Practical Digital Pre-Distortion Techniques for PA

Practical Digital Pre-Distortion
Techniques for PA Linearization
in 3GPP LTE
Jinbiao Xu
Agilent Technologies
Master System Engineer
Copyright Agilent Technologies 2010
1
SystemVue DPD
Jinbiao XU
May 26, 2010
Agenda
•
•
•
•
Digital PreDistortion----Principle
Crest Factor Reduction
Digital PreDistortion Simulation
Digital PreDistortion Hardware Verification
Copyright Agilent Technologies 2010
2
SystemVue DPD
Jinbiao XU
May 26, 2010
Digital Pre-Distortion----- Principle
Linear Response
Output Power
Saturation
Psat
Pout -pd
Operating region
with predistortion
Pout
Operating region
without predistortion
Input Power
Output Phase
Desired Output
Linear
Output
θo-pd = k
θout
Pi
Copyright Agilent Technologies 2010
3
Pi-pd
Input Power
SystemVue DPD
Jinbiao XU
May 26, 2010
Digital Pre-Distortion----- Principle
The DPD-PA cascade attempts to combine two nonlinear systems into one linear result
which allows the PA to operate closer to saturation.
The objective of digital predistorter is to have y (t ) ≈ Cx(t ) , where C is a constant.
The most important step is to extract PA nonlinear behavior accurately and efficiently.
Copyright Agilent Technologies 2010
4
SystemVue DPD
Jinbiao XU
May 26, 2010
Memory Polynomial Algorithm
•
•
•
As the signal (such as 3GPP LTE) bandwidth gets wider, power amplifiers
begin to exhibit memory effects. Memoryless (LUT) pre-distortion can achieve
only very limited linearization performance.
Volterra series is a general nonlinear model with memory. It is unattractive for
practical applications because of its large number of coefficients.
Memory polynomial reduces Volterra’s model complexity. It is interpreted as a
special case of a generalized Hammerstein model. Its equation is as follows:
K
Q
z (n) = ∑∑ akq y (n − q ) y (n − q )
k −1
K is Nonlinearity order and Q is Memory order
k =1 q = 0
Memory Polynomial Structure
Copyright Agilent Technologies 2010
5
Polynomial Structure
SystemVue DPD
Jinbiao XU
May 26, 2010
Signal Training to derive the Memory Polynomial
1. Pre-distorter training:
Nonlinear coefficients are
extracted from the PA
input and PA output
waveforms (ie – on real
physical behavior)
2. Copy of PA : The DPD
model accurately captures
the nonlinearity with
memory effects
Memory Polynomial Coefficients
aˆ = (U H U ) −1U H z
[
aˆ = aˆ10 ,L, aˆ K 0 ,L, aˆ1Q ,L, aˆ KQ
z = [z (0), z (1), K , z ( N − 1)]
T
Copyright Agilent Technologies 2010
6
]
T
y (n − q) y (n − q )
u kq (n) =
G
G
k −1
[
u kq = u kq (0), u kq (1),L , u kq ( N − 1)
[
U = u10 ,L, uK 0 ,L, u1Q ,L, uKQ
]
T
]
SystemVue DPD
Jinbiao XU
May 26, 2010
Crest Factor Reduction (CFR) Concepts
• Spectrally efficient wideband RF signals may have PAPR >13dB.
• CFR preconditions the signal to reduce signal peaks without significant
signal distortion
• CFR allows the PA to operate more efficiently – it is not a linearization
technique
• CFR supplements DPD and improves DPD effectiveness
• Without CFR and DPD, a basestation PA must operate at significant
back-off from saturated power to maintain linearity. The back-off
reduces efficiency
Benefits of CFR
1. PAs can operate closer to saturation, for improved efficiency (PAE).
2. Output signal still complies with spectral mask and EVM specifications
Copyright Agilent Technologies 2010
7
SystemVue DPD
Jinbiao XU
May 26, 2010
Crest Factor Reduction (CFR) Concepts
If you can reduce the Peak-to-Average Ratio of the signal, then for a given
amplitude Peak, you can raise the Average power (up & to the right, above)
with no loss in signal quality.
