Practical Digital Pre-Distortion Techniques for PA Linearization in 3GPP LTE Jinbiao Xu Agilent Technologies Master System Engineer Copyright Agilent Technologies 2010 1 SystemVue DPD Jinbiao XU May 26, 2010 Agenda • • • • Digital PreDistortion----Principle Crest Factor Reduction Digital PreDistortion Simulation Digital PreDistortion Hardware Verification Copyright Agilent Technologies 2010 2 SystemVue DPD Jinbiao XU May 26, 2010 Digital Pre-Distortion----- Principle Linear Response Output Power Saturation Psat Pout -pd Operating region with predistortion Pout Operating region without predistortion Input Power Output Phase Desired Output Linear Output θo-pd = k θout Pi Copyright Agilent Technologies 2010 3 Pi-pd Input Power SystemVue DPD Jinbiao XU May 26, 2010 Digital Pre-Distortion----- Principle The DPD-PA cascade attempts to combine two nonlinear systems into one linear result which allows the PA to operate closer to saturation. The objective of digital predistorter is to have y (t ) ≈ Cx(t ) , where C is a constant. The most important step is to extract PA nonlinear behavior accurately and efficiently. Copyright Agilent Technologies 2010 4 SystemVue DPD Jinbiao XU May 26, 2010 Memory Polynomial Algorithm • • • As the signal (such as 3GPP LTE) bandwidth gets wider, power amplifiers begin to exhibit memory effects. Memoryless (LUT) pre-distortion can achieve only very limited linearization performance. Volterra series is a general nonlinear model with memory. It is unattractive for practical applications because of its large number of coefficients. Memory polynomial reduces Volterra’s model complexity. It is interpreted as a special case of a generalized Hammerstein model. Its equation is as follows: K Q z (n) = ∑∑ akq y (n − q ) y (n − q ) k −1 K is Nonlinearity order and Q is Memory order k =1 q = 0 Memory Polynomial Structure Copyright Agilent Technologies 2010 5 Polynomial Structure SystemVue DPD Jinbiao XU May 26, 2010 Signal Training to derive the Memory Polynomial 1. Pre-distorter training: Nonlinear coefficients are extracted from the PA input and PA output waveforms (ie – on real physical behavior) 2. Copy of PA : The DPD model accurately captures the nonlinearity with memory effects Memory Polynomial Coefficients aˆ = (U H U ) −1U H z [ aˆ = aˆ10 ,L, aˆ K 0 ,L, aˆ1Q ,L, aˆ KQ z = [z (0), z (1), K , z ( N − 1)] T Copyright Agilent Technologies 2010 6 ] T y (n − q) y (n − q ) u kq (n) = G G k −1 [ u kq = u kq (0), u kq (1),L , u kq ( N − 1) [ U = u10 ,L, uK 0 ,L, u1Q ,L, uKQ ] T ] SystemVue DPD Jinbiao XU May 26, 2010 Crest Factor Reduction (CFR) Concepts • Spectrally efficient wideband RF signals may have PAPR >13dB. • CFR preconditions the signal to reduce signal peaks without significant signal distortion • CFR allows the PA to operate more efficiently – it is not a linearization technique • CFR supplements DPD and improves DPD effectiveness • Without CFR and DPD, a basestation PA must operate at significant back-off from saturated power to maintain linearity. The back-off reduces efficiency Benefits of CFR 1. PAs can operate closer to saturation, for improved efficiency (PAE). 