR[0] VOL AD2L[0] Default 30h 30h 30h 2014/10 - 48 - [AK7755] CONT18-19: DAC Digital Volume Setting W R D8h 58h D9h 59h Name D7 VOL CONT18 DAL[7] VOL CONT19 DAR[7] D6 VOL DAL[6] VOL DAR[6] D5 VOL DAL[5] VOL DAR[5] D4 VOL DAL[4] VOL DAR[4] D3 VOL DAL[3] VOL DAR[3] D2 VOL DAL[2] VOL DAR[2] D1 VOL DAL[1] VOL DAR[1] D0 Default VOL 18h DAL[0] VOL 18h DAR[0] Refer to “2. DAC digital volume”. CONT1A: ADC/DAC MUTE, ADRC and Zero-cross Settings W R DAh 5Ah Name D7 AD CONT1A MUTE D6 AD2 MUTE D5 DA MUTE D4 1 D3 D2 D1 D0 Default ADRCRE ADRCLE MICRZCE MICLZCE 00h D7: ADMUTE ADC MUTE Setting 0: Stereo ADC MUTE Release (default) 1: Stereo ADC MUTE D6: ADMMUTE ADC2 MUTE Setting 0: ADC2 MUTE Release (default) 1: ADC2 MUTE D5: DAMUTE DAC MUTE Setting 0: DAC MUTE Release (default) 1: DAC MUTE D4: 1 Thise bit should be set to “1” during system reset (CRESETN bit (CONT0F: D3) = “0” and DSPRESETN bit (CONT0F: D2) = “0”). D3: ADRCRE Analog Dynamic Range Controller Rch Enable Setting 0: ADRC Rch DISABLE (default) 1: ADRC Rch ENABLE D2: ADRCLE Analog Dynamic Range Controller Lch Enable Setting 0: ADRC Lch DISABLE (default) 1: ADRC Lch ENABLE D1: MICRZCE MICGAIN Rch Zero-corss Enable 0: Rch Zero-cross Detection ON (default) 1: Rch Zero-cross Detection OFF D0: MICLZCE MICGAIN Lch Zero-cross Enable 0: Lch Zero-cross Detection ON (default) 1: Lch Zero-cross Detection OFF Write “0” into the “0” registers. 014006643-E-00 2014/10 - 49 - [AK7755] CONT1B: Microphone Gain Read Register when using ADRC W R - Name 5Bh CONT1B D7 D6 D5 D4 D3 D2 D1 D0 Default AMGNR AMGNR AMGNR AMGNR AMGNL AMGNL AMGNL AMGNL 00h [3] [2] [1] [0] [3] [2] [1] [0] This register is a read only register. AMGNR[3:0] bits will be valid when ADRCRE bit (CONT1A: D3) = “1”, and AMGNL[3:0] will be valid when ADRCLE bit (CONT1A: D2) = “1”. The microphone gain value set by DSP can be readout. CONT1C: TEST Setting W R Name D7 D6 DCh 5Ch CONT1C 0 0 Write “0” into the “0” registers. D5 0 D4 0 D3 0 D2 0 D1 0 D0 0 Default 00h CONT1D: ADC2 Rch Digital Volume Setting W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default VOL VOL VOL VOL VOL VOL VOL VOL DDh 5Dh CONT1D 30h AD2R[7] AD2R[6] AD2R[5] AD2R[4] AD2R[3] AD2R[2] AD2R[1] AD2R[0] Refer to “2-3. ADC2 Digital Volume”. CONT1E: Digital Microphone Interface Setting W R Name D7 DDh 5Dh CONT1D DMIC1 D6 D5 D4 D3 D2 D1 D0 Default DMCLKP1 DMCLKE1 DMIC2 DMCLKP2 DMCLKE2 0 0 00h D7: DMIC1 Digital Microphone 1 Select 0: Not Using DMIC1 (default) 1: Using DMIC1 When DMIC1 bit = “1” or DMIC2 bit = “1”, pin number 31~ 34 become digital microphone interfaces, and analog inputs are not available. D6: DMCLKP1 Digital Microphone 1 Channel Setting DMCLKP1 DMCLK1 pin = “H” DMCLK1 pin = “L” 0 Rch Lch 1 Lch Rch (default) D5: DMCLKE1 Digital Microphone 1 Clock Setting 0: DMCLK1 pin = “L” (default) 1: DMCLK1 64fs (Output Enable) ・D4: DMIC2 Digital Microphone 2 Select 0: Not Using DMIC2 (default) 1: Using DMIC2 When DMIC1 bit = “1” or DMIC2 bit = “1”, pin number 31 ~ 34 become digital microphone interfaces, and analog inputs are not available. ・D3: DMCLKP2 Digital Microphone 2 Channel Setting DMCLKP2 DMCLK2 pin = “H” DMCLK2 pin = “L” 0 Rch Lch 1 Lch Rch (default) ・D2: DMCLKE2 Digital Microphone 2 Clock Setting 0: DMCLK2 pin = “L” (default) 1: DMCLK1 64fs (Output Enable) 014006643-E-00 2014/10 - 50 - [AK7755] Do not write data into CONT21 - CONT25. CONT26 W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default E6 66h CONT26 0 0 0 0 0 0 0 1 00h D0: 1 Thise bit should be set to “1” during system reset (CRESETN bit (CONT0F: D3) = “0” and DSPRESETN bit (CONT0F: D2) = “0”). Write “0” into the “0” registers. Do not write data into CONT27 - CONT29. CONT2A W R Name D7 D6 D5 D4 D3 D2 D1 D0 Default EA 6Ah CONT2A 1 0 0 0 0 0 0 0 00h D7: 1 Thise bit should be set to “1” during system reset (CRESETN bit (CONT0F: D3) = “0” and DSPRESETN bit (CONT0F: D2) = “0”). Write “0” into the “0” registers. Do not write data into CONT2B – CONT2F. 014006643-E-00 2014/10 - 51 - [AK7755] ■ Power-up Sequence 1. When not downloading settings and programs from EEPROM The AK7755 should be powered up when the PDN pin = “L”. AVDD and TVDD must be powered up first before DVDD when DVDD is supplied externally (LDOE pin = “L”). In this case, the power-up sequence between AVDD and TVDD is not critical. Control register settings are initialized by the PDN pin = “L”. Set the PDN pin to “H” to start the power supply circuits for REF (analog reference voltage source) generator and digital circuits (only when LDOE pin = “H”) after all power supplies are fed. Control register access must be made after 1ms from the PDN pin = “H”. Set AINE bit (CONT00: D3) to “1” fist when using the IN1/INP1, IN2/INN1, IN3/INP2 and IN4/INN2 pins as analog inputs. The PLL starts operation by a clock reset release (CKRESETN bit (CONT01: D0) = “0” → “1”) and generates the internal master clock after setting control registers. Therefore, necessary system clock must be input and control register settings for CONT00 ~ CONT01 are must be finished before releasing the clock reset. Interfacing with the AK7755 except control register settings should be made when PLL oscillation is stabilized after clock reset release (take a 10ms interval or confirm “H” level output of PLLLOCK signal from the STO/RDY pin) (Figure 24). However, DSP program and coefficient data can be written even when the system clock is stopped. DSP programs and coefficient data can be written in 1ms by setting DLRDY bit =“0” → “1” (CONT0F, D0). DLRDY bit (CONT0F: D0) must be set to “0” after the download (Figure 25). When using a crystal oscillator in master mode, set the CKM[2:0] bits (CONT00: D6-D4) = 0h or 1h, and release the clock reset after crystal oscillation is stabilized. The stabilizing time of crystal oscillation is dependent on the crystal and external circuits. The system clock must not be stopped except during the clock reset and power-down mode. TVDD,AVDD DVDD PDN (pin) CONT Reg. Setting SI(SPI),SDA(I2C) DSP Program CKRESETN bit (Reg.) DSPRESETN bit(Reg.) CRESETN bit(Reg.) XTI,BICK (pin) Clock Stabilizataion Internal PLLCLK (Internal Master Clock) 600ns(min) Power OFF 1ms(min) Before PLL stable oscillation access is not permitted (10ms) Command code and DSP Program download (No time limitation) Figure 24. Power-up Sequence 1 (When not downloading from EEPROM) (With External Power Supply (LDOE pin = “L”), No downloading from EEPROM) 014006643-E-00 2014/10 - 52 - [AK7755] TVDD, AVDD DVDD PDN(Pin) SI(spi), SDA(i2c) DLRDY=1 DSP Program DLRDY=0 CONT Reg.Setting CKRESETN bit (Reg.) DSPRESETN bit(Reg) CRESETN bit(Reg) XTI,BICK(Pin) Clock Stabilization Internal PLLCLK (Internal Master Clock) Power OFF 600ns(min) 1ms(min) Before PLL stable oscillation access is not permitted (10ms) 1ms(min) Figure 25. Power-up Sequence 2 (With External Power Supply (LDOE pin = “L”), DLRDY Setting, No downloading from EEPROM) 2. When downloading settings and programs from EEPROM When downloading programs from an EEPROM, I2C interface (I2CSEL pin = “H”) and a 12.288MHz clock input to the XTI pin are necessary, or a 12.288MHz crystal oscillator must be connected to the XTI and XTO pins. In this case, only CKM mode 0 and 2 (CONT00: D6-D4) are available. The AK7755 should be powered up when the PDN pin = “L”. AVDD and TVDD must be powered up first before DVDD when DVDD is supplied externally (LDOE pin = “L”). In this case, the power-up sequence between AVDD and TVDD is not critical. Set the PDN pin to “H” to start the power supply circuits for REF (analog reference voltage source) generator and internal digital circuit (only when the LDOE pin = “H”) after all power supplies are fed. There are three ways to start downloading control register settings, DSP programs and Coefficient RAM: by PDN pin (1) (Figure 26), by EXTEEP pin (2) (Figure 26) and by DLS bit (3) (Figure 27). 014006643-E-00 2014/10 - 53 - [AK7755] TVDD, AVDD DVDD PDN(pin) (1) XTI(pin) Clock Stabilization(12.288MHz) I2CSEL(pin) EXTEEP(pin) SDA(pin) (2) CONT Reg. Setting, DSP Program (EEPROM→AK7755) EEST(pin) Success STO(pin) Error CKRESETN bit (Reg.) DSPRESETN bit(Reg.) CRESETN bit(Reg.) Power OFF 600ns(min) 1ms(min) Figure 26. Power-up Sequence 3 (With External Power Supply (LDOE pin = “L”), Downloading from EEPROM (1)(2)) (1) Start Downloading by PDN pin Power ON (AVDD, TVDD), I2CSEL pin=“H”, EXTEEP pin=“H”→ (DVDD→), PDN pin=“L”→“H” (2) Start Downloading EXTEEP pin (Dotted Line) Power ON (AVDD, TVDD), I2CSEL pin = “H” → (DVDD→), PDN pin = “L” → “H” → EXTEEP pin = “L” → “H” TVDD, AVDD DVDD PDN(pin) (1) XTI(pin) Clock Stabilization(12.288MHz) I2CSEL(pin) DLS bit (3) (uP→AK7755) SDA(pin) DLS=1 (EEPROM→AK7755) CONT Reg. Setting, DSP Program EEST(pin) Success STO(pin) Error CKRESETN bit (Reg.) DSPRESETN bit(Reg.) CRESETN bit(Reg.) Power OFF 600ns(min) 1ms(min) Figure 27. Power-up Sequence 4 (With External Power Supply (LDOE pin = “L”), Downloading from EEPROM (3)) (3) Start Downloading DLS bit Power ON (AVDD, TVDD), I2CSEL pin=“H”→(DVDD→), PDN pin=“L”→“H” →DLS bit = “0”→“1” 014006643-E-00 2014/10 - 54 - [AK7755] ■ LDO (Internal Circuit Drive Regulator) The AK7755 has a regulator for driving internal digital circuits (LDO). When using the LDO, the LDOE pin must be fixed to “H” and connect a 1μF (±30%) capacitor between the AVDRV pin and the VSS pin. The LDO starts operation by releasing power-down mode, and control register write/read can be made 1ms after the power-down release. The AK7755 has an overcurrent protection circuit to avoid abnormal heat of the device that is caused by a short of the AVDRV pin to VSS and etc., and an overvoltage protection circuit to protect from exceeded voltage when the voltage to the AVDRV pin gets too high. When these protection circuits perform, internal circuits are powered down and the STO pin outputs “L”. The internal circuit will not return to a normal operation until being reset by the PDN pin after removing the problems. TVDD,AVDD LDOE (pin) AVDRV (pin) PDN (pin) STO (pin) CONT Reg. Setting SI(SPI),SDA(I2C) DSP Program CKRESETN bit (Reg.) DSPRESETN bit(Reg.) CRESETN bit(Reg.) XTI,BICK (pin) Clock Stabilization Internal PLLCLK (Internal Master Clock) Power OFF 600ns(min) 1ms(min) Before PLL stable oscillation access is not permitted (10ms) Command code and DSP Program download (No time limitation) Figure 28. Power-up Sequence 5 (With LDO (LDOE pin = “H”), No downloading from EEPROM) ■ Power-down Sequence The AK7755 should be powered down when the PDN pin = “L”. Stop external clocks during this power-down state and then OFF the power supplies. Do not input external clocks when the power supplies are off (a current will flow through protection diodes). AVDD and TVDD must be powered down after DVDD when DVDD is supplied externally (LDOE pin = “L”). In this case, the power-down sequence between AVDD and TVDD is not critical. TVDD,AVDD DVDD PDN(pin) Power OFF Figure 29. Power-down Sequence 014006643-E-00 2014/10 - 55 - [AK7755] ■ Power-down and Reset 1. Power-down, Reset and Power Management of the AK7755 The AK7755 has four types of power-down and reset functions that are power-down (PDN pin), Clock reset (CLKRESETN bit (CONT01:D0)), CODEC reset (CRESETN bit(CONT0F:D3)) and DSP reset (DSPRESETN bit(CONT0F:D2)). Each block can be powered-down by power management registers. 