Order this document by MRF148/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line N–Channel Enhancement–Mode Designed for power amplifier applications in industrial, commercial and amateur radio equipment to 175 MHz. • Superior High Order IMD • Specified 50 Volts, 30 MHz Characteristics Output Power = 30 Watts Power Gain = 18 dB (Typ) Efficiency = 40% (Typ) 30 W, to 175 MHz N–CHANNEL MOS LINEAR RF POWER FET • IMD(d3) (30 W PEP) — – 35 dB (Typ) • IMD(d11) (30 W PEP) — – 60 dB (Typ) • 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR • Lower Reverse Transfer Capacitance (3.0 pF Typical) D G CASE 211–07, STYLE 2 S MAXIMUM RATINGS Rating Symbol Value Unit Drain–Source Voltage VDSS 120 Vdc Drain–Gate Voltage VDGO 120 Vdc VGS ± 40 Vdc Drain Current — Continuous ID 6.0 Adc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 115 0.66 Watts W/°C Storage Temperature Range Tstg – 65 to +150 °C TJ 200 °C Symbol Max Unit RθJC 1.52 °C/W Gate–Source Voltage Operating Junction Temperature THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. Replaces MRF148/D 1 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit Drain–Source Breakdown Voltage (VGS = 0, ID = 10 mA) V(BR)DSS 125 — — Vdc Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0) IDSS — — 1.0 mAdc Gate–Body Leakage Current (VGS = 20 V, VDS = 0) IGSS — — 100 nAdc Gate Threshold Voltage (VDS = 10 V, ID = 10 mA) VGS(th) 1.0 2.5 5.0 Vdc Drain–Source On–Voltage (VGS = 10 V, ID = 2.5 A) VDS(on) 1.0 3.0 5.0 Vdc Forward Transconductance (VDS = 10 V, ID = 2.5 A) gfs 0.8 1.2 — mhos Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Ciss — 62 — pF Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Coss — 35 — pF Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Crss — 3.0 — pF Gps — — 18 15 — — dB η — — 40 50 — — % IMD(d3) IMD(d11) — — – 35 – 60 — — OFF CHARACTERISTICS ON CHARACTERISTICS DYNAMIC CHARACTERISTICS FUNCTIONAL TESTS (SSB) Common Source Amplifier Power Gain (VDD = 50 V, Pout = 30 W (PEP), IDQ = 100 mA) Drain Efficiency (VDD = 50 V, f = 30 MHz, IDQ = 100 mA) (30 MHz) (175 MHz) (30 W PEP) (30 W CW) Intermodulation Distortion (VDD = 50 V, Pout = 30 W (PEP), f = 30; 30.001 MHz, IDQ = 100 mA) dB ψ Load Mismatch (VDD = 50 V, Pout = 30 W (PEP), f = 30; 30.001 MHz, IDQ = 100 mA, VSWR 30:1 at all Phase Angles) No Degradation in Output Power CLASS A PERFORMANCE Intermodulation Distortion (1) and Power Gain (VDD = 50 V, Pout = 10 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, IDQ = 1.0 A) GPS IMD(d3) IMD(d9 – 13) — — — 20 – 50 – 70 — — — dB NOTE: 1. To MIL–STD–1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone. L2 L1 BIAS + 0 – 10 V – + C1 C4 C5 C6 + C7 – 50 V R1 DUT T2 RF INPUT T1 R3 RF OUTPUT C2 C8 R2 C3 R4 C1, C2, C3, C4, C5, C6 — 0.1 µF Ceramic Chip or Equivalent C7 — 10 µF, 100 V Electrolytic C8 — 100 pF Dipped Mica L1 — VK200 20/4B Ferrite Choke or Equivalent (3.0 µH) L2 — Ferrite Bead(s), 2.0 µH R1, R2 — 200 Ω, 1/2 W Carbon R3 — 4.7 Ω, 1/2 W Carbon R4 — 470 Ω, 1.0 W Carbon T1 — 4:1 Impedance Transformer T2 — 1:2 Impedance Transformer Figure 1. 