2. Output signal still complies with spectral mask and EVM specifications Copyright Agilent Technologies 2010 7 SystemVue DPD Jinbiao XU May 26, 2010 Crest Factor Reduction (CFR) Concepts If you can reduce the Peak-to-Average Ratio of the signal, then for a given amplitude Peak, you can raise the Average power (up & to the right, above) with no loss in signal quality. Thus, CFR enables higher PA efficiency by reducing the back-off, often by 6dB Copyright Agilent Technologies 2010 8 SystemVue DPD Jinbiao XU May 26, 2010 Crest Factor Reduction for Multiple-Carrier Signals • • • Multiple-Carrier Signals (such as GSM, WCDMA, WiMAX) already have high PAPR. In the future, they will also include multiple waveforms (ie - LTE with 3G WCDMA). Therefore CFR will increase in importance for Multi-Carrier PA (MCPA) linearization. CFR algorithm for multiple carrier signals • • • • PW (Peak Windowing)-CFR NS (Noise-Shaping) -CFR PI (Pulse Injection)-CFR PC (Peak Cancellation)-CFR Copyright Agilent Technologies 2010 9 SystemVue DPD Jinbiao XU May 26, 2010 CFR for 3GPP LTE DL OFDM Signal • Controls EVM and band limits in the frequency domain. • Constrains constellation errors, to avoid bit errors. • Constrains the degradation on individual sub-carriers. • Allows QPSK sub-carriers to be degraded more than 64 QAM subcarriers. • Does not degrade reference signals, P-SS and S-SS. • All control channels (PDCCH, PBCH, PCFICH and PHICH) adopts QPSK threshold. Copyright Agilent Technologies 2010 10 SystemVue DPD Jinbiao XU May 26, 2010 LTE CFR (Crest Factor Reduction) 0+0*j DC Value=0 [0+0* j] ifft1 FFTSize=4096 [DFTSize] Size=4096 [DFTSize] Direction=Inverse FreqS equence=0-pos-neg G2 Gain=1 A 0+0*j G3 Gain=1 Qm SC_St at us DPD_LTE_CFR_Post Pr oc r fe FFT A3 BlockS izes=1;300;3495;300 [[1,Half_UsedCarriers,DFT_zeros,Half_UsedCarriers]] zeros Value=0 [0+0* j] ifft2 FFTSize=4096 [DFTSize] Size=4096 [DFTSize] Direction=Inverse FreqS equence=0-pos-neg out put A A2 BlockSizes=300;300 [[Half_UsedCarriers, Half_UsedCarriers]] fft FFTSize=4096 [DFTSize] S ize=4096 [DFTSize] Direction=Forward FreqSequence=0-pos-neg n i put out put DPD_ Rad iu s Cp il DPD_RadiusClp i ClippingThreshold=16.5e-6 [ClippingThreshold] FFT FFT n i put D1 Bandwidth=BW 10 MHz [Bandwidth] OversamplingOption=Ratio 4 [OversamplingOption] CyclicPrefix=Normal [CyclicPrefix] UE1_MappingType=0;0;0;0;0;0;0;0;0;0 [UE 1_MappingType] OtherUEs_MappingType=0;0;0;0;0 [OtherUEs_MappingType] RS_EPRE=-25 [RS_EPRE] PCFICH_Rb=0 [PCFICH_Rb] PHICH_Ra=0 [PHICH_Ra] PHICH_Rb=0 [PHICH_Rb] P BCH_Ra=0 [PBCH_Ra] P BCH_Rb=0 [PBCH_Rb] PDCCH_Ra=0 [PDCCH_Ra] PDCCH_Rb=0 [PDCCH_Rb] PDSCH_PowerRatio=p_B/p_A = 1 [PDSCH_P owerRato i] UEs_Pa=0;0;0;0;0;0 [UEs_Pa] PSS_Ra=0 [PSS_Ra] SSS_Ra=0 [SSS_Ra] EVM_Threshold_QPSK=0.1 [EVM_Threshold_QPSK] EVM_Threshold_16QAM=0.1 [EVM_Threshold_16QA M] EVM_Threshold_64QAM=0.1 [EVM_Threshold_64QA M] OutOfBandAlgorithm=Armstrong algorithm Simulation Results LTE Downlink 10MHz, Sampling Rate 61.44MHz, QPSK, EVM threshold 10% Copyright Agilent Technologies 2010 11 SystemVue DPD Jinbiao XU May 26, 2010 DPD Simulation Workspace Step 1 is to Generate Waveform for DPD Step 3 is for DUT Model Extraction Step 4 is for DPD Response Compared with hardware verification tool, simulation tool does not include Step 2 and Step 5. Hardware verification toll will be introduced later. Copyright Agilent Technologies 2010 12 SystemVue DPD Jinbiao XU May 26, 2010 LTE DPD simulation for a memoryless nonlinear PA Fc T R5 File='Step3_DPD_Coefficients_Imag.txt Periodic=YES Spe ctrum Ana ly z e r Cx Im Env Re S4 SampleRate=122.9e+6Hz [SamplingRate] R6 AfterDPD Mode=TimeGate