Thus, CFR enables higher PA efficiency by reducing the back-off, often by 6dB
Copyright Agilent Technologies 2010
8
SystemVue DPD
Jinbiao XU
May 26, 2010
Crest Factor Reduction for Multiple-Carrier Signals
•
•
•
Multiple-Carrier Signals (such as GSM, WCDMA, WiMAX) already have high
PAPR.
In the future, they will also include multiple waveforms (ie - LTE with 3G WCDMA).
Therefore CFR will increase in importance for Multi-Carrier PA (MCPA)
linearization.
CFR algorithm for multiple carrier signals
•
•
•
•
PW (Peak Windowing)-CFR
NS (Noise-Shaping) -CFR
PI (Pulse Injection)-CFR
PC (Peak Cancellation)-CFR
Copyright Agilent Technologies 2010
9
SystemVue DPD
Jinbiao XU
May 26, 2010
CFR for 3GPP LTE DL OFDM Signal
• Controls EVM and band limits in the frequency domain.
• Constrains constellation errors, to avoid bit errors.
• Constrains the degradation on individual sub-carriers.
• Allows QPSK sub-carriers to be degraded more than 64 QAM subcarriers.
• Does not degrade reference signals, P-SS and S-SS.
• All control channels (PDCCH, PBCH, PCFICH and PHICH) adopts
QPSK threshold.
Copyright Agilent Technologies 2010
10
SystemVue DPD
Jinbiao XU
May 26, 2010
LTE CFR (Crest Factor Reduction)
0+0*j
DC
Value=0 [0+0* j]
ifft1
FFTSize=4096 [DFTSize]
Size=4096 [DFTSize]
Direction=Inverse
FreqS equence=0-pos-neg
G2
Gain=1
A
0+0*j
G3
Gain=1
Qm
SC_St at us
DPD_LTE_CFR_Post Pr oc
r fe
FFT
A3
BlockS izes=1;300;3495;300 [[1,Half_UsedCarriers,DFT_zeros,Half_UsedCarriers]]
zeros
Value=0 [0+0* j]
ifft2
FFTSize=4096 [DFTSize]
Size=4096 [DFTSize]
Direction=Inverse
FreqS equence=0-pos-neg
out put
A
A2
BlockSizes=300;300 [[Half_UsedCarriers, Half_UsedCarriers]]
fft
FFTSize=4096 [DFTSize]
S ize=4096 [DFTSize]
Direction=Forward
FreqSequence=0-pos-neg
n
i put
out put
DPD_ Rad iu s Cp
il
DPD_RadiusClp
i
ClippingThreshold=16.5e-6 [ClippingThreshold]
FFT
FFT
n
i put
D1
Bandwidth=BW 10 MHz [Bandwidth]
OversamplingOption=Ratio 4 [OversamplingOption]
CyclicPrefix=Normal [CyclicPrefix]
UE1_MappingType=0;0;0;0;0;0;0;0;0;0 [UE 1_MappingType]
OtherUEs_MappingType=0;0;0;0;0 [OtherUEs_MappingType]
RS_EPRE=-25 [RS_EPRE]
PCFICH_Rb=0 [PCFICH_Rb]
PHICH_Ra=0 [PHICH_Ra]
PHICH_Rb=0 [PHICH_Rb]
P BCH_Ra=0 [PBCH_Ra]
P BCH_Rb=0 [PBCH_Rb]
PDCCH_Ra=0 [PDCCH_Ra]
PDCCH_Rb=0 [PDCCH_Rb]
PDSCH_PowerRatio=p_B/p_A = 1 [PDSCH_P owerRato
i]
UEs_Pa=0;0;0;0;0;0 [UEs_Pa]
PSS_Ra=0 [PSS_Ra]
SSS_Ra=0 [SSS_Ra]
EVM_Threshold_QPSK=0.1 [EVM_Threshold_QPSK]
EVM_Threshold_16QAM=0.1 [EVM_Threshold_16QA M]
EVM_Threshold_64QAM=0.1 [EVM_Threshold_64QA M]
OutOfBandAlgorithm=Armstrong algorithm
Simulation Results
LTE Downlink 10MHz,
Sampling Rate 61.44MHz,
QPSK,
EVM threshold 10%
Copyright Agilent Technologies 2010
11
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Simulation Workspace
Step 1 is to Generate Waveform for DPD
Step 3 is for DUT Model Extraction
Step 4 is for DPD Response
Compared with hardware verification tool,
simulation tool does not include Step 2
and Step 5.