2. Power-down The AK7755 is powered down by setting the PDN pin = “L”. The PDN pin must be set to “L” when power up the AK7755. The statuses of output pins in power-down mode are shown below. LDOE pin = “L” (External 1.2V supply mode) No Pin Name I/O Power-down Mode Status No 1 VCOM O L 17 6 STO/RDY O H 18 7 LRCK I/O L 26 8 BICK I/O L 27 9 CLKO O L 28 10 XTO O H 31 11 XTI I H 32 14 JX2/SDOUT3/JX2/MAT1 I/O L 33 15 SDOUT2/JX3/MAT1 I/O L 34 16 SDOUT1 O L Note 44. [I/O] indicates Input / Output attribute of each pin. LDOE pin = “H” (LDO mode) No Pin Name I/O Power-down Mode Status 1 VCOM O L 6 STO/RDY O L 7 LRCK I/O L 8 BICK I/O L 9 CLKO O L 10 XTO O H 11 XTI I H 14 JX2/SDOUT3/JX2/MAT1 I/O L SDOUT2/JX3/MAT1 15 I/O L 16 SDOUT1 O L No 17 18 24 26 27 28 31 32 33 34 Pin Name SO/SDA SCLK/SCL OUT3 OUT2 OUT1 IN4/INN2/DMCLK2 IN3/INP2/DMDAT2 IN2/INN1/DMCLK1 IN1/INP1/DMDAT1 Pin Name SO/SDA SCLK/SCL AVDRV OUT3 OUT2 OUT1 IN4/INN2/DMCLK2 IN3/INP2/DMDAT2 IN2/INN1/DMCLK1 IN1/INP1/DMDAT1 I/O Power-down Mode Status I/O Hi-Z I/O Hi-Z O Hi-Z O Hi-Z O Hi-Z I/O Hi-Z I Hi-Z I/O Hi-Z I Hi-Z I/O Power-down Mode Status I/O Hi-Z I/O Hi-Z O L O Hi-Z O Hi-Z O Hi-Z I/O Hi-Z I Hi-Z I/O Hi-Z I Hi-Z 3. Power-down Release 3-1. LDOE = “L” (External 1.2V supply mode) DVDD, TVDD and AVDD should be supplied when the PDN pin = “L”. By bringing the PDN pin “H” 600ns (min) after all power supplies are fed (DVDD, TVDD and AVDD), REF voltage circuit (Analog reference voltage) starts operation. Control register write / read should be made 1ms after bringing the PDN pin = “H” (Figure 24). AVDD and TVDD must be powered up first before DVDD. In this case, the power-up sequence between AVDD and TVDD is not critical. 3-2. LDOE = “H” (LDO mode) TVDD and AVDD should be supplied when the PDN pin = “L”. By bringing the PDN pin “H” 600ns (min) after TVDD and AVDD are fed, the power supply circuits for REF generator and internal digital circuit start operation. Control register write / read should be made 1ms after bringing the PDN pin = “H” (Figure 28). 014006643-E-00 2014/10 - 56 - [AK7755] 4. Clock Reset Clock reset is defined as when CKRESERN bit (CONT01: D0) = “0” after power-down release (PDN pin = “H”). The AK7755 is in the clock reset state after releasing power-down. At this time, all internal blocks of the AK7755, except the REF circuit and the power supply circuit for digital block, are in power-down mode. Even the PLL for internal master clock generation is not in operation. Control register write/read should be made 1ms (min.) after power-down release. Clock generating control registers (CONT00 ~ CONT01) must be set during clock reset. AINE bit (CONT00: D3) should be set to “1” first when using the IN1/INP1, IN2/INN1, IN3/INP2 and IN4/INN2 pins as analog inputs. DSP program and coefficient RAM data writing to the DSP become available in 1ms by setting DLRDY bit (CONT0F: D0) = “0” → “1” during clock reset (CKRESETN bit = “0”). DLRDY bit must be set to “0” when finishing downloading. Necessary system clock (XTI@CKM mode0-2 or BICK@CKM mode 3, 5(CONT00: D6-D4)) must be input before releasing the clock reset (Figure 16). The PLL for internal master clock starts operation and generating master clock when the clock reset state is released (CKRESETN bit = “1”). Do not send DSP programs, coefficient data or a command code for system reset release from a microcontroller to the AK7755 until the PLL oscillation is stabilized (for 10ms or during Low output period of the PLLLOCK signal from the STO pin). System clocks must be changed during a clock reset or in power-down mode (PDN pin = “L”). The AK7755 enters clock reset state by setting CKRESETN bit to “0” after system reset. The PLL and the internal clock are stopped by this clock reset and the clock change can be done safely. Change register settings and system clock frequencies during the clock reset. After a system clock is stabilized, the PLL starts operation by setting CKRESETN bit to “1”. CKM mode3 CKM mode0 XTI BICK CSN SCLK (Simplified) SI 0xCF 0x00 0xC1 0x00 0xC0 0x3x 0xC1 0x01 0xCF 0x0C CRESETN / DSPRESETN CKRESETN Input Clock Changeable Period PLL Stable Oscillation Command Code & DSP Program Transmitting Period Figure 30. Clock Reset Sequence (e.g. CKM mode0 → CKM mode 3) 014006643-E-00 2014/10 - 57 - [AK7755] 5. System Reset System reset is defined as when CRESETN bit (CONT0F: D3) = “0” and DSPRESETN bit (CONT0F: D2) = “0” after clock reset is released (CKRESETN bit (CONT01: D0) = “1”). PRAM and CRAM downloading should be executed in this state. PRAM and CRAM accessing of the AK7755 should be made when PLL oscillation is stabilized after clock reset release (take a 10ms interval or confirm “H” level output of PLLLOCK signal from the STO pin). System reset is released when either CODEC reset (CRESETN bit) or DSP reset (DSPRESETN bit) is released (“0” → “1”) after DSP programs and coefficient data are transmitted. Then the AK7755 starts generating necessary clocks for ADC, DAC and DSP operations. A system reset image is shown below. CRESETN bit DSPRESETN bit SRESETN Figure 31. System Reset Structure In slave mode, the AK7755 starts operation in synchronization of an LRCK rising edge (falling edge in I2S mode) when system reset is released. If the LRCK is stopped or the LRCK phase is shifted more than 1/4fs, the AK7755 becomes the system reset state automatically. In this case, the system reset state is released if the LRCK is input again. ■ RAM Clear The AK7755 has a RAM clear function. After system reset release (during RUN), data RAM and delay RAM are cleared by “0” (RAM clear). The internal PLL must have a stable oscillation before system reset release. The required time to clear RAM is 400µs. In the RAM clear sequence, it is possible to send commands to the DSP. (DSP is stopped during RAM clear sequence. The sent command is accepted automatically after this sequence is completed.) PDN (pin) DSPRESETN bit RAM Clear DSP Start RAM Clear Period DSP Program Operation Start Figure 32. RAM Clear Sequence 014006643-E-00 2014/10 - 58 - [AK7755] ■ Serial Data Interface Serial audio data pins; the SDIN1, SDIN2, SDOUT1, SDOUT2 and SDOUT3 pins are interfaced with an external system by LRCK and BICK. Control register settings are needed to use these interfaces (Refer to ■ Block Diagram (Figure 1) and Control register setting). The data format is 2's compliment MSB first. I/O format supports MSB justified, LSB justified, I2S compatible and PCM format. (In I2S compatible/PCM mode, all audio data input and output pins are in I2S compatible/PCM format, respectively.) The input (SDIN1 and SDIN2) format is 24-bit MSB justified at default. 24-bit/20-bit/16-bit LSB justified, I2S and PCM formats are also selectable by control register DIF[1:0] bits. The output (SDOUT1, ADOUT2 and SDOUT3) format is 24-bit MSB justified at default. 24-bit/20-bit/16-bit LSB justified, I2S and PCM formats are selectable by setting DOF[1:0] bits. The SDOUT1 also supports 8-bit MSB justified μ-Law and 8-bit MSB justifid A-Law formats. The output data of the ADC (SDOUTAD and SDOUTAD2) is fixed to 24-bit MSB justified. mode LRIF[1:0] 0 1 2 3 4 5 6 7 8 000h 000h 000h 000h 0h 0h 011h 102h 113h DIFDIF2, DIFDA[1:0] or DOF2, 3, 4[1:0] 000h 011h 102h 113h N/A N/A 000h 000h 000h DIF1[2:0] or DOF1[2:0] 0h 1h 2h 3h 4h 5h 0h 0h 0h BITFS[1:0] 0h 0h/1h 0h/1h 0h/1h/2h 0h 0h 0h 0h/3h 0h/3h Format MSB 24-bit 64fs LSB 24-bit 64fs/48fs LSB 20-bit 64fs/48fs LSB 16-bit 64fs/48fs/32fs MSB 8-bit μ-Law MSB 8-bit A-Law I2S Compatible PCM Short Frame 64fs/256fs PCM Long Frame 64fs/256fs Serial Data Format Examples 1. MSB justified (mode 0) Left ch LRCK Right ch BICK 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 SDIN1, 2 DIF Mode 0 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L M: MSB, L: LSB SDOUT1, 2, 3 DOF Mode 0 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L M: MSB, L: LSB Figure 33. MSB Justified BICK 64fs 014006643-E-00 2014/10 - 59 - [AK7755] 2. LSB justified (mode1, 2, 3) LRCK Left ch Right ch BICK 31 30 23 22 21 20 19 18 17 16 15 14 1 0 31 30 23 22 21 20 19 18 17 16 15 14 1 0 SDIN1, 2 DIF Mode 1 Don’t care M 22 21 20 19 18 17 16 15 14 1 L Don’t care M 22 21 20 19 18 17 16 15 14 1 L SDIN1, 2 DIF Mode 2 Don’t care M 18 17 16 15 14 1 L Don’t care M 18 17 16 15 14 1 L SDIN1, 2 DIF Mode 3 Don’t care M 14 1 L Don’t care M 14 1 L M: MSB, L: LSB SDOUT1, 2, 3 DOF Mode 1 MSB 22 21 20 19 18 17 16 15 14 1 L MSB 22 21 20 19 18 17 16 15 14 1 L SDOUT1, 2, 3 DOF Mode 2 MSB 18 17 16 15 14 1 L MSB 18 17 16 15 14 1 L SDOUT1, 2, 3 DOF Mode 3 MSB 14 1 L MSB 14 1 L Figure 34. LSB Justified BICK 64fs LRCK Left ch Right ch BICK 23 22 21 20 19 18 17 16 15 14 13 12 11 10 1 0 23 22 21 20 19 18 17 16 15 14 13 12 11 10 SDIN1,2 DIF mode1 M 22 21 20 19 18 17 16 15 14 13 12 11 10 1 L M 22 21 20 19 18 17 16 15 14 13 12 11 10 1 L SDIN1,2 DIF mode2 Don’t care M 18 17 16 15 14 13 12 11 10 1 L Don’t care M 18 17 16 15 14 13 12 11 10 1 L SDIN1,2 DIF mode3 Don’t care 1 L Don’t care 1 L M 14 13 12 11 10 M 14 13 12 11 10 1 0 M:MSB,L:LSB SDOUT1,2,3 DOF mode1 M 22 21 20 19 18 17 16 15 14 13 12 11 10 1 L M 22 21 20 19 18 17 16 15 14 13 12 11 10 1 L SDOUT1,2,3 DOF mode2 MSB 18 17 16 15 14 13 12 11 10 1 L MSB 18 17 16 15 14 13 12 11 10 1 L SDOUT1,2,3 DOF mode3 MSB 14 13 12 11 10 1 L MSB 14 13 12 11 10 1 L Figure 35. LSB Justified BICK 48fs 014006643-E-00 2014/10 - 60 - [AK7755] LRCK Left ch Right ch BICK 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SDIN1,2 DIF mode3 M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 L M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 L SDOUT1,2,3 DOF mode3 M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 L M 14 13 12 11 10 9 8 7 6 5 4 3 2 1 L Figure 36. LSB Justified BICK 32fs 3. MSB 8-bit μ-Law、MSB 8-bit A-Law (mode 4,5) LRCK Left ch Right ch BICK 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0 SDIN1 DIF mode4/5 M 6 5 4 3 2 1 L M 6 5 4 3 2 1 L M:MSB,L:LSB SDOUT1 DOF mode4/5 M 6 5 4 3 2 1 L M 6 5 4 3 2 1 L M:MSB,L:LSB SDIN2 DIF mode0 M 22 21 20 19 18 17 16 1 L M 22 21 20 19 18 17 16 1 L M:MSB,L:LSB SDOUT2,3 DOF mode0 M 22 21 20 19 18 17 16 1 L M 22 21 20 19 18 17 16 1 L M:MSB,L:LSB Figure 37. MSB Justified 8-bit μ-Law, 8-bit A-Law BICK 64fs 4. I²S (mode6) LRCK Left ch Right ch BICK 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 M: MSB, L: LSB SDIN1, 2 M 22 21 20 3 2 1 L M 22 21 20 3 2 1 L SDOUT1, 2, 3 M 22 21 20 3 2 1 L M 22 21 20 3 2 1 L M: MSB, L: LSB Figure 38. I²S BICK 64fs 014006643-E-00 2014/10 - 61 - [AK7755] 5. PCM Short Frame (mode7) LRCK tBCLK SF BICK 63 62 61 60 59 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 10 9 8 7 6 5 4 3 2 1 0 SDIN1, 2 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L SDOUT1, 2, 3 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L M: MSB, L: LSB Left ch Right ch Figure 39. 64fs PCM Short Frame LRCK tBCLK SF BICK 255 254 253 252 251 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 SDIN1,2 M 22 21 20 19 2 1 L SDOUT1,2,3 M 22 21 20 19 2 1 L M:MSB,L:LSB Left ch 202 201 200 199 198 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L 3 2 1 0 Right ch tBCLK × 32 tBCLK × 256 Figure 40. PCM Short Frame 256fs 6. PCM Long Frame (mode8) tBCLK ≤ t ≤ ts-tBCLK LRCK LF BICK SDIN1, 2 SDOUT1, 2, 3 63 62 61 60 59 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L tBCLK M: MSB, L: LSB 10 9 8 7 6 5 4 3 2 1 0 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L Left ch Right ch tBCLK × 32 tBCLK × 32 Figure 41. 