Start=0s SegmentTime=50µs C3 Fc=2GHz R4 File='Step3_DPD_Coefficients_Real.txt Periodic=YES Fc DPD_ Co ef PA_ IN Env Cx Spe ctrum Ana ly z e r Cx Env DPD_ In p ut D1 MemoryOrder=7 NonlinearOrder=9 NumOfInputSamples=61440 [NumOfInputSamples] E1 Fc T PA_ OUT DPD_PAModel DPD_ Outp ut DPD_PreDistorter DPD_PAModel_1 S1 SampleRate=122.9e+6Hz [SamplingRate] C2 Fc=2e+9Hz [FCarrier] AfterDPD_PA Mode=TimeGate Start=0s SegmentTime=50µs Pow10 Math G28 {Gain@Data Flow Models} Gain=0 [pPowers(1)] M12 {Math@Data Flow Models} FunctionType=Pow10 G23 {Gain@Data Flow Models} Gain=-1.159 [pPars(1)] Pow10 Math G26 {Gain@Data Flow Models} Gain=1 [pPowers(2)] M16 {Math@Data Flow Models} FunctionType=Pow10 G22 {Gain@Data Flow Models} Gain=0.917 [pPars(2)] Pow10 Math G27 {Gain@Data Flow Models} Gain=2 [pPowers(3)] M15 {Math@Data Flow Models} FunctionType=Pow10 G21 {Gain@Data Flow Models} Gain=-1.746 [pPars(3)] Pow10 Math G24 {Gain@Data Flow Models} Gain=4 [pPowers(4)] Log10 Math L3 {Limit@Data Flow Models} K=1 Bottom=0 Top=0.86 [pXmaxVolt] LimiterType=linear M17 {Math@Data Flow Models} FunctionType=Log10 M14 {Math@Data Flow Models} FunctionType=Pow10 G20 {Gain@Data Flow Models} Gain=0.992 [pPars(4)] Pow10 Math G25 {Gain@Data Flow Models} Gain=6 [pPowers(5)] M13 {Math@Data Flow Models} FunctionType=Pow10 G19 {Gain@Data Flow Models} Gain=-0.155 [pPars(5)] A2 {Add@Data Flow Models} PA_OUT {DATAPORT} Data Type=Complex Bus=NO Phase Mag EVM (dB) P1 {PolarToC x@Data Flow Models} PA_IN {DATAPORT} Data Type=Complex Bus=NO Phase Log10 Math Mag A3 {Add@Data Flow Models} C2 {CxToPolar@Data Flow Models} L2 {Limit@Data Flow Models} K=1 Bottom=0 Top=0.788 [mXmaxVolt] LimiterType=linear M2 {Math@Data Flow Models} FunctionType=Log10 Pow10 Math G18 {Gain@Data Flow Models} Gain=0 [mPowers(1)] M3 {Math@Data Flow Models} FunctionType=Pow10 G1 {Gain@Data Flow Models} Gain=31.623 [mPars(1)] A1 {Add@Data Flow Models} M1 {Mpy@D ata Flow Models} Pow10 Math 10e-201 G17 {Gain@Data Flow Models} Gain=1 [mPowers(2)] M4 {Math@Data Flow Models} FunctionType=Pow10 G2 {Gain@Data Flow Models} Gain=-72.068 [mPars(2)] C1 {Const@Data Flow Models} Value=1e-200 Pow10 Math G16 {Gain@Data Flow Models} Gain=2 [mPowers(3)] M5 {Math@Data Flow Models} FunctionType=Pow10 G3 {Gain@Data Flow Models} Gain=254.726 [mPars(3)] Pow10 Math G15 {Gain@Data Flow Models} Gain=4 [mPowers(4)] M6 {Math@Data Flow Models} FunctionType=Pow10 G6 {Gain@Data Flow Models} Gain=-1107.963 [mPars(4)] ACLR (dB) Pow10 Math G14 {Gain@Data Flow Models} Gain=6 [mPowers(5)] M7 {Math@Data Flow Models} FunctionType=Pow10 G5 {Gain@Data Flow Models} Gain=2956.358 [mPars(5)] Pow10 Math G13 {Gain@Data Flow Models} Gain=8 [mPowers(6)] M8 {Math@Data Flow Models} FunctionType=Pow10 G4 {Gain@Data Flow Models} Gain=-4462.485 [mPars(6)] Pow10 Math G12 {Gain@Data Flow Models} Gain=10 [mPowers(7)] M9 {Math@Data Flow Models} FunctionType=Pow10 G9 {Gain@Data Flow Models} Gain=3782.968 [mPars(7)] Pow10 Math G11 {Gain@Data Flow Models} Gain=12 [mPowers(8)] M10 {Math@Data Flow Models} FunctionType=Pow10 G8 {Gain@Data Flow Models} Gain=-1653.647 [mPars(8)] Pow10 Math G10 {Gain@Data Flow Models} Gain=14 [mPowers(9)] M11 {Math@Data Flow Models} FunctionType=Pow10 G7 {Gain@Data Flow Models} Gain=281.85 [mPars(9)] G29 {Gain@Data Flow Models} Gain=1 Copyright Agilent Technologies 2010 13 SystemVue DPD Jinbiao XU May 26, 2010 LTE DPD simulation for a nonlinear PA