Hardware verification toll will be
introduced later.
Copyright Agilent Technologies 2010
12
SystemVue DPD
Jinbiao XU
May 26, 2010
LTE DPD simulation for a memoryless nonlinear PA
Fc
T
R5
File='Step3_DPD_Coefficients_Imag.txt
Periodic=YES
Spe ctrum Ana ly z e r
Cx
Im
Env
Re
S4
SampleRate=122.9e+6Hz [SamplingRate]
R6
AfterDPD
Mode=TimeGate
Start=0s
SegmentTime=50µs
C3
Fc=2GHz
R4
File='Step3_DPD_Coefficients_Real.txt
Periodic=YES
Fc
DPD_ Co ef
PA_ IN
Env
Cx
Spe ctrum Ana ly z e r
Cx
Env
DPD_ In p ut
D1
MemoryOrder=7
NonlinearOrder=9
NumOfInputSamples=61440 [NumOfInputSamples]
E1
Fc
T
PA_ OUT
DPD_PAModel
DPD_ Outp ut
DPD_PreDistorter
DPD_PAModel_1
S1
SampleRate=122.9e+6Hz [SamplingRate]
C2
Fc=2e+9Hz [FCarrier]
AfterDPD_PA
Mode=TimeGate
Start=0s
SegmentTime=50µs
Pow10
Math
G28 {Gain@Data Flow Models}
Gain=0 [pPowers(1)]
M12 {Math@Data Flow Models}
FunctionType=Pow10
G23 {Gain@Data Flow Models}
Gain=-1.159 [pPars(1)]
Pow10
Math
G26 {Gain@Data Flow Models}
Gain=1 [pPowers(2)]
M16 {Math@Data Flow Models}
FunctionType=Pow10
G22 {Gain@Data Flow Models}
Gain=0.917 [pPars(2)]
Pow10
Math
G27 {Gain@Data Flow Models}
Gain=2 [pPowers(3)]
M15 {Math@Data Flow Models}
FunctionType=Pow10
G21 {Gain@Data Flow Models}
Gain=-1.746 [pPars(3)]
Pow10
Math
G24 {Gain@Data Flow Models}
Gain=4 [pPowers(4)]
Log10
Math
L3 {Limit@Data Flow Models}
K=1
Bottom=0
Top=0.86 [pXmaxVolt]
LimiterType=linear
M17 {Math@Data Flow Models}
FunctionType=Log10
M14 {Math@Data Flow Models}
FunctionType=Pow10
G20 {Gain@Data Flow Models}
Gain=0.992 [pPars(4)]
Pow10
Math
G25 {Gain@Data Flow Models}
Gain=6 [pPowers(5)]
M13 {Math@Data Flow Models}
FunctionType=Pow10
G19 {Gain@Data Flow Models}
Gain=-0.155 [pPars(5)]
A2 {Add@Data Flow Models}
PA_OUT {DATAPORT}
Data Type=Complex
Bus=NO
Phase
Mag
EVM (dB)
P1 {PolarToC x@Data Flow Models}
PA_IN {DATAPORT}
Data Type=Complex
Bus=NO
Phase
Log10
Math
Mag
A3 {Add@Data Flow Models}
C2 {CxToPolar@Data Flow Models}
L2 {Limit@Data Flow Models}
K=1
Bottom=0
Top=0.788 [mXmaxVolt]
LimiterType=linear
M2 {Math@Data Flow Models}
FunctionType=Log10
Pow10
Math
G18 {Gain@Data Flow Models}
Gain=0 [mPowers(1)]
M3 {Math@Data Flow Models}
FunctionType=Pow10
G1 {Gain@Data Flow Models}
Gain=31.623 [mPars(1)]
A1 {Add@Data Flow Models}
M1 {Mpy@D ata Flow Models}
Pow10
Math
10e-201
G17 {Gain@Data Flow Models}
Gain=1 [mPowers(2)]
M4 {Math@Data Flow Models}
FunctionType=Pow10
G2 {Gain@Data Flow Models}
Gain=-72.068 [mPars(2)]