64fs PCM Long Frame 014006643-E-00 2014/10 - 62 - [AK7755] LRCK LF BICK 255 254 253 252 251 SDIN1, 2 SDOUT1, 2, 3 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L tBCLK M:MSB,L:LSB 202 201 200 199 198 M 22 21 20 19 2 1 L M 22 21 20 19 2 1 L Left ch 4 3 2 1 0 Right ch tBCLK × 32 tBCLK × 256 Figure 42. PCM Long Frame 256fs 7. TDM Mode TDM interface formats shown below are available by setting TDM256 bit = “1”. BITFS[1:0] bits should be set to 3h since BICK is fixed to 256fs. Mode LRIF[1:0] TDMMODE[1:0] 0 1 2 3 4 5 6 7 8 9 10 11 0h 0h 0h 1h 1h 1h 2h 2h 2h 3h 3h 3h 0h 1h 2h 0h 1h 2h 0h 1h 2h 0h 1h 2h Format MSB 24-bit MSB 24-bit MSB 24-bit I2S Compatible I2S Compatible I2S Compatible PCM Short Frame PCM Short Frame PCM Short Frame PCM Long Frame PCM Long Frame PCM Long Frame 014006643-E-00 Note SLOT7 and 8 Inputs Not Available SLOT5, 6, 7 and 8 Inputs Not Available SLOT7 and 8 Inputs Not Available SLOT5, 6, 7 and 8 Inputs Not Available SLOT7 and 8 Inputs Not Available SLOT5, 6, 7 and 8 Inputs Not Available SLOT7 and 8 Inputs Not Available SLOT5, 6, 7 and 8 Inputs Not Available 2014/10 - 63 - [AK7755] 256BICK LRCK(master) LRCK(slave) SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK BICK(256fs) SDOUT1 23 22 0 23 22 DOUT1L SDIN1(TDM mode0) 23 22 23 22 0 0 23 22 23 22 23 22 0 0 23 22 23 22 23 22 0 0 0 23 22 0 23 22 DOUT2R 23 22 23 22 0 23 22 0 23 22 0 23 22 23 22 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 23 22 23 22 0 23 22 DIN4R 23 22 0 23 22 SDOUTAD Rch SDOUTAD Lch 0 23 22 0 23 22 SDOUTAD Rch SDOUTAD Lch SDOUTAD2 Rch 0 DOUT4R DIN4L DIN3R SDOUTAD2 Lch 0 DOUT4L DIN3R DIN3L 0 0 DOUT3R 0 23 22 DIN2R DIN2L 23 22 DIN3L DIN2R 0 0 DOUT3L DIN2R DIN2L DIN1R DIN1L 23 22 DIN2L DIN1R 0 0 DOUT2L DIN1R DIN1L SDIN1(TDM mode2) 23 22 DOUT1R DIN1L SDIN1(TDM mode1) 0 (don’t care) SDIN2 Figure 43. TDM mode MSB Justified 24-bit (Internal signals are indicated by dotted lines) 256BICK LRCK(master) LRCK(slave) SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK BICK(256fs) SDOUT1 23 0 DOUT1L SDIN1(TDM mode3) SDIN1(TDM mode4) SDIN1(TDM mode5) 23 0 0 DOUT1R 23 0 23 0 DOUT2L 23 0 23 0 DOUT2R 23 0 23 0 DOUT3L 23 0 23 0 DOUT3R 23 0 DIN1L DIN1R DIN2L DIN2R DIN3L DIN3R 23 23 23 23 23 23 0 0 0 0 0 0 DIN1L DIN1R DIN2L DIN2R DIN3L DIN3R 23 23 23 23 23 23 0 DIN1L SDIN2 23 0 DIN1R 0 DIN2L 0 DIN2R 0 SDOUTAD2 Lch 0 SDOUTAD2 Rch 23 0 DOUT4L 23 0 DIN4L 23 0 SDOUTAD Lch 23 0 SDOUTAD Lch 23 0 23 DOUT4R 23 0 23 DIN4R 23 0 23 SDOUTAD Rch 23 0 23 SDOUTAD Rch (don’t care) Figure 44. TDM mode I2S Compatible (Internal signals are indicated by dotted lines) 014006643-E-00 2014/10 - 64 - [AK7755] 256BICK LRCK SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK BICK(256fs) SDOUT1 23 0 DOUT1L SDIN1(TDM mode6) SDIN1(TDM mode7) SDIN1(TDM mode8) 23 0 0 DOUT1R 23 0 23 0 DOUT2L 23 0 23 0 23 DOUT2R 23 0 DOUT3L 0 23 0 23 0 DOUT3R 23 0 DIN1L DIN1R DIN2L DIN2R DIN3L DIN3R 23 23 23 23 23 23 0 0 0 0 0 0 DIN1L DIN1R DIN2L DIN2R DIN3L DIN3R 23 23 23 23 23 23 0 DIN1L SDIN2 23 0 DIN1R 0 DIN2L 0 DIN2R 0 SDOUTAD2 Lch 0 SDOUTAD2 Rch 23 0 DOUT4L 23 0 DIN4L 23 0 SDOUTAD Lch 23 0 SDOUTAD Lch 23 23 0 DOUT4R 23 0 23 DIN4R 23 0 23 SDOUTAD Rch 23 0 23 SDOUTAD Rch (don’t care) Figure 45. TDM mode PCM Short Frame (Internal signals are indicated by dotted lines) 256BICK LRCK SLOT1 SLOT2 SLOT3 SLOT4 SLOT5 SLOT6 SLOT7 SLOT8 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK BICK(256fs) SDOUT1 23 22 0 DOUT1L SDIN1(TDM mode9) 23 22 0 DIN1L SDIN1(TDM mode10) 23 22 0 DIN1L SDIN1(TDM mode11) 23 22 0 DIN1L SDIN2 23 22 0 DOUT1R 23 22 0 DIN1R 23 22 0 DIN1R 23 22 0 DIN1R 23 22 0 DOUT2L 23 22 0 DIN2L 23 22 0 DIN2L 23 22 0 DIN2L 23 22 0 DOUT2R 23 22 0 DIN2R 23 22 0 DIN2R 23 22 0 DIN2R 23 22 0 DOUT3L 23 22 0 DIN3L 23 22 0 DIN3L 23 22 0 SDOUTAD2 Lch 23 22 0 DOUT3R 23 22 0 DIN3R 23 22 0 DIN3R 23 22 0 SDOUTAD2 Rch 23 22 0 DOUT4L 23 22 0 DIN4L 23 22 0 SDOUTAD Lch 23 22 0 SDOUTAD Lch 23 22 0 23 22 DOUT4R 23 22 0 23 22 DIN4R 23 22 0 23 22 SDOUTAD Rch 23 22 0 23 22 SDOUTAD Rch (don’t care) Figure 46. TDM mode PCM Long Frame (Internal signals are indicated by dotted lines) 014006643-E-00 2014/10 - 65 - [AK7755] ■ μP Interface Setting and Pin Status SPI or I2C bus interface mode can be selected by the I2CSEL pin. Pin statuses that are changed by I2CSEL pin setting are shown below. I2CSEL L PDN L SO/SDA SCLK/SCL Hi-Z (CSN pin = “H”) Input SPI Interface Hi-Z (CSN pin = “H”) L H Input function(CSN pin = “L”) H L “Hi-Z”→ pull-up “Hi-Z”→ pull-up I2C BUS H H function function Note 45. The CSN pin must be set to “H” when not interfacing to a micro controller or the AK7755 is in power-down mode in SPI interface mode. ■ SPI Interface (I2CSEL pin = “L”) 1. Configuration The access format is: Command code (8bits) + Address + Data (MSB First). Bit Length Command Code 8 MSB bit is R/W flag. The following 7-bits indicate access area such as PRAM/ CRAM/Registers. Address 16 or 0 Valid only for those cases where accessed areas have addresses such as PRAM /CRAM/OFREG. When no address is assigned, there is no data. Data Later Section Write or Read data SOPCFG bit selects SO output (Hi-z or Low) during CSN = “H”. Write operation CSN SCLK SI don’tcare (L/H) Command Code (8bit) Address (16bit or 0bit) SO Hi-Z Data (write) Hi-Z Low Echo Back Low Read operation X (L/H) Figure 47. SPI Interface Write CSN SCLK SI don’tcare (L/H) Command Code (8bit) SO Hi-Z Low X (L/H) Address (16bit or 0bit) Echo Back Data (read) Hi-Z Low Figure 48. SPI Interface Read 014006643-E-00 2014/10 - 66 - [AK7755] 2. Command Code BIT7 BIT6 BIT5 R/W flag Area to be accessed R/W Flag: Write at “1”, Read at “0”. BIT4 Access data and accompanying data BIT6 BIT5 BIT4 BIT3~0 0 0 0 Number of Write 0 0 1 Number of Write 0 1 0 0100 0010 0 1 1 1000 0100 0010 1011 1 1 1 0 0 1 0 1 0 1 1 1 Register Address Register Address 0000 0110 1010 0000 0010 0100 0110 1000 1010 1100 BIT3 BIT2 BIT1 Accompanying data to the access area BIT0 Write preparation to CRAM during RUN Write preparation to OFREG during RUN Write operation to CRAM during RUN Write operation to OFREG during RUN Write/Read operation to PRAM during system reset Write/Read operation to CRAM during system reset Write/Read operation to OFREG during system reset Write/Read operation to ACRAM (Accelerator Coefficient RAM) during system reset Internal control registers 00h~0Fh Internal control registers 10h~1Fh Device Identification (Read only) Internal control registers 26h Internal control registers 2Ah Error Status Read CRC Write/Read Write operation of JX code Read operation from MIR1 Read operation from MIR2 Read operation from MIR3 Read operation from MIR4 3. Address The address description is always LSB justified. Accessing command code BIT[6:4]= “000” to “011” requires a 16-bit address. Accessing command code BIT[6:4]= “100” to “111” requires no address. 014006643-E-00 2014/10 - 67 - [AK7755] 4. Data The length of write data depends on the write area size. When accessing RAM, data may be written to sequential address locations by writing data continuously. Write Command Description Write preparation to CRAM during RUN. Command code BIT3~BIT0 bits determines the amount of write 0x80~0x8F 16bit 24bit×n operation. (0x80 # of write: 1, 0x81 # of write: 2, ----, 0x8F # of write: 16) If the actual amount of write operations exceeds the defined amount, that data will be ignored. Write preparation to OFREG during RUN Command code BIT3~BIT0 bits determines the amount of write 0x90~0x9F 16bit 24bit×n operation. (0x90 # of write: 1, 0x91 # of write: 2, ----, 0x9F # of write: 16) If the actual amount of write operations exceeds the defined amount, that data will be ignored. Write operation to OFREG during RUN. 0 address should be 0xA2 16bit None written. 0xA4 16bit None Write operation to CRAM during RUN. 0 address should be written. 0xB2 16bit 24bit×n Write operation to OFREG during system reset 0xB4 16bit 24bit×n Write operation to CRAM during system reset 0xB8 16bit 40bit×n Write operation to PRAM during system reset 0xBB 16bit 24bit×n Write operation to ACRAM during system reset 0xC0~0xDF None 8bit Write operation to Control Registers 00~1Fh 0xE6 None 8bit Write operation to Control Register 26h 0xEA None 8bit Write operation to Control Register 2Ah 0xF2 None 16bit CRC Write 0xF4 None 8bit Write operation of External Conditional Jump Code Data length is defined by the command code which specifies the area to be accessed. When accessing RAM, data may be read from sequential address locations by reading data continuously. Writing other than this command code is prohibited. Address Data Length 014006643-E-00 2014/10 - 68 - [AK7755] Read Command 0x24 0x32 0x34 0x38 0x3B 0x40~0x5F 0x60 0x66 0x6A 0x70 0x72 Address 16bit 16bit 16bit 16bit 16bit None None None None None None None Data Length 24bit×n 24bit×n 24bit×n 40bit×n 24bit×n 8bit 8bit 8bit 8bit 8bit 16bit Description CRAM/OFREG Preparation Data Read during RUN Read operation form OFREG during system reset Read operation from CRAM during system reset Read operation from PRAM during system reset Read operation from ACRAM during system reset Write operation to Control Registers 00~1Fh Device Identification Write operation to Control Register 26h Write operation to Control Register 2Ah DSP Error Status Read CRC result Read Read operation from MIR1 0x76 32bit 28-bit is upper-bit justified. Lower 4-bits are for validity flags. None Read operation from MIR2 0x78 32bit 28-bit is upper-bit justified. Lower 4-bits are for validity flags. None Read operation from MIR3 0x7A 32bit 28-bit is upper-bit justified. Lower 4-bits are for validity flags. None Read operation from MIR4 0x7C 32bit 28-bit is upper-bit justified. Lower 4-bits are for validity flags. Reading other than this command code is prohibited. 5. Echo-Back Mode The AK7755 has an echo-back mode that the device outputs write data sequentially from the SO pin. 5-1. Write Sequence CSN SI COMMAND SO ADDRESS1 COMMAND ADDRESS2 ADDRESS1 DATA1 don’tcare (L/H) DATA2 ADDRESS2 DATA1 COMMAND ADDRESS1 COMMAND Hi-Z or Low Figure 49. Echo-Back Writing 1 (SPI) The input data of the SI pin is echoed back on the SO pin by shifting 8-bit to the right. CSN SI SO n=3~5 0xB4 X (Hi-Z or low) 0x00 0x00 COMMAND ADDRESS1 DATA1 ADDRESS2 DATAn Dummy 8bit DATA1 DATAn X (Hi-Z or Low) Figure 50. Echo-Back Writing 2 (SPI) It is possible to verify the written data by inputting an extra 8-bit clock. If the dummy data is more than the data length, this dummy data is written on the next address. (40 bits for PRAM, 24 bits for CRAM and 24 bits for OFREG writings) 014006643-E-00 2014/10 - 69 - [AK7755] 5-2. Read Sequence1 (with PRAM, CRAM, OFREG addresses) CSN SI COMMAND ADDRESS1 SO COMMAND ADDRESS2 ADDRESS1 don’tcare (L/H) COMMAND READ DATA READ DATA Hi-Z or Low ADDRESS1 COMMAND Figure 51. Read Sequence1 in Echo-Back Mode (SPI) Data of the address2 field is not echoed back in read operation. The read data on the SO pin is output after writing to the address2 field. 5-3. Read Sequence2 (No Register address) CSN SI COMMAND SO don’tcare (L/H) READ DATA COMMAND Hi-Z or Low don’tcare (L/H) READ DATA Hi-Z or Low Figure 52. Read Sequence2 in Echo Back Mode (SPI) Data output has priority in read sequence. 6. Format 6-1. Write Operation during System Reset 1. Program RAM (PRAM) Write (during system reset) Field Write data (1) COMMAND Code 0xB8 (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 (4) DATA1 0 0 0 0 D35 D34 D33 D32 (5) DATA2 D31~D24 (6) DATA3 D23~D16 (7) DATA4 D15~D8 (8) DATA5 D7~D0 Five bytes of data may be written continuously for each address. 2. Coefficient RAM (CRAM) Write (during system reset) Field Write data (1) COMMAND Code 0xB4 (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7 A6 A5 A4 A3 A2 A1 A0 (4) DATA1 D23~D16 (5) DATA2 D15~D8 (6) DATA3 D7~D0 Three bytes of data may be written continuously for each address. 014006643-E-00 2014/10 - 70 - [AK7755] 3. Offset REG (OFREG) Write (during system reset) Field Write data (1) COMMAND Code 0xB2 (2) ADDRESS1 00000000 (3) ADDRESS2 0 0 A5 A4 A3 A2 A1 A0 (4) DATA1 00000000 (5) DATA2 0 0 0 D12 D11 D10 D9 D8 (6) DATA3 D7~D0 Three bytes of data may be written continuously for each address. 4. Accelerator Coefficient RAM (ACRAM) Write (during system reset) Field Write data (1) COMMAND Code 0xBB (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7 A6 A5 A4 A3 A2 A1 A0 (4) DATA1 D19~D12 (5) DATA2 D11~D4 (6) DATA3 D3~D0 0 0 0 0 Three bytes of data may be written continuously for each address. 6-2. Write Operation during System Reset / RUN 1. Control Register Write (during system reset / RUN) Field Write data (1) COMMAND Code 0xC0~0xDF, 0xE6, 0xEA (2) DATA D7~D0 2. External Conditional Jump Code Write (during system reset / RUN) Field Write data (1) COMMAND Code 0xF4 (2) DATA D7~D0 3. CRC Code Write (during system reset / RUN) Field Write data (1) COMMAND Code 0xF2 (2) DATA D15~D8 (3) DATA D7~D0 6-3. Write Operation during RUN 1. Coefficient RAM (CRAM) Write Preparation (during RUN) Preparation Write data (1) COMMAND Code 0x80~0x8F (one data at 80h, sixteen data at 8Fh) (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7 ~ A0 (4) DATA1 D23~D16 (5) DATA2 D15~D8 (6) DATA3 D7~D0 014006643-E-00 2014/10 - 71 - [AK7755] 2. Coefficient RAM (CRAM) Write Operation (RUN) Execute Write data (1) COMMAND Code 0xA4 (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 Note 46. The COMMAND determines the length of the data. If the written data exceeds the allotted amount, the excess data is ignored. 