with memory R5 File='Step3_DPD_Coeffic ients _Imag.tx t Periodic =YES Im Re R6 R4 Fc t File='Step3_DPD_Coeffic ients _Real.tx Periodic =YES Env E1 Fc Fc Cx DPD_O ut put DPD_ Pre Di s to rter Amplifier Env Env Fc T DPD_Coef Cx Spec trum Analyzer Cx Cx Env DPD_I nput D1 MemoryOrder=7 NonlinearOrder=9 NumOfInputSamples =61440 [NumOfInputSamples ] C8 Fc =0.2e6Hz Amplifier1 GainUnit=dB Gain=30 [GaindB] Nois eFigure=0 GCTy pe=none dBc1out=10dBm PdBmNoMem=-30 [PdBmNoMem] PdBmMax Mem=10 [PdBmMax Mem] MaxRis eTC=16.28e-9s [Max RiseTC] Max FallTC=16.28e-9s [Max FallTC] E4 S1 SampleRate=122.9e+6Hz [SamplingRate] vn i input {DATAPORT} Data Ty pe=Env elope Signal Bus =NO Mag Env Amplifier Cx v out R1 {Ris eFallTC@SV_VC_TC Models } PdBmNoMem=10 [PdBmNoMem] PdBmMax Mem=30 [PdBmMax Mem] Max Ris eTC=10e-6s [MaxRiseTC] Max FallTC=100e-6s [Max FallTC] RefR=50O [RefR] c ontrol {DATAPORT} Data Ty pe=Floating Point (Real) Bus =NO Mag Cx C3 {Cx ToPolar@Data Flow Models} E1 {Env ToCx @Data Flow Models } Env Phase Phase Fc A1 {Amplifier@Data Flow Models } Gain=1 NoiseFigure=0 [Nois eFigure] RiseFallTC AfterDPD_PA Mode=TimeGate Start=0s SegmentTime=50µs C2 Fc =2e+9Hz [FCarrier] Fc P1 {PolarToCx @Data Flow Models } Amplifier output {DATAPORT} Data Ty pe=Env elope Signal Bus =NO A2 {Amplifier@Data Flow Models } GainUnit=v oltage [GainUnit] Gain=1 [Gain] C1 {CxToEnv @Data Flow Models} Fc =0.2e6Hz EVM (dB) ACLR (dB) Copyright Agilent Technologies 2010 14 SystemVue DPD Jinbiao XU May 26, 2010 DPD Hardware Verification Flowchart Create DPD Stimulus Capture DUT Response DUT Model Extraction DPD Response Verify DPD Response Copyright Agilent Technologies 2010 15 DPD HW Flowchart consists of 5 steps: • Step 1 (Create DPD Stimulus) is to download waveform (LTE or User defined) into ESG/MXG. • Step 2 (Capture DUT Response) is to capture both waveforms before power amplifier and after power amplifier from PSA/MXA/PXA by using VSA89600 software. • Step 3 (DUT Model Extraction) is to extract PA nonlinear coefficients based on both captured PA input and PA output waveforms and then to verify DPD by using PA nonlinear coefficients. • Step 4 (DPD Response) is to download the waveform (LTE or User Defined) after predistorter (by using PA nonlinear coefficient from Step 3) into ESG/MXG, this real signal passes through the PA DUT, capture PA output waveform from PSA/MXA/PXA by using VSA89600 software. • Step 5 (Verify DPD Response) is to show the performance improvement after DPD. SystemVue DPD Jinbiao XU May 26, 2010 DPD Hardware Verification Workspace Structure Copyright Agilent Technologies 2010 16 SystemVue DPD Jinbiao XU May 26, 2010 DPD Hardware Verification Platform 1. PA input signal capture Signal source: LTE 10MHz Agilent MXG/ESG 10MHz Reference PSA/MXA/PXA External Trigger 2. PA output signal capture MXG/ESG PSA/MXA/PXA 10MHz Reference External Trigger Attenuator Copyright Agilent Technologies 2010 17 SystemVue DPD Jinbiao XU May 26, 2010 DPD Hardware Verification – LTE (Step 1) Step 1: Create Stimulus The CFR must be enable in LTE source. LTE paramters (such as bandwidth, Resource Block allocation and etc) can be set. The download waveform transmit power, length also can be set. Copyright Agilent Technologies 2010 18 SystemVue DPD Jinbiao XU May 26, 2010 DPD Hardware Verification – LTE (Step 2) Step 2: Capture DUT Response Firstly, connect the ESG directly with the PSA/PXA