C1 {Const@Data Flow Models}
Value=1e-200
Pow10
Math
G16 {Gain@Data Flow Models}
Gain=2 [mPowers(3)]
M5 {Math@Data Flow Models}
FunctionType=Pow10
G3 {Gain@Data Flow Models}
Gain=254.726 [mPars(3)]
Pow10
Math
G15 {Gain@Data Flow Models}
Gain=4 [mPowers(4)]
M6 {Math@Data Flow Models}
FunctionType=Pow10
G6 {Gain@Data Flow Models}
Gain=-1107.963 [mPars(4)]
ACLR (dB)
Pow10
Math
G14 {Gain@Data Flow Models}
Gain=6 [mPowers(5)]
M7 {Math@Data Flow Models}
FunctionType=Pow10
G5 {Gain@Data Flow Models}
Gain=2956.358 [mPars(5)]
Pow10
Math
G13 {Gain@Data Flow Models}
Gain=8 [mPowers(6)]
M8 {Math@Data Flow Models}
FunctionType=Pow10
G4 {Gain@Data Flow Models}
Gain=-4462.485 [mPars(6)]
Pow10
Math
G12 {Gain@Data Flow Models}
Gain=10 [mPowers(7)]
M9 {Math@Data Flow Models}
FunctionType=Pow10
G9 {Gain@Data Flow Models}
Gain=3782.968 [mPars(7)]
Pow10
Math
G11 {Gain@Data Flow Models}
Gain=12 [mPowers(8)]
M10 {Math@Data Flow Models}
FunctionType=Pow10
G8 {Gain@Data Flow Models}
Gain=-1653.647 [mPars(8)]
Pow10
Math
G10 {Gain@Data Flow Models}
Gain=14 [mPowers(9)]
M11 {Math@Data Flow Models}
FunctionType=Pow10
G7 {Gain@Data Flow Models}
Gain=281.85 [mPars(9)]
G29 {Gain@Data Flow Models}
Gain=1
Copyright Agilent Technologies 2010
13
SystemVue DPD
Jinbiao XU
May 26, 2010
LTE DPD simulation for a nonlinear PA with memory
R5
File='Step3_DPD_Coeffic ients _Imag.tx t
Periodic =YES
Im
Re
R6
R4
Fc t
File='Step3_DPD_Coeffic ients _Real.tx
Periodic =YES
Env
E1
Fc
Fc
Cx
DPD_O ut put
DPD_ Pre Di s to rter
Amplifier
Env
Env
Fc
T
DPD_Coef
Cx
Spec trum Analyzer
Cx
Cx
Env
DPD_I nput
D1
MemoryOrder=7
NonlinearOrder=9
NumOfInputSamples =61440 [NumOfInputSamples ]
C8
Fc =0.2e6Hz
Amplifier1
GainUnit=dB
Gain=30 [GaindB]
Nois eFigure=0
GCTy pe=none
dBc1out=10dBm
PdBmNoMem=-30 [PdBmNoMem]
PdBmMax Mem=10 [PdBmMax Mem]
MaxRis eTC=16.28e-9s [Max RiseTC]
Max FallTC=16.28e-9s [Max FallTC]
E4
S1
SampleRate=122.9e+6Hz [SamplingRate]
vn
i
input {DATAPORT}
Data Ty pe=Env elope Signal
Bus =NO
Mag
Env
Amplifier
Cx
v out
R1 {Ris eFallTC@SV_VC_TC Models }
PdBmNoMem=10 [PdBmNoMem]
PdBmMax Mem=30 [PdBmMax Mem]
Max Ris eTC=10e-6s [MaxRiseTC]
Max FallTC=100e-6s [Max FallTC]
RefR=50O [RefR]
c ontrol {DATAPORT}
Data Ty pe=Floating Point (Real)
Bus =NO
Mag
Cx
C3 {Cx ToPolar@Data Flow Models}
E1 {Env ToCx @Data Flow Models }
Env
Phase
Phase
Fc
A1 {Amplifier@Data Flow Models }
Gain=1
NoiseFigure=0 [Nois eFigure]
RiseFallTC
AfterDPD_PA
Mode=TimeGate
Start=0s
SegmentTime=50µs