3. Offset REG (OFREG) Write Preparation (during RUN) Preparation Write data (1) COMMAND Code 0x90~0x9F (one data at 0x90, sixteen data at 0x9F) (2) ADDRESS1 00000000 (3) ADDRESS2 0 0 0 A4 A3 A2 A1 A0 (4) DATA1 00000000 (5) DATA2 0 0 0 D12 D11 D10 D9 D8 (6) DATA3 D7~D0 4. Offset REG (OFREG) Write Operation (during RUN) Execute Write data (1) COMMAND Code 0xA2 (2) ADDRESS1 00000000 (3) ADDRESS2 00000000 Note 47. The COMMAND determines the length of the data. If the written data exceeds the allotted amount, the excess data is ignored. 6-4. Read Operation during System Reset 1. Program RAM (PRAM) Read (during system reset) Field Write data Readout data (1) COMMAND Code 0x38 00000000 (2) ADDRESS1 (3) ADDRESS2 00000000 (4) DATA1 0 0 0 0 D35 D34 D33 D32 (5) DATA2 D31~D24 (6) DATA3 D23~D16 (7) DATA4 D15~D8 (8) DATA5 D7~D0 Five bytes of data may be written continuously for each address. 2. Coefficient RAM (CRAM) Read (during system reset) Field Write data Readout data (1) COMMAND Code 0x34 (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7 ~ A0 (4) DATA1 D23~D16 (5) DATA2 D15~D8 (6) DATA3 D7~D0 Three bytes of data may be written continuously for each address. 014006643-E-00 2014/10 - 72 - [AK7755] 3. Offset REG (OFREG) Read (during system reset) Field Write data Readout data (1) COMMAND Code 0x32 (2) ADDRESS1 00000000 (3) ADDRESS2 0 0 0 A4 A3 A2 A1 A0 (4) DATA1 00000000 (5) DATA2 D15~D8 (6) DATA3 D7~D0 Three bytes of data may be written continuously for each address. 4. Accelerator Coefficient RAM (CRAM) Read (during system reset) Field Write data Readout data (1) COMMAND Code 0x3B (2) ADDRESS1 0 0 0 0 0 A10 A9 A8 (3) ADDRESS2 A7 ~ A0 (4) DATA1 D19~D12 (5) DATA2 D11~D4 (6) DATA3 D3~D0 0 0 0 0 Three bytes of data may be written continuously for each address. 6-5. Read Operation during System Rest / RUN 1. Control Register Read (during system reset / RUN) Field Write data (1) COMMAND Code 0x40~0x5F, 0x66, 0x6A (2) DATA Readout data D7~D0 2. Device Identification (during system rest / RUN) Field Write data Readout data (1) COMMAND Code 0x60 (2) DATA D7 D6 0 1 D5 0 5 D4 1 D3 0 D2 D1 D0 1 0 1 5 3. CRC Result Reading (during system reset / RUN) Field Write data Readout data (1) COMMAND Code 0x72 (2) DATA1 D15~D8 (3) DATA2 D7~D0 4. DSP Error Status Read (during system reset / RUN) Field Write data Output (1) COMMAND Code 0x70 (2) DATA Active low output D7: CRCERRN: 0: CRC error D6: WDTERRN : 0: Watch Dog Timer error D5: GP0 0:clear 1: set D4: GP1 0:clear 1: set D3: PLLLOCK 0:unlock 1:lock D2: N/A D1: N/A D0: N/A 014006643-E-00 2014/10 - 73 - [AK7755] 6-6. Read Operation during RUN 1. CRAM Write Preparation Read (during RUN) Field Write data (1) COMMAND Code 0x24 (2) ADDRESS1 (3) ADDRESS2 (4) DATA1 (5) DATA2 (6) DATA3 2. OFREG Write Preparation Read (during RUN) Field Write data (1) COMMAND Code 0x24 (2) ADDRESS1 (3) ADDRESS2 (4) DATA1 (5) DATA2 (6) DATA3 Readout data A15~A8 A8~A0 D23~D16 D15~D8 D7~D0 Readout data A15~A8 A8~A0 00000000 D15~D8 D7~D0 3. MIR1/2/3/4 Read (during RUN) Field Write data Readout data (1) COMMAND Code 0x76(MIR1) 0x78(MIR2) 0x7A(MIR3) 0x7C(MIR4) (2) DATA1 D27~D20 (3) DATA2 D19~D12 (4) DATA3 D11~D4 (5) DATA4 D3 D2 D1 D0 (flag3) (flag2) (flag1) (flag0) Note 48. Data is valid only when all flags are zero. 7. Timing 7-1. RAM Writing Timing during System Reset Write to Program RAM (PRAM), Coefficient RAM (CRAM), Offset REG (OFREG) and Accelerator Coefficient RAM (CRAM) during system reset in the order of command code, address and data. The PRAM start address is fixed to 0h. When writing the data to consecutive address locations, continue to input data only. PRAM address is incremented by 1 automatically. DSPRESETN bit CSN SCLK SI don’t care (L/H) Command Address DATA DATA DATA DATA DATA don’t care (L/H) RDY = “H” Figure 53. Writing to RAM at Consecutive Address Locations (SPI) 014006643-E-00 2014/10 - 74 - [AK7755] DSPRESETN bit CSN SCLK SI don’tcare (L/H) Command don’tcare (L/H) Address DATA Command Address DATA don’tcare (L/H) RDY = “H” Figure 54. Writing to RAM at Random Address Locations (SPI) 7-2. RAM Writing Timing during RUN These operations are to rewrite the Coefficient RAM (CRAM) and Offset REG (OFREG) during RUN. Data writing is executed in two steps; write preparation and write execution. The written data can be confirmed by reading the write preparation data. 1. Write Preparation After inputting the assigned command code (8 bits) to select the number of data from 1 to 16, input the starting address of write (16 bits all “0”) and the number of data assigned by command code in this order. In slave mode, a write preparation command is prohibited for “2 LRCK” cycles (2/fs) after releasing DSP reset (DSPRESETN bit). 2. Write Preparation Data Confirmation After write preparation, prepared data for writing can be confirmed. Address and Data are read in this order by write preparation data confirmation command “24h”. The data will be “0x000001” when reading more than write preparation data. Execute write preparation again when the address and data are disturbed by external noise. 3. Write Execution Upon completion of this operation, execute a RAM write during RUN by inputting the corresponding command code and address (16 bits, all “0”) in this order. Note 49. Execute write preparation, write preparation read and write execution in this order. When writing to RAM without a write preparation sequence, a malfunction occurs. Access operation by a microcontroller is prohibited until RDY changes to “H”. Write modification of the RAM content is executed whenever the RAM address for modification is assigned. For example, when 5 data are written, from RAM address “10”, it is executed as shown below. RAM execution address Write execution position 7 8 9 10 11 13 16 11 12 13 14 15 ↓ ↓ ↓ ↓ ↓ ○ ○ ↑ ○ ○ ○ Note 50. Address “13” is not executed until rewriting address “12”. 014006643-E-00 2014/10 - 75 - [AK7755] DSPRESETN bit= “1” CSN (Ex.) When # of DATA is 4 CRAM Command Code 0x83 OFREG Command Code 0x93 SCLK SI don’tcare (L/H) Command Address DATA0 Code RDY = “H” CRAM DATA1 DATAn-1 DATAn don’tcare (L/H) 0x80(# of DATA: 1)~0x8F(# of DATA: 16) OFREG 0x90(# of DATA: 1)~0x9F(# of DATA: 16) Figure 55. CRAM/OFREG Write Preparation (SPI) DSPRESTN bit= “1” CSN SCLK don’t care (L/H) SI don’t care (L/H) 0x24 Hi-Z or Low SO Address DATA DATA DATA DATA DATA RDY= “H” Figure 56. CRAM/OFREG Write Preparation Confirm (SPI) DSPRESETN bit= “1” CSN SCLK SI don’tcare (L/H) Command 00000000 00000000 max 400ns CRAM0xA4, OFREG0xA2 RDY RDYLG (Note 52) Figure 57. CRAM/OFREG Write (SPI) Note 51. If the DSP program is designed to refer all coefficients which may be changed by an external microcontroller, RDY signal rises to high within 2LRCK after a writing command. No further access to DSP is permitted until this write operation is completed. However, while the CSN pin is “L” level, RDY signal keeps “L” level. 014006643-E-00 2014/10 - 76 - [AK7755] 7-3. External Conditional Jump External Conditional Jump Code Writing (during System Reset and RUN) (1) COMMAND 0xF4 (2) DATA D7~D0 External Conditional Jump code can be input during both DSP Reset and RUN. Input data is set to the designated register on the rising edge of LRCKO. The RDY pin changes to “L” when the command code is transferred, and it changes to “H” when write operations are completed. When any single bit of “1” data in 8-bit External Jump code matches an “1” bit data in the IFCON field, a Jump instruction is executed. Then, the RDY pin changes to “H” when the rise of LRCKO is captured. Access operation by microcontroller is prohibited until the RDY pin changes to “H”. IFCON field is the area where the external conditions are written. This Jump code is reset to 00h by setting the IRSTN pin to “L”, but it is not reset by System Reset. 7 ■ 4 3 2 1 0 ■ ■ ■ ■ ■ ↑ Check if “1” of IFCON field corresponds with External Conditional Jump including Jump pins by at least one at the same location. 7 ↓ 0 IFCON Field External Conditional Jump Code ■ ■ ■ ■ ■ ■ ■ ■ External Conditional Jump Code 6 ■ 5 ■ DSPRESETN bit SCLK SI don’tcare (L/H) F4h D7…D0 don’tcare (L/H) CSN LRCK RDY Next command write is available Figure 58. External Conditional Timing in System Reset (SPI) DSPRESETN bit SCLK SI don’tcare (L/H) F4h D7 … D0 don’tcare (L/H) CSN LRCK RDY Figure 59. External Conditional Jump Timing during RUN (SPI) 014006643-E-00 2014/10 - 77 - [AK7755] 7-4. RAM Reading Timing during System Reset Read Program RAM (PRAM), Coefficient RAM (CRAM), Offset REG (OFREG) and Accelerator Coefficient RAM (ACRAM) during System Reset in the order of the input Command code and the Address. After writing the Command, the data comes out from the SO pin synchronous with falling edge of SCLK. (The SI pin input data is “Don’t care”) When reading Data at consecutive address locations, continue to input SCLK as is. DSPRESETN bit CSN SCLK don’t care (L/H) SI Command Address don’t care (L/H) Hi-Z or Low SO DATA Echo Back Output DATA DATA DATA DATA RDY = “H” Figure 60. RAM Reading at Consecutive Address (SPI) 7-5. RAM Reading Timing during System Reset and RUN Write a command code, to read control registers, device identification code, CRC result and error status during RUN time or system reset state. After completing a Command code write, the data comes out from the SO pin synchronous with falling edge of SCLK. (The SI pin input data is “Don’t care”) DSPRSTN bit CSN SCLK SI don’tcare (L/H) Hi-Z or Low SO Command Address don’tcare (L/H) DATA Echo Back Output RDY = “H” Figure 61. AM Reading during System Reset/RUN (SPI) 014006643-E-00 2014/10 - 78 - [AK7755] ■ I2C Bus Interface (I2CSEL pin= “H”) Access to the AK7755 registers and RAM is controlled by an I²C bus. The AK7755 supports fast-mode I2C-bus (max: 400kHz) only. 1. Data Transfer In order to access any IC devices on the I2C bus, input a start condition first, followed by a single Slave address which includes the Devices Address. IC devices on the BUS compare this Slave address with their own addresses and the IC device which has an identical address with the Slave address generates an acknowledgement. An IC device with the identical address then executes either a read or a write operation. After the command execution, input a Stop condition. 