and click the “Capture Waveform” button in the “Capture PA Input” panel in the GUI. The captured signal is the input of the PA DUT. Then, connect the ESG with the DUT, and then connect the DUT with the PSA/PXA and click the “Capture Waveform” button in the “Capture PA Output” panel in the GUI. The captured signal is the output of the PA DUT. These I/Q files are stored for further usage. Copyright Agilent Technologies 2010 19 SystemVue DPD Jinbiao XU May 26, 2010 DPD Hardware Verification – LTE (Step 3) Step 3: DUT Model Extraction DPD Verification AM-AM This step is to extract PA nonlinear coefficient from the PA input and PA output waveform and get the coefficients of the DPD model. Copyright Agilent Technologies 2010 20 SystemVue DPD Jinbiao XU May 26, 2010 DPD Hardware Verification – LTE (Step 4) Step 4: DUT Response Copyright Agilent Technologies 2010 21 This step is to apply the DPD model extracted in Step 3. The generated LTE downlink signal is firstly pre-distorted by the extracted model, and then downloaded into the ESG. SystemVue DPD Jinbiao XU May 26, 2010 DPD Hardware Verification – LTE (Step 5) Step 5: Verify DUT Response Spectrum EVM ACLR This step is to verify the performances of the DPD (including spectrums of the DUT output signal w/ and w/o DPD, EVM and ACLR). EVM (dB) ACLR (dB) Copyright Agilent Technologies 2010 22 SystemVue DPD Jinbiao XU May 26, 2010 Hardware Verification Results of Doherty PA EVM (dB) ACLR (dB) Copyright Agilent Technologies 2010 23 SystemVue DPD Jinbiao XU May 26, 2010 References 1. Lei Ding, Zhou G.T., Morgan D.R., Zhengxiang Ma, Kenney J.S., Jaehyeong Kim, Giardina C.R., “A robust digital baseband predistorter constructed using memory polynomials”, Communications, IEEE Transactions on, Jan. 2004, Volume: 52, Issue:1, page 159-165. 2. Lei Ding, “Digital Predistortion of Power Amplifiers for Wireless Applications”, PhD Thesis, March 2004. 3. Roland Sperlich, “Adaptive Power Amplifier Linearization by Digital Pre-Distortion with Narrowband Feedback using Genetic Algorithms”, PhD Thesis, 2005. 4. Helaoui, M. Boumaiza, S. Ghazel, A. Ghannouchi, F.M., “Power and efficiency enhancement of 3G multicarrier amplifiers using digital signal processing with experimental validation”, Microwave Theory and Techniques, IEEE Transactions on, June 2006, Volume: 54, Issue: 4, Part 1, page 1396-1404. 5. H. A.Suraweera, K. R. Panta, M. Feramez and J. Armstrong, “OFDM peak-to-average power reduction scheme with spectral masking,” Proc. Symp. on Communication Systems, Networks and Digital Signal Processing, pp.164-167, July 2004. 6. Zhao, Chunming; Baxley, Robert J.; Zhou, G. Tong; Boppana, Deepak; Kenney, J. Stevenson, “Constrained Clipping for Crest Factor Reduction in Multiple-user OFDM”, Radio and Wireless Symposium, 2007 IEEE Volume , Issue , 9-11 Jan. 2007 Page(s):341- 344. 7. Olli Vaananen, “Digital Modulators with Crest Factor Reduction Techniques”, PhD Thesis, 2006 8. Boumaiza, et a, “On the RF/DSP Design for Efficiency of OFDM Transmitters” , IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 7, July 2005, pp 2355-2361. 9. Boumaiza, Slim, “Advanced Memory Polynomial Linearization Techniques,” IMS2009 Workshop WMC (Boston, MA), June 2009. 10. Amplifier Pre-Distortion Linearization and Modeling Using X-Parameters, Agilent EEsof EDA Copyright Agilent Technologies 2010 24 SystemVue DPD Jinbiao XU May 26, 2010