C2
Fc =2e+9Hz [FCarrier]
Fc
P1 {PolarToCx @Data Flow Models }
Amplifier
output {DATAPORT}
Data Ty pe=Env elope Signal
Bus =NO
A2 {Amplifier@Data Flow Models }
GainUnit=v oltage [GainUnit]
Gain=1 [Gain]
C1 {CxToEnv @Data Flow Models}
Fc =0.2e6Hz
EVM (dB)
ACLR (dB)
Copyright Agilent Technologies 2010
14
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Hardware Verification Flowchart
Create DPD Stimulus
Capture DUT Response
DUT Model Extraction
DPD Response
Verify DPD Response
Copyright Agilent Technologies 2010
15
DPD HW Flowchart consists of 5 steps:
• Step 1 (Create DPD Stimulus) is to
download waveform (LTE or User defined)
into ESG/MXG.
• Step 2 (Capture DUT Response) is to
capture both waveforms before power
amplifier and after power amplifier from
PSA/MXA/PXA by using VSA89600
software.
• Step 3 (DUT Model Extraction) is to extract
PA nonlinear coefficients based on both
captured PA input and PA output waveforms
and then to verify DPD by using PA
nonlinear coefficients.
• Step 4 (DPD Response) is to download the
waveform (LTE or User Defined) after predistorter (by using PA nonlinear coefficient
from Step 3) into ESG/MXG, this real signal
passes through the PA DUT, capture PA
output waveform from PSA/MXA/PXA by
using VSA89600 software.
• Step 5 (Verify DPD Response) is to show
the performance improvement after DPD.
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Hardware Verification Workspace Structure
Copyright Agilent Technologies 2010
16
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Hardware Verification Platform
1. PA input signal capture
Signal source:
LTE 10MHz
Agilent MXG/ESG
10MHz Reference
PSA/MXA/PXA
External Trigger
2. PA output signal capture
MXG/ESG
PSA/MXA/PXA
10MHz Reference
External Trigger
Attenuator
Copyright Agilent Technologies 2010
17
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Hardware Verification – LTE (Step 1)
Step 1: Create Stimulus
The CFR must be enable in LTE
source.
LTE paramters (such as bandwidth,
Resource Block allocation and etc)
can be set.
The download waveform transmit
power, length also can be set.
Copyright Agilent Technologies 2010
18
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Hardware Verification – LTE (Step 2)
Step 2: Capture DUT Response
Firstly, connect the ESG directly
with the PSA/PXA and click the
“Capture Waveform” button in the
“Capture PA Input” panel in the
GUI. The captured signal is the
input of the PA DUT.