1-1. Data Change Change the data on the SDA line while the SCL line is “L”. The SDA line condition must be stable and fixed while the clock is “H”. Change the Data line condition between “H” and “L” only when the clock signal on the SCL line is “L”. Change the SDA line condition while the SCL line is “H” only when the start condition or stop condition is input. SCL SDA DATA LINE STABLE : DATA VALID CHANGE OF DATA ALLOWED Figure 62. Data Change (I2C) 1-2. Start Condition and Stop Condition A start condition is generated by the transition of “H” to “L” on the SDA line while the SCL line is “H”. All instructions are initiated by a Start condition. A stop condition is generated by the transition of “L” to “H” on the SDA line while the SCL line is “H”. All instructions end by a Stop condition. SCL SDA START CONDITION STOP CONDITION Figure 63. Start Condition and Stop Condition (I2C) 014006643-E-00 2014/10 - 79 - [AK7755] 1-3. Repeated Start Condition When a Start condition is received again instead of a Stop condition, the bus changes to a Repeated Start condition. A Repeated Start condition is functionally the same as a Start condition. SCL SDA START CONDITION Repeated Start CONDITION Figure 64. Repeated Start Conditions (I2C) 1-4. Acknowledge An external device that is sending data to the AK7755 releases the SDA line (“H”) after receiving one byte of data. An external device that receives data from the AK7755 then sets the SDA line to “L” at the next clock. This operation is called “acknowledgement”, and it enables verification that the data transfer has been properly executed. The AK7755 generates an acknowledgement upon receipt of a Start condition and a Slave address. For a write instruction, an acknowledgement is generated whenever receipt of each byte is completed. For a read instruction, succeeded by generation of an acknowledgement, the AK7755 releases the SDA line after outputting data at the designated address, and it monitors the SDA line condition. When the Master side generates an acknowledgement without sending a Stop condition, the AK7755 outputs data at the next address location. When no acknowledgement is generated, the AK7755 ends data output (not acknowledged). Clock pulse for acknowledge SCL FROM MASTER 1 8 9 DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge START CONDITION Figure 65. Generation of Acknowledgement (I2C) 014006643-E-00 2014/10 - 80 - [AK7755] 1-5. The First Byte The First Byte, which includes the Slave-address, is input after the Start condition is set, and a target IC device that will be accessed on the bus is selected by the Slave-address. The Slave-address is configured with the upper 7-bits. When the I2CSEL pin = “H” and the EXTEEP pin = “L”, data of the upper 6-bits is “001100”. The next 1 bit is the address bits that select the desired IC which are set by the CAD pin. The slave address will be “0011000” when the I2CSEL pin =“H” and the EXTEEP pin = “L”. However, the CAD pin should be set to “L” if the MATSEL pin = “L” to set the slave address to “0011000” when downloading from EEPROM by DLS bit even if the I2CSEL pin =“H” and the EXTEEP pin = “L”. When the Slave-address is inputted, an external device that has the identical device address generates an acknowledgement and instructions are then executed. The 8th bit of the First Byte (lowest bit) is allocated as the R/W Bit. When the R/W Bit is “1”, the read instruction is executed, and when it is “0”, the write instruction is executed. Note 52. In this document, there is a case that describes a “Write Slave-address assignment” when both address bits match and a Slave-address at R/W Bit = “0” is received. There is a case that describes “Read Slave-address assignment” when both address bits matches and a Slave-address at R/W Bit = “1” is received. 0 0 1 1 0 0 CAD R/W When I2CSEL pin = “H” and EXTEEP pin = “L” 0 0 1 1 0 0 0 R/W When I2CSEL pin = “H” and EXTEEP pin = “H”, or using DLS bit Figure 66. First Byte Configuration (I2C) 1-6. The Second and Succeeding Bytes The data format of the second and succeeding bytes of the AK7755 Transfer / Receive Serial data (command code, address and data in microcontroller interface format) on the I2C BUS are all configured with a multiple of 8-bits. When transferring or receiving those data on the I2C BUS, they are divided into an 8-bit data stream segment and they are transferred / received with the MSB side data first with an acknowledgement in-between. Example) When transferring / receiving A1B2C3 (hex) 24-bit serial data in microprocessor interface format: (1)マイコンインターフェースのフォーマット (1) Microcontroller Interface Format A1 B2 のフォーマット (2) I(1)I C CFormat 2 C3 2 A1 B2 A 24BIT 8BIT C3 A 8BIT 8BIT A …Acknowledge Figure 67. Division of Data (I2C) Note 53. In this document, there is a case that describes a write instruction command code which is received at the second byte as “Write Command”. There is a case that describes a read instruction command code which is received at the second byte as “Read Command”. 014006643-E-00 2014/10 - 81 - [AK7755] 2. Write Sequence In the AK7755, when a “Write-Slave-address assignment” is received at the first byte, the write command at the second byte and data at the third and succeeding bytes are received. At the data block, address and write data are received in a single-byte unit each in accordance with a command code. The number of write data bytes is fixed by the received command code. S T A R T SDA S T O P R/W="0" Slave S Address Command Code A C K Data(n) Data(n+1) A C K A C K Data(n+x) A C K A C K P A C K Figure 68. Write Sequence (I2C) 3. Read Sequence In the AK7755, when a “write- slave-address assignment” is received at the first byte, the read command at the second byte and the data at the third and succeeding bytes are received. At the data block, the address is received in a single byte unit in accordance with a read command code. When the last address byte (or command code if no address assignment is specified) is received and an acknowledgement is transferred, the read command waits for the next restart condition. When a “read slave-address assignment” is received at the first byte, data is transferred at the second and succeeding bytes. The number of readable data bytes is fixed by the received read command. After reading the last byte, assure that a “not acknowledged” signal is received. If this “not acknowledged” signal is not received, the AK7755 continues to send data regardless whether data is present or not, and since it does not release the BUS, the stop condition cannot be properly received. S T A R T SDA R E S T A R T R/W="0" Slave S Address Command code A C K Slave S Address Data(n) A C K S T O P R/W="1" Data(n) A C K A C K Data(n+1) MA AC S K T E R Data(n+x) MA A C S T K E R MA AC S T K E R P MN A A S T C E K R Figure 69. Read Sequence (I2C) 014006643-E-00 2014/10 - 82 - [AK7755] 4. Acknowledgement Polling The AK7755 cannot receive instructions while the RDY pin (Data Write Ready pin) is at low level. The maximum transition time of the RDY pin from low level to high level is 2/fs (fs: sampling frequency), but it is possible to confirm in a faster cycle that the RDY pin has become high by checking the AK7755 internal condition, which is made by verifying the acknowledgement. 4-1. Generation of “Not Acknowledged” The AK7755 does not accept command codes until the RDY pin is set to a high level, when a command is received to set the RDY pin to a low level. In order to confirm the RDY pin condition, a “Write Slave-Address assignment” should be sent after a Start condition. If the RDY pin is then at a low level, “Acknowledgement” is not generated at the succeeding clock (generation of “Not Acknowledged”). After sending “Not Acknowledged”, the BUS is released and all receiving data are ignored until the next start condition (behaves as if it received Slave address of other device). 4-2. When Read Slave-address assignment is received without receiving read command code Data read in the AK7755 can be made only in the previously documented Read sequence. Data cannot be read out without receiving a read command code. The AK7755 generates a “Not Acknowledged” when a “Read Slave-address Assignment” is received without proper receipt of read command. 5. Limitation in use of I2C Interface The I2C interface does not support the following features. No operation in Hs Mode (max:3.4MHz). The AK7755 Supports FAST mode (max:400KHz). Note 54. Do not turn off the power of the AK7755 whenever the power supplies of other devices of the same system are turned on. The source of the pull-up of SDA and SCL of I2C BUS must not exceed the TVDD. (The diode exists for TVDD in the SDA and SCL pins.) 014006643-E-00 2014/10 - 83 - [AK7755] ■ Analog Input Block 1. Microphone Input Selector Either analog input or digital microphone interface can be chosen for the AK7755. Set AINE bit (CONT00: D3) to “1” when using #31-34 pins as analog input pins, and set DMIC1(CONT1E: D7) or DMIC2 bit (CONT1E: D4) to “1” when using these pins as digital microphone interface. ADC input signals can be switched by DIFL bit (CONT09: D5), DIFR bit (CONT09: D7), INL bit (CONT09: D4) and INTR bit (CONT09: D6) for analog inputs. When DIFL bit = “0” and DIFR bit = “0”, input signals of IN1, IN2, IN3 and IN4 pins for microphone amplifiers can be selected by INL and INR bits. When DIFL bit = “1” and DIFR bit = “1”, a differential input is acceptable as input pins becomes INP1/INN1 pins and INP2/INN2 pins. IN1/INP1/DMDAT1 pin IN2/INN1/DMCLK1 pin ADC Lch DIFL bit IN3/INP2/DMDAT2 pin IN4/INN2/DMCLK2 pin AK7755 INL bit MIC-Amp Lch INR bit ADC Rch DIFR bit MIC-Amp Rch Figure 70. Microphone Input Selector ADC Lch Microphone Input Selector DIFL bit INL bit ADC Lch 0 0 IN1 0 1 IN2 1 X INP1/INN1 (x: Do not care) ADC Rch Microphone Input Selector DIFR bit INR bit ADC Rch (default) 0 0 IN3 (default) 0 1 IN4 1 X INP2/INN2 (x: Do not care) 014006643-E-00 2014/10 - 84 - [AK7755] 2. Microphone Input Gain The AK7755 has a microphone gain amplifier. L and R channel gains can be set independently by MGNL[3:0] bits (CONT12: D3-D0) and MGNR[3:0] bits (CONT12: D7-D4). Input impedance is typ. 20k. This gain amplifier executes zero cross detection when changing the gain by setting MICLZCE bit (CONT1A: D0) = “1” / MICRZCE bit (CONT1A: D1) = “1”. Zero cross detection is executed on L and R channels independently. Timeout period of the zero cross detection is 16ms. When MICLZCE bit = “0” / MICRZCE bit = “0”, zero cross detection is not performed and the volume is changed immediately when register is written. When writing to MGNL3-0/MGNR3-0 bits continually, take an interval of zero crossing timeout periods or more. If the MGNL3-0/MGNR3-0 bits are changed before zero crossing, the volume of Lch and Rch may differ. When the volume that is same as the present is set, the zero crossing counter is not reset and timeout according to the previous writing timing. Zero Crossing Timeout When MICLZCE bit = “1” / MICRZCE bit = “1”, the Lch/Rch volume level are changed independently by zero crossing detection or zero crossing timeout. fs 48kHz Mode 0 1 2 3 4 5 6 7 8 9 A B C D E F Zero cross Timeout Period 16ms MGNL[3] MGNL[2] MGNL[1] MGNL[0] Input Gain MGNR[3] MGNR[2] MGNR[1] MGNR[0] 0 0 0 0 0dB (default) 0 0 0 1 2dB 0 0 1 0 4dB 0 0 1 1 6dB 0 1 0 0 8dB 0 1 0 1 10dB 0 1 1 0 12dB 0 1 1 1 14dB 1 0 0 0 16dB 1 0 0 1 18dB 1 0 1 0 21dB 1 0 1 1 24dB 1 1 0 0 27dB 1 1 0 1 30dB 1 1 1 0 33dB 1 1 1 1 36dB Table 2. Microphone Input Gain 3. Analog DRC (ADRC) The microphone input gain can be set by DSP programs with the AK7755. This function is enabled by setting ADRCRE bit = “1”/ADRCLE bit = “1” (CONT1A: D3/D2). In this setting, control registers MGNL[3:0] and MDNR[3:0] bits (CONT12) are not valid. By reading AMGNL[3:0] (CONT1B: D3-D0) / AMGNR[3:0] (CONT1B: D7-D4) bits, gain settings can be downloaded externally. When MICLZCE bit = “1”/MICRZCE bit = “1”, the Lch/Rch volume level are changed independently by zero crossing detection or zero crossing timeout. Please refer to the AK7755 programing manual for DSP programs. 014006643-E-00 2014/10 - 85 - [AK7755] 4. LINE Input Gain Amplifier The AK7755 has a gain amplifier for line inputs. It is enabled by setting PMLI bit (CONT0F: D5) = “1”, and it outputs a signal to the L channel of the ADC2. LIGN[3:0] bits (CONT13: D7-D4) controls the gain. The typical input impedance is 20k (typ). A pop noise occurs if the input gain is changed during operation. The AK7755 becomes digital microphone interface mode when DMIC2 bit (CONT1E: D4) = “1”. Digital microphone input data to the DMDAT2 pin is input to the Lch/Rch of the ADC2. ADC2 Input Setting DMIC2 bit ADC2 Lch Input 0 LIN 1 Digital Microphone Mode LIGN[3] 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 1 9 1 A 1 B 1 C 1 D 1 E 1 F 1 LIGN[2] 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ADC2 Rch Input No Digital Microphone LIGN[1] LIGN[0] 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 Table 3. Line Input Gain 014006643-E-00 (default) Input Gain 0dB (default) -3dB -6dB -9dB -12dB -15dB -18dB -21dB N/A +3dB +6dB +9dB +12dB +15dB +18dB +21dB 2014/10 - 86 - [AK7755] ■ ADC Block 1. ADC High Pass Filter A digital High Pass Filter (HPF) is integrated for DC offset cancellation of the ADC input. The cut-off frequency of the HPF is approximately 1Hz (at fs=48kHz). fs Cut-off frequency 48kHz 3.73Hz 44.1kHz 3.43Hz 8kHz 0.62Hz 2. ADC Soft Mute 2-1. Description The ADC block has a digital soft mute circuit. The soft mute operation is performed in the digital domain. The output signal is attenuated to -∞ in “ADC Digital Volume Level x ATT transition time” from the current ADC Digital Volume Setting Level by setting ADMUTE and AD2MUTE bits to “1”. When the ADMUTE (CONT1A: D7) and AD2MUTE (CONT1A: D6) bits are returned to “0”, the mute is cancelled and the output attenuation gradually changes to ADC Digital Volume Setting Level in “ADC Digital Volume Level x ATT transition time”. If the soft mute is cancelled before attenuating to -∞ after starting the operation, the attenuation is discontinued and returned to ADC Digital Volume Setting Level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission. The transition time from 0dB to -∞ and vice versa is 828 LRCK cycles. The soft mute function works when the ADC is in operation. The attenuation value is initialized by the PDN pin = “L”. SMUTE Register Value Group Delay (GD) 0dB Attenuation Group Delay (GD) 828/fs -∞dB 828/fs Output Image Figure 71. ADC Soft Mute 2-2. Input Selector Switching Sequence The input selector should be changed after soft muting to avoid the switching noise of the input selector. · Input Selector Switching Sequence 1. Enable soft mute before changing the channel. 