2.0 to 50 MHz Broadband Test Circuit Replaces MRF148/D 2 15 VDD = 50 V IDQ = 100 mA Pout = 30 W (PEP) 10 5 40 VDD = 50 V 20 40 V IDQ = 100 mA 0 60 VDD = 50 V 40 30 MHz POWER GAIN (dB) 20 150 MHz 60 Pout , OUTPUT POWER (WATTS) 25 40 V 20 IDQ = 100 mA 2 5 10 20 50 100 0 200 0 0.5 1 1.5 2 2.5 f, FREQUENCY (MHz) Pin, INPUT POWER (WATTS) Figure 2. Power Gain versus Frequency Figure 3. Output Power versus Input Power 150 MHz d3 – 40 d5 – 50 – 30 d3 d5 10 20 30 Pout, OUTPUT POWER (WATTS PEP) – 50 0 40 Figure 4. IMD versus Pout + BIAS VDS = 30 V VDS = 15 V 1000 VDD = 50 V, IDQ = 100 mA, TONE SEPARATION 1 kHz – 40 f T, UNITY GAIN FREQUENCY (MHz) 2000 – 30 30 MHz IMD, INTERMODULATION DISTORTION (dB) 0 0 0 1 2 3 ID, DRAIN CURRENT (AMPS) Figure 5. Common Source Unity Gain Frequency versus Drain Current R2 + 50 Vdc RFC1 0–6 V C2 C3 4 + C5 C4 L2 DUT RF INPUT C7 RF OUTPUT L1 R1 C6 C1 T1 C1 — 91 pF Unelco Type MCM 01/010 C2, C4 — 0.1 µF Erie Red Cap C3 — Allen Bradley 680 pF Feed Thru C5 — 1.0 µF, 50 Vdc Electrolytic C6 — 15 pF Unelco Type J101 C7 — 24 pF Unelco Type MCM 01/010 L1 — 2 Turns #18 AWG, 5/16″ ID L2 — 4 Turns #18 AWG, 5/16″ ID R1 — 1.0 Ohm, 1/4 W Carbon R2 — 2000 Ohm, 1/4 W Carbon RFC1 — VK200 21/4B T1 — 4:1 Transformer, 1.75″ Subminiature T1 — Coaxial Cable Figure 6. 150 MHz Test Circuit Replaces MRF148/D 3 50 Ω 12.5 Ω T1 — 4:1 Impedance Ratio T1 — Transformer, Line T1 — Impedance = 25 Ω I D , DRAIN CURRENT (AMPS) I DS , DRAIN CURRENT (AMPS) 2 1 VDS = 10 V gfs = 1.2 mho 0 0 1 2 3 4 5 6 7 8 VGS, GATE–SOURCE VOLTAGE (VOLTS) 9 10 7 5 3 2 TC = 25°C 1 0.7 0.5 0.3 0.2 10 0.1 0.2 Figure 7. Gate Voltage versus Drain Current 0.4 0.7 1 2 4 7 10 20 40 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) Figure 8. DC Safe Operating Area (SOA) 175 150 50 175 30 15 7.0 ZOL* f = 2.0 MHz Zin 4.0 VDD = 50 V IDQ = 100 mA Pout = 30 W PEP Gate Shunted By 100 Ω f = 2.0 MHz ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency. Figure 9. Impedance Coordinates — 50 Ohm Characteristic Impedance Replaces MRF148/D 4 70 100 200 RF POWER MOSFET CONSIDERATIONS MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate–to–drain (Cgd), and gate–to–source (Cgs). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain–to–source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications. DRAIN Cgd GATE Cds Cgs Ciss = Cgd + Cgs Coss = Cgd + Cds Crss = Cgd SOURCE LINEARITY AND GAIN CHARACTERISTICS In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full–on condition. This on–resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate–to–source threshold voltage, VGS(th). Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open–circuited or floating should be avoided. These conditions can result in turn–on of the devices due to voltage build–up on the input capacitor due to leakage currents or pickup. Gate Protection — These devices do not have an internal monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended. EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V(BR)CES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VBE(on) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCE(sat) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RCE(sat) = Replaces MRF148/D 5 Drain Source Gate V(BR)DSS VDGO ID IDSS IGSS VGS(th) VDS(on) Ciss Coss gfs VDS(on) VCE(sat) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r DS(on) = ID IC PACKAGE DIMENSIONS A U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. M Q M 1 DIM A B C D E H J K M Q R S U 4 R 2 S B 3 D K STYLE 2: PIN 1. 2. 3. 4. J H C E SEATING PLANE CASE 211–07 ISSUE N Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. Replaces MRF148/D 6 SOURCE GATE SOURCE DRAIN INCHES MIN MAX 0.960 0.990 0.370 0.390 0.229 0.281 0.215 0.235 0.085 0.105 0.150 0.108 0.004 0.006 0.395 0.405 40 _ 50 _ 0.113 0.130 0.245 0.255 0.790 0.810 0.720 0.730 MILLIMETERS MIN MAX 24.39 25.14 9.40 9.90 5.82 7.13 5.47 5.96 2.16 2.66 3.81 4.57 0.11 0.15 10.04 10.28 40 _ 50 _ 2.88 3.30 6.23 6.47 20.07 20.57 18.29 18.54