Then, connect the ESG with the
DUT, and then connect the DUT
with the PSA/PXA and click the
“Capture Waveform” button in the
“Capture PA Output” panel in the
GUI. The captured signal is the
output of the PA DUT.
These I/Q files are stored for
further usage.
Copyright Agilent Technologies 2010
19
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Hardware Verification – LTE (Step 3)
Step 3: DUT Model Extraction
DPD Verification AM-AM
This step is to extract
PA nonlinear
coefficient from the
PA input and PA
output waveform and
get the coefficients of
the DPD model.
Copyright Agilent Technologies 2010
20
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Hardware Verification – LTE (Step 4)
Step 4: DUT Response
Copyright Agilent Technologies 2010
21
This step is to apply the DPD model extracted in
Step 3. The generated LTE downlink signal is
firstly pre-distorted by the extracted model, and
then downloaded into the ESG.
SystemVue DPD
Jinbiao XU
May 26, 2010
DPD Hardware Verification – LTE (Step 5)
Step 5: Verify DUT Response
Spectrum
EVM
ACLR
This step is to verify the performances
of the DPD (including spectrums of the
DUT output signal w/ and w/o DPD,
EVM and ACLR).
EVM (dB)
ACLR (dB)
Copyright Agilent Technologies 2010
22
SystemVue DPD
Jinbiao XU
May 26, 2010
Hardware Verification Results of Doherty PA
EVM (dB)
ACLR (dB)
Copyright Agilent Technologies 2010
23
SystemVue DPD
Jinbiao XU
May 26, 2010
References
1.
Lei Ding, Zhou G.T., Morgan D.R., Zhengxiang Ma, Kenney J.S., Jaehyeong Kim, Giardina C.R., “A robust digital
baseband predistorter constructed using memory polynomials”, Communications, IEEE Transactions on, Jan. 2004,
Volume: 52, Issue:1, page 159-165.
2. Lei Ding, “Digital Predistortion of Power Amplifiers for Wireless Applications”, PhD Thesis, March 2004.
3. Roland Sperlich, “Adaptive Power Amplifier Linearization by Digital Pre-Distortion with Narrowband Feedback using
Genetic Algorithms”, PhD Thesis, 2005.
4. Helaoui, M. Boumaiza, S. Ghazel, A. Ghannouchi, F.M., “Power and efficiency enhancement of 3G multicarrier
amplifiers using digital signal processing with experimental validation”, Microwave Theory and Techniques, IEEE
Transactions on, June 2006, Volume: 54, Issue: 4, Part 1, page 1396-1404.
5. H. A.Suraweera, K. R. Panta, M. Feramez and J. Armstrong, “OFDM peak-to-average power reduction scheme with
spectral masking,” Proc. Symp. on Communication Systems, Networks and Digital Signal Processing, pp.164-167, July
2004.
6. Zhao, Chunming; Baxley, Robert J.; Zhou, G. Tong; Boppana, Deepak; Kenney, J. Stevenson, “Constrained Clipping for
Crest Factor Reduction in Multiple-user OFDM”, Radio and Wireless Symposium, 2007 IEEE Volume , Issue , 9-11 Jan.
2007 Page(s):341- 344.
7. Olli Vaananen, “Digital Modulators with Crest Factor Reduction Techniques”, PhD Thesis, 2006
8. Boumaiza, et a, “On the RF/DSP Design for Efficiency of OFDM Transmitters” , IEEE Transactions on
Microwave Theory and Techniques, Vol. 53, No. 7, July 2005, pp 2355-2361.
9. Boumaiza, Slim, “Advanced Memory Polynomial Linearization Techniques,” IMS2009 Workshop WMC
(Boston, MA), June 2009.
10. Amplifier Pre-Distortion Linearization and Modeling Using X-Parameters, Agilent EEsof EDA
Copyright Agilent Technologies 2010
24
SystemVue DPD
Jinbiao XU
May 26, 2010