2. Change the Channel. 3. Disable softer mute. ADMUTE (2) (1) DATT Level (1) Attenuation (3) -∞ Channel IN1/IN3 IN2/IN4 Figure 72. ADC Input Channel Switching Sequence Example 014006643-E-00 2014/10 - 87 - [AK7755] The period of (1) varies by the setting value of DATT bit. The transition time of attenuation amount from 0dB to -∞ and vice versa is shown below. ATSPAD 0 1 LRCK Cycle 828/fs 828/fs x 4 (1)Period (max) fs=48kHz 17.25ms 69ms fs=44.1kHz 18.82ms 75.27ms fs=8kHz 103.5ms 414ms When changing channels, the input channel should be changed during (2). The period of (2) should be around 200ms because there is some DC difference between the channels (3). 2-3. ADC Digital Volume The ADC of the AK7755 has channel-independent digital volume control (256 levels, 0.5dB step). VOLADL [7:0] bits (CONT15:D7-D0), VOLADR [7:0] bits (CONT16:D7-D0), VOLAD2L [7:0] bits (CONT17:D7-D0) and VOLAD2R [7:0] bits (CONT1D:D7-D0) control these volume values independently. ADC Stereo Lch VOLADL [7:0] 00h 01h 02h : 2Fh 30h 31h : FDh FEh FFh ADC Stereo Rch ADC2 Lch ADC2 Rch VOLADR [7:0] VOLAD2L [7:0] VOLAD2R [7:0] 00h 00h 00h 01h 01h 01h 02h 02h 02h : : : 2Fh 2Fh 2Fh 30h 30h 30h 31h 31h 31h : : : FDh FDh FDh FEh FEh FEh FFh FFh FFh Table 4. ADC Digital Volume Level Setting Attenuation Level +24.0dB +23.5dB +23.0dB : +0.5dB 0.0dB -0.5dB : -102.5dB -103.0dB Mute (-∞) Transition time between set values can be selected by ATSPAD bit (CONT0C: D5). MODE ATSPAD ATT speed 0 0 1/fs 1 1 4/fs Table 5. ADC Volume Transition Time Setting The transition between set values is soft transition of 1021 levels in Mode 0. It takes 1021/fs (21.3ms@fs=48kHz) from 00h to FFh(MUTE). If the PDN pin is set to “L”, the VOLADL/R[7:0] bits are initialized to 30h. 014006643-E-00 2014/10 - 88 - (default) [AK7755] code 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh dB 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 code 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh dB 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -5.5 -.6.0 -6.5 -7.0 -7.5 code 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh dB -8.0 -8.5 -9.0 -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 -12.5 -13.0 -13.5 -14.0 -14.5 -15.0 -15.5 -16.0 -16.5 -17.0 -17.5 -18.0 -18.5 -19.0 -19.5 -20.0 -20.5 -21.0 -21.5 -22.0 -22.5 -23.0 -23.5 code 60h 61h 62h 63h 64h 65h 66h 67h 68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh 70h 71h 72h 73h 74h 75h 76h 77h 78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh dB -24.0 -24.5 -25.0 -25.5 -26.0 -26.5 -27.0 -27.5 -28.0 -28.5 -29.0 -29.5 -30.0 -30.5 -31.0 -31.5 -32.0 -32.5 -33.0 -33.5 -34.0 -34.5 -35.0 -35.5 -36.0 -36.5 -37.0 -37.5 -38.0 -38.5 -39.0 -39.5 code 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh dB -40.0 -40.5 -41.0 -41.5 -42.0 -42.5 -43.0 -43.5 -44.0 -44.5 -45.0 -45.5 -46.0 -46.5 -47.0 -47.5 -48.0 -48.5 -49.0 -49.5 -50.0 -50.5 -51.0 -51.5 -52.0 -52.5 -53.0 -53.5 -54.0 -54.5 -55.0 -55.5 code A0h A1h A2h A3h A4h A5h A6h A7h A8h A9h AAh ABh ACh ADh AEh AFh B0h B1h B2h B3h B4h B5h B6h B7h B8h B9h BAh BBh BCh BDh BEh BFh dB -56.0 -56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67.5 -68.0 -68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 code C0h C1h C2h C3h C4h C5h C6h C7h C8h C9h CAh CBh CCh CDh CEh CFh D0h D1h D2h D3h D4h D5h D6h D7h D8h D9h DAh DBh DCh DDh DEh DFh dB -72.0 -72.5 -73.0 -73.5 -74.0 -74.5 -75.0 -75.5 -76.0 -76.5 -77.0 -77.5 -78.0 -78.5 -79.0 -79.5 -80.0 -80.5 -81.0 -81.5 -82.0 -82.5 -83.0 -83.5 -84.0 -84.5 -85.0 -85.5 -86.0 -86.5 -87.0 -87.5 code E0h E1h E2h E3h E4h E5h E6h E7h E8h E9h EAh EBh ECh EDh EEh EFh F0h F1h F2h F3h F4h F5h F6h F7h F8h F9h FAh FBh FCh FDh FEh FFh dB -88.0 -88.5 -89.0 -89.5 -90.0 -90.5 -91.0 -91.5 -92.0 -92.5 -93.0 -93.5 -94.0 -94.5 -95.0 -95.5 -96.0 -96.5 -97.0 -97.5 -98.0 -98.5 -99.0 -99.5 -100.0 -100.5 -101.0 -101.5 -102.0 -102.5 -103.0 Mute Table 6. ADC Digital Volume Setting List 014006643-E-00 2014/10 - 89 - [AK7755] ■ DAC Blocks 1. De-emphasis Filter The AK7755 has a digital de-emphasis filter (tc=50/15µs) by IIR filter, corresponding to 48kHz sampling frequency. DEM[1:0] bits control the de-emphasis filter. DEM mode 0 1 2 3 DEM[1:0] Sampling Frequency (fs) 00 OFF 01 48kHz 10 44.1kHz 11 32kHz Table 7. De-emphasis Control (default) 2. DAC Digital Volume Control The DACs of the AK7755 have channel independent volume control (256 levels, 0.5 step). The VOLDAL/R[7:0] bits (CONT18: D7-D0 / CONT19: D7-D0), set the attenuation level of each DAC channel. DAC Lch VOLDAL [7:0] 00h 01h 02h : 17h 18h 19h : FDh FEh FFh DAC Rch VOLDAR [7:0] Attenuation Level 00h 01h 02h : 17h 18h 19h : FDh FEh FFh Table 8. DAC Digital Volume Setting +12.0dB +11.5dB +11.0dB : +0.5dB 0.0dB -0.5dB : -114.5dB -115.0dB Mute (-∞) (default) Transition time between set values can be selected by ATSPDA bit (CONT0C: D5). MODE ATSPDA ATT speed 0 0 1/fs 1 1 4/fs Table 9. DAC Volume Transition Time Setting The transition between set values is soft transition of 1021 levels in Mode 0. It takes 1021/fs (21.3ms@fs=48kHz) from 00h to FFh (MUTE) in Mode 0. If the PDN pin is set to “L”, the VOLDAL/R[7:0] bits are initialized to 18h. 014006643-E-00 2014/10 - 90 - [AK7755] code 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh dB 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 code 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh dB -4.0 -4.5 -5.0 -5.5 -.6.0 -6.5 -7.0 -7.5 -8.0 -8.5 -9.0 -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 -12.5 -13.0 -13.5 -14.0 -14.5 -15.0 -15.5 -16.0 -16.5 -17.0 -17.5 -18.0 -18.5 -19.0 -19.5 code 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh dB -20.0 -20.5 -21.0 -21.5 -22.0 -22.5 -23.0 -23.5 -24.0 -24.5 -25.0 -25.5 -26.0 -26.5 -27.0 -27.5 -28.0 -28.5 -29.0 -29.5 -30.0 -30.5 -31.0 -31.5 -32.0 -32.5 -33.0 -33.5 -34.0 -34.5 -35.0 -35.5 code 60h 61h 62h 63h 64h 65h 66h 67h 68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh 70h 71h 72h 73h 74h 75h 76h 77h 78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh dB -36.0 -36.5 -37.0 -37.5 -38.0 -38.5 -39.0 -39.5 -40.0 -40.5 -41.0 -41.5 -42.0 -42.5 -43.0 -43.5 -44.0 -44.5 -45.0 -45.5 -46.0 -46.5 -47.0 -47.5 -48.0 -48.5 -49.0 -49.5 -50.0 -50.5 -51.0 -51.5 code 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh dB -52.0 -52.5 -53.0 -53.5 -54.0 -54.5 -55.0 -55.5 -56.0 -56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67.5 code A0h A1h A2h A3h A4h A5h A6h A7h A8h A9h AAh ABh ACh ADh AEh AFh B0h B1h B2h B3h B4h B5h B6h B7h B8h B9h BAh BBh BCh BDh BEh BFh dB -68.0 -68.5 -69.0 -69.5 -70.0 -70.5 -71.0 -71.5 -72.0 -72.5 -73.0 -73.5 -74.0 -74.5 -75.0 -75.5 -76.0 -76.5 -77.0 -77.5 -78.0 -78.5 -79.0 -79.5 -80.0 -80.5 -81.0 -81.5 -82.0 -82.5 -83.0 -83.5 code C0h C1h C2h C3h C4h C5h C6h C7h C8h C9h CAh CBh CCh CDh CEh CFh D0h D1h D2h D3h D4h D5h D6h D7h D8h D9h DAh DBh DCh DDh DEh DFh DB -84.0 -84.5 -85.0 -85.5 -86.0 -86.5 -87.0 -87.5 -88.0 -88.5 -89.0 -89.5 -90.0 -90.5 -91.0 -91.5 -92.0 -92.5 -93.0 -93.5 -94.0 -94.5 -95.0 -95.5 -96.0 -96.5 -97.0 -97.5 -98.0 -98.5 -99.0 -99.5 code E0h E1h E2h E3h E4h E5h E6h E7h E8h E9h EAh EBh ECh EDh EEh EFh F0h F1h F2h F3h F4h F5h F6h F7h F8h F9h FAh FBh FCh FDh FEh FFh dB -100.0 -100.5 -101.0 -101.5 -102.0 -102.5 -103.0 -103.5 -104.0 -104.5 -105.0 -105.5 -106.0 -106.5 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 Mute Table 10. DAC Digital Volume Setting List 3. DAC Soft Mute The DAC block has a digital soft mute circuit. The soft mute operation is performed in the digital domain. The input signal is attenuated to -∞ in “DAC Digital Volume Level x ATT transition time” from the current DAC Digital Volume Setting Level by setting DAMUTE bit (CONT1A: D5) to “1”. When the DAMUTE bit is returned to “0”, the mute is cancelled and the input attenuation gradually changes to DAC Digital Volume Setting Level in “DAC Digital Volume Level x ATT transition time”. If the soft mute is cancelled before attenuating to -∞ after starting the operation, the attenuation is discontinued and returned to DAC Digital Volume Setting Level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission. The soft mute function works when the DAC is in operation. Since the DAC block is in reset state, there is a possibility that a click noise occurs by a reset and a reset release when CRESETN bit (CONT0F: D3) = “0” and PMDAL/R bit (CONT0E: D0/D1) = “0”. This click noise should be muted externally. The attenuation value is initialized by the PDN pin = “L”. (Setting+2)/fs(max) DAMUTE Register (Setting+2)/fs(max) 0dB Attenuation -∞dB GD GD Output Image Soft Mute Operation Figure 73. DAC Soft Mute Operation 014006643-E-00 2014/10 - 91 - [AK7755] ■ Analog Output Block The AK7755 can output an analog mixing signal of DAC and line-in amplifier outputs from the OUT3 pin. AD conversion is available by setting PMAD2L bit (CONT0E: D5) to “1” even when the analog mixing output is ON. AK7755 Mono ADC LIN pin Stereo DAC Lch OUT1 pin LOVOL1[3:0] LIGN[3:0] Stereo DAC Rch OUT2 pin LO3SW1(SW1) LO3SW2(SW2) M I LO3SW3(SW3) X LOVOL2[3:0] OUT3 pin LOVOL3[3:0] Figure 74. Analog Output Circuit 1. Line Output Amplifier The AK7755 has a line output amplifier. The maximum amplitude is 0.76 × AVDD (2.51[Vpp] @AVDD=3.3V) and load resistance is 10k (min). LOVOL1/2/3[3:0] bits (CONT14: D3-D0/ CONT14: D7-D4/ CONT13: D3-D0) control the stereo line output volume. A pop noise occurs if the output gain is changed during operation. LOVOL1,L2,L3[3:0] 0h 1h 2h 3h 4h 5h 6h 7h Attenuation LOVOL1, L2, L3[3:0] Mute(default) 8h -28dB 9h -26dB Ah -24dB Bh -22dB Ch -20dB Dh -18dB Eh -16dB Fh Table 11. Line Output Volume Attenuation -14dB -12dB -10dB -8dB -6dB -4dB -2dB 0dB 2. Output1 and Output2 The OUT1 and OUT2 pins are connected to the L and R channels of the internal stereo DAC, respectively. The relationship of each control bit and the OUT1 and OUT2 pins are shown below. The OUT1 and OUT2 pins output settings are controlled by PMLO1/2 bit (CONT0E: D2/D3), PMDAL/R bit (CONT0E: D0 /D1) and LOVOL1/2[3:0] bits (CONT014: D3-D0/D7-D4). PMLO1 bit 0 1 1 1 PMDAL bit X 0 1 1 LOVOL1[3:0] bits X X 0h(mute) 1h-Fh OUT1 pin Output Hi-Z 1/2 x AVDD 1/2 x AVDD DAC Lch Output PMLO2 bit 0 1 1 1 PMDAR bit X 0 1 1 LOVOL2[3:0] bits X X 0h(mute) 1h-Fh OUT2 pin Output Hi-Z 1/2 x AVDD 1/2 x AVDD DAC Rch Output 014006643-E-00 2014/10 - 92 - [AK7755] 3. OUT3 (Analog Mixer) The AK7755 can output an analog mixing signal of DAC and line-in amplifier outputs from the OUT3 pin by setting LO3SW1 bit (CONT09: D1), LO3SW2 bit (CONT09: D2) and LO3SW3 bit (CONT09: D3). The line-out amplifier is powered up by setting PMLO3 bit = “1”. Each switch is disconnected and the OUT3 pin outputs 1/2 × AVDD when LOVOL3[3:0] bits (CONT13: D3-D0) = 0h. L and R channel signals of the DAC are input to the mixer by setting LO3SW1 bit and LO3SW2 bit to “1” while the setting of LOVOL3[3:0] bits is not 0h. L and R channel signals of the DAC are not gained by the mixer block. The output signal of line-in amplifier is input to the mixer by setting LO3SW3 bit to “1” while the setting of LOVOL3[3:0] bits is not 0h. Adjust the input voltage and line-in amplifier gain (LIGN[3:0] bits (CONT13: D7-D4)) to prevent the mixing output exceeds 0.67 × AVDD[Vpp] since the line-in amplifier output is gained +18dB by the mixer block. The maximum amplitude of the line-out output is 0.76 × AVDD[Vpp]. VOLDAL[7:0] bits (CONT18: D7-D0), VOLDAR[7:0] bits (CONT19: D7-D0), LIGN[3:0] bits and LOVOL3[3:0] bits should be adjusted to not exceed this maximum level. PMLO3 0 1 1 1 1 1 1 1 1 1 LOVOL3[3:0] X 0h(mute) 1h-Fh 1h-Fh 1h-Fh 1h-Fh 1h-Fh 1h-Fh 1h-Fh 1h-Fh LO3SW1 X X 0 0 0 0 1 1 1 1 LO3SW2 X X 0 0 1 1 0 0 1 1 LO3SW3 X X 0 1 0 1 0 1 0 1 SW1 OFF OFF OFF OFF OFF OFF ON ON ON ON SW2 OFF OFF OFF OFF ON ON OFF OFF ON ON SW3 OFF OFF OFF ON OFF ON OFF ON OFF ON Table 12. OUT3 pin Output Switching Setting 014006643-E-00 2014/10 - 93 - [AK7755] ■ Simple Write Error Check RAM and register data can be checked by cyclic redundancy check (CRC). It realizes a simple error check of a written data. 1. Checked Data 1-1. SPI Interface The serial input data of the AK7755 can be checked from a falling edge of the CSN signal to rising edge of the CSN signal. · Serial Data D (x): Input data from a falling edge to a rising edge of the CSN. · Generating Polynomial: G(x)=x16+x12+x5+1 (default=0) · R(x) is defined as the remainder when D(x) is divided by G(x). CSN SCLK SI don’tcare Command Code (8bit) Address (16bit or 0bit) X (L/H) Data (write) (L/H) 2 1-2. I C Interface The data after second byte: command code, address and data are checked. (Acknowledge is not included in the checked data. Therefore, if the command code, address and data are the same as when SPI interface is used, the CRC error result will also be the same.) The first byte which includes slave address is excluded. The first byte can be checked with Acknowledge. · Serial Data D(x): Command Code, Address and Data (Expect slave address) · Generating Polynomial: G(x)=x16+x12+x5+1 (default=0) · R (x) is defined as the remainder when D(x) is divided by G(x). 2. Simple Write Error Check Sequence There are two ways to execute a simple write error check. 2-1. CRC Result Reading (1) Write serial data D(x) that need to be checked. (2) Read CRC result (the remainder R(x)) by the command code 72h. (3) Check the result by a microcomputer. (4) Repeat (1) ~ (3) when checking another serial data. Note 55. The internal CRC result is not reflected by the command code 2-2. Checking by the STO pin (1) Set control register CRCE bit to “1”. (2) Write serial data D(x) that need to be checked. (3) Write the remainder R(x) of D(x) ti registers by the command code F2H. (4) The SDO pin outputs “H” when the calculated remainder of D(x) divided by G(x) equals to the R(x) value. If not, the STO pin outputs “L”. (5) Repeat (2) ~ (4) when checking another serial data. Note 56. The STO pin keeps “L” output until an appropriate remainder R(x) is written to the registers. 014006643-E-00 2014/10 - 94 - [AK7755] ■ EEPROM Interface 1. Data Download The AK7755 has EEPROM boot mode to read out necessary data from an external EEPROM to the internal memory via I2C bus. A hands-free function is easily realized in the system using EEPROM without extra overloads on the microprocessor. The external EEPROM should be connected to the I2C interface of the AK7755 (I2CSEL pin= “H”). A SPI interface type EEPROM cannot be connected. Write data as shown in “2. Program Map” to the EEPROM. Control registers can shift the WRITE command code and data in 2 BYTE unit. However, the data location from the PRAM WRITE command code (0034h) to OFREG address 31LSB (689Ch) is fixed. Set “1010000” to I2C slave address of the EEPROM when 256K bit, and set “101000+A16” when 1M bit. The AK7755 starts downloading the data from the EEPROM when setting the EXTEEP pin to “H” or DLS bit (CONT0D: D0) to “1” while the EXTEEP pin = “L” after inputting a 12.288MHz clock to the XTI pin or connecting a 12.288MHz crystal oscillator to the XTI pin and the XTO pin. The EEST (SDOUT1) pin goes to “H” while downloading data and the AK7755 becomes an I2C master. Do not write/read to the other devices that are connected to the same I2C bus during downloading. The EEST pin returns to “L” after downloading data and the AK7755 will be in I2C slave mode. Interfacing to a microcontroller becomes available when the EEST pin = “L”. When accessing the AK7755 after downloading data by CRC function, set CRCE bit (CONT10: D6) to “0” before access the AK7755. The EEPROM download period is 0.8s (max). Set the EXTEEP pin “H” → “L” → “H” or DLS bit (CONT0D, D0) “1” → “0” → “1” to start a data downloading again. However, data downloading cannnot be executed by DLS bit when selecting memory mat (I2CSEL pin = MATSEL pin = “H”). μP STO STO Control GPI1 Control EEST (SDOUT1) EEST (SDOUT1) GPI2 SCL SDA μP/ EEPROM Interface EEPROM SCL SCL SDA μP/ EEPROM Interface EEPROM SCL SCL SDA SDA SDA EXTEEP EXTEEP I2CSEL= “H” I2CSEL = “H” PDN PDN Figure 75. EEPROM Connection (Left: EEPROM only, Right: CPU and EEPROM) 014006643-E-00 2014/10 - 95 - [AK7755] 2. Program Map EEPROM Address 0000h 0001h 0002h 0003h 0004h 0005h 0006h 0007h 0008h 0009h 000Ah 000Bh 000Ch 000Dh 000Eh 000Fh 0010h 0011h 0012h 0013h 0014h 0015h 0016h 0017h 0018h 0019h 001Ah 001Bh 001Ch 001Dh 001Eh 001Fh 0020h 0021h 0022h 0023h 0024h 0025h 0026h 0027h 0028h 0029h 002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h 0032h 0033h DATA C0h DATA C1h DATA C2h DATA C3h DATA C4h DATA C5h DATA C6h DATA C7h DATA C8h DATA C9h DATA CAh DATA CCh DATA D0h DATA D1h DATA D2h DATA D3h DATA D4h DATA D5h DATA D6h DATA D7h DATA D8h DATA D9h DATA DAh DATA 00h 00h 00h 00h 00h 00h Note CONT00 Write Command Code CONT00 Data CONT01 Write Command Code CONT01 Data CONT02 Write Command Code CONT02 Data CONT03 Write Command Code CONT03 Data CONT04 Write Command Code CONT04 Data CONT05 Write Command Code CONT05 Data CONT06 Write Command Code CONT06 Data CONT07 Write Command Code CONT07 Data CONT08 Write Command Code CONT08 Data CONT09 Write Command Code CONT09 Data CONT0A Write Command Code CONT0A Data CONT0CWrite Command Code CONT0C Data CONT10 Write Command Code CONT10 Data CONT11 Write Command Code CONT11 Data CONT12 Write Command Code CONT12 Data CONT13 Write Command Code CONT13 Data CONT14 Write Command Code CONT14 Data CONT15 Write Command Code CONT15 Data CONT16 Write Command Code CONT16 Data CONT17 Write Command Code CONT17 Data CONT18 Write Command Code CONT18 Data CONT19 Write Command Code CONT19 Data CONT1A Write Command Code CONT1A Data Dummy Data0 0 (Note 58) Dummy Data0 1 Dummy Data1 0 Dummy Data1 1 Dummy Data2 0 (Note 57) Dummy Data2 1 014006643-E-00 2014/10 - 96 - [AK7755] 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh 0040h 0041h ••• 5031h 5032h 5033h 5034h 5035h 5036h 5037h 5038h 5039h 503Ah 503Bh 503Ch 503Dh ••• 6836h 6837h 6838h 6839h 683Ah 683Bh 683Ch 683Dh 683Eh 683Fh 6840h ••• 6899h 689Ah 689Bh 689Ch 689Dh 689Eh 689Fh 68A0h 68A1h 68A2h 68A3h 68A4h 68A5h 68A6h 68A7h 68A8h 68A9h 68AAh B8h 00h 00h PRAM0 DATA39-32 PRAM0 DATA31-24 PRAM0 DATA23-16 PRAM0:DATA15-8 PRAM0 DATA7-0 PRAM1 DATA39-32 PRAM1 DATA31-24 PRAM1 DATA23-16 PRAM1:DATA15-8 PRAM1 DATA7-0 PRAM2 DATA39-32 ••• PRAM4094 DATA7-0 PRAM4095 DATA39-32 PRAM4095 DATA31-24 PRAM4095 DATA23-16 PRAM4095 DATA15-8 PRAM4095 DATA7-0 B4h 00h 00h CRAM0 DATA23-16 CRAM0 DATA15-8 CRAM0 DATA7-0 CRAM1 DATA23-16 ••• CRAM2046 DATA7-0 CRAM2047 DATA23-16 CRAM2047 DATA15-8 CRAM2047 DATA7-0 B2h 00h 00h OFREG0 DATA23-16 OFREG0 DATA15-8 OFREG0 DATA7-0 OFREG1 DATA23-16 ••• OFREG30 DATA7-0 OFREG31 DATA23-16 OFREG31 DATA15-8 OFREG31 DATA7-0 CDh 40h E6h 01h EAh 80h CEh DATA CFh DATA 00h 00h 00h 00h PRAM WRITE Command Code PRAM Address MSB side PRAM Address LSB side PRAM Address0 MSB 8-bit Data PRAM Address0 MSB-1 8-bit Data PRAM Address0 MSB-2 8-bit Data PRAM Address0 MSB-3 8-bit Data PRAM Address0 LSB 8-bit Data PRAM Address1 MSB 8-bit Data PRAM Address1 MSB-1 8-bit Data PRAM Address1 MSB-2 8-bit Data PRAM Address1 MSB-3 8-bit Data PRAM Address1 LSB 8-bit Data PRAM Address2 MSB-1 8-bit Data PRAM Address4094 LSB 8-bit Data PRAM Address4095 MSB 8-bit Data PRAM Address4095 MSB-1 8-bit Data PRAM Address4095 MSB-2 8-bit Data PRAM Address4095 MSB-3 8-bit Data PRAM Address4095 LSB 8-bit Data CRAM WRITE Command Code CRAM Address MSB side CRAM Address LSB side CRAM Address0 MSB 8-bit Data CRAM Address0 MSB-1 8-bit Data CRAM Address0 LSB 8-bit Data CRAM Address1 MSB 8-bit Data CRAM Address2046 LSB 8-bit Data CRAM Address2047 MSB 8-bit Data CRAM Address2047 MSB-1 8-bit Data CRAM Address2047 LSB 8-bit Data OFREG WRITE Command Code OFREG Address MSB side OFREG Address LSB side OFREG Address0 MSB 8-bit Data OFREG Address0 MSB-1 8-bit Data OFREG Address0 LSB 8-bit Data OFREG Address1 MSB 8-bit Data OFREG Address30 LSB 8-bit Data OFREG Address31 MSB 8-bit Data OFREG Address31 MSB-1 8-bit Data OFREG Address31 LSB 8-bit Data CONT0D Write Command Code CONT0D Data CONT26 Write Command Code CONT26 Data CONT2A Write Command Code CONT2A Data CONT0E WRITE Command Code CONT0E Data CONT0F WRITE Command Code CONT0F Data Dummy Data0_0 Dummy Data0_1 Dummy Data1_0 Dummy Data1_1 014006643-E-00 2014/10 - 97 - [AK7755] 68ABh 68ACh 68ADh 68AEh 68AFh 68B0h 68B1h 68B2h 68B3h 68B4h 68B5h 68B6h 68B7h 68B8h ••• 7FFFh 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h F2h CRC DATA15-8 CRC DATA7-0 00h ••• 00h Dummy Data2_0 Dummy Data2_1 Dummy Data3_0 Dummy Data3_1 Dummy Data4_0 Dummy Data4_1 Dummy Data5_0 Dummy Data5_1 Dummy Data6_0 Dummy Data6_1 CRC WRITE Command Code CRC MSB 8-bit Data CRC LSB 8-bit Data Reserve Reserve Note 57. DSPRESETN bit (CONT0F: D2) must be “0” when downloading a DSP program. Especially this setting is necessary when changing the DSP program during operation by selecting EEPROM mat. Note 58. A WRITE command for arbitrary control register can be written to Dummy data *_0, and write register setting for the control register to Dummy data*_1 in the table above. Data transffer from EEPROM can be confirmed by writing R(x) (16-bit) data to CRCDATA (addr: 787Ch, 787Dh) which is the remainder of serial data D(x) from addres 0000h to 68B7h devided by a generating polynominal; G(x)=x16+x12+x5+1 (Initial Value= 0). 3. EEPROM Automatic Re-downloading When a programmed WDT or CRC error is detected, automatic re-downloading of the EEPROM data is available up to 4 times by setting the EXPEEP pin = “H”. When an error occurs after re-downloading more than 4 times, “L” level is output on the STO pin and the device stops. The device status can be checked by reading STO bit (CONT0D: D7). The CRC function is enabled by setting CRCE bit (CONT10: D6) to “1”. The default setting of CRCE bit is “0” (disabled). This setting is initialized (error count: 0) by the PDN pin = “L”. It is not initialized by a clock reset. 4. EEPROM Mat Select The pin number 20 becomes the MATSEL pin that enables EEPROM program mat selecting when the EXTEEP pin = “H”. Connect a 256K-bit EEPROM and bring the MATSEL pin = “L” when not selecting the EEPROM mat. Connect a 1M-bit EEPROM and bring the MATSEL pin = “H” when selecting the EEPROM mat. In this case, the pin number 14 (MAT1) and 15 (MAT0) are address pins of the mat select. Single program is stored in every 256K bits as a program map. The EEPROM can store four programs in total. The MAT1 and MAT0 pins select a program to download to the AK7755. OUT3E bit (CONT0A, D2) and OUT2E bit (CONT0A, D1) must not set to “1” when selecting an EEPROM mat (MATSEL pin = “H”). Program No. 1 2 3 4 MAT1 (14pin) 0 0 1 1 MAT0 (15pin) 0 1 0 1 014006643-E-00 EEPROM Storing Beginning Address 17’h00000 17’h08000 17’h10000 17’h18000 I2C 1st Byte “1 0 1 0 0 0 0 R/Wn “1 0 1 0 0 0 0 R/Wn “1 0 1 0 0 0 1 R/Wn” “1 0 1 0 0 0 1 R/Wn” 2014/10 - 98 - [AK7755] ■ Digital Microphone Interface 1. Digital MIC Connection Four digital microphones can be connected to the AK7755 at the maximum. When DMIC1 (CONT1E: D7) or DMIC2 (CONT1E: D4) bit is set to “1”, the #34 pin becomes DMDAT1 (digital microphone data input), the #33 pin becomes DMCLK1 (digital microphone clock supply) pins, the #32 pin becomes DMDAT2 pin and the #31 pin becomes DMCLK2 pin. The DMCLK1/2 clock is an input to a digital microphone from the AK7755. The digital microphone outputs 1bit data, which is generated by Modulator using DMCLK1/2 clock, to the DMDAT1/2 pin. DMIC1/2 bit controls power up/down of the digital block (Decimation Filter and Digital Filter). DCLKE1/2 bit (CONT1E: D5/D2) controls ON/OFF of the output clock from the DMCLK1/2 pin. When the AK7755 is powered down (PDN pin= “L”), the DMCLK1/2 and DMDAT1/2 pins become floating state. Pull-down resistors must be connected to DMCLK and DMDAT pins externally to avoid this floating state. Figure 76 shows a stereo 4ch connection example. AVDD AK7755 VDD AMP DMCLK1(64fs) DMIC1 or DMIC2 bit = “1” 100k Modulator Decimation Filter DMDAT1 Lch 100k SDOUTAD Digital Filter DMIC1 bit = “1” VDD AMP Modulator Rch VDD AMP DMCLK2(64fs) DMIC1 or DMIC2 bit = “1” 100k Modulator DMDAT2 Lch 100k Decimation Filter Digital Filter SDOUTAD2 DMIC2 bit = “1” VDD AMP Modulator Rch Figure 76. Connection Example for 4ch Stereo Digital Microphone 014006643-E-00 2014/10 - 99 - [AK7755] 2. Interface The input data channel of the DMDAT1/2 pin is set by DCLKP1/2 bit (CONT1E: D6/D3). When DCLKP1/2 bit = “1”, L channel data is input to the decimation filter if the DMCLK1/2 pin= “H”, and R channel data is input if the DMCLK1/2 = “L”. When DCLKP1/2 bit = “0”, R channel data is input to the decimation filter while DMCLK1/2 pin= “H”, and L channel data is input while DMCLK1/2 pin= “L”. The DMCLK1/2 pin only supports 64fs. It outputs “L” when DCLKE1/2 bit = “0”, and outputs 64fs clock when DCLKE1/2 bit = “1”. The output data through “the Decimation and Digital Filters” is 24bit full scale when the 1bit data density is 0%~100%. DCLKP1 bit 0 1 DMCLK1 pin = “H” Rch Lch DMCLK1 pin = “L” Lch (default) Rch DCLKP2 bit DMCLK2 pin = “H” DMCLK2 pin = “L” 0 Rch Lch (default) 1 Lch Rch Table 13. Data Input/Output Timing with Digital MIC DMCLK1/2(64fs) DMDAT1/2(Lch) Valid Data Valid Data Valid Data DMDAT1/2(Rch) Valid Data Valid Data Valid Data Valid Data Valid Data Figure 77. Data Input/Output Timing with Digital MIC (DCLKP1/2 bit = “1”) DMCLK1/2(64fs) DMDAT1/2(Lch) DMDAT1/2(Rch) Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Figure 78. Data Input/Output Timing with Digital MIC (DCLKP1/2 bit = “0”) ■ Digital Mixer ADC output (SDATAD), ADC2 output (SDATAD2) and DSP-DOUT4 data can be mixed into a signle serial data by a mixer circuit. SELMIX[2:0] bits (CONT09: D0, CONT08: D1, D0) control mixing setting. Delay time of the mixer circuit is 4Ts (4/fs). SELMIX SELMIX MIXOUT Lch MIXOUT Rch mode [2:0] 0 000 SDOUTAD Lch SDOUTAD Rch SDOUTAD Lch/2 + SDOUTAD2 Lch/2 SDOUTAD Rch 1 001 SDOUTAD Lch/2 + SDOUTAD2 Lch/2 2 010 SDOUTAD Lch SDOUTAD2 Lch 3 011 SDOUTAD2 Rch 4 100 DSP-DOUT4 Lch SDOUTAD2 Rch 5 101 SDOUTAD2 Lch DSP-DOUT4 Rch 6 110 DSP-DOUT4 Lch SDOUTAD Rch 7 111 SDOUTAD Lch DSP-DOUT4 Rch Table 14. Digital Mixer Output Setting 014006643-E-00 (default) 2014/10 - 100 - [AK7755] 10. Recommended External Circuits ■ Connection Diagram 1. I2CSEL pin = “L”, LDOE pin = “L” I2CSEL CLOCK & Audio I/F 9 8 7 16 15 14 5 4 LDOE CLKO BICK LRCK SDOUT1 SDOUT2 SDOUT3 SDIN1 SDIN2 CSN SI SCLK SO STO/RDY PDN 1 31 1 32 1 33 1 34 1 35 IN4/INN2 OUT1 IN3/INP2 OUT2 IN2/INN1 OUT3 IN1/INP1 3 “L” 23 “L” 20 19 uP 18 17 6 22 RESET CONTROL 28 1 26 1 27 1 LIN AK7755 VCOM 1 2.2 Digital Core 1.2V 24 10 DVDD 0.1 Digital IO 1.8~3.3V 10 12 AVDD TVDD Analog +3.3V 21,29,36 10 0.1 0.1 AVSS 13,25 2,30 DVSS XTO XTI Rd 10 CL=22pF/15pF 11 CL=22pF/15pF Figure 79. Serial Interface Connection with External Power Supply 2. I2CSEL pin = “L”, LDOE pin = “H” I2CSEL CLOCK & Audio I/F 9 8 7 16 15 14 5 4 LDOE CLKO BICK LRCK SDOUT1 SDOUT2 SDOUT3 SDIN1 SDIN2 CSN SI SCLK SO STO/RDY PDN 1 31 1 32 1 33 1 34 1 35 IN4/INN2 OUT1 IN3/INP2 OUT2 IN2/INN1 OUT3 IN1/INP1 3 “L” 23 “H” 20 19 uP 18 17 6 22 RESET CONTROL 28 1 26 1 27 1 LIN AK7755 VCOM 1 2.2 24 AVDRV 1 Digital IO 1.8~3.3V 10 12 AVDD TVDD Analog +3.3V 21,29,36 10 0.1 0.1 AVSS 13,25 2,30 DVSS XTO XTI 10 Rd CL=22pF/15pF 11 CL=22pF/15pF Figure 80. Serial Interface Connection with Internal LDO 014006643-E-00 2014/10 - 101 - [AK7755] 3. I2CSEL pin = “H”, EXTEEP pin = “L”, LDOE pin = “L” I2CSEL CLOCK & Audio I/F 9 8 7 16 15 14 5 4 LDOE CLKO BICK LRCK SDOUT1 SDOUT2 SDOUT3 SDIN1 SDIN2 1 31 1 32 1 33 1 34 1 35 EXTEEP CAD SCL SDA STO/RDY PDN IN4/INN2 3 “H” 23 “L” 19 “L” 20 uP 18 17 6 22 RESET CONTROL IN3/INP2 IN2/INN1 OUT1 IN1/INP1 OUT2 LIN OUT3 AK7755 VCOM 28 1 26 1 27 1 1 2.2 Digital Core 1.2V 24 10 DVDD 0.1 Digital IO 1.8~3.3V 10 12 AVDD TVDD Analog +3.3V 21,29,36 10 0.1 0.1 AVSS 13,25 2,30 DVSS XTO XTI Rd 10 CL=22pF/15pF 11 CL=22pF/15pF Figure 81. I2C Interface Connection with External Power Supply 4. I2CSEL pin = “H”, EXTEEP pin = “L”, LDOE pin = “H” I2CSEL CLOCK & Audio I/F 9 8 7 16 15 14 5 4 LDOE CLKO BICK LRCK SDOUT1 SDOUT2 SDOUT3 SDIN1 SDIN2 1 31 1 32 1 33 1 34 1 35 EXTEEP CAD SCL SDA STO/RDY PDN IN4/INN2 3 “H” 23 “H” 19 “L” 20 uP 18 17 6 22 RESET CONTROL IN3/INP2 IN2/INN1 OUT1 IN1/INP1 OUT2 LIN OUT3 AK7755 VCOM 28 1 26 1 27 1 1 2.2 24 AVDRV 1 Digital IO 1.8~3.3V 10 12 AVDD TVDD Analog +3.3V 21,29,36 10 0.1 0.1 AVSS 13,25 2,30 DVSS XTO XTI 10 Rd CL=22pF/15pF 11 CL=22pF/15pF Figure 82. I2C Interface Connection with Internal LDO 014006643-E-00 2014/10 - 102 - [AK7755] 5. I2CSEL pin = “H”, EXTEEP pin = “H”, MATSEL pin = “L”, LDOE pin = “L” I2CSEL CLOCK & Audio I/F 9 8 7 16 15 14 5 4 LDOE CLKO BICK LRCK SDOUT1 SDOUT2 SDOUT3 SDIN1 SDIN2 EXTEEP MATSEL SCL SDA STO/RDY 1 31 1 32 1 33 1 34 1 35 IN4/INN2 PDN 3 “H” 23 “L” 19 20 “H” “L” uP 18 EEPROM 256Kbit 17 6 22 RESET CONTROL IN3/INP2 IN2/INN1 OUT1 IN1/INP1 OUT2 LIN AK7755 OUT3 VCOM 28 1 26 1 27 1 1 2.2 Digital Core 1.2V 24 10 DVDD 0.1 Digital IO 1.8~3.3V 10 12 AVDD TVDD Analog +3.3V 21,29,36 10 0.1 0.1 AVSS 13,25 2,30 DVSS XTO XTI Rd 10 CL=22pF/15pF 11 CL=22pF/15pF Figure 83. I2C Interface Connection with External Power Supply and EEPROM 6. I2CSEL pin = “H”, EXTEEP pin = “H”, MATSEL pin = “L”, LDOE pin = “H” I2CSEL CLOCK & Audio I/F 9 8 7 16 15 14 5 4 LDOE CLKO BICK LRCK SDOUT1 SDOUT2 SDOUT3 SDIN1 SDIN2 EXTEEP MATSEL SCL SDA STO/RDY 1 31 1 32 1 33 1 34 1 35 IN4/INN2 PDN 3 “H” 23 “H” 19 20 “H” “L” uP 18 EEPROM 256Kbit 17 6 22 RESET CONTROL IN3/INP2 IN2/INN1 OUT1 IN1/INP1 OUT2 LIN AK7755 OUT3 VCOM 28 1 26 1 27 1 1 2.2 24 AVDRV 1 Digital IO 1.8~3.3V 10 12 AVDD TVDD Analog +3.3V 21,29,36 10 0.1 0.1 AVSS 13,25 2,30 DVSS XTO XTI 10 Rd CL=22pF/15pF 11 CL=22pF/15pF Figure 84. I2C Interface Connection with Internal LDO and EEPROM 014006643-E-00 2014/10 - 103 - [AK7755] 7. I2CSEL pin = “H”, EXTEEP pin = “H”, MATSEL pin = “H”, LDOE pin = “L” I2CSEL CLOCK & Audio I/F 9 8 7 16 LDOE CLKO BICK LRCK SDOUT1 5 4 EXTEEP MATSEL SDIN1 SDIN2 SCL SDA STO/RDY MAT0 1 31 1 32 1 33 1 34 1 35 MAT1 IN4/INN2 PDN IN3/INP2 IN2/INN1 OUT1 IN1/INP1 OUT2 LIN AK7755 OUT3 VCOM 3 “H” 23 “L” 19 20 “H” “H” uP 18 EEPROM 1Mbit 17 6 15 14 RESET CONTROL 22 28 1 26 1 27 1 1 2.2 Digital Core 1.2V 24 10 DVDD 0.1 Digital IO 1.8~3.3V 10 12 AVDD TVDD Analog +3.3V 21,29,36 10 0.1 0.1 AVSS 13,25 2,30 DVSS XTO XTI Rd 10 CL=22pF/15pF 11 CL=22pF/15pF Figure 85. I2C Interface Connection with External Power Supply and EEPROM (Mat Select ON) 8. I2CSEL pin = “H”, EXTEEP pin = “H”, MATSEL pin = “H”, LDOE pin = “H” I2CSEL CLOCK & Audio I/F 9 8 7 16 LDOE CLKO BICK LRCK SDOUT1 5 4 EXTEEP MATSEL SDIN1 SDIN2 SCL SDA STO/RDY MAT0 1 31 1 32 1 33 1 34 1 35 MAT1 IN4/INN2 PDN IN3/INP2 IN2/INN1 OUT1 IN1/INP1 OUT2 LIN AK7755 OUT3 VCOM 3 “H” 23 “H” 19 20 “H” “H” uP 18 EEPROM 1Mbit 17 6 15 14 22 RESET CONTROL 28 1 26 1 27 1 1 2.2 24 AVDRV 1 Digital IO 1.8~3.3V 10 12 AVDD TVDD Analog +3.3V 21,29,36 10 0.1 0.1 AVSS 13,25 2,30 DVSS XTO XTI 10 Rd CL=22pF/15pF 11 CL=22pF/15pF Figure 86. I2C Interface Connection with Internal LDO and EEPROM (Mat Select ON) 014006643-E-00 2014/10 - 104 - [AK7755] ■ Peripheral Circuit 1. Ground AVSS and DVSS must be connected to the same analog ground plane. Decoupling capacitors, particularly small capacity capacitors, should be connected as close as possible to the AK7755. 2. Reference Voltage The AVDD voltage controls analog signal range. VCOM is a common voltage of this chip and the VCOM pin outputs AVDD/2. A 2.2µF ceramic capacitor connected between the VCOM and AVSS pins eliminates the effects of high frequency noise. The ceramic capacitor should be connected as close as possible to the VCOM pin. The VCOM pin must not be connected to external circuits. Digital signal lines, especially clock signal line should be kept away as far as possible from the VCOM pin in order to avoid unwanted coupling into the AK7755. 3. Analog Input Analog input signals are applied to the modulator through the input pin of each channel. Input voltage is ±FS = ±(AVDD-AVSS) x 2.2/3.3 for differential pin and FS = (AVDD-AVSS) x 2.2/3.3 for single-end pin. When AVDD = 3.3V and AVSS=0.0V, the differential input range is ±2.20Vpp (typ) and it is 2.20Vpp (typ) for single-ended input. The digital output code format is 2's complements. DC offset can be cancelled by an internal HPF. The AK7755 samples the analog inputs in 3.072MHz at fs = 48kHz. The digital filter removes noise in the range from 30kHz to 3.042MHz. The AK7755 includes an anti-aliasing filter (RC filter) to attenuate a noise around the range from 3.042MHz to 3.072MHz witch is not removed by the HPF. An external Low Pass Filter is not necessary since most of audio signals do not have large noise in the band around 3.072MHz. However, it is recommended to connect a Low Pass Filter before the ADC when a signal with large out-of-band noises is input. The analog source voltage to the AK7755 is +3.3V (typ). Voltage of AVDD + 0.3V or more, voltage of AVSS – 0.3V or less, and current of 10mA or more must not be applied to analog input pins. Excessive current will damage the internal protection circuit and will cause latch-up, damaging the IC. If the external analog circuit voltage is ±15V, the analog input pins must be protected from signals which are in absolute maximum rating level or more. 10k Signal 22μ + 10k 68p 10k + 10k 68p + 2.20Vpp + INP* 1μ + 1μ INN* 2.20Vpp Figure 87. Input Buffer Circuit Example (Differential Input) 014006643-E-00 2014/10 - 105 - [AK7755] 4. Analog Output The analog line-outputs are single-ended. The output signal range is 0.76 × AVDD Vpp (typ.) centered around VCOM voltage. The input code format is in 2’s complement. The output voltage is a positive full scale for 7FFFFFH (@24bit) and a negative full scale for 800000H (@24bit). The ideal voltage at 000000H is VCOM. The VCOM voltage is AVDD/2 (typ). The internal switched-capacitor filter (SCF) and continuous-time filter (CTF) attenuate the noise generated by the delta-sigma modulator beyond the audio passband. 5. Connection to Digital Circuit To minimize the noise from digital circuits, the digital output of the AK7755 must be connected to CMOS or low voltage logic ICs such as 74HC and 74AC for CMOS and 74LV, 74LV-A, 74ALVC and 74AVC for low voltage logic ICs. 6. Cristal Oscillator The resistor and capacitor values for the oscillator RC circuit are shown blow. TVDD = 3.0 - 3.6V CKM mode 0 1 XTAL Oscillator 12.288MHz 18.432MHz R1_max C0_max 120Ω 80Ω 2.5pF 2.5pF R1_max C0_max 50Ω 25Ω 1.2pF 1.2pF XTI, XTO pin Connection Capacity 22pF 15pF TVDD = 1.7 - 3.0V CKM mode 0 1 XTAL Oscillator 12.288MHz 18.432MHz XTI, XTO pin Connection Capacity 10pF 10pF Table 15. Crystal Oscillator 014006643-E-00 2014/10 - 106 - [AK7755] 11. Package ■ Outline Dimensions ■ Package & Lead frame material Package molding compound: Epoxy Lead frame material: Cu Lead frame surface treatment: Solder (Pb free) plate 014006643-E-00 2014/10 - 107 - [AK7755] ■ Marking AKM 7755EN XXXX 36 1 1) Pin #1 indication 2) Date Code: XXXX(4 digits) 3) Marking Code: 7755EN AKM 7755VN XXXX 36 1 1) Pin #1 indication 2) Date Code: XXXX(4 digits) 3) Marking Code: 7755VN 014006643-E-00 2014/10 - 108 - [AK7755] 12. Revision History Date (Y/M/D) Revision 14/10/20 00 Reason Page First Edition Contents IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. 014006643-E-00 2014/10 - 109 -